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Quadratic Differentiable Optimization
For the Maximum Independent Set Problem

Anonymous Authors1

Abstract

Combinatorial Optimization (CO) addresses
many important problems, including the chal-
lenging Maximum Independent Set (MIS) prob-
lem. Alongside exact and heuristic solvers, dif-
ferentiable approaches have emerged, often us-
ing continuous relaxations of ReLU-based or
quadratic objectives. Noting that an MIS in a
graph is a Maximum Clique (MC) in its com-
plement, we propose a new quadratic formula-
tion for MIS by incorporating an MC term, im-
proving convergence and exploration. We show
that every maximal independent set corresponds
to a local minimizer, derive conditions with re-
spect to the MIS size, and characterize station-
ary points. To tackle the non-convexity of the
objective, we propose optimizing several initial-
izations in parallel using momentum-based gra-
dient descent, complemented by an efficient MIS
checking criterion derived from our theory. We
dub our method as parallelized Clique-Informed
Quadratic Optimization for MIS (pCQO-MIS).
Our experimental results demonstrate the effec-
tiveness of the proposed method compared to
exact, heuristic, sampling, and data-centric ap-
proaches. Notably, our method avoids the out-of-
distribution tuning and reliance on (un)labeled
data required by data-centric methods, while
achieving superior MIS sizes and competitive run-
time relative to their inference time. Additionally,
a key advantage of pCQO-MIS is that, unlike ex-
act and heuristic solvers, the runtime scales only
with the number of nodes in the graph, not the
number of edges.

1Anonymous Institution, Anonymous City, Anonymous Region,
Anonymous Country. Correspondence to: Anonymous Author
<anon.email@domain.com>.

Preliminary work. Under review by the International Conference
on Machine Learning (ICML). Do not distribute.

1. Introduction
In his landmark paper (Karp, 1972), Richard Karp estab-
lished a connection between Combinatorial Optimization
Problems (COPs) and the NP-hard complexity class, imply-
ing their inherent computational challenges. Additionally,
Richard Karp introduced the concept of reducibility among
combinatorial problems that are complete for the complexity
class NP.

Although there exists a direct reduction between some
COPs – such as the case with the Maximum Independent
Set (MIS), Maximum Clique (MC), and Minimum Vertex
Cover (MVC) – which allows a solution for one problem
to be directly used to solve another, other COPs differ sig-
nificantly. For example, there exists no straightforward
reduction between the MIS and Kidney Exchange Problem
(KEP) (McElfresh et al., 2019) (or the Travelling Salesman
Problem (TSP) (Dantzig et al., 1954)).

In this paper, we focus on the MIS problem, one of the
most fundamental in combinatorial optimization, with many
applications including frequency assignment in wireless
networks (Matsui & Tokoro, 2000), task scheduling (Eddy
& Kochenderfer, 2021), and genome sequencing (Joseph
et al., 1992; Zweig et al., 2006).

The MIS problem involves finding a subset of vertices in a
graph G = (V,E) with maximum cardinality, such that no
two vertices in this subset are connected by an edge (Tarjan
& Trojanowski, 1977). In the past few decades, in addi-
tion to commercial Integer Programming (IP) solvers (e.g.,
CPLEX (IBM), Gurobi (Gurobi), and most recently CP-SAT
(Perron & Didier)), powerful heuristic methods (e.g., Redu-
MIS in (Lamm et al., 2016)) have been introduced to tackle
the complexities inherent in the MIS problem. Such solvers
can be broadly classified into heuristic algorithms (Akiba
& Iwata, 2016), branch-and-bound-based global optimiza-
tion methods (San Segundo et al., 2011), and approximation
algorithms (Boppana & Halldórsson, 1992).

More recently, differentiable approaches have been ex-
plored (Bengio et al., 2021), falling into two main cate-
gories: (i) data-driven methods, where a neural network
(NN) is trained to fit a distribution over training graphs,
and (ii) dataless methods (Alkhouri et al., 2022; Schuetz
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Quadratic Differentiable Optimization for the Maximum Independent Set Problem

et al., 2022). Both approaches rely on a continuous relax-
ation of the MIS Quadratic Unconstrained Binary Optimiza-
tion (QUBO) or ReLU-based objective functions. However,
data-driven methods often suffer from unsatisfactory gen-
eralization performance when faced with graph instances
whose structural characteristics differ from those in the
training dataset (Böther et al., 2022), as argued recently
in (Gamarnik, 2023).

In this paper, we present a new differentiable dataless solver
for the MIS problem based on an improved quadratic op-
timization formulation, a parallel optimization strategy,
and momentum-based gradient descent, which we dub as
parallelized Clique-Informed Quadratic Optimization for
the MIS problem (pCQO-MIS). The contributions of our
work are summarized as follows:

1. MIS Quadratic Formulation with MC Term: Lever-
aging the direct relationship between the MIS and MC
problems, we propose a new formulation that incorpo-
rates an MC term into the continuous relaxation of the
MIS quadratic formulation.

2. Theoretically:

• We derive a sufficient and necessary condition for
the parameter that penalizes the inclusion of adjacent
nodes and the MC term parameter with respect to
(w.r.t.) the MIS size.

• We show that all local minimizers are binary vectors
that sit on the boundary of the box constraints, and
establish that all these local minimizers correspond to
maximal independent sets.

• We prove that if non-binary stationary points exist,
they are saddle points and not local minimizers, with
their existence depending on the graph type and con-
nectivity.

3. Optimization Strategy: To improve exploration with
our non-convex optimization, we propose the use of
GPU parallel processing of several initializations for
each graph instance using projected momentum-based
gradient descent.

4. Efficient MIS Checking: Drawing from our theoretical
results on local minimizers and stationary points, we
develop an efficient MIS checking function that signifi-
cantly accelerates our implementation.

5. Experimental Validation: We evaluate our approach on
challenging benchmark graph datasets, demonstrating its
efficacy. Our method achieves competitive or superior
performance compared to state-of-the-art heuristic, exact,
and data-driven approaches in terms of MIS size and/or
runtime.

2. Preliminaries
Notations: Consider an undirected graph represented as
G = (V,E), where V is the vertex set and E ⊆ V × V
is the edge set. The cardinality of a set is denoted by | · |.
The number of nodes (resp. edges) is denoted by |V | = n
(resp. |E| = m). Unless otherwise stated, for a node
v ∈ V , we use N (v) = {u ∈ V | (u, v) ∈ E} to denote
the set of its neighbors. The degree of a node v ∈ V is
denoted by d(v) = |N (v)|, and the maximum degree of
the graph by ∆(G). For a subset of nodes U ⊆ V , we use
G[U ] = (U,E[U ]) to represent the subgraph induced by the
nodes in U , where E[U ] = {(u, v) ∈ E | u, v ∈ U}. Given
a graph G, its complement is denoted by G′ = (V,E′),
where E′ = V × V \ E is the set of all the edges between
nodes that are not connected in G. Consequently, if |E′| =
m′, then m + m′ = n(n − 1)/2 represents the number
of edges in the complete graph on V . For any v ∈ V ,
N ′(v) = {u ∈ V | (u, v) ∈ E′} denotes the neighbour set
of v in the complement graph G′ = (V,E′). The adjacency
matrix of graph G is denoted by AG ∈ {0, 1}n×n. We use
I to denote the identity matrix. The element-wise product
of two matrices A and B is denoted by A ◦B. The trace of
a matrix A is denoted by tr(A). For any positive integer n,
[n] := {1, . . . , n}. The vector (resp. matrix) of all ones and
size n (resp. n × n) is denoted by en (resp. Jn = ene

T
n ).

For any vector x ∈ Rn, xTx = ∥x∥22 and ∥x∥21 = xTJnx.
Furthermore, we use 1(·) to denote the indicator function
that returns 1 (resp. 0) when its argument is True (resp.
False).

Problem Statement: In this paper, we consider the NP-
hard problem of obtaining the maximum independent set
(MIS). Next, we formally define MIS and the complemen-
tary Maximum Clique (MC) problems.
Definition 1 (MIS Problem). Given an undirected graph
G = (V,E), the goal of MIS is to find a subset of vertices
I ⊆ V such that E([I]) = ∅, and |I| is maximized.
Definition 2 (MC Problem). Given an undirected graph
G = (V,E), the goal of MC is to find a subset of vertices
C ⊆ V such that G[C] is a complete graph, and |C| is maxi-
mized.

For the MC problem, the MIS of a graph is an MC of the
complement graph (Karp, 1972). This means that I in G is
equivalent to C in G′. Given a graph G, if I is a Maximal
Independent Set (MaxIS), then E([I]) = ∅, but |I| is not
necessarily the largest in G. If I is an Independent Set (IS),
then E([I]) is an empty set, but there exists at least one
v /∈ I such that E([I ∪ {v}]) = ∅. See Figure 1 for an
example. We note that, in this paper, we use MIS and MaxIS
interchangeably.

Let each entry of the binary vector z ∈ {0, 1}n correspond
to a node v ∈ V , and be denoted by zv ∈ {0, 1}. An integer
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𝑣1 𝑣2

𝑣3 𝑣4

𝑣5

𝐺 = (𝑉, 𝐸) 𝐺′ = (𝑉, 𝐸′)

Figure 1: A graph G (left) and its complement graph G′ (right).
Sets MIS1 = {v1, v4, v5} and MIS2 = {v3, v4, v5} correspond
to a maximum independent set in G and an MC in G′. Set
MaxIS = {v2, v3} corresponds to a maximal independent set as its
not of maximum cardinality. Set IS = {v1, v4} is not a maximal in-
dependent set as if v5 is included, we obtain MIS1 = {v1, v4, v5}
which is still an IS.

linear program (ILP) for MIS can be formulated as follows
(Nemhauser & Trotter, 1975):

max
z∈{0,1}n

∑
v∈V

zv s.t. zv + zu ≤ 1 ,∀(v, u) ∈ E. (1)

Furthermore, the following QUBO in (2) (with an optimal
solution that is equivalent to the optimal solution of the
above ILP) can also be used to formulate the MIS problem
(Pardalos & Rodgers, 1992):

max
z∈{0,1}n

eTnz−
γQ

2
zTAGz , (2)

where γQ > 0 a parameter that penalizes the selection of two
nodes with an edges connecting them. In (Mahdavi Pajouh
et al., 2013), it was shown that the condition γQ > 1 is both
sufficient and necessary for local minimizers to correspond
to binary vectors representing MaxISs.

In Appendix C, we review various approaches for solving
the MIS problem.

3. Clique-Informed Differentiable Quadratic
MIS Optimization

In this section, we first introduce the clique-informed
quadratic optimization (CQO) formulation for the MIS prob-
lem. Next, we provide theoretical insights into the objective
function, and then present our parallelized optimization
strategy using momentum-based gradient descent (MGD).

3.1. Optimization Reformulation

Our proposed optimization reformulation is

min
x∈[0,1]n

f(x) := −eTnx+
γ

2
xTAGx−

γ′

2
xTAG′x , (3)

where γ > 1, analogous to γQ in (2), serves as the edge
penalty parameter. The third term represents the maximum
clique (MC) term we propose in this paper, with parameter

γ′ ≥ 1, introduced to discourage sparsity in the solution.
The function f(x) can also be expressed as

f(x) = −
∑
v∈V

xv + γ
∑

(u,v)∈E

xvxu − γ′
∑

(u,v)∈E′

xvxu .

Utilizing the identity AG′ = Jn − I −AG, our proposed
function can also be rewritten as

f(x) = −eTnx+
γ + γ′

2
xTAGx+

γ′

2
(∥x∥22 − ∥x∥21). (4)

In particular, we incorporate the edges-penalty parameter
γ that scales the influence of the edges of the graph G
on the optimization objective. The third term is informed
by the complementary relation between the MIS and MC
problems. The rationale behind the third term −γ′

2 x
TAG′x

in (3) (corresponding to the edges of the complement graph
G′) is to (i) encourage the optimizer to select two nodes
with no edge connecting them in G (implying an edge in
G′), and (ii) discourage sparsity as shown in the last term of
(4).

Let z∗ be a binary minimizer of (3) with I(z∗) = {v ∈
V : z∗v = 1}. Then, we have: f(z∗) = −

∑
v∈V 1(z∗v =

1)− γ′|E′([I(z∗)])|. This expression includes only the first
and third terms, as there are no edges connecting any two
nodes in I(z∗).
Remark 3. Given that the number of non-zero entries in AG

is 2m (with one entry for each edge in G and AG being sym-
metric), the computational cost of the QUBO formulation
in (2) is O(mn). Because the vector-matrix multiplication
in (4) is only in the second term, the computational cost
of our proposed function is also O(mn). This means that
including the MC term in our proposed objective results in
the same computational cost as (2).

3.2. Theoretical Insights

In this subsection, we provide theoretical insights where
we first examine the constant Hessian of f(x) in (3). Then,
we provide the necessary and sufficient condition for γ
and γ′ for any MaxIS to correspond to local minimizers of
(3). Moreover, we also provide a sufficient condition for
all local minimizers of (3) to be associated with a MaxIS.
Additionally, we show that if non-binary stationary points
exist, they are saddle points. We relegate the detailed proofs
to Appendix A.
Definition 4 (MaxIS vector). Given a graph G = (V,E), a
binary vector x ∈ {0, 1}n is called a MaxIS vector if there
exists a MaxIS I of G such that xi = 1 for all i ∈ I, and
xi = 0 for all i /∈ I.
Lemma 5. For any non-complete graph G, the constant
hessian of f(x) in (3) is always a non-PSD matrix.

The result in Lemma 5 indicates that our quadratic optimiza-
tion problem is always non-convex for any non-complete

3
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graph.

Theorem 6 (Necessary and Sufficient Condition on γ and
γ′ for MaxIS vectors to be local minimizers of (3)). Given
an arbitrary graph G = (V,E) and its corresponding for-
mulation in (4), suppose the size of any MIS of G is k. Then,
γ ≥ γ′k+1 is necessary and sufficient for all MaxIS vectors
to be local minimizers of (3) for arbitrary graphs.

Remark 7. Theorem 6 offers guidance on selecting γ and γ′.
While the MIS set size k is typically unknown in advance, it’s
possible to use classical estimates of k to inform the choice
of these parameters. For example, as shown in (Wei, 1981),
k can be bounded by k ≥

∑
v∈V

1
1+d(v) , which provides a

useful estimate for this purpose.

Next, we provide further characterizations of the local mini-
mizers of (3).

Lemma 8. All local minimizers of (3) are binary vectors.

Building on the result of the previous lemma, we provide a
stronger condition on γ and γ′ that ensures all local mini-
mizers of (4) correspond to a MaxIS.

Theorem 9 (Local Minimizers of (3)). Given graph G =
(V,E) and set γ > 1+γ′∆(G′), all local minimizers of (3)
are MaxIS vectors of G.

Remark 10. The assumption γ > 1+γ′∆(G′) in Theorem 9
is stronger than that in Theorem 6. The trade-off of selecting
a larger γ value is that, while it ensures that only MaxISs
are local minimizers, it also increases the non-convexity of
the optimization problem, making it more challenging to
solve.
Remark 11. Although the proposed constrained quadratic
Problem (3) is still NP-hard to solve for the global mini-
mizer(s), it is a relaxation of the original integer program-
ming problem. It can leverage gradient information, allow-
ing the use of high-performance computational resources
and parallel processing to enhance the efficiency and scala-
bility of our approach.

In the following theorem, we provide results regarding
points where the gradient of f(x) is zero.

Theorem 12 (Non-Extremal Stationary Points). For any
graph G, assume that there exists a point x′ such that
∇xf(x

′) = 0, i.e., x′ = (γAG − γ′AG′)−1en. Then,
x′ is not a local minimizer of (3) and therefore does not
correspond to a MaxIS.

Remark 13. The above theorem implies that while there may
exist a non-binary stationary point x′, it is a saddle point,
not a local minimizer, as indicated by the zero gradient
vector and by Lemma 5. Momentum-based Gradient De-
scent (MGD) is typically effective at escaping saddle points
and converging to local minimizers, which motivates its use
in pCQO-MIS. Furthermore, we observe that this specific

saddle point is never encountered in our empirical evalua-
tions and that it depends on the structure of the graph. In
many graphs, it lies outside the box constraints, depending
on the graph’s density. Further discussion is provided in
Appendix B.

3.3. Optimization Strategy

Given the highly non-convex nature of our optimization
problem, this section introduces the pCQO-MIS method
for efficiently obtaining MaxISs1. We first describe the
projected MGD and parallel initializations used. Next, we
present the efficient MaxIS checking criterion, followed by
a detailed outline of the algorithm.

3.3.1. PROJECTED MOMENTUM-BASED GRADIENT
DESCENT

As previously discussed, our objective function in (3) is
highly non-convex which makes finding the global mini-
mizer(s) a challenging task. However, first-order gradient-
based optimizers are effective for finding a local minimizer
given an initialization in [0, 1]n. Given the full differentia-
bility of the objective in (3), with the gradient vector define
as

g(x) := ∇xf(x) = −en + (γAG − γ′AG′)x , (5)

MGD empirically proves to be computationally efficient.
Specifically, let v ∈ Rn, β ∈ (0, 1), and α > 0 represent
the velocity vector, momentum parameter, and optimiza-
tion step size for MGD, respectively. The projected MGD
(Polyak, 1964) updates are then defined as follows:

v← βv + αg(x) , x← Proj[0,1]n(x− v) . (6)

We implement the updates in (6) based on our empirical
observation that fixed-step-size gradient descent for (3) is
sensitive to the choice of step size and frequently fails to
converge to local minimizers due to overshooting. This
observation motivates our adoption of Momentum-based
Gradient Descent (MGD).

3.3.2. DEGREE-BASED PARALLEL INITIALIZATIONS

For a single graph, we propose to use various points in
[0, 1]n and execute the updates in (6) in parallel for each.
Given a specified number of parallel processes M , we de-
fine Sini to denote the set of multiple initializations, where
|Sini| = M .

Based on the intuition that vertices with higher degrees are
less likely to belong to an MIS compared to those with
lower degrees (Alkhouri et al., 2022), we initialize Sini with

1The work in (Burer & Letchford, 2009) discusses the com-
plexity of box-constrained continuous non-convex quadratic opti-
mization problems.
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M samples drawn from a Gaussian distribution N (m, ηI).
Here, m is the mean vector, initially set to h, where h is:

hv = 1− d(v)

∆(G)
,∀v ∈ V , h← h

maxv hv
. (7)

η is a hyper-parameter that regulates the exploration around
m. Once the optimization for each initialization is complete,
we proceed with the MaxIS checking procedure for all the
results, which we discuss next.

3.3.3. EFFICIENT IMPLEMENTATION OF MAXIMAL IS
CHECKING

Given a binary vector z ∈ {0, 1}n with

I(z) := {v ∈ V : zv = 1} , (8)

the standard approach to check whether it is an IS and then
whether it is a MaxIS involves iterating over all nodes to
examine their neighbors. Specifically, this entails verifying
that (i) no two nodes (v, u) ∈ E with zv = zu = 1 exist
(IS checking), and (ii) there does not exist any u /∈ I(z)
such that ∀w ∈ I(z), u /∈ N (w) (MaxIS checking). How-
ever, as the order and density of the graph increase, the
computational time required for this process may become
significantly longer.

Matrix-vector multiplication can be used for IS checking,
as the condition 1(zTAGz = 0) indicates the presence of
edges in the graph. If zTAGz > 0, then z can be immedi-
ately identified as not being an IS. While this approach effi-
ciently checks for IS validity, it cannot determine whether
the IS is maximal.

Building on the characteristics of local minimizers and the
non-extremal stationary points of (3), discussed in Lemma 8,
Theorem 9, and Theorem 12, we propose an efficient im-
plementation for checking whether a vector x ∈ [0, 1]n

corresponds to a MaxIS. Specifically, Lemma 8, demon-
strates that all local minimizers are binary. Subsequently,
in Theorem 9, we establish that all local minimizers cor-
respond to MaxISs. This implies that all binary stationary
points resulting from the updates in (6) within our box-
constrained optimization in (3) are local minimizers situ-
ated at the boundary of [0, 1]n and correspond to MaxISs, as
further elaborated in the proof of Theorem 9. Consequently,
we propose a new MaxIS checking condition that relies on a
single matrix-vector multiplication. For a given x ∈ [0, 1]n,
we first obtain its binary representation as a vector z, where
zv = 1(xv > 0) for all v ∈ V . We then verify whether the
following condition is satisfied.

1
(
z = Proj[0,1]n

(
z− αg(z)

))
. (9)

Equation (9) represents a simple projected gradient descent
step to determine whether z is at the boundary of the box-
constraints. If (9) holds true, then the MaxIS is given by
I(z), as defined in (8).

Algorithm 1 pCQO-MIS.
Input: Graph G = (V,E), set of initializations Sini, number
of iterations T per one initialization, edge-penalty parameter
γ, MC term parameter γ′, and MGD parameters: Step size
α, and momentum parameter β.
Output: The best obtained MaxIS I∗ in G

01: Initialize SMaxIS = {·} (Empty set to collect MaxISs)
02: For x[0] ∈ Sini (Parallel Execution)
03: Initialize v[0]← 0

04: For t ∈ [T ]

05: Obtain g(x[t−1]) = −en+(γAG−γ′AG′)x[t−1]

06: Obtain v[t] = βv[t− 1] + αg(x[t− 1])

07: Obtain x[t] = Proj[0,1]n(x[t− 1]− v[t])

08: Obtain z[T ] with zv[T ] = 1(xv[T ] > 0), ∀v ∈ V

09: If 1
(
z[T ] = Proj[0,1]n

(
z[T ]− αg(z[T ])

))
10: Then SMaxIS ← SMaxIS ∪ I(z[T ])
11: Return I∗ = argmaxI∈SQ

|I|

Remark 14. As previously discussed, the work in (Mah-
davi Pajouh et al., 2013) showed that any binary minimizer
of a box-constrained continuous relaxation of (2) corre-
sponds to a MaxIS when γQ > 1. This means that verifying
whether a binary vector corresponds to a MaxIS using the
proposed projected gradient descent step can also be ap-
plied using (2) as:

1
(
z = Proj[0,1]n

(
z+ α(en − γQAGz)

))
. (10)

In Appendix D.2, we show the speedups obtained from
using this approach as compared to the standard iterative
approach discussed earlier in this subsection.

3.3.4. THE PCQO-MIS ALGORITHM

We outline the proposed procedure in Algorithm 1. As
shown, the algorithm takes a graph G, the set of initial-
izations Sini, the maximum number of iterations per batch
T (with iteration index t), the edge penalty parameter γ,
the MC term parameter γ′, step size α, and momentum
parameter β as inputs.

For each initialization vector in set Sini and iteration t ∈ [T ],
Lines 5 to 7 involve updating the optimization variable x[t].
After T iterations, in Lines 8 to 10, the algorithm checks
whether the binary representation of x[T ] corresponds to a
MaxIS using (9). Finally, the best-found MaxIS, determined
by its cardinality, is returned in Line 10.

After M > 1 optimizations are complete (i.e., when the
batch is complete), the set Sini is reconstructed, and Algo-
rithm 1 is executed again, depending on the time budget
and the availability of the computational resources (num-
ber of batches). When Algorithm 1 is executed again, the
vector v is not re-initialized, but rather maintained from the
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previous batch. Subsequent runs depend on Sampling from
N (m, ηI) where m is set to the optimized vector of the
best obtained MaxIS from the previous run.

4. Experimental results
4.1. Settings, Baselines, & Benchmarks

We code our objective function and the proposed algorithm
using C++. For baselines, we utilize Gurobi (Gurobi) and
the recent Google solver CP-SAT (Perron & Didier) for the
ILP in (1), ReduMIS (Lamm et al., 2016), iSCO2 (Sun et al.,
2023), and four learning-based methods: DIMES (Qiu et al.,
2022), DIFUSCO (Sun & Yang, 2023), LwD (Ahn et al.,
2020a), and the GCN method in (Li et al., 2018) (commonly
referred to as ‘Intel’). We note that, following the analysis
in (Böther et al., 2022), GCN’s code cloning to ReduMIS
is disabled, which was also done in (Qiu et al., 2022; Sun
& Yang, 2023). To show the impact of the MC term, we
include the results of pCQO-MIS without the third term (i.e.,
γ′ = 0) which we term pQO-MIS.

Aligned with recent SOTA methods (DIMES, DIFUSCO,
and iSCO), we employ the Erdos-Renyi (ER) (Erdos et al.,
1960) graphs from (Qiu et al., 2022) and the SATLIB graphs
from (Hoos & Stützle, 2000) as benchmarks. The ER
dataset3 consists of 128 graphs with 700 to 800 nodes and
p = 0.15, where p is the probability of edge creation. The
SATLIB dataset consists of 500 graphs (with at most 1, 347
nodes and 5, 978 edges). Additionally, the GNM random
graph generator function of NetworkX (Hagberg et al., 2008)
is utilized for our scalability experiment in Section 4.3. Re-
sults for the DIMACS (Johnson & Trick, 1996) dataset are
included in Appendix D.1.

For pCQO-MIS, the parameters are set as given in Table 6 of
Appendix D.5. Our code is available online4. Further imple-
mentation details and results are provided in Appendix D.

4.2. ER and SATLIB Benchmark Results

Here, we present the results of pCQO-MIS alongside the
considered baselines, using the SATLIB and ER bench-
marks. These results are measured in terms of average MIS
size across the graphs in the dataset and the total sequential
run-time (in minutes) required to obtain the results for all
the graphs. Results are given in Table 1, where the last 4
rows show the pCQO-MIS results for different run-times.
We note that the ER results from the exact solvers are lim-
ited to 30 seconds per graph to ensure total run-times that
are comparable to those of other methods. In what follows,
we provide observations on these results.

2
https://github.com/google-research/discs

3
https://github.com/DIMESTeam/DIMES

4
https://anonymous.4open.science/r/pCQO-MIS/README.md

• All learning-based methods, except for GCN, require train-
ing a separate network for each graph dataset, as shown
in the third and sixth columns of Table 1, highlighting
their generalization limitations. In contrast, our method
is more generalizable, requiring only the tuning of hyper-
parameters for each set of graphs. See also the results in
Appendix D.4.

• When compared to learning-based approaches, our
method outperforms all baseline methods in terms of MIS
size, all without requiring any training data. We note that
the reported run times for learning-based methods exclude
training time, which can vary depending on several fac-
tors, including graph size, available computing resources,
the number of data points, and the specific neural network
architecture used. In under 6 minutes (which is shorter
than the inference time of any learning-based method),
pCQO-MIS reports larger MIS sizes than any learning
method. Furthermore, our approach does not rely on addi-
tional techniques such as Greedy Decoding (Graikos et al.,
2022) and Monte Carlo Tree Search (Fu et al., 2021).

• When compared to iSCO, our method reports larger MIS
sizes while requiring significantly reduced sequential run-
time. We note that the iSCO paper (Sun et al., 2023)
reports a lower run time as compared to other methods.
This reported run time is achieved by evaluating the test
graphs in parallel, in contrast to all other methods that
evaluated them sequentially. To fairly compare methods
in our experiments, we opted to report sequential test run
time only. We conjecture that the extended sequential
run-time of iSCO, compared to its parallel run-time, is
due to its use of simulated annealing. Because simulated
annealing depends on knowing the energy of the previous
step when determining the next step, it is inherently more
efficient for iSCO to solve many graphs in parallel than
in series.

• For SATLIB, which consists of highly sparse graphs,
pCQO-MIS falls just short when compared to ReduMIS,
Gurobi, and CP-SAT (exact and heuristic solvers). The
reason ReduMIS achieves SOTA results here is that it
applies a large set of MIS-specific graph reductions, along
with the 2-opt local search procedure (Andrade et al.,
2012). pCQO-MIS and other baselines do not apply the 2-
opt procedure following the study in (Böther et al., 2022)
where it was conjectured that most methods will converge
to the same solutions if this procedure is applied. We note
that ReduMIS iteratively applies this heuristic. For denser
graphs, most of these graph reductions are not applica-
ble. Gurobi and CP-SAT solve the ILP in (1) where the
number of constraints is equal to the number of edges
in the graph. This means that Gurobi and CP-SAT are
expected to perform better SATLIB, where there are fewer
constraints, compared to denser graphs like ER.
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Method Type Dataset: SATLIB Dataset: ER
Training Data MIS Size (↑) Run-time (↓) Training Data MIS Size (↑) Run-time (↓)

ReduMIS (Lamm et al., 2016) Heuristics × 425.96 37.58 × 44.87 52.13

CP-SAT (Perron & Didier) Exact × 425.96 0.56 × 41.15 64
Gurobi (Gurobi) Exact × 425.96 8.32 × 39.14 64

GCN (Li et al., 2018) SL+G SATLIB 420.66 23.05 SATLIB 34.86 23.05
LwD (Ahn et al., 2020b) RL+S SATLIB 422.22 18.83 ER 41.14 6.33
DIMES (Qiu et al., 2022) RL+TS SATLIB 423.28 20.26 ER 42.06 12.01

DIFUSCO (Sun & Yang, 2023) RL+G SATLIB 424.5 8.76 ER 38.83 8.8
DIFUSCO (Sun & Yang, 2023) RL+S SATLIB 425.13 23.74 ER 41.12 26.27

iSCO (Sun et al., 2023) S × 422.664 “22.35” × 44.57 “14.88”

pQO-MIS (i.e., γ′ = 0) QO × 412.888 16.964 × 40.398 5.78

pCQO-MIS QO × 425.148 56.722 × 45.109 54.766
pCQO-MIS QO × 424.686 31.901 × 45.078 40.555
pCQO-MIS QO × 424.096 20.3 × 44.969 20.875
pCQO-MIS QO × 423.706 16.394 × 44.5 5.563

Table 1: Benchmark dataset results in terms of average MIS size and total sequential run-time (minutes). RL, SL, G, QO, S, and
TS represent Reinforcement Learning, Supervised Learning, Greedy decoding, Quadratic Optimization, Sampling, and Tree Search,
respectively. The results of the learning-based methods (other than DIFUSCO) and ReduMIS are sourced from (Qiu et al., 2022) and run
using a single NVIDIA A100 40GB GPU and AMD EPYC 7713 CPU. The results of DIFUSCO are sourced from (Sun & Yang, 2023)
and run using a single NVIDIA V100 GPU and Intel Xeon Gold 6248 CPU. The run-time for learning methods exclude the training time
(underlined). The p-CQO-MIS, CP-SAT, and Gurobi results are run using an NVIDIA RTX3070 GPU and Intel I9-12900K CPU. The
results for iSCO were produced using an NVIDIA A100 40GB GPU and AMD EPYC 7H12 CPU. We note that the run time reported in
iSCO (Table 1 in (Sun et al., 2023)) is for running multiple graphs in parallel, not a sequential total run time. We evaluated iSCO in the
same way. If they are run sequentially, the extrapolated run-time is ∼9000 minutes for SATLIB and ∼140 minutes for ER. ReduMIS
employs the local search procedure from (Andrade et al., 2012) for multiple rounds, which no other method in the table uses, following
the study in (Böther et al., 2022). Different run-times for pCQO-MIS correspond to using different number of batches (See Appendix D.6).
For more details about the requirements of each method, see Appendix C.1.

• On ER, our method not only reports a larger average MIS
size but also generally requires less run-time. Specifically,
in 20.71 minutes, our method (pCQO-MIS) achieves bet-
ter results than ReduMIS, CP-SAT, and Gurobi. In under
55 minutes, we achieve a new record average MIS size
of 45.109. We emphasize that we outperform the SOTA
MIS heuristic solver and two commercial solvers5.

• Given the same run-time, when comparing the results of
pQO-MIS (i.e., γ′ = 0) and the results of pCQQ-MIS, we
observe that when the MC term is included, pCQO-MIS
reports larger MIS sizes. On average, using the MC term
yields nearly 11 (resp. 4) nodes improvement for SATLIB
(resp. ER).

4.3. Scalability Results

It is well-established that relatively denser graphs pose
greater computational challenges compared to sparse graphs.
This observation diverges from the trends exhibited by other
non-data-centric baselines, which predominantly excel on
sparse graphs. We argue that this is due to the applicabil-
ity of graph reduction techniques such as the LP reduction
method in (Nemhauser & Trotter, 1975), and the unconfined
vertices rule (Xiao & Nagamochi, 2013) (see (Lamm et al.,
2016) for a complete list of the graph reduction rules that

5We note that learning-based methods, such as (Qiu et al., 2022;
Sun & Yang, 2023), use ReduMIS to label training graphs under
the supervised learning setting)

apply only on sparse graphs). For instance, by simply ap-
plying the LP graph reduction technique, the large-scale
highly sparse graphs (with several hundred thousand nodes),
considered in Table 5 of (Li et al., 2018), reduce to graphs of
a few thousands nodes with often dis-connected sub-graphs
that can be treated independently.

Therefore, the scalability and performance of ReduMIS are
significantly dependent on the sparsity of the graph. This de-
pendence emerges from the iterative application of various
graph reduction techniques (and the 2-opt local search in
(Andrade et al., 2012)) in ReduMIS, specifically tailored for
sparse graphs. For instance, the ReduMIS results presented
in Table 2 of (Ahn et al., 2020a) are exclusively based on
very large and highly sparse graphs. This conclusion is
substantiated by both the sizes of the considered graphs and
the corresponding sizes of the obtained MIS solutions. As
such, in this subsection, we investigate the scalability of
pCQO-MIS against the SOTA methods: ReduMIS, Gurobi,
and CP-SAT on denser graphs. To generate suitably dense
graphs, we utilized the NetworkX GNM graph generator
with the number of edges set to m = ⌈n(n−1)

4 ⌉. It is impor-
tant to note that the density of these graphs is significantly
higher than those considered in the previous subsection (and
most of the previous works). This choice of the number of
edges in the GNM graph generator indicate that half of the
total possible edges (w.r.t. the complete graph) exist.

Results are provided in Figure 2. As observed, for dense
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Figure 2: Total run-time in minutes (y-axis) of pCQO-MIS, ReduMIS, CP-SAT, and Gurobi for the GNM graphs with n ∈
{50, 500, 1000, 1500, 2000}, m = ⌈n(n−1)

4
⌉, and the average MIS size of 5 graphs (x-axis). This choice of the number of edges

indicates that half of the total possible edges (with respect to the complete graph) exist. Here, we also use an NVIDIA RTX3070 GPU and
Intel I9-12900K CPU. For n > 500, Gurobi and CP-SAT are not included due to excessive run-times.

graphs, as the graph size increases, our method requires
significantly less run-time compared to all baselines, while
reporting the same average MIS size (third entry of the x-
axis). For instance, when n is 500, our method requires
less than 12 seconds to solve the 5 graphs, whereas other
baselines require 35 minutes or more to achieve the same
MIS size. For the case of n = 2000, our method requires
less than 4 minutes whereas ReduMIS requires nearly 350
minutes. These results indicate that, unlike ReduMIS and
ILP solvers, the run-time of our method scales only with
the number of nodes in the graph, which is a significant
improvement.

5. Conclusion
This study addressed the challenging Maximum Indepen-
dent Set (MIS) Problem within the domain of Combinatorial
Optimization by introducing a clique-informed continuous
quadratic formulation. By eliminating the need for any train-
ing data, pCQO-MIS distinguishes itself from conventional
learning approaches. Utilizing momentum-based gradient
descent and a parallel GPU implementation, our straight-
forward yet effective method demonstrates competitive per-
formance compared to state-of-the-art learning, sampling,
and heuristic methods. This research offers a distinctive
perspective on approaching discrete optimization problems
through a parameter-efficient procedure optimized from the
problem structure rather than from datasets.

Impact Statement
This work introduces a novel quadratic optimization frame-
work, pCQO-MIS, that advances combinatorial optimiza-
tion research by tackling the Maximum Independent Set
(MIS) problem with enhanced scalability and performance.

By leveraging a clique-informed quadratic formulation
and momentum-based parallel optimization, pCQO-MIS
achieves superior MIS sizes while maintaining competitive
runtimes. Unlike data-centric approaches, it eliminates de-
pendency on labeled data and out-of-distribution tuning,
offering robust generalization across graph instances. Fur-
thermore, its runtime efficiency, scaling with nodes rather
than edges, positions pCQO-MIS as a transformative ap-
proach for large-scale graph problems, bridging the gap
between theory and practical applicability in optimization.
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Appendix

In this appendix, we first present detailed proofs in Appendix A, followed by a study on the feasibility of saddle points in
Appendix B. Next, we review previous MIS solvers in Appendix C, and provide additional experimental results and details
in Appendix D.

A. Proofs
We begin by re-stating our main optimization problem:

min
x∈[0,1]n

f(x) := −
∑
v∈V

xv + γ
∑

(u,v)∈E

xvxu − γ′
∑

(u,v)∈E′

xvxu = −eTnx+
γ

2
xTAGx−

γ′

2
xTAG′x. (11)

The gradient of (11) is:
∇xf(x) = −en + (γAG − γ′AG′)x . (12)

For some v ∈ V , we have
∂f(x)

∂xv
= −1 + γ

∑
u∈N (v)

xu − γ′
∑

u∈N ′(v)

xu (13)

A.1. Proof of Lemma 5

Re-statement: For any non-complete graph G, the constant hessian of f(x) in (11) is always a non-PSD matrix.

Proof. From (11), the hessian is (γAG − γ′AG′) and is independent of x. If (γAG − γ′AG′) is PSD, then, by definition
of PSD matrices, we must have

xT (γAG − γ′AG′)x ≥ 0,∀x ∈ [0, 1]n , (14)

which is not possible as for any x0 that corresponds to a MaxIS, we have xT
0 (γAG)x0 = 0 (no edges in MaxIS w.r.t. G)

and γ′xT
0 AG′x0 < 0 (a MaxIS in G is a maximal clique in G′).

A.2. Proof of Theorem 6

Re-statement: Given an arbitrary graph G = (V,E) and its corresponding formulation in (11), suppose the size of any MIS
of G is k. Then, γ ≥ γ′k + 1 is necessary and sufficient for all MaxIS vectors to be local minimizers of (11) for arbitrary
graphs.

Proof. Let I be a MaxIS. Define the vector xI such that it contains 1’s at positions corresponding to the nodes in the set S,
and 0’s at all other positions. For any MaxIS to be a local minimizer of (11), it is sufficient and necessary to require that

∂f(x)

∂xv
≥ 0, ∀v /∈ I and (15)

∂f(x)

∂xv
≤ 0, ∀v ∈ I. (16)

Here, xv is the element of x at the position corresponding to the node v. (15) is derived because if v /∈ I, then xI
v = 0 (by

the definition of xI) so it is at the left boundary of the interval [0, 1]. For the left boundary point to be a local minimizer,
it requires the derivative to be non-negative (i.e., moving towards the right only increases the objective). Similarly, when
v ∈ I, xI

v = 1, is at the right boundary for (16), at which the derivative should be non-positive.

The derivative of f computed in (13) can be rewritten as

∂f(x)

∂xv
= −1 + γmv − γ′ℓv, ∀v /∈ I, (17)

11
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Quadratic Differentiable Optimization for the Maximum Independent Set Problem

where mv := |{u ∈ N (v) ∩ I}| is the number of neighbours of v in I and ℓv is the number of non-neighbours of v in I
i.e., ℓv := |{u ∈ N ′(v) ∩ I}| where N ′(v) = {u : (u, v) ∈ E′}. By this definition, we immediately have 1 ≤ mv ≤ |I|
and 0 ≤ ℓv ≤ |I|, where the upper and lower bounds for mv and ℓv are all attainable by some special graphs. Note that
the lower bound of mv is 1, and that is due the fact that I is a MaxIS, so any other node (say v) will have at least 1 edge
connected to a node in I.

Plugging (17) into (15), we obtain

γ ≥ 1 + γ′ℓv
mv

(18)

Since we’re seeking a universal γ for all the graphs, we must set mv to its lowest possible value, 1, and ℓv to its highest
possible value k (both are attainable by some graphs), and still requires γ to satisfy (18). This means it is necessary and
sufficient to require γ ≥ γ′k + 1. In addition, (16) is satisfied unconditionally and therefore does not impose any extra
condition on γ.

A.3. Proof of Lemma 9

Re-statement: All local minimizers of (11) are binary vectors.

Proof. Let x∗ be any local minimizer of (11), if all the coordinates of x∗ are either 0 or 1, then x∗ is binary and the proof is
complete, otherwise, at least one coordinate of x∗ is in the interior (0, 1) and we aim to prove that this is not possible (i.e.
such a non-binary x∗ cannot exist as a minimizer) by contradiction. We assume the non-binary x∗ exists, and denote the set
of non-binary coordinates as

J := {j : x∗
j ∈ (0, 1)} . (19)

Since x∗ is non-binary, J ̸= ∅. Since the objective function f(x) of (11) is twice differentiable with respect to all xj with
xj ∈ (0, 1), then a necessary condition for x∗ to be a local minimizer is that

∇f(x∗)
∣∣
J
= 0, ∇2f(x∗)

∣∣
J
⪰ 0,

where ∇f(x∗)
∣∣
J

is the vector∇f(x∗) restricted to the index set J , and∇2f(x∗)
∣∣
J

is the matrix∇2f(x∗) whose row and
column indices are both restricted to the set J .

However, the second necessary condition ∇2f(x∗)
∣∣
J
⪰ 0 cannot hold. Because if it does, then we must have

tr(∇2f(x∗)
∣∣
J
) > 0 (the trace cannot strictly equal to 0 as ∇2f(x∗)

∣∣
J

= IJ(γAG − γ′AG′)ITJ ̸= 0. However, on
the other hand, we have

tr(∇2f(x∗)
∣∣
J
) = tr(IJ(γAG − γ′AG′)ITJ ) = 0

as the diagonal entries of AG and AG′ are all 0, which leads to a contradiction. Here IJ denotes the identity matrix with
row indices restricted to the index set J .

A.4. Proof of Theorem 9

Re-statement: Given graph G = (V,E) and set γ ≥ 1+ γ′∆(G′), all local minimizers of (11) correspond to a MaxIS in G.

Proof. By lemma 8, we can only consider binary vectors as local minimizers. With this, we first prove that all local
minimizers are Independent Sets (ISs). Then, we show that any IS, that is not a maximal IS, is not a local minimizer.

Here, we show that any local minimizer is an IS. By contradiction, assume that vector x, by which xv = xw = 1 such that
(v, w) ∈ E (a binary vector with an edge in G), is a local minimizer. Since xv = 1 is at the right boundary of the interval
[0, 1], for it to be a local minimizer, we must have ∂f

∂xv
≤ 0. Together with (13), this implies

−1 + γ
∑

u∈N (v)

xu − γ′
∑

u∈N ′(v)

xu ≤ 0 . (20)

Re-arranging (20) yields to
γ

∑
u∈N (v)

xu ≤ 1 + γ′
∑

u∈N ′(v)

xu . (21)
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Given that γ ≥ 1 + γ′∆(G′), the condition in (21) can not be satisfied even if the LHS attains its minimum value (which is
γn) and the RHS attains a maximum value. The maximum possible value of the RHS is 1 + d′(v) = n− d(v), where d′(v)
is the degree of node v in G′, and the maximum possible value of d′(v) is ∆(G′). This means that when an edge exists in x,
it can not be a fixed point. Thus, only ISs are local minimizers.

Here, we show that Independent Sets that are not maximal are not local minimizers. Define vector x ∈ {0, 1}n that
corresponds to an IS I(x). This means that there exists a node u ∈ V that is not in the IS and is not in the neighbor set of all
nodes in the IS. Formally, if there exists u /∈ I(x) such that ∀w ∈ I(x), u /∈ N (w), then I(x) is an IS, not a maximal IS.
Note that such an x satisfies xu = 0 and

∂f

∂xv
= −1 + γ

∑
u∈N (v)

xu − γ′
∑

u∈N ′(v)

xu = −1− γ′
∑

u∈N ′(v)

xu < 0 , (22)

which implies increasing xu can further decrease the function value, contradicting to x being a local minimizer. In (22), the
second summation is 0 as N (v) ∩ I(x) = ∅, which results in −(1 + γ′ ∑

u∈N ′(v) xu) that is always negative. Thus, any
binary vector that corresponds to an IS that is not maximal is not a local minimizer.

A.5. Proof of Theorem 12

Re-statement: For any graph G, assume that there exists a point x′ such that∇xf(x
′) = 0, i.e., x′ = (γAG−γ′AG′)−1en.

Then, x′ is not a local minimizer of (11) and therefore does not correspond to a MaxIS.

Proof. By Lemma 8, we know that all local minimizers are binary. By contradiction, assume that x′ is a binary local
minimizer. Then, the system of equations (γAG − γ′AG′)x′ = en implies that, for all v ∈ V , the following equality must
be satisfied.

γ
∑

u∈N (v)

xu − γ′
∑

u∈N ′(v)

xu = 1 . (23)

If x′ is binary and corresponds to a MaxIS in the graph, then the first term of (23) is always 0, which reduces (23) to

−γ′
∑

u∈N ′(v)

xu = 1 . (24)

Eq.(24) is an equality that can not be satisfied as x′
v ≥ 0,∀v ∈ V and γ′ ≥ 1. Thus, x′ is not a local minimizer.

B. Empirical Observations on the non-Extremal Stationary Point x′

In this section, we empirically demonstrate how the non-extremal stationary point x′, analyzed in Theorem 12, varies with
the type of graph. Specifically, we aim to show that, for many types of graphs, this saddle point is outside the box constraints,
depending on the graph density. To this end, we consider GNM and ER graphs with different densities, as well as small and
large graphs from the SATLIB dataset.

In Figure 3, we obtain x′ = (γAG − γ′AG′)−1en with γ = n and γ′ = 1 for every considered graph. Each subplot in
Figure 3 shows the values of x′

v (y-axis) for every node v ∈ V (x-axis), with the title specifies the graph used.

As observed, among all the graphs, only the very-high-density GNM graph (with results shown inside the dashed box in
Figure 3) has x′ ∈ [0, 1]n (i.e., within the box-constraints of (3)). Note that this graph was generated with m = 4945
where the total number of possible edges in the complete graph with n = 100 is 4950 edges. For all other graphs, we have
x′ /∈ [0, 1]n, as indicated by the values strictly below 0. This means that by applying the projection in (6), x′ is infeasible.

C. Related work
1) Exact and Heuristic Solvers: Exact approaches for NP-hard problems typically rely on branch-and-bound global
optimization techniques. However, exact approaches suffer from poor scalability, which limits their uses in large MIS
problems (Dai et al., 2016). This limitation has spurred the development of efficient approximation algorithms and heuristics.
For instance, the well-known NetworkX library (Hagberg et al., 2008) implements a heuristic procedure for solving the MIS
problem (Boppana & Halldórsson, 1992). These polynomial-time heuristics often incorporate a mix of sub-procedures,
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Quadratic Differentiable Optimization for the Maximum Independent Set Problem

Figure 3: Values of the non-extremal stationary point x′ (y-axis) w.r.t. every node v ∈ V (x-axis) across different ER and GNM graphs as
well as small and large SATLIB graphs, as indicated by the title of each subplot. Among all the considered graphs, only the high-density
GNM graph, indicated by the dashed square, has x′ ∈ [0, 1]100.

including greedy algorithms, local search sub-routines, and genetic algorithms (Williamson & Shmoys, 2011). However,
such heuristics generally cannot theoretically guarantee that the resulting solution is within a small factor of optimality. In
fact, inapproximability results have been established for the MIS problem (Berman & Schnitger, 1992).

Among existing MIS heuristics, ReduMIS (Lamm et al., 2016) has emerged as the leading approach. The ReduMIS
framework contains two primary components: (i) an iterative application of various graph reduction techniques (e.g.,
the linear programming (LP) reduction method in (Nemhauser & Trotter, 1975)) with a stopping rule based on the non-
applicability of these techniques; and (ii) an evolutionary algorithm. The ReduMIS algorithm initiates with a pool of
independent sets and evolves them through multiple rounds. In each round, a selection procedure identifies favorable
nodes by executing graph partitioning, which clusters the graph nodes into disjoint clusters and separators to enhance
the solution. In contrast, our pCQO-MIS approach does not require such complex algorithmic operations (e.g., solution
combination operation, community detection, and local search algorithms for solution improvement (Andrade et al., 2012))
as used in ReduMIS. More importantly, ReduMIS and ILP solvers scale with the number of nodes and the number of edges
(which constraints their application on highly dense graphs), whereas pCQO-MIS only scales w.r.t. the number nodes, as
demonstrated in our experimental results (Section 4.3).

2) Data-Driven Learning-Based Solvers: Data-driven approaches for the MIS problem can be classified into SL and RL
methods. These methods depend on neural networks trained to fit the distribution over (un)labeled training graphs.

A notable SL method is proposed in (Li et al., 2018), which combines several components including graph reductions
(Lamm et al., 2016), Graph Convolutional Networks (GCN) (Defferrard et al., 2016), guided tree search, and the solution
improvement local search algorithm (Andrade et al., 2012). The GCN is trained on SATLIB graphs using their solutions
as ground truth labels, enabling the learning of probability maps for the inclusion of each vertex in the optimal solution.
Then, a subset of ReduMIS subroutines is used to improve their solution. While the work in (Li et al., 2018) reported on-par
results to ReduMIS, it was later shown by (Böther et al., 2022) that setting the GCN parameters to random values performs
similarly to using the trained GCN network.

Recently, DIFUSCO was introduced in (Sun & Yang, 2023), an approach that integrates Graph Neural Networks (GNNs)
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Quadratic Differentiable Optimization for the Maximum Independent Set Problem

with diffusion models (Ho et al., 2020) to create a graph-based diffusion denoiser. DIFUSCO formulates the MIS problem
in the discrete domain and trains a diffusion model to improve a single or a pool of solutions.

RL-based methods have achieved more success in solving the MIS problem when compared to SL methods. In (Dai et al.,
2017), a Deep Q-Network (DQN) is combined with graph embeddings, facilitating the discrimination of vertices based on
their influence on the solution and ensuring scalability to larger instances. Meanwhile, the study presented in (Ahn et al.,
2020a) introduces the Learning What to Defer (LwD) method, an unsupervised deep RL solver resembling tree search,
where vertices are iteratively assigned to the independent set. Their model is trained using Proximal Policy Optimization
(PPO) (Schulman et al., 2017).

The work in (Qiu et al., 2022) introduces DIMES, which combines a compact continuous space to parameterize the
distribution of potential solutions and a meta-learning framework to facilitate the effective initialization of model parameters
during the fine-tuning stage that is required for each graph.

It is worth noting that the majority of SL and RL methods are data-dependent in the sense that they require the training of a
separate network for each dataset of graphs. These data-dependent methods exhibit limited generalization performance
when applied to out-of-distribution graph data. This weak generalization stems from the need to train a different network
for each graph dataset (see columns 3 and 6 in Table 1). An example of the weak generalization of DIFUSCO is given in
Appendix D.4. In contrast, our approach differs from SL- and RL-based methods in that it does not rely on any training
datasets. Instead, our method utilizes a simple yet effective graph-encoded continuous objective function, which is defined
solely in terms of the connectivity of a given graph.

3) Dataless Differentiable Methods: The method in (Alkhouri et al., 2022) introduced dataless neural networks (dNNs)
tailored for the MIS problem. Notably, their method operates without the need for training data and relies on n trainable
parameters. Their proposed methodology advocates using a ReLU-based continuous objective to solve the MIS problem.
However, to scale up and improve their method, graph partitioning and local search algorithms were employed.

The work in (Ichikawa, 2023) introduced a method that optimizes the parameters of a GNN over one graph using a continuous
relaxation of (2) with box-constraints.

4) Discrete Sampling Solvers: In recent studies, researchers have explored the integration of energy-based models with
parallel implementations of simulated annealing to address combinatorial optimization problems (Goshvadi et al., 2024)
without relying on any training data. For example, in tackling the MIS problem, the work in (Sun et al., 2023) proposed
a solver that combines (i) Path Auxiliary Sampling (Sun et al., 2021) and (ii) the QUBO formulation in (2). However,
unlike pCQO-MIS, these approaches entail prolonged sequential runtime and require fine-tuning of several hyperparameters.
Moreover, the energy models utilized in this method for addressing the MIS problem may generate binary vectors that violate
the “no edges” constraint inherent to the MIS problem. Consequently, a post-processing procedure becomes necessary.

C.1. Requirements Comparison with Baselines

In Table 2, we provide an overview comparison of the number of trainable parameters, hyper-parameters, and additional
techniques needed for each baseline. ReduMIS depends on a large set of graph reductions (see Section 3.1 in (Lamm et al.,
2016)) and graph clustering, which is used for solution improvement.

Method Size Hyper-Parameters Additional Techniques/Procedures
ReduMIS n variables N/A Many graph reductions, and graph clustering

Gurobi n variables N/A N/A
CP-SAT n variables N/A N/A

GCN ≫ n trainable parameters Many as it is learning-based Tree Search
LwD ≫ n trainable parameters Many as it is learning-based Entropy Regularization

DIMES ≫ n trainable parameters Many as it is learning-based Tree Search or Sampling Decoding
DIFUSCO ≫ n trainable parameters Many as it is learning-based Greedy Decoding or Sampling Decoding

iSCO n variables Temperature, Sampler, Chain length Post Processing for Correction
pCQO-MIS n trainable parameters α, β, γ, γ′, T , and η Degree-based Parallel Initializations

Table 2: Requirements comparison with baselines. For the ILPs (Gurobi and CP-SAT), trainable parameters correspond to n binary
decision variables. ReduMIS is not an optimization method. However, they use n binary variables, one for each node.

For learning-based methods, although they attempt to ‘fit’ a distribution over training graphs, the parameters of a neural
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network architecture are optimized during training. This architecture is typically much larger than the number of input
coordinates (≫ n). For instance, the network used in DIFUSCO consists of 12 layers, each with 5 trainable weight matrices.
Each weight matrix is of size 256× 256, resulting in 3932160 trainable parameters for the SATLIB dataset (which has at
most 1347 nodes). Moreover, this dependence on training a NN introduces several hyper-parameters such as the number of
layers, size of layers, choice of activation functions, etc.

It’s important to note that the choice of the sampler in iSCO introduces additional hyper-parameters. For instance, the PAS
sampler (Sun et al., 2021) used in iSCO depends on the choice of the neighborhood function, a prior on the path length, and
the choice of the probability of acceptance.

D. Additional Experiments
D.1. Results for the DIMACS Dataset

In this section, we evaluate our proposed algorithm using graph instances from the DIMACS datasets. These graph instances
have known optimal solutions as listed in the recent MC survey paper (Marino et al., 2024). The DIMACS benchmark is
part of the second DIMACS Implementation Challenge (Johnson & Trick, 1996), which focused on problems related to
Clique, Satisfiability, and Graph Coloring. The benchmark contains a variety of graphs derived from coding theory, fault
diagnosis, and Keller’s conjecture, among others.

For our method, we use the following set of hyper-parameters: α = 0.01, β = 0.3, γ = 500, γ′ = 1, η = 2.25, T = 500.

We were able to solve 49 out of the 61 DIMACS graphs we tested within a 30-second time budget per graph, while ReduMIS
was able to solve 58 in the same amount of time.

Graph Name n m Density Optimal Our MIS Size ReduMIS

c-fat500-1 500 120291 0.9600 14 14 14
c-fat500-2 500 115611 0.9267 26 26 26
c-fat200-1 200 18366 0.9229 12 12 12
c-fat200-2 200 16665 0.8374 24 24 24
c-fat500-5 500 101559 0.8141 64 64 64
p hat300-1 300 33917 0.7562 8 8 8
p hat1000-1 1000 377247 0.7552 10 10 10
p hat700-1 700 183651 0.7507 11 11 11
p hat500-1 500 93181 0.7469 9 9 9
p hat1500-1 1500 839327 0.7466 12 11 12
hamming6-4 64 1312 0.6508 4 4 4
c-fat500-10 500 78123 0.6262 126 126 126
c-fat200-5 200 11427 0.5742 58 58 58
p hat300-2 300 22922 0.5111 25 25 25
p hat1000-2 1000 254701 0.5099 46 46 46
brock200 2 200 10024 0.5037 12 11 12
p hat700-2 700 122922 0.5024 44 44 44
DSJC1000 5 1000 249674 0.4998 15 15 15
C2000.5 2000 999164 0.4998 16 15 16
sanr400 0.5 400 39816 0.4989 13 13 13
DSJC500 5 500 62126 0.4980 13 13 13
p hat500-2 500 61804 0.4954 36 36 36
p hat1500-2 1500 555290 0.4939 65 65 65
johnson8-2-4 28 168 0.4444 4 4 4
brock200 3 200 7852 0.3946 15 14 15
hamming8-4 256 11776 0.3608 16 16 16
keller4 171 5100 0.3509 11 11 11
brock800 1 800 112095 0.3507 23 20 21

Continued on next page
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Graph Name n m Density Optimal Our MIS Size ReduMIS

brock200 4 200 6811 0.3423 17 16 17
sanr200 0.7 200 6032 0.3031 18 18 18
san200 0.7 1 200 5970 0.3000 30 30 30
sanr400 0.7 400 23931 0.2999 21 21 21
p hat1000-3 1000 127754 0.2558 68 67 68
p hat300-3 300 11460 0.2555 36 36 36
brock200 1 200 5066 0.2546 21 21 21
p hat700-3 700 61640 0.2520 62 62 62
brock400 1 400 20077 0.2516 27 25 25
p hat500-3 500 30950 0.2481 50 50 50
p hat1500-3 1500 277006 0.2464 94 93 94
johnson16-2-4 120 1680 0.2353 8 8 8
johnson8-4-4 70 560 0.2319 14 14 14
hamming10-4 1024 89600 0.1711 40 40 40
johnson32-2-4 496 14880 0.1212 16 16 16
sanr200 0.9 200 2037 0.1024 42 42 42
C125.9 125 787 0.1015 34 34 34
C250.9 250 3141 0.1009 44 44 44
gen400 p0.9 75 400 7980 0.1000 75 75 75
gen400 p0.9 55 400 7980 0.1000 55 52 55
gen200 p0.9 44 200 1990 0.1000 44 42 44
gen200 p0.9 55 200 1990 0.1000 55 55 55
san200 0.9 2 200 1990 0.1000 60 60 60
san400 0.9 1 400 7980 0.1000 100 100 100
san200 0.9 1 200 1990 0.1000 70 70 70
san200 0.9 3 200 1990 0.1000 44 44 44
gen400 p0.9 65 400 7980 0.1000 65 65 65
C500.9 500 12418 0.0995 57 56 57
C1000.9 1000 49421 0.0989 68 65 67
hamming6-2 64 192 0.0952 32 32 32
MANN a9 45 72 0.0727 16 16 16
hamming8-2 256 1024 0.0314 128 128 128
hamming10-2 1024 5120 0.0098 512 512 512

Table 3: Performance of pCQO-MIS on the DIMACS graphs as compared to the known optimal solution (column 5) and SOTA heuristic
ReduMIS (column 7). Graphs are ordered based on the graph density 2m

n(n−1)
(column 4). Time limit is 30 seconds per graph.

D.2. Run-time Results for the Proposed MIS Checking

(500,0.1) (500,0.4) (500,0.7) (1000,0.1) (1000,0.4) (1000,0.7) (2000,0.1) (2000,0.4) (2000,0.7)
ER graph size and probability of edge creation (n, p)
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Figure 4: Average run-time results of our MIS checking vs. the standard iterative approach across different graph sizes and densities.
Orange and green results correspond to using the criteria in (9) and (10), respectively.

In this subsection, we evaluate the impact of the proposed MIS checking method on the run-time performance of the
pCQO-MIS algorithm. Specifically, we execute pCQO-MIS for T = 1000 iterations, performing MIS checking at each
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iteration. The average run-time (seconds) results for 10 ER graphs, covering various graph sizes and densities, are illustrated
in Figure 4, with the x-axis representing different values of n (graph size) and p (probability of edge creation that indicates
density) We compare these results to the standard MIS checking approach, which involves iterating over all nodes to examine
their neighbors, as detailed in Section 3.3.3.

The results suggest that the execution time for pCQO-MIS is reduced with our efficient implementation compared to the
standard method, across various graph sizes.

D.3. Comparison with the Relu-based Dataless Solver

Here, we compare pCQO-MIS with the dataless Neural Network (dNN) MIS solver in (Alkhouri et al., 2022). In this
experiment, we use 10 GNM graphs with (n,m) = (100, 500) and report the average MIS size and average run-time (in
seconds). The results are given in Table 4. As observed, pCQO-MIS outperforms the dNN-MIS method in (Alkhouri et al.,
2022) in terms of both the run-time and MIS size.

Method Average MIS Size Average Run-Time (seconds)
dNN-MIS (Alkhouri et al., 2022) 27.4 24

pCQO-MIS (Ours) 29.9 0.7

Table 4: Evaluation of pCQO-MIS vs. the MIS dNN solver in (Alkhouri et al., 2022) in terms of MIS size and run-time (seconds) over
10 GNM graphs with (n,m) = (100, 500).

D.4. Comparison with Leading data-centric Solver with Different Densities

In this subsection, we compare our approach with the leading data-driven baseline, DIFUSCO. DIFUSCO uses a pre-trained
diffusion model trained on ER700 graphs (with p = 0.15) labeled using ReduMIS.

Here, we compare pCQO-MIS to DIFUSCO using graphs (with n = 700) with varying edge creation probabilities, p. The
results, presented in Table 5, are averaged over 32 graphs for each p, with DIFUSCO utilizing 4-sample decoding. For
pCQO-MIS, hyperparameters remain fixed across all values of p.

Probability of Edge Creation p DIFUSCO MIS Size DIFUSCO Run-Time pCQO-MIS MIS Size pCQO-MIS Run-Time
0.05 88.25 4.62 97.34 4.73
0.10 58 8.63 59.25 4.71

0.15 (Training setting of DIFUSCO) 40.81 12.98 43.2 4.67
0.2 29.22 17.66 33.78 4.45

Table 5: Evaluation of pCQO-MIS vs. the ER700-trained DIFUSCO (with p = 0.15) in (Sun & Yang, 2023) in terms of average MIS
size and sequential run-time (minutes) over 32 ER graphs for each p.

As observed, our method consistently outperforms DIFUSCO in both average MIS size and run-time. Notably, our run-time
remains constant as the number of edges increases, supporting our claim that the run-time scales only with the number of
nodes in the graph. DIFUSCO reports relatively smaller MIS sizes, particularly for p = 0.05 and p = 0.2, which are slightly
different from the training graphs. This underscores the generalization limitations of a leading learning-based method.

D.5. pCQO-MIS Parameters

In this subsection, we outline the pCQO-MIS parameters (i.e., γ, γ′, α, β, T , and η) used in the paper, along with examples
from the ablation studies conducted to select these parameters.

Table 6 provides the specific parameter values used for Table 1 and Figure 2 in Section 4. These parameters are selected
based on ablation studies such as those provided in Table 7 and Table 8 for the ER dataset. The captions of these tables
provide the parameters we fix and the parameters we vary, and in both cases, we report the average MIS size of 6 ER graphs.
Other than the first three columns of the last row of Table 7, the reported average MIS size (in both tables) vary between
37.67 and 41.83. This indicates that pCQO-MIS is not very sensitive to the choice of these parameters.
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Quadratic Differentiable Optimization for the Maximum Independent Set Problem

Graph Dataset Edges-penalty γ MC parameter γ′ Step size α Momentum β Steps T Exploration parameter η
SATLIB 900 1 3e− 4 0.875 30 2.25

ER 350 7 9e− 6 0.9 450 2.25
GNM with n ∈ {50, 500, 1000} 100 5 1e− 2 0.55 200 1
GNM with n ∈ {1500, 2000} 100 10 1e− 2 0.55 200 1

Table 6: Hyper-parameters for pCQO-MIS used in Section 4. This selection is made based on ablation studies such as those in Table 7
and Table 8.

Step Size α β = 0.1 β = 0.5 β = 0.7 β = 0.9

1e− 2 41.83 38.83 38.17 39.83
5e− 3 42 38.83 37.5 40.17
1e− 3 41.17 38.67 38.17 39.67
5e− 4 40.83 39 38.67 40
1e− 4 37.67 41.17 39.67 41
5e− 5 38.33 41.5 40.5 40
1e− 5 5.67 35.33 17.83 40.67

Table 7: Average MIS size of 6 ER graphs using different values of α and β. Here, γ = 300, γ′ = 1, and T = 300. The initialization of
x[0] is h in (7).

Edges penalty parameter γ MC term parameter γ′ pCQO-MIS (MIS Size)
300 1 40.67
300 5 40.16
500 1 39.83
500 5 40.33
775 1 39.33
775 5 39.67

Table 8: Average MIS size of 6 ER graphs using different values of γ and γ′. Here, α = 1e − 5, β = 0.9, and T = 300. The
initialization of x[0] is h in (7).

D.6. Results of Table 1 based on the Number of Batches

In this subsection, we provide the main pCQO-MIS results based on the number of batches. Table 9 (resp. Table 10) presents
the results for the SATLIB (resp. ER) dataset. The results of Table 1 are obtained from these tables.

Batches Solved pCQO-MIS (MIS Size) pCQO-MIS (Run time)
1 408.286 0.408

10 417.228 2.454
20 420.276 4.726
30 421.610 6.996
40 422.456 9.265
50 422.988 11.533
60 423.400 13.799
70 423.706 16.065
80 423.930 18.329
90 424.096 20.593
100 424.278 22.856
110 424.406 25.119
120 424.508 27.380
130 424.606 29.641
140 424.686 31.901
150 424.736 34.161
160 424.798 36.419
170 424.856 38.678
180 424.906 40.935
190 424.950 43.191
200 425.006 45.448
210 425.032 47.704
220 425.064 49.959
230 425.098 52.214
240 425.126 54.468
250 425.148 56.722

Table 9: pCQO-MIS SATLIB results (average MIS size and total run time in minutes) including the number of batches used (column 1).
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Quadratic Differentiable Optimization for the Maximum Independent Set Problem

Batches Solved pCQO-MIS (MIS Size) pCQO-MIS (Run time)
1 39.344 0.153

10 43.086 1.159
20 43.836 2.266
30 44.117 3.367
40 44.367 4.466
50 44.500 5.563
60 44.578 6.659
70 44.656 7.753
80 44.695 8.848
90 44.750 9.942
100 44.789 11.035
110 44.828 12.129
120 44.836 13.222
130 44.859 14.315
140 44.875 15.409
150 44.898 16.502
160 44.914 17.595
170 44.938 18.688
180 44.961 19.781
190 44.969 20.875
200 44.977 21.968
210 44.984 23.062
220 45.000 24.155
230 45.016 25.249
240 45.023 26.342
250 45.023 27.435
260 45.031 28.528
270 45.039 29.622
280 45.039 30.715
290 45.047 31.809
300 45.055 32.902
310 45.062 33.996
320 45.070 35.089
330 45.078 36.182
340 45.078 37.276
350 45.078 38.369
360 45.078 39.462
370 45.078 40.555
380 45.078 41.648
390 45.078 42.741
400 45.094 43.834
410 45.094 44.928
420 45.094 46.021
430 45.094 47.115
440 45.094 48.208
450 45.102 49.301
460 45.102 50.393
470 45.102 51.486
480 45.102 52.579
490 45.102 53.672
500 45.109 54.766

Table 10: pCQO-MIS ER results (average MIS size and total run time in minutes) including the number of batches used (column 1).
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