
Under review as a conference paper at ICLR 2022

HOW TO ADAPT YOUR LARGE-SCALE PRE-TRAINED
MODEL FOR DOWNSTREAM IMAGE CLASSIFICATION

Anonymous authors

Paper under double-blind review

ABSTRACT

Pre-training large-scale vision and language models (e.g. CLIP) has shown promis-
ing results in representation and transfer learning. We investigate the question of
how to efficiently adapt these models to downstream tasks. For image classifica-
tion, linear probes have been the standard for ease of use and efficiency, while
for language, other approaches like prompt tuning have emerged. We analyze
several fine-tuning methods across a diverse set of image classification tasks across
two spectra investigating the amount and similarity of downstream data to that of
pretraining one. We find that just tuning LayerNorm parameters is a surprisingly
effective baseline across the board. We further demonstrate a simple yet effective
strategy that combines LayerNorm-tuning with general fine-tuning methods to
improve their performance and benchmark them on few-shot adaption and distribu-
tion shift tasks. Finally, we provide an empirical analysis and recommend general
recipes for efficient transfer learning of vision and language models 1.

1 INTRODUCTION

Large-scale deep network models pretrained on ultra large-scale data on the internet, whether text or
images, have shown impressive performance recently (Radford et al., 2019; 2021; Brown et al., 2020;
Devlin et al., 2018; Jia et al., 2021). Training such models with billions of parameters on a large
internet scale data is an expensive and time consuming process often costing over millions of dollars.
Hence, replicating such models is not only difficult but also undesirable for every downstream task.
Fortunately, the information gathered by these large-scale models using raw internet data seems to
transfer well to several downstream tasks with little to no finetuning at all using natural language as a
way for zero-shot evaluation (Brown et al., 2020; Radford et al., 2021).

While zero-shot transfer performs well, it is generally better to adapt the model itself if there are any
labeled examples available for the downstream task. Traditionally, the go-to strategy in the computer
vision community has either been to finetune the whole network or an additional MLP layer at the
end. With the use of raw language, adaptation techniques such as prompt tuning have surfaced (Li
& Liang, 2021; Lester et al., 2021). Alternative methods include new parameters in between the
network instead of adding a layer at the end (Houlsby et al., 2019; Mahabadi et al., 2021). However,
it remains unclear as to which approach is preferred under which scenarios.

We ask what are the general guidelines one should adopt while finetuning a large-scale pretrained
model on downstream datasets. To scope this question, we choose CLIP (Radford et al., 2021) as the
base pretrained model and adapt it to several downstream problems. CLIP is a vision-and-language
model trained on over 400M pairs of image and text descriptions collected off the internet. There are
several reasons to choose CLIP for this study. First, CLIP is one of the few vision models trained
on ultra-large scale, unfiltered and varied raw visual data on the internet. Second, the multi-modal
nature of CLIP enables use of more general ways of adaptation like using natural language prompts
for “zero-shot” transfer to new categories – techniques previously popular mostly in NLP.

We find that merely tuning the parameters of LayerNorm (Ba et al., 2016) turns out to be a surprisingly

effective approach that is competitive or better than all other adaptation methods across the board. The
effectiveness of normalization techniques has been observed by prior work for generalization (Perez
et al., 2018; Lu et al., 2021) as well as training from scratch (Frankle et al., 2020). Inspired by this,

1Website at https://sites.google.com/view/adapt-large-scale-models

1

https://sites.google.com/view/adapt-large-scale-models


Under review as a conference paper at ICLR 2022

“{class}”

“cat”“dog” ... “sun”

...

!! !!" #! . . . !!" #"

. . .###! #$ #"

!!" ## !!" #$

learnable
prompt

+ +

M
ulti-headed 
Attention

Layer N
orm

M
LP

Layer N
orm

M
ulti-headed 
Attention

Layer N
orm

M
LP

Layer N
orm

Adapter

+ +

Image Encoder

Text Encoder

Linear

Layer Norm Tuning Adapter Linear ProbePrompt Tuning

“cat”

Figure 1: Illustration of multiple methods for adapting CLIP to downstream image classification tasks. Each
labeled approach can be used separately for fine-tuning the CLIP model. We analyze a variety of fine-tuning
methods such as prompt tuning by prepending a learnable prompt, tuning Layer Normalization parameters,
inserting adapter and compacter modules in-between the Transformer layers, and using a linear probe on top of
visual features. The CLIP model can be also used for inference on a downstream task in a zero-shot manner.

we further look into different ways of combining LayerNorm-tuning with other adaptation methods
that finetune new parameters. We devise an effective scheme that first finetunes the CLIP model using
only LayerNorm tuning and uses it as initialization for adapting new parameters. We evaluate our
adaptation techniques across 12 downstream tasks spread along two spectra: size of downstream task
dataset as well as the similarity of downstream data to the pretraining data. Across both spectra, we
find that our two-stage LayerNorm tuning approach is most competitive and show its effectiveness
for general-purpose adaptation of CLIP to downstream image-classification tasks.

To summarize, our paper’s contributions are as follows:

• We show the effectiveness of LayerNorm-tuning for adaptation to downstream tasks.
• We devise a simple yet effective scheme to combine LayerNorm-tuning with other methods of

finetuning to obtain competitive performance across the board.
• We show a thorough comparison of different adaptation methods in four scenarios across two

spectra (amount of downstream data and its similarity to pretraining data) studied on numerous
downstream classification tasks.

We believe our findings will encourage more research and put existing research in perspective of
what works best while finetuning large-scale vision-language models to downstream tasks.

2 BACKGROUND: VISION-AND-LANGUAGE PRETRAINED MODELS

Vision-and-language pre-training methods have recently shown promise on diverse tasks across
images and text (Radford et al., 2021; Jia et al., 2021). While many such approaches have emerged,
we focus on CLIP (Contrastive Language-Image Pre-training), a large-scale model with strong
zero-shot performance on downstream classification tasks (Radford et al., 2021).
Contrastive Language-Image Pre-training (CLIP) CLIP consists of two parallel encoders for
processing images and text, whose outputs are then projected into a shared embedding space. The text
encoder is a Transformer (Vaswani et al., 2017) following the architecture described in Radford et al.
(2019), while the image encoder is a Vision Transformer (ViT) with a patch size of 16 (Dosovitskiy
et al., 2020). For our experiments, we utilize the open-sourced pretrained CLIP models.
Training Because the image and text features live in the same embedding space, the cosine
similarity between any embedded image and text description can be computed. CLIP uses these as
prediction probabilities for classifying an image with the correct text caption (or vice versa) across
batches. Formally, denote I and T as the set of image and text features in a single batch. The
prediction probability for the ith image and jth caption in the batch is given by

p(Tj | Ii) =
exp (cos(Tj , Ii)/⌧)

exp (cos(Tj , Ii)/⌧) +
P

k 6=j exp (cos(Tk, Ii)/⌧)

2



Under review as a conference paper at ICLR 2022

Layer Norm Tuning Prompt Tuning

+

MLP

MLP

+

Layer Norm

Multi-headed 
Attention

Layer Norm

+

MLP

+

Layer Norm

Multi-headed 
Attention

Layer Norm

+

MLP

+

Layer Norm

Multi-headed 
Attention

Layer Norm

Adapter Linear Probe

Text Encoder Text Encoder Image EncoderText Encoder
&

Image Encoder

“{class}”learnable
prompt

Multi-headed 
Attention

Layer Norm

MLP

Layer Norm

+

+

Non-linearity

+

Down-projection

Up-projection

Figure 2: Parameter count and architectures of fine-tuning methods. All of the fine-tuning methods we consider
tune only a small fraction of the total number of parameters and act in different ways on the model. LayerNorm-
tuning only trains existing Layer Normalization parameters across all Transformer layers. The remaining
approaches inject additional parameters which act on different parts of the model: the input, intermediate
activations, and output. Prompt tuning prepends a learnable prompt to the input text embeddings of classes.
Adapter modules are composed of a linear down-projection, non-linearity, and linear up-projection, and are
inserted inside the Transformer layers of the text encoder after the attention block. Linear probe directly classifies
classes from the output of the image encoder.

where ⌧ is a learnable temperature parameter. CLIP is trained with a contrastive loss accordingly
across 400 million pairs of image and text captions collected online (Radford et al., 2021).

Inference For a downstream classification task at test time, CLIP first embeds the textual descrip-
tions of all classes. These descriptions may range from a phrase like “a photo of a <class>” to heavily
engineered embeddings ensembled over 80 different templates (Radford et al., 2021). Each image
is then classified using the embedded classes as labels and the prediction probabilities described
above. Notably, this inference scheme allows CLIP to be transferred zero-shot to any downstream
image classification task. Radford et al. (2021) show that zero-shot CLIP is competitive with a fully
supervised ResNet (He et al., 2016) baseline on a suite of image classification tasks.

3 METHODOLOGY: FINE-TUNING LARGE-SCALE PRETRAINED MODEL

Although zero-shot CLIP performs well on natural images and general object classification datasets,
its performance degrades quickly on more abstract tasks from out-of-distribution data. Even on a
simple dataset like MNIST (LeCun, 1998), the zero-shot CLIP model (ViT-B/16) we test attains an
accuracy of only 55%. Substantial gains can be achieved by fine-tuning the pre-trained model, but
many such strategies have emerged across tasks in vision and language and it’s unclear which to
use on diverse downstream settings. For this reason, we provide an extensive study of adaptation
approaches. Figure 1 illustrates the fine-tuning methods we consider in context of CLIP while
Figure 2 shows more detailed information regarding each approach.

We propose a general taxonomy of fine-tuning approaches and consider three major classes: (a)
methods which only fine-tune existing parameters, (b) methods which freeze existing parameters and
add new parameters, and (c) methods which combine (a) and (b). We first consider two methods in
(a) which only fine-tune existing parameters.

3.1 FINE-TUNING EXISTING PARAMETERS

Full Model Fine-tuning The simplest approach to fine-tuning is to train all of the model parameters
on the downstream task. However, this is unstable and doesn’t scale well to CLIP-size models with
hundreds of millions of parameters. Our empirical results show this behavior as well.

3



Under review as a conference paper at ICLR 2022

LayerNorm Tuning Instead of full model fine-tuning for large-scale models, we can tune a small
subset of chosen parameters when the downstream data is scarce. In fact, Frankle et al. (2020)
show that just tuning Batch Normalization (Ioffe & Szegedy, 2015) parameters from a random
initialization can be highly expressive. In a similar vein, we investigate tuning the parameters of
Layer Normalization (LayerNorm) layers (Ba et al., 2016). Unlike Batch Normalization, LayerNorm
applies per-element normalization across mini-batches. Given a mini batch of inputs x, LayerNorm
transforms this as

y =
x� E[x]p
Var[x] + ✏

· � + �

where the mean and variance are calculated over the normalized dimensions and �,� are learned
parameters. Because the image and text encoders in CLIP share the same underlying Transformer
architecture, in LayerNorm Tuning, we fine-tune the Layer Normalization parameters �,� across all
layers of both encoders. These parameters are 768-dimensional and 512-dimensional for the image
and text encoders respectively.

3.2 FINE-TUNING NEW PARAMETERS

An alternative paradigm is to inject new parameters which can more effectively adapt to downstream
tasks. These new parameters can act at various stages of a pre-trained model: on the output, input, or
intermediate activations.

Linear Probe The classic method of training a linear probe on top of frozen features is an example
of adding new parameters which act on the model output. Given a pre-trained CLIP model, we discard
the text encoder, freeze the image encoder, and learn a linear layer on top of the image features
before they’re projected to the shared embedding space. The linear layer maps the penultimate image
features to logits from which class predictions are made. While this simple method is popular and
effective, it’s parameter-inefficient for tasks with higher number of classes and fails to leverage any
of the language information contained in CLIP.

Prompt Tuning Alternatively, we can consider adding parameters which act on the model input.
Such an approach known as prompt tuning has emerged as a parameter-efficient fine-tuning method in
language (Li & Liang, 2021; Lester et al., 2021). A fixed number of continuous vectors (a “prompt”)
is prepended to the model input and optimized throughout training. Similar to concurrent work by
Zhou et al. (2021), we apply prompt tuning to image classification with CLIP. For the model input,
we embed the raw text of the classes without a template and prepend a continuous prompt of fixed
length. During training, the prompt is learned using a cross-entropy loss according to the prediction
probabilities detailed in Section 3.1. Although prompt tuning can be applied in the same way for
transformer-based visual encoders, we find that only applying it for the text encoder produces better
and more stable results.

Prompt tuning is parameter-efficient and removes the need for manual prompt engineering e.g.
specifying “a photo of a <class>, a type of flower” for a downstream task on flower classification.
Ideally, the learned prompts would contain such domain-specific information. However, prompt
tuning suffers from high variance during training and is sensitive to initialization.

Adapter and Compacter Networks The above two approaches inject parameters which act either
at the end of the network (linear probe) or at the beginning (prompt tuning). A third option is to
inject new parameters for the downstream task within the layers of the network itself. This idea has
been popularized as an efficient transfer learning method in language (Houlsby et al., 2019). For
Transformer-based architectures, a common strategy is to insert a block of learnable parameters after
feed forward layers or the attention mechanism.

Adapter networks insert learnable adapter blocks after the feed forward layers in each Transformer
layer (Houlsby et al., 2019). Each block follows a bottleneck architecture and is composed of a
linear down-projection, non-linearity, and linear up-projection as shown in Figure 2. However, for
architectures with many stacked Transformer layers and larger hidden dimensions, adapter modules
are parameter-inefficient.

To alleviate this issue, Mahabadi et al. (2021) introduce compacter modules which follow the same
architecture but use low-rank parameters and hypercomplex multiplication to improve parameter
efficiency. Specifically, if the down-projection layer maps x 2 Rm ! Wx + b 2 Rd where

4



Under review as a conference paper at ICLR 2022

Amount of Training Data →

CL
IP

 Z
er

o-
Sh

ot
 P

er
fo

rm
an

ce
 →

 

21.98

76.01
83.74

73.08
77.05 79.03

82.83

20

30

40

50

60

70

80

90

Low Data & High Similarity

21.76

78.11

90.63 89.29 88.07 88.94 90.40

20

30

40

50

60

70

80

90

High Data & High Similarity

27.57 32.65

75.60 74.57 72.26 74.12 73.11

25

35

45

55

65

75

High Data & Low Similarity

12.61

34.93

53.98 52.00
46.35

50.69
53.48

10

20

30

40

50

60

Low Data & Low Similarity

Figure 3: Comparison of fine-tuning methods across different regimes of training data and CLIP zero shot
performance. Within each quadrant, results are averaged over all corresponding datasets. LayerNorm tuning is
the strongest baseline and performs the best in all regimes. All fine-tuning methods generally provide a large
benefit over zero-shot CLIP.

W 2 Rm⇥d, b 2 Rd are learned parameters and d ⌧ m, compacter modules represent W as

W =
nX

i=1

Ai ⌦ (sit
T
i )

where Ai are global weights shared across Transformer layers and si, ti are local, rank-1 weights.
We insert Adapter and Compacter modules across the Transformer layers in the text encoder.

3.3 COMBINING LAYERNORM-TUNING WITH FINE-TUNING METHODS

While we find that just LayerNorm tuning by itself is a strong baseline, an additional benefit is that
it can be combined with any other fine-tuning method given that the underlying model architecture
contains Layer Normalization parameters. The parameters of the alternative method can simply be
fine-tuned simultaneously with the Layer Normalization parameters. For example, Houlsby et al.
(2019) combine LayerNorm tuning with Adapter modules in their Adapter network for language
tasks.

Fine-tuned LayerNorm as Initialization We propose an additional approach for combining Layer-
Norm Tuning with other fine-tuning methods. We first finetune a CLIP model using only LayerNorm
tuning. The weights of this model can then be used as initialization for any arbitrary subsequent
fine-tuning method. In this multi-stage process, we effectively distill the fine-tuned LayerNorm model
through the LayerNorm parameters to the secondary fine-tuning method.

4 EXPERIMENTS

Setup The goal of this work is to study transfer learning to downstream vision tasks. However, the
downstream transfer performance depends on two key factors: the amount of training data present as
well as the distribution of that training data relative to what the model was pre-trained on. We aim to
investigate transfer learning across both these dimensions. To do so, we create 4 different benchmark
suites across these two factors: low data and high similarity, low data and low similarity, high data
and high similarity, and high data and low similarity. Results along these axes are shown in Figure 3.

Datasets We select a diverse set of 12 image classification datasets. We consider a subset of 7
datasets that Radford et al. (2021) use for zero-shot CLIP evaluation: MNIST (LeCun, 1998),
EuroSAT (Helber et al., 2019), CIFAR-10 (Krizhevsky et al., 2009), CIFAR-100 (Krizhevsky et al.,
2009), Flowers102 (Nilsback & Zisserman, 2008), DTD (Cimpoi et al., 2014), and Food101 (Bossard
et al., 2014). We then test on 3 distribution shift datasets from the WILDS benchmark (Koh et al.,
2021): FMoW (Christie et al., 2018), Camelyon17 (Bandi et al., 2018), and iWildCam (Beery et al.,
2021). We finally benchmark on 2 few-shot adaptation tasks: MiniImageNet (Vinyals et al., 2016)
and CUB (Wah et al., 2011).

5



Under review as a conference paper at ICLR 2022

Spectrum 1: Amount of Downstream Data We control for the amount of downstream training
data by considering k-shot settings where k samples from each class are made available during
the fine-tuning training phase. For the low-data regime, we follow the few-shot evaluation scheme
described in Radford et al. (2021) and train with 1, 2, 4, 8, and 16-shots, while for the high-data
regime, we train with 256 and 512-shots. For each setting, we evaluate our methods on the full tests
sets and average our results across all corresponding shots and three random seeds.

Spectrum 2: Distribution of Downstream Data We measure the similarity of downstream data to
the one that CLIP was pretrained on by measuring the performance of purely transferring CLIP zero-
shot. Our 12 datasets cover a range of image classification tasks including fine-grained classification,
distribution shift, and few-shot learning, and they encompass diverse domains and varying downstream
distributions. We split them into high and low similarity regimes according to zero-shot accuracy
using a threshold accuracy of 55%. Under this scheme, MNIST, EuroSAT, DTD, FMoW, and
iWildCam fall under the low similarity regime while CIFAR10, CIFAR100, Flowers, Camelyon17,
and Food101 fall under the high similarity regime. For the high data, low similarity regime and high
data, high similarity regime, we exclude DTD and Flowers respectively due to a lack of data.

4.1 EFFECTIVENESS OF INTERMEDIATE WEIGHTS

0

10

20

30

40

50

60

70

80

90

100

FM
oW

iW
ild
Ca
m

CIF
AR
10
0

Ca
me
lyo
n1
7

MN
IST

Eu
roS
AT

CIF
AR
10

Fo
od
10
1

High Data

0

10

20

30

40

50

60

70

80

90

100

FM
oW

iW
ild
Ca
m DT

D

CIF
AR
10
0

Eu
roS
AT

Ca
me
lyo
n1
7

MN
IST

Fo
od
10
1

Flo
we
rs

CIF
AR
10

Low Data

Figure 4: Accuracy of baseline fine-tuning
methods across datasets in the low and high-
data regimes. Datasets are ordered along the
x-axis by average performance of fine-tuning
methods. Flowers and Food101 datasets are
ommited from the high data regime due to
lack of data. We observe that LayerNorm
tuning is a strong baseline across all regimes
and datasets and provides substantial gains
over zero-shot CLIP.

Given this characterization of 4 downstream regimes, we
evaluate the performance of 5 baseline fine-tuning meth-
ods: linear probe, prompt tuning, LayerNorm tuning,
adapter networks, and compacter networks. For a fair
comparison and to isolate the effect of each method, we
don’t simultaneously tune LayerNorm parameters in any
of the other 4 fine-tuning approaches. Additionally, we
compare with a sixth baseline: zero-shot CLIP using the
prompt engineering detailed in Radford et al. (2021). The
addition of a strong zero-shot baseline allows us to eval-
uate how much our fine-tuning methods help across the
different settings. Full-model fine-tuning is included as a
seventh baseline for a complete, fair comparison.

Our results from Figure 3 show that LayerNorm tuning is a
simple but highly effective baseline across all four regimes.
It performs the best in all four regimes including the most
difficult quadrant: the low-data, hard zero-shot regime.
Across individual datasets, Figure 4 shows that LayerNorm
tuning is consistently among the best as well. This points
towards the importance of cross-modal interaction when
fine-tuning as LayerNorm tuning is the only method which
trains parameters in both CLIP encoders. More generally,
it suggests that transfer performance on downstream vision
tasks can benefit from fine-tuning grounded in language.

Furthermore, the strong performance of LayerNorm tuning
as well as adapter and compacter networks in the low-
data regime suggests that either fine-tuning or injecting
parameters among intermediate layers in a network is key
for efficient adaptation. Intuitively, acting only on the model input or output like prompt tuning
or linear probe has limited expressivity compared to modifying the intermediate layers themselves,
particularly in low-data regimes.

4.2 LEVERAGING LAYERNORM TUNING

The results of the previous section demonstrate that just LayerNorm tuning is a competitive baseline to
many of the existing fine-tuning methods. We now examine how much LayerNorm tuning can benefit
existing methods. We consider two ways of incorporating LayerNorm parameters: by simultaneously
tuning them or by applying fine-tuned LayerNorm as initialization as described in Section 3.2. For

6



Under review as a conference paper at ICLR 2022

Low-Data Regime High-Data Regime

Type of LN Tuning None Normal As Initialization None Normal As Initialization

Linear Probe 62.54 63.55 66.61 81.93 83.84 84.36

Prompt Tuning 61.70 62.82 63.95 80.26 83.69 83.17
Adapter 64.82 66.23 66.63 81.53 83.31 83.63

Compacter 68.15 69.69 68.76 81.75 83.61 83.17

Table 1: Effect of combining LayerNorm tuning with fine-tuning methods. Normal refers to LN tuning by
simultaneously tuning LayerNorm parameters with the specified fine-tuning method. For all approaches, the
addition of LayerNorm tuning in either form provides a significant performance boost. Linear probe and prompt
tuning receive the largest benefit when combined with any form of LayerNorm tuning.

each of the remaining fine-tuning methods (linear probe, prompt tuning, adapter networks, compacter
networks), we compare the baseline method to these two variants.

We average the results over the corresponding datasets in the low and high-data regimes respectively.
As Table 1 shows, incorporating any form of LayerNorm tuning increases performance compared
to the normal baselines across all methods and regimes. Because the process of incorporating
LayerNorm tuning is method-agnostic, we recommend this as a simple approach to improve transfer
performance.

Across specific fine-tuning methods, linear probe receives the largest benefits from applying Lay-
erNorm tuning first before finetuning the linear probe. We posit that this is the case as finetuning
LayerNorm first effectively distills the information from the pre-trained text encoder to the Lay-
erNorm parameters on the vision side. This is privileged information that a classical linear probe
doesn’t have access to and provides further evidence towards the benefit of leveraging both vision
and text on downstream, unimodal tasks.

Finally, we observe that for adapter and compacter networks, using fine-tuned LayerNorm as initial-
ization performs equivalently or slightly worse compared to simultaneously tuning the LayerNorm
parameters across both data regimes. This suggests that LayerNorm tuning and inserting adapter and
compacter modules may serve similar roles as fine-tuning mechanisms.

4.3 GENERAL RECIPES

From the previous two sections, we’ve seen that just LayerNorm tuning is a surprisingly effective
baseline and applying it on top of other fine-tuning methods provides performance gains. We now
investigate the question of what the best performing combination of fine-tuning methods across the
four regimes are. We follow the experimental setup in Section 4 but compare the performance of our
fine-tuning methods when combined with LayerNorm tuning first.

Figure 7 indicates that there is no clear best baseline across all four regimes but linear probe
and compacter have the strongest performance when combined with fine-tuned LayerNorm as
initialization. Across regimes, we observe similar results to Figure 3. In both low-data regimes,
we find that prompt tuning generally perform worse than the remaining fine-tuning methods while
compacter performs better. Across both high-data regimes, linear probe performs quite strongly.
Notably, these trends hold despite the addition of our initialization scheme. We recommend these, as
well as just Layer Norm tuning, as general recipes when selecting a fine-tuning method to use on a
downstream task depending on the setting.

4.4 DISTRIBUTION SHIFT

While we test on the WILDS benchmark in our analysis above, we benchmark our methods to evaluate
how robust they are to distribution shift in downstream tasks. We focus on domain generalization
where the train and test distributions come from disjoint domains (Koh et al., 2021). For example,
the Camelyon17 dataset contains training and testing images of tumor tissues coming from distinct
hospitals. We compare our results to those on the public leaderboard which contains techniques for
domain generalization while our models are simply trained according to an empirical risk minimiza-
tion objective. For performance metrics, we use average accuracy for FMoW and Camelyon17, and
Macro F1 for iWildCam.

7



Under review as a conference paper at ICLR 2022

Amount of Training Data →

CL
IP

 Z
er

o-
Sh

ot
 P

er
fo

rm
an

ce
 →

 

76.93
78.73

79.96

84.07

75

77

79

81

83

85

Low Data & High Similarity

91.30
90.97 90.80 90.57

88

89

90

91

92

High Data & High Similarity

56.29

49.16

53.31 53.46

45

47
49
51

53
55

57

Low Data & Low Similarity

77.43

75.36
76.46

75.77

70

72

74

76

78

High Data & Low Similarity

Figure 5: Comparison of fine-tuning methods initialized with fine-tuned LayerNorm across different regimes
of training data and CLIP zero shot performance. Although there is no clear best combination across all four
regimes, we recommend general recipes of using Linear Probe with fine-tuned initialization in the high data
regimes and Compacter with fine-tuned initialization in the low data regimes.

FMoW Camelyon17 iWildCam

Zero-shot 19.71 67.46 3.73
LayerNorm Tuning 47.59 90.47 18.52
Linear Probe + LN as Initialization 48.98 89.98 23.80
Best leaderboard result 55.5 91.6 38.5

Table 2: Results on the WILDS benchmark. We benchmark
our fine-tuning methods on three image classification datasets
and find that our fine-tuning methods improve upon zero-shot
CLIP performance significantly.

As shown in Table 2, our methods don’t
quite match the best reported results, but
close the gap from zero-shot CLIP signifi-
cantly. We are competitive with other do-
main generalization specific approaches on
the leaderboard despite the simplicity of
our fine-tuning methods. Our results show
that our fine-tuning methods are effective in
adapting CLIP to difficult downstream tasks
and relatively robust to factors in distribution shift.

4.5 FEW-SHOT LEARNING

Our previous experiments show results in the low-data regime, but we also apply our fine-tuning
methods with CLIP to more standard meta few-shot tasks to evaluate class generalization. In particular,
we consider the setting where given a labeled dataset of base classes, the objective is to identify novel
classes only using a few samples. Formally, we are given a large dataset of B base classes. At test
time, in a single episode of a N -way K-shot few-shot task, we are given a support set with N test
classes and K samples per class as well as a query set with N test classes and Q samples per class.
We measure the accuracy of classifying the N ⇥Q query images into N classes (Chen et al., 2020).

We adopt our fine-tuning methods to this setting in two stages. First, we pre-train on the full dataset
of the base classes in the same way we fine-tune to any of the prior downstream tasks. Then, we
use the image encoder of the fine-tuned model within the Classifier Baseline proposed by Chen et al.
(2020). For a given few-shot task, we compute a representative for each of the N classes by averaging
the embeddings of the K support examples. We classify each of the N ⇥ Q query-set examples
according to the cosine similarity of their embeddings to the representatives.

Using this approach, we test our fine-tuning methods on MiniImageNet and CUB in the 5-way
1-shot and 5-way 5-shot settings averaged over 600 episodes. Table 4 shows that simply applying
zero-shot CLIP in this way does remarkably well, outperforming the best reported results on the
public leaderboards for these tasks.

All of our fine-tuning methods provide further improvement with Linear Probe and LayerNorm tuning
reaching 6% higher accuracy than the current SOTA on 5-way 1-shot MiniImageNet as shown in
Tables 3 and 4. The strong performance of linear probe in this setting is expected as the Classifier
Baseline doesn’t utilize the CLIP text encoder at all. Of the fine-tuning methods we evaluate, Linear
Probe with LayerNorm tuning is the only method which trains parameters solely in the image encoder,
so its visual representations transfer the best.

8



Under review as a conference paper at ICLR 2022

Mini-ImageNet (1-shot) Mini-ImageNet (5-shot)

Zero-shot 86.20 96.56
LayerNorm 89.24 96.46
Prompt Tuning + LN 89.61 97.05
Adapter + LN 91.17 97.39
Linear Probe + LN 92.08 97.94

Best leaderboard result 82.99 91.50

Table 3: Few-shot classification accuracy on Mini-
ImageNet. Just zero-shot CLIP performs strongly on
few-shot adaptation, and our fine-tuning methods pro-
vide additional performance gains. A combination of
Linear Probe with LayerNorm tuning performs the best,
exceeding the current reported SOTA on Mini-ImageNet.

CUB (1-shot) CUB (5-shot)

Zero-shot 87.04 97.28
LayerNorm 91.40 98.16
Adapter + LN as Initialization 91.73 98.20
Prompt Tuning + LN as Initialization 92.21 98.20
Linear Probe + LN as Initialization 93.73 98.50

Best leaderboard result 94.73 96.28

Table 4: Few-shot classification accuracy on CUB.
Similar to our results on Mini-ImageNet, we see that
zero-shot CLIP performs strongly but fine-tuning
with LayerNorm on top can produce significant im-
provements in accuracy. Linear Probe combined
with LayerNorm performs the best again, exceeding
the current SOTA in the 5-shot setting.

5 RELATED WORK

Large-Scale Transformer-Based Models: Unsupervised pre-training for language typically takes
advantage of the sequential nature of text through a self-supervised prediction task. Initially, recurrent
neural networks (RNNs) (Hochreiter & Schmidhuber, 1997) were the predominant deep learning
architectures for unsupervised language learning and were particularly successful for machine
translation (Sutskever et al., 2014). In the context of language modeling, RNNs were superseded by
attention architectures (Bahdanau et al., 2015) and specifically masked self-attention Transformer
architectures (Vaswani et al., 2017; Devlin et al., 2018; Radford et al., 2019). Over the last few years,
Transformers have produced impressive generalization results through unsupervised pre-training of
increasingly larger models on larger datasets (Brown et al., 2020).

Multimodal Learning: Multimodal models (Ngiam et al., 2011) are trained through tasks that
leverage multiple data modalities simultaneously, such as vision and language. Examples include text
to image synthesis (Reed et al., 2016) and text descriptions of visual inputs (Krishna et al., 2017).
Recently, multi-modal architectures have been combined with large-scale unsupervised pre-training
to achieve impressive text-to-image generation (Ramesh et al., 2021) as well as learning joint image
and language embeddings (Radford et al., 2021). In particular, this work investigates how do adapt
a pre-trained CLIP model, which uses noise contrastive estimation and transformers to maximize
similarity between images and their text captions, to downstream tasks.

Finetuning Pre-trained Models: With the emergence of large-scale pre-trained vision and language
models, it’s becoming increasingly important to adapt such models efficiently to downstream tasks.
For transfer learning in vision, the most common approach is to use a linear probe on top of pretrained
image features while for language, a variety of fine-tuning approaches have emerged including
variations of prompt tuning (Liu et al., 2021; Li & Liang, 2021; Lester et al., 2021; Zhou et al.,
2021), adapter and compacter networks (Houlsby et al., 2019; Mahabadi et al., 2021), and multimodal
approaches applicable to vision and language (Tsimpoukelli et al., 2021; Shen et al., 2021). We hope
our analysis provides insight into some of these methods.

6 DISCUSSION: GENERAL GUIDELINES

Our work analyzes relevant questions in transfer learning of large-scale pretrained vision-and-
language model to several downstream classification tasks. We evaluate 5 different fine-tuning
baseline methods across 12 total image classification datasets and find that just tuning Layer Normal-
ization parameters is a surprisingly effective, parameter-efficient baseline, and propose an effective
approach to combine it with other finetuning methods.

We analyze our best-performing fine-tuning methods over different settings to find general guidelines.
For all of our methods, we combine them with fine-tuned LayerNorm as initialization. For the
low-data regime, we recommend using fine-tuning approaches which inject or modify intermediate
parameters like LayerNorm tuning, Adapter networks, and Compacter networks. For the high-data
regime, we recommend using linear probe or prompt tuning. For generic settings, we recommend
simply LayerNorm tuning. Code to reproduce the experiments will be made available. We hope
that this work will lead to a broader future research in efficient adaptation of large-scale pre-trained
models, not just limited to vision-and-language models.

9



Under review as a conference paper at ICLR 2022

REFERENCES

Jimmy Lei Ba, Jamie Ryan Kiros, and Geoffrey E Hinton. Layer normalization. arXiv preprint

arXiv:1607.06450, 2016. 1, 4

Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Bengio. Neural machine translation by jointly
learning to align and translate. In Yoshua Bengio and Yann LeCun (eds.), 3rd International

Conference on Learning Representations, ICLR 2015, San Diego, CA, USA, May 7-9, 2015,

Conference Track Proceedings, 2015. URL http://arxiv.org/abs/1409.0473. 9

Peter Bandi, Oscar Geessink, Quirine Manson, Marcory Van Dijk, Maschenka Balkenhol, Meyke
Hermsen, Babak Ehteshami Bejnordi, Byungjae Lee, Kyunghyun Paeng, Aoxiao Zhong, et al.
From detection of individual metastases to classification of lymph node status at the patient level:
the camelyon17 challenge. IEEE transactions on medical imaging, 38(2):550–560, 2018. 5

Sara Beery, Arushi Agarwal, Elijah Cole, and Vighnesh Birodkar. The iwildcam 2021 competition
dataset. arXiv preprint arXiv:2105.03494, 2021. 5

Lukas Bossard, Matthieu Guillaumin, and Luc Van Gool. Food-101–mining discriminative compo-
nents with random forests. In European conference on computer vision, pp. 446–461. Springer,
2014. 5

Tom B Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared Kaplan, Prafulla Dhariwal,
Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, et al. Language models are
few-shot learners. arXiv preprint arXiv:2005.14165, 2020. 1, 9

Yinbo Chen, Xiaolong Wang, Zhuang Liu, Huijuan Xu, and Trevor Darrell. A new meta-baseline for
few-shot learning. arXiv preprint arXiv:2003.04390, 2020. 8

Gordon Christie, Neil Fendley, James Wilson, and Ryan Mukherjee. Functional map of the world. In
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 6172–6180,
2018. 5

Mircea Cimpoi, Subhransu Maji, Iasonas Kokkinos, Sammy Mohamed, and Andrea Vedaldi. De-
scribing textures in the wild. In Proceedings of the IEEE Conference on Computer Vision and

Pattern Recognition, pp. 3606–3613, 2014. 5

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. Bert: Pre-training of deep
bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805, 2018. 1,
9

Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua Zhai, Thomas
Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg Heigold, Sylvain Gelly, et al. An
image is worth 16x16 words: Transformers for image recognition at scale. arXiv preprint

arXiv:2010.11929, 2020. 2

Jonathan Frankle, David J Schwab, and Ari S Morcos. Training batchnorm and only batchnorm: On
the expressive power of random features in cnns. arXiv preprint arXiv:2003.00152, 2020. 1, 4

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image
recognition. In Proceedings of the IEEE conference on computer vision and pattern recognition,
pp. 770–778, 2016. 3

Patrick Helber, Benjamin Bischke, Andreas Dengel, and Damian Borth. Eurosat: A novel dataset
and deep learning benchmark for land use and land cover classification. IEEE Journal of Selected

Topics in Applied Earth Observations and Remote Sensing, 12(7):2217–2226, 2019. 5

Sepp Hochreiter and Jürgen Schmidhuber. Long Short-Term Memory. Neural Computation, 9
(8):1735–1780, 11 1997. ISSN 0899-7667. doi: 10.1162/neco.1997.9.8.1735. URL https:
//doi.org/10.1162/neco.1997.9.8.1735. 9

Neil Houlsby, Andrei Giurgiu, Stanislaw Jastrzebski, Bruna Morrone, Quentin De Laroussilhe,
Andrea Gesmundo, Mona Attariyan, and Sylvain Gelly. Parameter-efficient transfer learning for
nlp. In International Conference on Machine Learning, pp. 2790–2799. PMLR, 2019. 1, 4, 5, 9

10

http://arxiv.org/abs/1409.0473
https://doi.org/10.1162/neco.1997.9.8.1735
https://doi.org/10.1162/neco.1997.9.8.1735


Under review as a conference paper at ICLR 2022

Sergey Ioffe and Christian Szegedy. Batch normalization: Accelerating deep network training by
reducing internal covariate shift. In International conference on machine learning, pp. 448–456.
PMLR, 2015. 4

Chao Jia, Yinfei Yang, Ye Xia, Yi-Ting Chen, Zarana Parekh, Hieu Pham, Quoc V Le, Yunhsuan
Sung, Zhen Li, and Tom Duerig. Scaling up visual and vision-language representation learning
with noisy text supervision. arXiv preprint arXiv:2102.05918, 2021. 1, 2

Pang Wei Koh, Shiori Sagawa, Sang Michael Xie, Marvin Zhang, Akshay Balsubramani, Weihua Hu,
Michihiro Yasunaga, Richard Lanas Phillips, Irena Gao, Tony Lee, et al. Wilds: A benchmark of
in-the-wild distribution shifts. In International Conference on Machine Learning, pp. 5637–5664.
PMLR, 2021. 5, 7

Ranjay Krishna, Kenji Hata, Frederic Ren, Li Fei-Fei, and Juan Carlos Niebles. Dense-captioning
events in videos. In IEEE International Conference on Computer Vision, ICCV 2017, Venice, Italy,

October 22-29, 2017, pp. 706–715. IEEE Computer Society, 2017. doi: 10.1109/ICCV.2017.83.
URL https://doi.org/10.1109/ICCV.2017.83. 9

Alex Krizhevsky, Geoffrey Hinton, et al. Learning multiple layers of features from tiny images. 2009.
5

Yann LeCun. The mnist database of handwritten digits. http://yann. lecun. com/exdb/mnist/, 1998. 3,
5

Brian Lester, Rami Al-Rfou, and Noah Constant. The power of scale for parameter-efficient prompt
tuning. arXiv preprint arXiv:2104.08691, 2021. 1, 4, 9

Xiang Lisa Li and Percy Liang. Prefix-tuning: Optimizing continuous prompts for generation. arXiv

preprint arXiv:2101.00190, 2021. 1, 4, 9

Pengfei Liu, Weizhe Yuan, Jinlan Fu, Zhengbao Jiang, Hiroaki Hayashi, and Graham Neubig.
Pre-train, prompt, and predict: A systematic survey of prompting methods in natural language
processing. arXiv preprint arXiv:2107.13586, 2021. 9

Kevin Lu, Aditya Grover, Pieter Abbeel, and Igor Mordatch. Pretrained transformers as universal
computation engines. arXiv preprint arXiv:2103.05247, 2021. 1

Rabeeh Karimi Mahabadi, James Henderson, and Sebastian Ruder. Compacter: Efficient low-rank
hypercomplex adapter layers. arXiv preprint arXiv:2106.04647, 2021. 1, 4, 9

Jiquan Ngiam, Aditya Khosla, Mingyu Kim, Juhan Nam, Honglak Lee, and Andrew Y Ng. Multi-
modal deep learning. In ICML, 2011. 9

Maria-Elena Nilsback and Andrew Zisserman. Automated flower classification over a large number
of classes. In 2008 Sixth Indian Conference on Computer Vision, Graphics & Image Processing,
pp. 722–729. IEEE, 2008. 5

Ethan Perez, Florian Strub, Harm De Vries, Vincent Dumoulin, and Aaron Courville. Film: Visual
reasoning with a general conditioning layer. In Proceedings of the AAAI Conference on Artificial

Intelligence, volume 32, 2018. 1

Alec Radford, Jeffrey Wu, Rewon Child, David Luan, Dario Amodei, Ilya Sutskever, et al. Language
models are unsupervised multitask learners. OpenAI blog, 1(8):9, 2019. 1, 2, 9

Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya Ramesh, Gabriel Goh, Sandhini Agarwal,
Girish Sastry, Amanda Askell, Pamela Mishkin, Jack Clark, et al. Learning transferable visual
models from natural language supervision. arXiv preprint arXiv:2103.00020, 2021. 1, 2, 3, 5, 6, 9,
13

Aditya Ramesh, Mikhail Pavlov, Gabriel Goh, Scott Gray, Chelsea Voss, Alec Radford, Mark Chen,
and Ilya Sutskever. Zero-shot text-to-image generation. In Marina Meila and Tong Zhang (eds.),
Proceedings of the 38th International Conference on Machine Learning, ICML 2021, 18-24 July

2021, Virtual Event, volume 139 of Proceedings of Machine Learning Research, pp. 8821–8831.
PMLR, 2021. URL http://proceedings.mlr.press/v139/ramesh21a.html. 9

11

https://doi.org/10.1109/ICCV.2017.83
http://proceedings.mlr.press/v139/ramesh21a.html


Under review as a conference paper at ICLR 2022

Scott E. Reed, Zeynep Akata, Xinchen Yan, Lajanugen Logeswaran, Bernt Schiele, and Honglak
Lee. Generative adversarial text to image synthesis. In Maria-Florina Balcan and Kilian Q.
Weinberger (eds.), Proceedings of the 33nd International Conference on Machine Learning, ICML

2016, New York City, NY, USA, June 19-24, 2016, volume 48 of JMLR Workshop and Conference

Proceedings, pp. 1060–1069. JMLR.org, 2016. URL http://proceedings.mlr.press/
v48/reed16.html. 9

Sheng Shen, Liunian Harold Li, Hao Tan, Mohit Bansal, Anna Rohrbach, Kai-Wei Chang, Zhewei
Yao, and Kurt Keutzer. How much can clip benefit vision-and-language tasks? arXiv preprint

arXiv:2107.06383, 2021. 9

Ilya Sutskever, Oriol Vinyals, and Quoc V. Le. Sequence to sequence learning with neural networks.
In Zoubin Ghahramani, Max Welling, Corinna Cortes, Neil D. Lawrence, and Kilian Q. Weinberger
(eds.), Advances in Neural Information Processing Systems 27: Annual Conference on Neural

Information Processing Systems 2014, December 8-13 2014, Montreal, Quebec, Canada, pp.
3104–3112, 2014. URL https://proceedings.neurips.cc/paper/2014/hash/
a14ac55a4f27472c5d894ec1c3c743d2-Abstract.html. 9

Maria Tsimpoukelli, Jacob Menick, Serkan Cabi, SM Eslami, Oriol Vinyals, and Felix Hill. Multi-
modal few-shot learning with frozen language models. arXiv preprint arXiv:2106.13884, 2021.
9

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez, Łukasz
Kaiser, and Illia Polosukhin. Attention is all you need. In Advances in neural information

processing systems, pp. 5998–6008, 2017. 2, 9

Oriol Vinyals, Charles Blundell, Timothy Lillicrap, Daan Wierstra, et al. Matching networks for one
shot learning. Advances in neural information processing systems, 29:3630–3638, 2016. 5

Catherine Wah, Steve Branson, Peter Welinder, Pietro Perona, and Serge Belongie. The caltech-ucsd
birds-200-2011 dataset. 2011. 5

Kaiyang Zhou, Jingkang Yang, Chen Change Loy, and Ziwei Liu. Learning to prompt for vision-
language models. arXiv preprint arXiv:2109.01134, 2021. 4, 9

12

http://proceedings.mlr.press/v48/reed16.html
http://proceedings.mlr.press/v48/reed16.html
https://proceedings.neurips.cc/paper/2014/hash/a14ac55a4f27472c5d894ec1c3c743d2-Abstract.html
https://proceedings.neurips.cc/paper/2014/hash/a14ac55a4f27472c5d894ec1c3c743d2-Abstract.html


Under review as a conference paper at ICLR 2022

A APPENDIX

A.1 DATASET INFORMATION

Dataset Classes Train Validation Test

MNIST 10 58,000 2,000 10,000
EuroSAT 10 15,000 2,000 10,000
CIFAR-10 10 48,000 2,000 10,000
CIFAR-100 100 48,000 2,000 10,000
DTD 47 1,880 1,880 1,880
Flowers102 102 1,632 408 6,149
Food-101 101 60,600 15,150 25,250
FMoW 62 76,863 19,915 22,108
iWildCam 182 129,809 14,961 42,791
Camelyon17 2 302,436 34,904 85,054

CUB 200 5,891 2,932 2,965
MiniImageNet 100 38,400 9,600 12,000

Table 5: Dataset information.

Table 5 shows information about the number of classes and the train, validation, and test split for
each downstream dataset we evaluate. For MiniImageNet, the 100 classes are split into 64, 16, and
20 classes for training, validation, and testing respectively. For CUB, the 200 classes are split into
100, 50, and 50 classes for training, validation, and testing respectively.

A.2 CLIP IMPLEMENTATION

We implement our adaptation methods on top of the PyTorch implementation provided by the authors
of CLIP at https://github.com/openai/CLIP. For the image encoder, we use a Vision
Transformer with patch size 16 (ViT-B/16) and initialize all of our models with the corresponding
pre-trained weights. For zero-shot CLIP evaluation, we perform the prompt engineering described in
Radford et al. (2021) and ensemble the features from the text encoder across 80 templates 2.

A.3 TRAINING DETAILS

Input Processing For the raw images, we preprocess them with normalization, resizing, and
random cropping to size 224 by 224. For the textual descriptions, we encode them using a byte pair
encoding like Radford et al. (2021).

Hyperparameters of fine-tuning methods For prompt tuning, we use a prompt of 8 512-
dimensional vectors. For adapter networks, we use a bottleneck dimension of size 24. For compacter
networks, we use the same bottleneck dimension and have 4 global weights of dimension 4 by 4.

Training Procedure For all fine-tuning methods, we train with a cross-entropy loss. We use the
AdamW optimizer with an initial learning rate of 5e-4 and weight decay of 0.02 as well as a cosine
annealing scheduler. We evaluate our model on the validation set after every epoch and keep the
best-performing checkpoint. In the low-data regime, we train for 100 epochs and use a validation
set of size # of shots except for Flowers where we use min{# of shots, 4}. In the high-data regime,
we train for 50 epochs and use a validation set of size (# of shots)/10. Due to data constraints, for
CIFAR-100, we train with 256 and 450-shots (instead of 256 and 512-shots) in the high-data regime.
For CUB and MiniImageNet, we use the same hyperparameters and train for 100 epochs on the base
classes.

2https://github.com/openai/CLIP/blob/main/notebooks/Prompt_Engineering_
for_ImageNet.ipynb

13

https://github.com/openai/CLIP
https://github.com/openai/CLIP/blob/main/notebooks/Prompt_Engineering_for_ImageNet.ipynb
https://github.com/openai/CLIP/blob/main/notebooks/Prompt_Engineering_for_ImageNet.ipynb

