
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

LCEN: A NOVEL FEATURE SELECTION ALGORITHM
FOR NONLINEAR, INTERPRETABLE MACHINE LEARN-
ING MODELS

Anonymous authors
Paper under double-blind review

ABSTRACT

Interpretable models can have advantages over black-box models, and inter-
pretability is essential for the application of machine learning in critical settings,
such as aviation or medicine. LASSO and elastic net, the most commonly used
interpretable methods, are limited to linear predictions and have poor feature se-
lection capabilities. Other important interpretable methods, such as tree-based or
generalized additive models, are nonlinear but have limited performance in some
scenarios. In this work, we introduce the LASSO-Clip-EN (LCEN) algorithm
for the construction of nonlinear, interpretable machine learning models. LCEN
is tested on a wide variety of artificial and empirical datasets, frequently creat-
ing more accurate, sparser models than other models, including those for building
sparse, nonlinear models. LCEN is robust against many issues typically present in
datasets and modeling, including noise, multicollinearity, data scarcity, and hyper-
parameter variance. LCEN is also able to rediscover multiple physical laws from
empirical data and, for processes with no known physical laws, LCEN achieves
better results than many other dense and sparse methods – including using 10.8-
fold fewer features than dense methods and 8.1-fold fewer features than EN on
one dataset, and is comparable to or better than ANNs on multiple datasets.

1 INTRODUCTION

Models are powerful tools to explain, predict, or describe natural phenomena (Shmueli, 2010). They
connect independent variables (also called “inputs” or “features”) to dependent variables (also called
“outputs” or “labels”). Many modeling methods and algorithms exist, including linear, ensemble-
based, and deep learning models. Complex models are claimed to have greater capability to model
phenomena due to their lower bias, but their intricate and numerous mathematical transformations
prevent humans from understanding how an output was predicted by a model, or the relative or
absolute importance of the inputs. Moreover, a lack of transparency may prevent the model from
being trusted in critical or sensitive applications (Hong et al., 2020).

In a modeling context, interpretability can be defined as “how an output y = f(X) was predicted
for a given input X – that is, provide f(·) in a form readily understandable to humans so that the
model’s outputs may be explainable”. There are two main methods to increase interpretability: the
use of model-agnostic algorithms, which extract interpretable explanations a posteriori and work
for any model, or the direct use of interpretable models (Ribeiro et al., 2016). Interpretable models
include “decision trees, rules, additive models, attention-based networks, and sparse linear models”
(Ribeiro et al., 2016). It should be noted that nonlinear models may also be made sparse, and even
interpretable, as described later in this section and the rest of this work. Interpretable models can
have many advantages over black-box or a posteriori explanations, including the ability to assist
researchers in refining the model and data, or better highlighting scenarios in which the model fails
or lacks robustness (Rudin, 2019). Special attention should be given to sparse models, which identify
the most important features, can make the model more robust to variations in the input data, and can
significantly improve the model’s interpretability if an interpretable model is used (Rudin, 2019). A
sparse model may be defined as “a model that uses few input features, particularly relative to the
total number of features available”. However, even a linear model or decision tree/rules can become
unwieldy and challenging to interpret if hundreds or thousands of coefficients or rules are present.

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Feature selection is the process of selecting the most important features in a model to increase its ro-
bustness, interpretability, or sparsity. Many criteria for feature selection exist (Heinze et al., 2018),
including significance based on p-values (using a univariate, iterative/stepwise, or global method),
using information criteria (such as the AIC (Akaike, 1974) and BIC (Schwarz, 1978)), using penal-
ties (such as in LASSO (Santosa & Symes, 1986; Tibshirani, 1996) and elastic net (EN) (Zou &
Hastie, 2005)), criteria based on changes in estimates, and expert knowledge. More broadly, these
methods can be classified as filter, wrapper, or integrated methods. While no method is superior
for all problems, different works have evaluated and criticized these criteria. For example, stepwise
regression is one of the most commonly used methods in many fields thanks to its computational
simplicity and ease of understanding (Whittingham et al., 2006; Heinze et al., 2018; Smith, 2018).
However, stepwise regression is prone to ignoring features with causal effects, including irrelevant
features, generating excessively small confidence intervals, and producing incorrect/biased parame-
ters (Whittingham et al., 2006; Smith, 2018). LASSO is simple and computationally cheap, and has
performed well for some problems (Hebiri & Lederer, 2013; Tian et al., 2015; Pavlou et al., 2016),
but can overselect irrelevant variables, tends to select only as many features as there are samples,
and does not handle multicollinear data well (Heinze et al., 2018; Zou & Hastie, 2005).1

Originally, most feature selection methods applied only in linear contexts (or have been applied
primarily in linear contexts). For example, the only sparse models referenced in the highly cited
review by Ribeiro et al. (2016) are linear. The most commonly used sparse methods (LASSO, EN,
and their variants) are linear regressors.2 To address this limitation, later works consider sparse
nonlinear models. McConaghy (2011); Brewick et al. (2017); Sun & Braatz (2020) defined sets
of features consisting of polynomials (all works), interactions (all works), and/or non-polynomials
(McConaghy, 2011; Sun & Braatz, 2020). ALVEN (Sun & Braatz, 2020) uses an F-test for each
feature (including the expanded set of features) to determine whether to keep a feature in the final EN
model, a filter approach. However, this F-test has very poor feature selectivity, as nearly all features
are selected when traditional values of α (0.001 ≤ α ≤ 0.05) are used. Furthermore, the ordering of
the features with respect to their p-values does not follow their relevance, as many irrelevant features
are among those with the lowest p-values, and relevant features can be among those with the highest
p-values (including p ≫ 0.05). Other relevant methods include Fan & Li (2001), which introduced
the smoothly clipped absolute deviation (SCAD); Ravikumar et al. (2009), which introduced Sparse
Additive Models and for which Liu et al. (2022) used with L0 and L2 regularization; Zou & Zhang
(2009), which introduced the adaptive elastic net; Zhang (2010), which introduced the minimax
concave penalty (MCP/MC+); van de Geer et al. (2011), which introduced the thresholded LASSO;
Yamada et al. (2018), which used two forms of modified, nonlinear LASSO algorithms and achieves
high sparsity with the datasets tested; Bertsimas & Parys (2020), which introduced a novel cutting
plane algorithm; and Xu et al. (2021), which introduced Bayesian-symbolic regression approaches.

More recently, the L1 regularization has been applied to neural networks for nonlinear feature se-
lection. In its simplest form, group LASSO is applied to zero all the outputs of some neurons (spar-
sifying the network and eliminating features when zeroing input-layer neurons) (Dinh & Ho, 2020;
Scardapane et al., 2017; Wang et al., 2021). LassoNet, a slightly modified version of this algorithm,
applies the L1 penalty only to the input layer and includes a skip-connection between that layer
and the output layer (Lemhadri et al., 2021). More complex applications of this method include the
multi-modal neural networks of Zhao et al. (2015), the concrete autoencoders of Balın et al. (2019),
and the teacher-student network of Mirzaei et al. (2020). The first two are notable for being at least
partially unsupervised methods, suggesting they can select the most relevant features for a given
dataset no matter the task. Some works have also used approaches other than the L1 norm for neural
network-based feature selection, such as the L0 norm (Yamada et al., 2020). While these deep learn-
ing models are powerful tools, two considerable limitations are present: first, they do not provide
any information on how the selected features are contributing to the final prediction, significantly
limiting interpretability. A posteriori methods to extract this information have been found unreliable
(Rudin, 2019), even if useful. Second, these complex model architectures may take “shortcuts” to
make apparently accurate predictions (Rosenzweig et al., 2021; Lapuschkin et al., 2019). However,

1This last point is somewhat controversial in the literature, see Hebiri & Lederer (2013); Dalalyan et al.
(2017), for example.

2Zhang et al. (2016) has claimed that, if thousands of samples are available, LASSO can consistently select
features even in nonlinear settings, although the coefficients may be distorted. However, this consistency is
disputed by Dinh & Ho (2020).

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

these “shortcuts” are not really relevant to the task, preventing proper generalization and human
interpretation.

To create nonlinear, interpretable machine learning models with high predictive and descriptive
power, we propose the LASSO-Clip-EN (LCEN) algorithm. This algorithm generates an expanded
set of nonlinear features (such as in ALVEN) and performs feature selection and model fitting. This
feature set expansion, together with the Clip step, provide LCEN with the ability to do nonlin-
ear predictions. The algorithm is tested on artificial and empirical data, successfully rediscovering
physical laws from data belonging to multiple different areas of knowledge with errors < 2% on the
coefficients, a value within the empirical noise of the datasets. On datasets from processes whose
underlying physical laws are not yet known, LCEN attains lower root mean square errors (RM-
SEs) than many sparse and dense methods, leads to sparser models than all but one method tested,
and simultaneously runs faster than most alternative methods. While formal theoretical proofs are
beyond the scope of this work due to space limitations, important previous works that proved desir-
able theoretical properties of the thresholded LASSO (a LASSO-Clip model) include Zhou (2009),
Meinshausen & Yu (2009), Zhou (2010), and van de Geer et al. (2011). These works provide a
theoretical scaffold to partially justify the high performance of LCEN.

2 METHODS

The LCEN algorithm (Algorithm 1) has five hyperparameters: alpha, which determines the regu-
larization strength (as in the LASSO, EN, and similar algorithms); l1_ratio, which determines how
much of the regularization of the EN step depends on the 1-norm as opposed to the 2-norm (as in
the EN algorithm); degree, which determines the maximum degree for the basis expansion of the
data (Table A2); lag, which determines the maximum number of previous time steps from which X
and y features are included (relevant only for dynamic models); and cutoff, which determines the
minimum value a scaled parameter needs to have to not be eliminated during the clip steps. Details
on the cross-validated hyperparameter values for all models are in Section A3. Three other hyperpa-
rameters are relevant to the expansion of features (Algorithm 2) but do not interact with the LCEN
algorithm directly. The trans_type hyperparameter controls what kinds of features are appended to
the data. It can be set to ‘all’ to include all transforms (see Table A2 for an example of what features
are included), ‘poly’ to include only polynomial and interaction terms, and ‘simple_interaction’ to
include only interaction terms. The interaction hyperparameter is a boolean that controls whether
interaction terms are included in the feature expansion process. Finally, the transform_y hyperpa-
rameter, which is only relevant when lag > 0, is a boolean that determines whether the y features
from previous time steps will also be transformed based on trans_type or only the raw values of y
from previous time steps will be included.

The LCEN algorithm (Algorithm 1) begins with the LASSO step, which sets the l1_ratio to 1. Five-
fold cross-validation on the training set is employed among all combinations of alpha, degree, and
lag values. The training dataset is split randomly for each fold (as per sklearn’s KFold function).
First, additional features are temporarily appended to the data based on the degree, lag, trans_type,
interaction, and transform_y hyperparameters. We developed a custom algorithm (Algorithm 2) to
perform this feature expansion. Due to this dependency on the degree and lag hyperparameters,
this feature expansion occurs within the cross-validation process, creating a temporary augmented
dataset that is scaled to have mean = 0 and standard deviation = 1 and then input to the LASSO
method. For each hyperparameter combination and fold, a validation mean squared error (MSE) is
recorded. The values of degree and lag corresponding to the LASSO model with the lowest valida-
tion MSE (averaged across all five folds) are recorded, and a LASSO model using this combination
of hyperparameters is fit using the training data to obtain scaled parameters (estimated coefficients).

The next step in the LCEN algorithm is the clip step, in which the features whose scaled LASSO
parameters have absolute values smaller than the cutoff hyperparameter are recorded so they can be
removed from the expanded dataset, and their coefficients are forced to 0.

The EN step involves cross-validation on the training set among all combinations of alpha and
l1_ratio, using the values of degree and lag obtained in the LASSO step. Once again, the training
dataset is split randomly for each fold (as per sklearn’s KFold function) and the features are expanded
and scaled, then the features recorded in the Clip step are removed. For each hyperparameter com-
bination and fold, a validation MSE is recorded. The values of alpha and l1_ratio corresponding

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

to the EN model with the lowest validation MSE (averaged across all five folds) are recorded, and
an EN model using this combination of hyperparameters is fit using the training data to obtain new
scaled parameters.

A second clip step is done on these EN scaled parameters, zeroing the coefficients of the features
whose scaled EN parameters have absolute values smaller than the cutoff hyperparameter. Lastly,
some post-processing steps are done. The scaled coefficients are unscaled by multiplying the scaled
coefficients by the standard deviation of the y training data and dividing by the standard deviation
of each corresponding X feature. Then, a dot product of the train or test data and the unscaled
coefficients is taken to obtain the final predictions. This procedure returns the trained EN model
after the second clip step, which is interpretable and nonlinear, and the predictions made with the
unscaled coefficients on the training and testing data.

Algorithm 1 LASSO-Clip-EN (LCEN)

Input: X and y data; lists of hyperparameters alpha, l1_ratio, degree, lag; hyperparameters cutoff,
trans_type, interaction, transform_y
LASSO step
Temporarily set l1_ratio= 1.
for each hyperparameter combination in (alpha × degree × lag) do

Generate additional features based on the trans_type, interaction, transform_y, the current de-
gree, and the current lag hyperparameters [Algorithm 2].
Temporarily append the new features to the X data for cross-validation.
Scale the data such that each feature’s mean = 0 and its standard deviation = 1.
Perform five-fold cross-validation with random data splits and the LASSO method.
For each fold, record the validation MSE for this hyperparameter combination.

end for
Obtain the combination of hyperparameters with the lowest average validation MSE from the
above cross-validation. Record the best degree and lag hyperparameters.
Fit a LASSO model on the scaled training data with these hyperparameters to obtain parameters.
Clip step
Record all features whose scaled parameters have absolute values < cutoff from the training and
test data for removal during the EN training.
EN step
Restore l1_ratio to its original list of values.
for each hyperparameter combination in (alpha × l1_ratio) do

Generate additional features based on the trans_type, interaction, transform_y, the optimal
degree, and the optimal lag hyperparameters [Algorithm 2].
Temporarily append the new features to the X data for cross-validation.
Remove the features recorded in the Clip step.
Scale the data such that each feature’s mean = 0 and its standard deviation = 1.
Perform five-fold cross-validation with random data splits and the EN method.
For each fold, record the validation MSE for this hyperparameter combination.

end for
Obtain the combination of hyperparameters with the lowest average validation MSE from the
above cross-validation. Record the best alpha and l1_ratio hyperparameters.
Fit an EN model on the scaled training data with these hyperparameters to obtain parameters.
Clip step II
Remove all features whose scaled parameters have absolute values < cutoff.
Post-processing
Unscale the coefficients of the selected parameters based on the standard deviations of the data.
Obtain train/test predictions by performing a dot product of the unscaled coefficients with the
expanded train/test data containing only the selected features.
return the trained EN model and the predictions.

The rationale behind this sequence of steps – LASSO, then Clip, then EN, then a second Clip –
seeks to balance the algorithm’s high accuracy and sparsity with a low runtime. As shown by the
ablation experiments (Section A4), other combinations/variants do not achieve the same perfor-
mance as LCEN. Specifically, the LASSO-Clip, EN-Clip, and LASSO-EN combinations tend to

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

have lower accuracy than LCEN. The EN-Clip combination is also much slower and less sparse
than LCEN, and the LASSO-EN combination is slower and slightly less sparse. The LASSO-Clip-
LASSO combination is less accurate than LCEN, although it is slightly faster and more sparse. The
EN-Clip-EN combination achieves similar accuracy, but is much slower and less sparse than LCEN.
It is possible to add a debiasing step at the end by using ordinary least-squares (OLS) to estimate the
coefficients of the features selected by LCEN (Belloni & Chernozhukov, 2013). This LCEN→OLS
variant model estimates coefficients more accurately for one of the ablation experiments, but per-
forms worse in terms of test-set MSE on empirical datasets.

The combinations that start with EN are slower than LCEN because EN has a greater number of
hyperparameter combinations to be tested, and these combinations are tested with a higher number
of features (as the full expanded feature set has not been subject to any selection via the LASSO and
Clip steps). These combinations are also less sparse because the L1 and L2 norms compete during
EN regularization, and a combination that prioritizes the L2 norm may have a lower cross-validation
MSE. Beginning with the LASSO increases the algorithm’s sparsity and speed at no accuracy cost.

The use of hard-thresholding (Clip) steps improves LCEN’s accuracy and sparsity. The increase in
sparsity also lowers the algorithm’s runtime. The second Clip step is less impactful than the first and
does not affect the algorithm’s runtime, but it still improves LCEN’s feature selection capabilities.
We highlight that the Clip steps operate on the scaled parameters; thus, any issues that may arise
due to the (relative) magnitude of the coefficients are not significant.

LCEN scales like EN. For an N×P dataset under F -fold cross-validation with A potential α val-
ues, L potential L1 ratio values, and C potential cutoff values, LCEN scales as O(NP 2FALC).
The degree hyperparameter increases the number of features P in a supralinear way. The lag hy-
perparameter increases the number of features P in a linear way. Conversely, higher values for the
cutoff hyperparameter decrease the number of features P .

Multiple datasets (summarized in Table A1) are used to test the performance of the LCEN algorithm.
These datasets can be divided into three categories: artificial data, empirical data from processes
with known physical laws, and empirical data from processes with no known physical laws. Further
description of these datasets and how the artificial datasets are generated is available in Section A2;
the empirical datasets are also described in Sections A6.1 and 3.2. All models tested in this work
had their hyperparameters selected by 5-fold cross-validation. The separation between training and
testing sets varied depending on the dataset and is detailed in Section A2.

3 RESULTS

3.1 ARTIFICIAL DATA HIGHLIGHT LCEN’S ROBUSTNESS TO NOISE, MULTICOLLINEARITY,
AND HYPERPARAMETER VARIANCE

The first datasets used to validate the LCEN algorithm are multiple linear datasets (“Artificial lin-
ear”). These datasets feature all combinations of {100, 500, 1000} samples × {100, 500, 1000} true
features × {0%} noise level × {25%, 50%, 75%, 100%} additional false features. The noise level is
defined as mean(added noise/noiseless y)×100%. This added noise is Gaussian noise with µ = 0
and a suitable σ to reach the desired noise level. For each combination, 3 repeats with different
random seeds were created. This experiment contains multiple challenging conditions, including
cases where the number of features was much larger than the number of samples (P ≫ N), cases
with a significant proportion of false features, and cases with a high noise (low correlation between
the input X and the output y).

The methods LASSO, EN, fastSparseGAMs (FS-GAMs) (Liu et al., 2022), SCAD, MCP, symbolic
regression (SymReg) (implemented by Stephens et al. (2022)), and LCEN were tested on this feature
selection task. Overall, LCEN consistently outperformed all other methods in this task, as measured
by their Matthews Correlation Coefficients (MCC) and F1 scores (Figs. A1 to A12) Because most
tests contained more positive-class elements (true features) than negative-class elements (false fea-
tures), it should be noted that the F1 score can be biased upwards, particularly if a model selects
all features. EN was typically completely unselective, classifying all features as true except in a
few scenarios with N > P . SymReg performed marginally better, but still had a very low overall
performance. LASSO, FS-GAMs, SCAD, and MCP performed better than EN and SymReg, having

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

similar performances among themselves; notable exceptions were cases in which LASSO was com-
pletely unselective, and most scenarios with N > P , which allowed SCAD and MCP to perform
perfect classification. LCEN performed perfect classification in the scenarios with N > P even
more frequently than SCAD and MCP, and surpassed the other methods in the other scenarios in
terms of absolute MCC by 19.8% on average when N = P and by 8.2% on average when N < P .

The first step of the LCEN algorithm uses LASSO, which has been claimed to underperform with
multicollinear data (Heinze et al., 2018; Zou & Hastie, 2005). Therefore, tests using multicollinear
data are done next. The goal is to verify whether LCEN can successfully determine the presence of
two different but correlated variables, as LASSO prefers to select only one variable in this scenario
(Zou & Hastie, 2005). Noise ϵ1, at different levels (as defined above), was added to the X0 variable
to create a correlated variable X1. A second noise ϵ2, also at different levels, was added to the final
y data. When ϵ1 = 0, both variables are equal and separation is not possible. However, at other ϵ1
values, the LCEN algorithm is very successful at identifying that two relevant variables exist and
assigning correct coefficients to them (Figure A13). Specifically, when the noise level ϵ1 associated
with the X data (which indicates how different the X variables are, as highlighted by the variance
inflation factors [VIFs] in Fig. A13) is greater than the noise level ϵ2 associated with the y data,
LCEN can separate both variables with coefficient errors ≤ 5%. When both noise levels are similar,
LCEN can separate both variables with coefficient errors between 5% and 10%. The X data used in
this experiment has very high multicollinearity (as shown by the VIFs); real data will typically have
lower VIFs and thus be easier to separate using LCEN.

Next, a more complex equation is used to further validate LCEN. The “Relativistic energy” data
contain mass and velocity values used to calculate E2 = c4m2 + c2m2v2. As before, datasets
with increasing noise levels are created. The degree hyperparameter is allowed to vary between 1
and 6 in this experiment. These degree values lead to expanded datasets with {8, 22, 42, 68, 100,
138} features respectively. Even though there are only two true features, there are a significant
number of false features, many of which have similar functional forms to the true features. LCEN
selected only relevant features for all noise levels tested (≤ 20%), and the coefficients were typically
equal to the ground truth (Table 1). The only major divergence happened at a noise level of 20%,
as the coefficient for m2 had a 25% relative error. This error led to our hypothesizing that it is
challenging to distinguish among the features involving m (such as m, m2, and m3) due to the low
range of the data. Thus, another dataset with the same properties but a larger range of values for
m is created. LCEN performed better on this dataset, again selecting only relevant features for all
noise levels tested (≤ 30%) and having much lower errors in the estimated coefficients (Table 1).
These experiments further highlight the robustness of LCEN and show how the range of the data
can affect predictions. To clarify our design choices and the relevance of each individual part of the
LCEN algorithm, ablation tests are performed with this dataset in Section A4 of the Appendix.

Table 1: Coefficient values and corresponding relative error to the ground truth for the “Rela-
tivistic energy” dataset at different noise levels. The first coefficient is for m2 and should be
c4 = 8.078×1033 m4/s4; the second coefficient is for m2v2 and should be c2 = 8.988×1016

m2/s2. The left table is for the dataset with 1 ≤ m < 10, and the right table is for the dataset with
1 ≤ m < 100.

Noise Coefficients Error (%)
0% 8.077×1033, 8.987×1016 0.013, 0.009
5% 8.081×1033, 8.969×1016 0.043, 0.206
10% 8.085×1033, 8.951×1016 0.097, 0.410
15% 8.089×1033, 8.935×1016 0.139, 0.580
20% 6.027×1033, 8.912×1016 25.39, 0.844

Noise Coefficients Error (%)
0% 8.078×1033, 8.987×1016 0.001, 0.006
5% 8.078×1033, 8.986×1016 0.005, 0.022

10% 8.078×1033, 8.984×1016 0.009, 0.038
15% 8.079×1033, 8.983×1016 0.013, 0.054
20% 8.079×1033, 8.981×1016 0.017, 0.070
30% 8.080×1033, 8.978×1016 0.025, 0.103

Finally, LCEN is compared with the feature selection algorithm in ALVEN (Sun & Braatz, 2020),
which uses the same basis function expansion, but uses f-tests for feature selection. The “4th-
degree, univariate polynomial” dataset is created as per Sun & Braatz (2021), such that y =
X + 0.5X2 + 0.1X3 + 0.05X4 + ϵ, 30 X points are available for training, and 1,000 X points
are available for testing. These conditions simulate the scarcity of data potentially present in real
datasets while ensuring test errors can be predicted with high confidence. Sun & Braatz (2021) cre-
ated four types of ALVEN models for this prediction. On this same dataset and using the same four

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

types of models, LCEN attained median errors that are typically over 60% smaller than for ALVEN
(Fig. 1). Discussion of these results are included in the Appendix (Section A5), including discus-
sions on how LCEN consistently selected the correct degree hyperparameter via cross-validation
despite the low number of training samples and high noise (Fig. A15).

Figure 1: Test set median MSE for the “4th-degree, univariate polynomial” dataset. ALVEN results
(left, reproduced from Sun & Braatz (2021) with permission) show that the error is monotonically
increasing with noise and that the degree 4 “unbiased model” is the best at low noise levels, but is
displaced by the degree 2 “biased model” at higher noise levels. On the other hand, LCEN results
(right) show that the median errors converge at higher noises. Furthermore, the LCEN median errors
are typically over 60% smaller than the ALVEN median errors, and the degree 4 “unbiased model”
is always the best model no matter the noise. The “noise level” and “Noise variance σ2” terms are
equivalent in this figure. Fig. A14 contains interquartile ranges for the LCEN model’s test MSEs.

3.2 LCEN SURPASSES MANY OTHER METHODS WHEN MAKING PREDICTIONS ON
EMPIRICAL DATA

The applicability of an algorithm to real-world problems is judged only by its performance on real
data, as data sparsity or real noise may affect the algorithm’s capabilities. Tests done on empirical
data generated by processes with known physical laws show that LCEN still displays exceptional
feature selection capabilities, consistently selecting only the right features even when high hyperpa-
rameter variance – that is, scenarios where many potential combinations of hyperparameters exist
(which increase the variance in a bias-variance context) – is present (Section A6.1 and Table 2).

Table 2: Summary of LCEN results for the empirical datasets from processes with known physical
laws.

Dataset Max. size Only Correct Features Coefficient Relative Error
CARMENES star data 293×350 Yes 1.74%

Kepler’s 3rd Law (1619) 6×18 Yes 0.46%
Kepler’s 3rd Law (Modern) 8×18 Yes 0.07%

The final experiments to validate LCEN’s performance involve comparisons to other algorithms
on real datasets from processes with unknown physical laws. As there is no (computational) way
to validate the feature selection by models trained on these datasets, the main focuses of this sec-
tion are investigating prediction errors and sparsities of different models. The methods ordinary least
squares (OLS), ridge regression (RR) (Tikhonov, 1963), partial least squares (PLS) (Wold, 1975a;b),
LASSO, elastic net (EN) (Zou & Hastie, 2005), SCAD (Fan & Li, 2001), MCP (Zhang, 2010), sym-
bolic regression (SymReg) (Stephens et al., 2022), random forest (RF) (Ho, 1995), gradient-boosted
decision trees (GBDT) (Friedman, 2001), adaptive boosting (AdaB) (Freund & Schapire, 1997),
support vector machine with radial-basis functions (SVM) (Boser et al., 1992), fastSparseGAMs
(FS-GAMs) (Liu et al., 2022), multilayer perceptron (MLP), MLP with group LASSO (MLP-GL1)
(Scardapane et al., 2017), and LassoNet (Lemhadri et al., 2021) were compared with LCEN. To
clarify our design choices and the relevance of each individual part of the LCEN algorithm, ablation
tests are performed with many of the datasets tested here in Section A4 of the Appendix.

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

The first dataset analyzed is the “Diesel Freezing Point” dataset (Hutzler & Westbrook, 2000), which
is comprised of 395 diesel spectra measured at 401 wavelengths and used to predict the freezing
point of these diesels. The dense, nonlinear methods SVM and MLP had the best prediction perfor-
mance, with test RMSEs equal to 4.39 and 4.61 ◦C respectively (Table 3). They were followed by
LCEN, RR, EN, LassoNet, LASSO, and MLP-GL1, which had test RMSEs between 4.83 and 4.92
◦C. Other methods performed worse, with test RMSEs > 5.0◦C. For comparison, 5.0◦C is about
7.5% of the range of the test data, which contains diesels with freezing points between −59.5◦C and
6.6◦C. The sparsest methods were LCEN, which selected only 36/401 features (9.0%) yet had a pre-
diction error only 10.0% higher than that of the best dense method, and FS-GAMs, which selected
only 2/401 features (0.5%) but had a prediction error 80.4% higher than the best dense method at
its lowest cross-validation MSE. LCEN, FS-GAMs, and SVM were the only nonlinear methods that
had a runtime faster than 10 seconds, a speed typically reserved for linear methods. EN and AdaB
had runtimes ≈ 20 seconds, SCAD and MCP had runtimes ≈ 30 seconds, and all other models had
runtimes on the order of hundreds or thousands of seconds. LCEN is the only method that combines
a low test RMSE, interpretability, and a fast runtime. LASSO, the only other method that also has
these properties, has a worse RMSE and sparsity. Finally, an end user could prioritize creating very
sparse models, even at the expense of increasing these models’ MSEs. To simulate such a scenario,
the LCEN cutoff hyperparameter was increased from the value that minimizes the validation MSE
to create sparser models. These models have much fewer features, yet their test set RMSEs typically
increase by only small values. An LCEN model that selected 36 features had a test set RMSE that
was 5.1% lower than that of an FS-GAM with the same number of features, whereas an LCEN model
that selected 29 features had a test set RMSE that was 7.9% lower than that of a similar FS-GAM.
This illustrates how LCEN can select the most critical features to make models with high sparsity
and predictive power, and how these criteria can be prioritized by the end user.

Table 3: Results of different models for the “Diesel Freezing Point” dataset. The number of features
that minimizes the cross-validation MSE is 2 for FS-GAMs and 36 for LCEN.

Model Test RMSE (◦C) Features Runtime (s)
OLS 11.75 401 0.09
PLS 5.21 401 4.44
RR 4.83 401 4.87
EN 4.83 299 19.6

LASSO 4.90 39 2.06
SCAD 5.20 26 28.2
MCP 5.25 29 33.6

SymReg 5.72 6 696
RF 5.16 390 307

GBDT 5.40 354 2649
AdaB 5.60 300 22.0
SVM 4.39 401 5.33
MLP 4.61 401 121

MLP-GL1 4.92 80 569
LassoNet 4.83 401 474

FS-GAMs

5.09 36

3.75
5.33 29
5.26 13
6.34 6
8.32 2

LCEN

4.83 36 6.54
4.91 29 6.27
5.52 13 5.76
7.40 6 5.53

The next dataset used is the “Abalone” dataset (Nash et al., 1995). LCEN surpassed all linear mod-
els and tied with the best nonlinear models in this task (Table A7 and Section A6.2). However, the
other best nonlinear models all lack the interpretability of LCEN. By increasing the cutoff hyper-
parameter, sparser LCEN models may be generated, which attain similar performances to the base

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

LCEN model. Moreover, LCEN models at the same or higher sparsities had lower test RMSEs than
FS-GAMs, further highlighting the abilities of the LCEN algorithm.

LCEN is then tested on the “Concrete Compressive Strength” dataset (Yeh, 1998), which contains
the composition and age of 1,030 different types of concrete and their compressive strengths. The
relationship between these properties is nonlinear, and previous modeling attempts include algebraic
expressions and artificial neural networks (specifically, MLPs) (Yeh, 1998; 2006). These MLPs were
superior to the algebraic models, whereas the algebraic models provide interpretability on how the
properties of the concrete affect its compressive strength. LCEN is also considerably better than
the previously published algebraic models (Table 4), and its performance is competitive with that
of previously published ANNs without sacrificing interpretability. Furthermore, note that no type
of validation is mentioned in Yeh (1998), so the test and validation sets may be the same, making
the MLP figures overoptimistic. LCEN has a validation RMSE of 4.66 MPa on this dataset, which
is slightly better than the RMSE of the MLP of Yeh (1998). Some other models surpass LCEN in
terms of test RMSE, but LCEN has the lowest validation RMSE out of all methods tested.

Table 4: Results of different models for the “Concrete Compressive Strength” dataset. All machine-
learning models selected all 8 features except for FS-GAMs, which selected 4, and SymReg, which
selected 6. No form of validation is mentioned in Yeh (1998), so the test and validation sets may be
the same, making the ANN values overoptimistic.

Model Test RMSE (MPa)
Algebraic expression (Yeh, 1998) 7.79

MLP (Yeh, 1998) 4.76
Linear+interactions model (Yeh, 2006) 7.43

SCAD = MCP 10.26
SymReg 10.51

RF 5.10
GBDT 7.29
AdaB 6.95
SVM 5.94

MLP-GL1 5.47
LassoNet 5.53
FS-GAMs 11.39

LCEN 5.73

LCEN is also successful at predicting phenomena caused by human activity instead of physical laws.
In the modified “Boston housing” dataset (Harrison & Rubinfeld, 1978), LCEN attains a test RMSE
that is only 6% higher than that of a dense MLP (Table A8 and Section A6.2). Once again, LCEN
attains higher performance than many other methods in this dataset while also being completely
interpretable. Finally, the “GEFCom 2014” dataset was used to highlight the ability of LCEN to
predict in a complex and dynamic task (Hong et al., 2016). Two versions of the “GEFCom 2014”
dataset have been published: one that contains only energy consumption levels and another that
contains the same energy consumption data and also temperature data from multiple weather sta-
tions. This work uses the former. “GEFCom 2014” is part of an energy forecasting competition
won by a LASSO-like model (Hong et al., 2016). More recently, deep learning has been applied to
this problem (Wilms et al., 2018; Gasparin et al., 2022), and deep learning models have achieved
strong 24-hour predictive performance (Gasparin et al., 2022). Despite the strong performance of
multiple, complex ANN architectures, LCEN models obtain a 13.1% lower test RMSE on this fore-
casting task than the state-of-the-art Seq2Seq model from Gasparin et al. (2022) (Table 5). Unlike
the ANNs, LCEN requires only a CPU for training and forecasting, and provides interpretable coef-
ficients. LCEN can also be used for longer forecasts without significant increases in the prediction
error, further highlighting the robustness of the algorithm.

4 DISCUSSION

This work introduces the LASSO-Clip-EN (LCEN) algorithm for the creation of nonlinear, inter-
pretable machine learning models (Algorithm 1). LCEN is first validated using artificial data (Sec-
tion 3.1), which provide an initial assessment of the algorithm’s performance under multiple, in-

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Table 5: Results of different models for the “GEFCom 2014” dataset. The deep learning models
(TCN to Seq2Seq) and their results come directly from Gasparin et al. (2022).

Metric (mean) TCN RNN LSTM GRU Seq2Seq LCEN
Hours Forecast 24 24 24 24 24 24 48 72 120 168

Test RMSE (MW) 17.2 18.0 19.5 19.0 17.1 14.9 18.9 21.0 23.4 24.7
Relative Error (%) 9.8 10.2 11.1 10.8 9.7 8.5 10.7 11.9 13.2 13.9

dependently controllable conditions. LCEN was then tested with data from processes with known
physical laws (Section A6.1) and without known physical laws (Sections 3.2 and A6.2).

Overall, these experiments have demonstrated the applicability of LCEN to a multitude of scientific
and nonscientific problems, even those with significant nonlinearities and complexity. On the real
data from processes with known physical laws, LCEN successfully selected only the correct features
with very low coefficient errors for all datasets used in this work, effectively rediscovering physical
laws solely from data (Table 2). LCEN models were robust to defects in the real data, including
noise, multicollinearity, or sample scarcity. LCEN models were typically as accurate as or more
accurate than many alternative methods, yet were also much sparser. LCEN models are also trivial
to interpret and display exactly how each input is contributing to the final output. This combina-
tion of accuracy and interpretability is essential for the deployment of machine-learning models in
performance-critical scenarios, from aviation to medicine. Moreover, the additional interpretability
can assist in data or model refinement efforts and can make the models robust to changes in data
or adversarial input. LCEN is free, open-source, and easy to use, allowing even non-specialists in
machine learning to benefit from and use it. The main limitations of LCEN are that it is not a uni-
versal function approximator, as it can model only the functions present in the expansion of dataset
features, that the feature expansion algorithm is better suited to numerical data over image or text
data, and that it sometimes is not as accurate as a dense deep learning method. If a GPU and enough
time are available for model training, users in scenarios that focus on accuracy above anything else
or with non-numerical data types may prefer to use a deep learning method.

There are at least two clear future directions for this work. The first involves using the LCEN
algorithm in classification tasks, as many important problems in science and engineering involve
classification. A comprehensive analysis of the performance of LCEN in classification tasks will
follow this paper. The second involves applying the LCEN algorithm to automatically generate
physical equations for hybrid model architectures (such as physics-constrained or physics-guided
ML), which have high potential for scientific applications (Peng et al., 2021; Willard et al., 2022).

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

REFERENCES

H. Akaike. A new look at the statistical model identification. IEEE Transactions on Automatic Con-
trol, 19(6):716–723, 1974. URL https://doi.org/10.1109/TAC.1974.1100705.

Muhammed Fatih Balın, Abubakar Abid, and James Zou. Concrete autoencoders: Differentiable
feature selection and reconstruction. In Proceedings of the 36th International Conference on
Machine Learning, volume 97, pp. 444–453, 2019. URL https://proceedings.mlr.
press/v97/balin19a.html.

Alexandre Belloni and Victor Chernozhukov. Least squares after model selection in high-
dimensional sparse models. Bernoulli, 19(2):521–547, 2013. URL https://doi.org/10.
3150/11-BEJ410.

Dimitris Bertsimas and Bart Van Parys. Sparse high-dimensional regression: Exact scalable algo-
rithms and phase transitions. The Annals of Statistics, 48(1):300 – 323, 2020. URL https:
//doi.org/10.1214/18-AOS1804.

Bernhard E. Boser, Isabelle M. Guyon, and Vladimir N. Vapnik. A training algorithm for optimal
margin classifiers. In Proceedings of the Fifth Annual Workshop on Computational Learning
Theory, pp. 144–152, 1992. URL https://doi.org/10.1145/130385.130401.

Patrick T. Brewick, Sami F. Masri, Biagio Carboni, and Walter Lacarbonara. Enabling reduced-
order data-driven nonlinear identification and modeling through naïve elastic net regularization.
International Journal of Non-Linear Mechanics, 94:46–58, 2017. URL https://doi.org/
10.1016/j.ijnonlinmec.2017.01.016.

D. Clark, Z. Schreter, and A. Adams. A quantitative comparison of dystal and backpropagation. In
Proceedings of the Seventh Australian Conference on Neural Networks, pp. 132–137, 1996. URL
https://www.tib.eu/de/suchen/id/BLCP%3ACN016972815.

Arnak S. Dalalyan, Mohamed Hebiri, and Johannes Lederer. On the prediction performance of the
Lasso. Bernoulli, 23(1):552–581, 2017. URL https://doi.org/10.3150/15-BEJ756.

Vu C Dinh and Lam S Ho. Consistent feature selection for analytic deep neural net-
works. In Advances in Neural Information Processing Systems, volume 33, pp. 2420–2431,
2020. URL https://proceedings.neurips.cc/paper_files/paper/2020/
file/1959eb9d5a0f7ebc58ebde81d5df400d-Paper.pdf.

Jianqing Fan and Runze Li. Variable selection via nonconcave penalized likelihood and its oracle
properties. Journal of the American Statistical Association, 96(456):1348–1360, 2001. URL
https://doi.org/10.1198/016214501753382273.

Yoav Freund and Robert E Schapire. A decision-theoretic generalization of on-line learning and an
application to boosting. Journal of Computer and System Sciences, 55(1):119–139, 1997. URL
https://doi.org/10.1006/jcss.1997.1504.

Jerome H. Friedman. Greedy function approximation: A gradient boosting machine. The
Annals of Statistics, 29(5):1189–1232, 2001. URL https://doi.org/10.1214/aos/
1013203451.

Alberto Gasparin, Slobodan Lukovic, and Cesare Alippi. Deep learning for time series forecast-
ing: The electric load case. CAAI Transactions on Intelligence Technology, 7(1):1–25, 2022.
doi: https://doi.org/10.1049/cit2.12060. URL https://ietresearch.onlinelibrary.
wiley.com/doi/abs/10.1049/cit2.12060.

D Jr Harrison and D L Rubinfeld. Hedonic housing prices and the demand for clean air. J. Environ.
Econ. Manage., 5:81–102, 1978. URL doi.org/10.1016/0095-0696(78)90006-2.

Mohamed Hebiri and Johannes Lederer. How correlations influence lasso prediction. IEEE Transac-
tions on Information Theory, 59(3):1846–1854, 2013. URL https://doi.org/10.1109/
TIT.2012.2227680.

11

https://doi.org/10.1109/TAC.1974.1100705
https://proceedings.mlr.press/v97/balin19a.html
https://proceedings.mlr.press/v97/balin19a.html
https://doi.org/10.3150/11-BEJ410
https://doi.org/10.3150/11-BEJ410
https://doi.org/10.1214/18-AOS1804
https://doi.org/10.1214/18-AOS1804
https://doi.org/10.1145/130385.130401
https://doi.org/10.1016/j.ijnonlinmec.2017.01.016
https://doi.org/10.1016/j.ijnonlinmec.2017.01.016
https://www.tib.eu/de/suchen/id/BLCP%3ACN016972815
https://doi.org/10.3150/15-BEJ756
https://proceedings.neurips.cc/paper_files/paper/2020/file/1959eb9d5a0f7ebc58ebde81d5df400d-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2020/file/1959eb9d5a0f7ebc58ebde81d5df400d-Paper.pdf
https://doi.org/10.1198/016214501753382273
https://doi.org/10.1006/jcss.1997.1504
https://doi.org/10.1214/aos/1013203451
https://doi.org/10.1214/aos/1013203451
https://ietresearch.onlinelibrary.wiley.com/doi/abs/10.1049/cit2.12060
https://ietresearch.onlinelibrary.wiley.com/doi/abs/10.1049/cit2.12060
doi.org/10.1016/0095-0696(78)90006-2
https://doi.org/10.1109/TIT.2012.2227680
https://doi.org/10.1109/TIT.2012.2227680

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Georg Heinze, Christine Wallisch, and Daniela Dunkler. Variable selection – A review and rec-
ommendations for the practicing statistician. Biometrical Journal, 60(3):431–449, 2018. URL
https://doi.org/10.1002/bimj.201700067.

Tin Kam Ho. Random decision forests. In Proceedings of 3rd International Conference on Doc-
ument Analysis and Recognition, volume 1, pp. 278–282, 1995. URL doi.org/10.1109/
ICDAR.1995.598994.

Sungsoo Ray Hong, Jessica Hullman, and Enrico Bertini. Human factors in model interpretabil-
ity: Industry practices, challenges, and needs. Proceedings of the ACM on Human-Computer
Interaction, 4(68):1–26, May 2020. URL https://doi.org/10.1145/3392878.

Tao Hong, Pierre Pinson, Shu Fan, Hamidreza Zareipour, Alberto Troccoli, and Rob J. Hyndman.
Probabilistic energy forecasting: Global energy forecasting competition 2014 and beyond. Inter-
national Journal of Forecasting, 32(3):896–913, 2016. doi: https://doi.org/10.1016/j.ijforecast.
2016.02.001. URL https://www.sciencedirect.com/science/article/pii/
S0169207016000133.

Scott A. Hutzler and S. R. Westbrook. Estimating chemical and bulk properties of middle dis-
tillate fuels from near-infrared spectra. Technical report, Defense Technical Information Cen-
ter, U.S. Army TARDEC, Warren, Michigan, 2000. URL https://apps.dtic.mil/sti/
citations/ADA394209. Report TFLRF No. 348.

J. Kepler, E. J. Aiton, A. M. Duncan, and J. V. Field. The Harmony of the World, pp. 418, 422.
American Philosophical Society, 1997. URL https://books.google.com/books?id=
rEkLAAAAIAAJ.

Sebastian Lapuschkin, Stephan Wäldchen, Alexander Binder, Grégoire Montavon, Wojciech Samek,
and Klaus-Robert Müller. Unmasking clever hans predictors and assessing what machines really
learn. Nature Communications, 10:1096, 3 2019. doi: 10.1038/s41467-019-08987-4.

Ismael Lemhadri, Feng Ruan, and Rob Tibshirani. LassoNet: Neural networks with feature spar-
sity. In Proceedings of The 24th International Conference on Artificial Intelligence and Statis-
tics, volume 130, pp. 10–18, 2021. URL https://proceedings.mlr.press/v130/
lemhadri21a.html.

Jiachang Liu, Chudi Zhong, Margo Seltzer, and Cynthia Rudin. Fast sparse classification for gen-
eralized linear and additive models. In Gustau Camps-Valls, Francisco J. R. Ruiz, and Isabel
Valera (eds.), Proceedings of The 25th International Conference on Artificial Intelligence and
Statistics, volume 151, pp. 9304–9333, 2022. URL https://proceedings.mlr.press/
v151/liu22f.html.

Trent McConaghy. FFX: Fast, Scalable, Deterministic Symbolic Regression Technology,
pp. 235–260. Springer, New York, 2011. URL https://doi.org/10.1007/
978-1-4614-1770-5_13.

Nicolai Meinshausen and Bin Yu. Lasso-type recovery of sparse representations for high-
dimensional data. The Annals of Statistics, 37(1):246–270, 2009. URL https://doi.org/
10.1214/07-AOS582.

Ali Mirzaei, Vahid Pourahmadi, Mehran Soltani, and Hamid Sheikhzadeh. Deep feature selection
using a teacher-student network. Neurocomputing, 383:396–408, 2020. doi: https://doi.org/
10.1016/j.neucom.2019.12.017. URL https://www.sciencedirect.com/science/
article/pii/S0925231219317199.

Warwick Nash, Tracy Sellers, Simon Talbot, Andrew Cawthorn, and Wes Ford. Abalone. UCI
Machine Learning Repository, 1995. URL https://doi.org/10.24432/C55C7W.

Menelaos Pavlou, Gareth Ambler, Shaun Seaman, Maria De Iorio, and Rumana Z Omar. Review
and evaluation of penalised regression methods for risk prediction in low-dimensional data with
few events. Statistics in Medicine, 35(7):1159–1177, 2016. URL https://doi.org/10.
1002/sim.6782.

12

https://doi.org/10.1002/bimj.201700067
doi.org/10.1109/ICDAR.1995.598994
doi.org/10.1109/ICDAR.1995.598994
https://doi.org/10.1145/3392878
https://www.sciencedirect.com/science/article/pii/S0169207016000133
https://www.sciencedirect.com/science/article/pii/S0169207016000133
https://apps.dtic.mil/sti/citations/ADA394209
https://apps.dtic.mil/sti/citations/ADA394209
https://books.google.com/books?id=rEkLAAAAIAAJ
https://books.google.com/books?id=rEkLAAAAIAAJ
https://proceedings.mlr.press/v130/lemhadri21a.html
https://proceedings.mlr.press/v130/lemhadri21a.html
https://proceedings.mlr.press/v151/liu22f.html
https://proceedings.mlr.press/v151/liu22f.html
https://doi.org/10.1007/978-1-4614-1770-5_13
https://doi.org/10.1007/978-1-4614-1770-5_13
https://doi.org/10.1214/07-AOS582
https://doi.org/10.1214/07-AOS582
https://www.sciencedirect.com/science/article/pii/S0925231219317199
https://www.sciencedirect.com/science/article/pii/S0925231219317199
https://doi.org/10.24432/C55C7W
https://doi.org/10.1002/sim.6782
https://doi.org/10.1002/sim.6782

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Grace C. Y. Peng, Mark Alber, Adrian Buganza Tepole, William R. Cannon, Suvranu De, Savador
Dura-Bernal, Krishna Garikipati, George Karniadakis, William W. Lytton, Paris Perdikaris, Linda
Petzold, and Ellen Kuhl. Multiscale modeling meets machine learning: What can we learn?
Archives of Computational Methods in Engineering, 28:1017–1037, 2021. URL doi.org/10.
1007/s11831-020-09405-5.

Pradeep Ravikumar, John Lafferty, Han Liu, and Larry Wasserman. Sparse Additive Models. Jour-
nal of the Royal Statistical Society Series B: Statistical Methodology, 71(5):1009–1030, 2009.
URL https://doi.org/10.1111/j.1467-9868.2009.00718.x.

Marco Tulio Ribeiro, Sameer Singh, and Carlos Guestrin. Model-agnostic interpretability of ma-
chine learning. In ICML Workshop on Human Interpretability in Machine Learning, pp. 91–95,
2016. URL https://arxiv.org/abs/1606.05386.

Julia Rosenzweig, Joachim Sicking, Sebastian Houben, Michael Mock, and Maram Akila. Patch
shortcuts: Interpretable proxy models efficiently find black-box vulnerabilities. In IEEE/CVF
Conference on Computer Vision and Pattern Recognition Workshops, pp. 56–65, 2021. doi: 10.
1109/CVPRW53098.2021.00015.

Cynthia Rudin. Stop explaining black box machine learning models for high stakes decisions and
use interpretable models instead. Nature Machine Intelligence, 1:206–215, 2019. URL https:
//doi.org/10.1038/s42256-019-0048-x.

Fadil Santosa and William W. Symes. Linear inversion of band-limited reflection seismograms.
SIAM Journal on Scientific and Statistical Computing, 7(4):1307–1330, 1986. URL https:
//doi.org/10.1137/0907087.

Simone Scardapane, Danilo Comminiello, Amir Hussain, and Aurelio Uncini. Group sparse reg-
ularization for deep neural networks. Neurocomputing, 241:81–89, June 2017. URL http:
//dx.doi.org/10.1016/j.neucom.2017.02.029.

Gideon Schwarz. Estimating the dimension of a model. The Annals of Statistics, 6(2):461–464,
1978. URL https://doi.org/10.1214/aos/1176344136.

A. Schweitzer, V. M. Passegger, C. Cifuentes, V. J. S. Béjar, M. Cortés-Contreras, J. A. Caballero,
C. del Burgo, S. Czesla, M. Kürster, D. Montes, M. R. Zapatero Osorio, I. Ribas, A. Reiners,
A. Quirrenbach, P. J. Amado, J. Aceituno, G. Anglada-Escudé, F. F. Bauer, S. Dreizler, S. V. Jef-
fers, E. W. Guenther, T. Henning, A. Kaminski, M. Lafarga, E. Marfil, J. C. Morales, J. H. M. M.
Schmitt, W. Seifert, E. Solano, H. M. Tabernero, and M. Zechmeister. The CARMENES search
for exoplanets around M dwarfs. Different roads to radii and masses of the target stars. As-
tron. Astrophys., 625:A68, May 2019. URL https://doi.org/10.1051/0004-6361/
201834965.

Galit Shmueli. To explain or to predict? Statistical Science, 25(3):289–310, 2010. URL https:
//doi.org/10.1214/10-STS330.

Gary Smith. Step away from stepwise. Journal of Big Data, 5:32, 2018. URL https://doi.
org/10.1186/s40537-018-0143-6.

Trevor Stephens et al. Genetic programming in Python with a scikit-learn inspired API: gplearn,
2022. URL https://github.com/trevorstephens/gplearn.

Weike Sun and Richard D. Braatz. ALVEN: Algebraic learning via elastic net for static and dynamic
nonlinear model identification. Computers & Chemical Engineering, 143:107103, 2020. URL
https://doi.org/10.1016/j.compchemeng.2020.107103.

Weike Sun and Richard D. Braatz. Smart process analytics for predictive modeling. Comput-
ers & Chemical Engineering, 144:107134, 2021. URL https://doi.org/10.1016/j.
compchemeng.2020.107134.

Shaonan Tian, Yan Yu, and Hui Guo. Variable selection and corporate bankruptcy forecasts.
Journal of Banking & Finance, 52:89–100, 2015. URL https://doi.org/10.1016/j.
jbankfin.2014.12.003.

13

doi.org/10.1007/s11831-020-09405-5
doi.org/10.1007/s11831-020-09405-5
https://doi.org/10.1111/j.1467-9868.2009.00718.x
https://arxiv.org/abs/1606.05386
https://doi.org/10.1038/s42256-019-0048-x
https://doi.org/10.1038/s42256-019-0048-x
https://doi.org/10.1137/0907087
https://doi.org/10.1137/0907087
http://dx.doi.org/10.1016/j.neucom.2017.02.029
http://dx.doi.org/10.1016/j.neucom.2017.02.029
https://doi.org/10.1214/aos/1176344136
https://doi.org/10.1051/0004-6361/201834965
https://doi.org/10.1051/0004-6361/201834965
https://doi.org/10.1214/10-STS330
https://doi.org/10.1214/10-STS330
https://doi.org/10.1186/s40537-018-0143-6
https://doi.org/10.1186/s40537-018-0143-6
https://github.com/trevorstephens/gplearn
https://doi.org/10.1016/j.compchemeng.2020.107103
https://doi.org/10.1016/j.compchemeng.2020.107134
https://doi.org/10.1016/j.compchemeng.2020.107134
https://doi.org/10.1016/j.jbankfin.2014.12.003
https://doi.org/10.1016/j.jbankfin.2014.12.003

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Robert Tibshirani. Regression shrinkage and selection via the lasso. Journal of the Royal Statistical
Society: Series B (Methodological), 58(1):267–288, 1996. URL https://doi.org/10.
1111/j.2517-6161.1996.tb02080.x.

A. N. Tikhonov. Solution of incorrectly formulated problems and the regularization method. Dok-
lady Akademii Nauk SSSR, 4:1035–1038, 1963.

Sara van de Geer, Peter Bühlmann, and Shuheng Zhou. The adaptive and the thresholded Lasso
for potentially misspecified models (and a lower bound for the Lasso). Electronic Journal of
Statistics, 5:688 – 749, 2011. URL https://doi.org/10.1214/11-EJS624.

Jian Wang, Huaqing Zhang, Junze Wang, Yifei Pu, and Nikhil R. Pal. Feature selection using a
neural network with group Lasso regularization and controlled redundancy. IEEE Transactions
on Neural Networks and Learning Systems, 32:1110–1123, 2021. URL doi.org/10.1109/
TNNLS.2020.2980383.

S. Waugh. Extending and Benchmarking Cascade-Correlation: Extensions to the Cascade-
Correlation Architecture and Benchmarking of Feed-forward Supervised Artificial Neural Net-
works. PhD thesis, University of Tasmania, 1995. URL https://api.semanticscholar.
org/CorpusID:53803349.

Mark J. Whittingham, Philip A. Stephens, Richard B. Bradbury, and Robert P. Freckleton. Why do
we still use stepwise modelling in ecology and behaviour? Journal of Animal Ecology, 75(5):
1182–1189, 2006. URL https://doi.org/10.1111/j.1365-2656.2006.01141.x.

Jared Willard, Xiaowei Jia, Shaoming Xu, Michael Steinbach, and Vipin Kumar. Integrating scien-
tific knowledge with machine learning for engineering and environmental systems. ACM Comput.
Surv., 55(4):66, Nov 2022. URL https://doi.org/10.1145/3514228.

Henning Wilms, Marco Cupelli, and Antonello Monti. Combining auto-regression with exogenous
variables in sequence-to-sequence recurrent neural networks for short-term load forecasting. In
IEEE 16th International Conference on Industrial Informatics, pp. 673–679, 2018. URL doi.
org/10.1109/INDIN.2018.8471953.

Herman Wold. 11 - Path models with latent variables: The NIPALS approach. In H. M. Blalock,
A. Aganbegian, F. M. Borodkin, Raymond Boudon, and Vittorio Capecchi (eds.), Quantitative
Sociology, pp. 307–357. Academic Press, New York, 1975a. URL https://doi.org/10.
1016/B978-0-12-103950-9.50017-4.

Herman Wold. Soft modelling by latent variables: The non-linear iterative partial least squares
(NIPALS) approach. Journal of Applied Probability, 12(S1):117–142, 1975b. URL doi.org/
10.1017/S0021900200047604.

Wolfram Alpha LLC. Wolfram|Alpha, 2022.

Kai Xu, Akash Srivastava, Dan Gutfreund, Felix Sosa, Tomer Ullman, Josh Tenenbaum,
and Charles Sutton. A Bayesian-symbolic approach to reasoning and learning in intuitive
physics. In Advances in Neural Information Processing Systems, volume 34, pp. 2478–2490,
2021. URL https://proceedings.neurips.cc/paper_files/paper/2021/
file/147540e129e096fa91700e9db6588354-Paper.pdf.

Makoto Yamada, Jiliang Tang, Jose Lugo-Martinez, Ermin Hodzic, Raunak Shrestha, Avishek
Saha, Hua Ouyang, Dawei Yin, Hiroshi Mamitsuka, Cenk Sahinalp, Predrag Radivojac, Filippo
Menczer, and Yi Chang. Ultra high-dimensional nonlinear feature selection for big biological
data. IEEE Transactions on Knowledge and Data Engineering, 30(7):1352–1365, 2018. URL
doi.org/10.1109/TKDE.2018.2789451.

Yutaro Yamada, Ofir Lindenbaum, Sahand Negahban, and Yuval Kluger. Feature selection using
stochastic gates. In Proceedings of the 37th International Conference on Machine Learning,
volume 119, pp. 10648–10659, 2020. URL https://proceedings.mlr.press/v119/
yamada20a.html.

14

https://doi.org/10.1111/j.2517-6161.1996.tb02080.x
https://doi.org/10.1111/j.2517-6161.1996.tb02080.x
https://doi.org/10.1214/11-EJS624
doi.org/10.1109/TNNLS.2020.2980383
doi.org/10.1109/TNNLS.2020.2980383
https://api.semanticscholar.org/CorpusID:53803349
https://api.semanticscholar.org/CorpusID:53803349
https://doi.org/10.1111/j.1365-2656.2006.01141.x
https://doi.org/10.1145/3514228
doi.org/10.1109/INDIN.2018.8471953
doi.org/10.1109/INDIN.2018.8471953
https://doi.org/10.1016/B978-0-12-103950-9.50017-4
https://doi.org/10.1016/B978-0-12-103950-9.50017-4
doi.org/10.1017/S0021900200047604
doi.org/10.1017/S0021900200047604
https://proceedings.neurips.cc/paper_files/paper/2021/file/147540e129e096fa91700e9db6588354-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2021/file/147540e129e096fa91700e9db6588354-Paper.pdf
doi.org/10.1109/TKDE.2018.2789451
https://proceedings.mlr.press/v119/yamada20a.html
https://proceedings.mlr.press/v119/yamada20a.html

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

I.-C. Yeh. Modeling of strength of high-performance concrete using artificial neural networks. Ce-
ment and Concrete Research, 28(12):1797–1808, 1998. URL https://doi.org/10.1016/
S0008-8846(98)00165-3.

I-Cheng Yeh. Analysis of strength of concrete using design of experiments and neural networks.
Journal of Materials in Civil Engineering, 18(4):597–604, 2006. URL https://doi.org/
10.1061/(ASCE)0899-1561(2006)18:4(597).

I-Cheng Yeh. Concrete Compressive Strength. UCI Machine Learning Repository, 2007. URL
https://doi.org/10.24432/C5PK67.

Cun-Hui Zhang. Nearly unbiased variable selection under minimax concave penalty. The Annals of
Statistics, 38(2):894–942, 2010. URL https://doi.org/10.1214/09-AOS729.

Yue Zhang, Weihong Guo, and Soumya Ray. On the consistency of feature selection with lasso
for non-linear targets. In Proceedings of The 33rd International Conference on Machine Learn-
ing, volume 48, pp. 183–191, 2016. URL https://proceedings.mlr.press/v48/
zhanga16.html.

Lei Zhao, Qinghua Hu, and Wenwu Wang. Heterogeneous feature selection with multi-modal deep
neural networks and sparse group LASSO. IEEE Transactions on Multimedia, 17(11):1936–1948,
2015. URL doi.org/10.1109/TMM.2015.2477058.

Shuheng Zhou. Thresholding procedures for high dimensional variable selection and sta-
tistical estimation. In Advances in Neural Information Processing Systems, volume 22,
2009. URL https://proceedings.neurips.cc/paper_files/paper/2009/
file/92fb0c6d1758261f10d052e6e2c1123c-Paper.pdf.

Shuheng Zhou. Thresholded lasso for high dimensional variable selection and statistical estimation,
2010. URL https://arxiv.org/abs/1002.1583.

Hui Zou and Trevor Hastie. Regularization and Variable Selection Via the Elastic Net. Journal
of the Royal Statistical Society Series B: Statistical Methodology, 67(2):301–320, 2005. URL
https://doi.org/10.1111/j.1467-9868.2005.00503.x.

Hui Zou and Hao Helen Zhang. On the adaptive elastic-net with a diverging number of parameters.
The Annals of Statistics, 37(4):1733 – 1751, 2009. URL https://doi.org/10.1214/
08-AOS625.

15

https://doi.org/10.1016/S0008-8846(98)00165-3
https://doi.org/10.1016/S0008-8846(98)00165-3
https://doi.org/10.1061/(ASCE)0899-1561(2006)18:4(597)
https://doi.org/10.1061/(ASCE)0899-1561(2006)18:4(597)
https://doi.org/10.24432/C5PK67
https://doi.org/10.1214/09-AOS729
https://proceedings.mlr.press/v48/zhanga16.html
https://proceedings.mlr.press/v48/zhanga16.html
doi.org/10.1109/TMM.2015.2477058
https://proceedings.neurips.cc/paper_files/paper/2009/file/92fb0c6d1758261f10d052e6e2c1123c-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2009/file/92fb0c6d1758261f10d052e6e2c1123c-Paper.pdf
https://arxiv.org/abs/1002.1583
https://doi.org/10.1111/j.1467-9868.2005.00503.x
https://doi.org/10.1214/08-AOS625
https://doi.org/10.1214/08-AOS625

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

A1 APPENDIX – FEATURE EXPANSION ALGORITHM

Algorithm 2 Feature expansion for LCEN

Input: X and y data; hyperparameters degree, lag, trans_type, interaction, transform_y
if lag > 0 then

Append X data from the previous lag time steps (samples) to each time step.
if transform_y == True then

Append y data from the previous lag time steps (samples) to each time step.
end if
Discard the first lag time steps.

end if
Using sklearn’s PolynomialFeatures function, generate polynomial (and interaction if the hyper-
parameter interaction is True) transforms of the X data for the given degree.
if trans_type == ‘all’ then

Generate logarithm transforms.
Generate square root transforms for the features with all values > 0.
Generate inverse [1/Xk] transforms.
if degree ≥ 2 then

Generate transforms with noninteger degrees [(Xk)
N+1/2 for integers N such that |N | <

degree] for the features whose every sample is > 0.
Generate the log-inverse transforms [(lnXk)

N/(Xk)
M for natural numbers N and M

such that N +M < degree].
Generate the log-sqrt-inverse transforms [(lnXk)

N/(Xk)
M−1/2 for natural numbers N

and M such that N +M < degree − 1] for the features with all values > 0.
end if

end if
return the transformed X features

A2 APPENDIX – DESCRIPTION OF DATASETS USED IN THIS WORK

Three types of data are used in this work: artificial data [“Artificial Linear”, “Multicollinear data”,
“Relativistic energy”, and “4th-degree, univariate polynomial”], empirical data from processes with
known physical laws [“CARMENES star data” and “Kepler’s 3rd Law”], and empirical data from
processes with no known physical laws [“Diesel Freezing Point”, “Abalone”, “Concrete Compres-
sive Strength”, “Boston housing”, and “GEFCom 2014”]. The artificial data are generated by us as
described in the next paragraph. These artificial data are used for an initial assessment of the LCEN
algorithm and to investigate how properties of the data, such as noise or data range, affect its feature
selection capabilities. Empirical data from processes with known physical laws are described in
Section A6.1 and used to verify whether the LCEN algorithm can rediscover known physical laws
using data with real properties. Empirical data from processes with no known physical laws are
described in Sections 3.2 and A6.2, and used to compare the performance of the LCEN algorithm
against other linear and nonlinear models, including deep learning models.

The “Artificial Linear” datasets were created by drawing numbers from a uniform distribution be-
tween −10 and 10 in intervals of 0.1 for the samples X and coefficients k and summing to generate
the outputs y =

∑n_samples
i=1 kiXi. These datasets feature all combinations of {100, 500, 1000} sam-

ples × {100, 500, 1000} true features × {0%} noise level × {25%, 50%, 75%, 100%} additional
false features. The noise level is defined as mean(added noise/noiseless y)×100%. The “Multi-
collinear data” dataset was created by drawing numbers from a uniform distribution between 1 and
10 to create one variable X0, which was used together with a small amount of noise to create a
correlated variable X1 = X0 + ϵ1; finally, they were summed such that y = 2X0 + 2X1 + ϵ2. The
“Relativistic energy” dataset was created by drawing numbers from a uniform distribution between
1 and 10 or 1 and 100 for masses, and 5×107 and 2.5×108 for velocities, which represent the energy
of a body as E2 = c4m2 + c2m2v2. With these velocity numbers, relativistic effects are respon-
sible for 20.4% of the total squared energy on average. The “4th-degree, univariate polynomial”
dataset was created by drawing numbers from a normal distribution with mean 0 and variance 5 and
transforming them into the polynomial y = X + 0.5X2 + 0.1X3 + 0.05X4 + ϵ.

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

All models tested in this work had their hyperparameters selected by 5-fold cross-validation. The
separation between training and testing sets varied depending on the dataset. None of the artificial
datasets or datasets containing empirical data from processes with known physical laws have a sep-
arate test set, as they are used to investigate the capability of the LCEN algorithm to select correct
features (which occurs based on the training set). For the “Diesel freezing point” dataset, 30% of
the dataset was randomly separated to form the test set. For the “Abalone” dataset, the last 1,044
entries (25%) were used as the test set as per Waugh (1995); Clark et al. (1996). For the “Concrete
Compressive Strength” dataset, 25% of the dataset was randomly separated to form the test set as
per Yeh (1998). For the “Boston housing” dataset, 20% of the dataset was randomly separated to
form the test set. For the “GEFCom 2014” dataset, the data from task 1 were used as the training set
and all data from tasks 2–15 were used as the test set.

Table A1: Datasets used in this work and their sources. The artificial datasets are used in Section
3.1; the real datasets from processes with known physical laws are used in Section A6.1; and the
real datasets from processes with unknown physical laws are used in Section 3.2.

Dataset Name Source
Artificial Linear Artificial data generated by us

Multicollinear data Artificial data generated by us
Relativistic energy Artificial data generated by us

4th-degree, univariate polynomial Artificial data generated by us
CARMENES star data Schweitzer et al. (2019) [link to dataset]

Kepler’s 3rd Law Kepler et al. (1997) (Original from 1619)
Wolfram Alpha LLC (2022) (Modern)

Diesel Freezing Point Hutzler & Westbrook (2000) [link to dataset]
Abalone Nash et al. (1995)

Concrete Compressive Strength Yeh (1998) [dataset: Yeh (2007)]
Boston housing (modified by us) Harrison & Rubinfeld (1978) [link to dataset]

GEFCom 2014 Hong et al. (2016) [link to dataset]

A3 APPENDIX – LIST OF HYPERPARAMETERS USED IN THIS WORK

All possible permutations of the hyperparameters below were cross-validated.

1. For the LASSO and Ridge regression models: α = 0 and 20 log-spaced values between
−4.3 and 0 (as per np.logspace(-4.3,0,20)).

2. For the elastic net (EN) models: α as above and L1 ratios equal to [0, 0.1, 0.2, 0.3, 0.4, 0.5,
0.6, 0.7, 0.8, 0.9, 0.95, 0.97, 0.99].

3. For the SCAD models: α as above and the a parameter (also written as γ) equal to 3.7, the
default value. According to Fan & Li (2001), SCAD is invariant to changes in a.

4. For the MCP models: α as above and γ equal to [1, 1.5, 2, 2.5, 3, 3.5, 4].
5. For the symbolic regression (SymReg) models: most hyperparameters were set to their

default values as per Stephens et al. (2022), except for the following. population_size was
increased to 2,000, p_crossover equal to [0.7, 0.8, 0.9, 0.95], p_subtree_mutation equal
to [0.01, 0.025, 0.05, 0.1, 0.15], p_hoist_mutation equal to [0.01, 0.025, 0.05, 0.1], and
p_point_mutation equal to [0.01, 0.025, 0.05, 0.1, 0.15] were tested. Because the sum of
these probabilities must be ≤ 1, some combinations are not feasible.

6. For the partial least squares (PLS) models: a number of components equal to all integers
between 1 and a limit were used. This limit is either the number of features or 80% of the
number of samples, whichever is smaller.

7. For the LCEN models: α and L1 ratios as above. degree values equal to [1, 2, 3] were typ-
ically used, except when otherwise indicated (such as in the “Relativistic energy” dataset).
lag = 0 was used, except for the “GEFCom 2014” dataset, which used lag = 168. cutoff
values between 1×10−3 and 5.5×10−1 were used; higher values were used only when in-
tentionally creating models with fewer selected features. A cutoff = 0 is used in the ablation
tests for the LASSO-EN model (Section A4).

17

https://cdsarc.cds.unistra.fr/viz-bin/cat/J/A+A/625/A68
https://eigenvector.com/data/SWRI/index.html
https://lib.stat.cmu.edu/datasets/boston
https://www.dropbox.com/s/pqenrr2mcvl0hk9/GEFCom2014.zip?dl=0

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

8. For the random forest (RF) and gradient-boosted decision tree (GBDT) models: [10, 25,
50, 100, 200, 300] trees, maximum tree depth equal to [2, 3, 5, 10, 15, 20, 40], mini-
mum fraction of samples per leaf equal to [0.01, 0.02, 0.05, 0.1], and minimum fraction of
samples per tree equal to [0.1, 0.25, 0.333, 0.5, 0.667, 0.75, 1.0]. For the GBDT models,
learning rates equal to [0.01, 0.05, 0.1, 0.2] were also used.

9. For the AdaBoost (AdaB) models: [10, 25, 50, 100, 200, 300] trees/estimators and learning
rates equal to [0.01, 0.05, 0.1, 0.2] were used.

10. For the support vector machine (SVM) models: C values equal to [0.01, 0.1, 1, 10, 50,
100], epsilon values equal to [0.01, 0.025, 0.05, 0.075, 0.1, 0.15, 0.2, 0.3], and gamma
values equal to [1/50, 1/10, 1/5, 1/2, 1, 2, 5, 10, 50] divided by the number of features in a
dataset were used.

11. For the fast sparse GAMs (FS-GAMs): the L0L2 penalty, num_gamma = 20, gamma_min
= 5×10−5, gamma_max = 1, and a max_support_size equal to the larger of 20% of the
features or 8 were used.

12. For the multilayer perceptron (MLP), MLP with group LASSO (MLP-GL1), and LassoNet
models: the hidden layer sizes varied for each dataset. Representing an MLP with one
hidden layer as [X] and an MLP with two as [X, Y], hidden layer sizes of {[800], [400],
[200], [100], [800, 800], [800, 400], [400, 400], [400, 200], [200, 200], [200, 100], [100,
100]} were used with the “Diesel Freezing Point” dataset, {[18], [9], [4], [18, 18], [18, 9],
[9, 9], [9, 4], [9, 2], [4, 4]} were used with the “Abalone” dataset, {[16], [8], [4], [48, 16],
[48, 8], [40, 24], [40, 16], [40, 8], [32, 16], [32, 8], [24, 16], [24, 8], [16, 16], [16, 8], [8, 8],
[8, 4]} were used with the “Concrete Compressive Strength” dataset, and {[26], [13], [6],
[78, 26], [65, 39], [65, 26], [65, 13], [52, 39], [52, 26], [52, 13], [39, 39], [39, 26], [39, 13],
[26, 26], [26, 13], [13, 13], [13, 6]} were used with the “Boston housing” dataset. Learning
rates equal to [0.001, 0.005, 0.01], the ReLU and tanhshrink activation functions, a batch
size of 32, 100 epochs, and a cosine scheduler with a minimum learning rate equal to 1/16
of the original learning rate with 10 epochs of warm-up were also used. For the MLP-GL1

and LassoNet, regularization parameters equal to [1×10−4, 1×10−3, 1×10−2] were used.

Table A2: Additional features included for each value of the degree hyperparameter for a dataset
with three features labeled X0, X1, and X2 when the lag hyperparameter is set to 0, the trans_type
hyperparameter is set to ‘all’, and the interaction hyperparameter is set to True. If the trans_type
hyperparameter were set to ‘poly’, only the features of the form (Xk)

n and the interaction terms
(if interaction were still set to True) would be present. A degree of n (any natural number) also
includes all features from degrees 1 to n− 1.

Degree Sample new features included [for all k] Features after expansion
1 intercept, Xk, lnXk, (Xk)

1/2, 1/Xk 13
2 (Xk)

2, 2-way interactions, (lnXk)
2, (Xk)

3/2, 1
(Xk)2

, lnXk

Xk
37

3 (Xk)
3, 3-way interactions, (lnXk)

3, (Xk)
5/2, 1

(Xk)3
, (lnXk)

2

Xk
, lnXk

(Xk)2
75

4 [. . .] 129
5 [. . .] 201

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

A4 APPENDIX – ABLATION TESTS

To better clarify the design choices of the LCEN algorithm and highlight the relevance of each
individual part of the algorithm, ablation tests are performed. Three ablated algorithms – LASSO-
Clip (LC), EN-Clip (ENC), and LASSO-EN (LEN) – are compared with the original LCEN algo-
rithm. Three variant algorithms, LASSO-Clip-LASSO (LCL), EN-Clip-EN (ENCEN), and regular
LCEN followed by OLS for debiasing (LCEN→OLS), are also compared. The “Relativistic en-
ergy”, “Diesel Freezing Point”, “Abalone”, and “Concrete Compressive Strength” datasets are used
in the ablation tests. Tests with the “Relativistic energy” dataset show that models with a Clip
step had some degree of success with selecting only relevant features (Table A3). However, the
ablated algorithms (LC, ENC, and LEN) had much higher prediction errors for the coefficients of
the relevant features, even though LC and ENC were able to select only the relevant features. The
variant algorithms (LCL, ENCEN, and LCEN→OLS) had performances closer to that of LCEN,
but LCL was slightly worse in terms of error. LCEN→OLS was able to estimate the coefficients
with a lower error than LCEN, but this improvement in coefficient estimation performance comes
with an increase in test-set MSEs in other tasks. The models that begin with EN (ENC and EN-
CEN) are approximately one order of magnitude slower than LCEN on all datasets (Tables A3–A6),
whereas LC was approximately 50% faster than LCEN. However, LCEN consistently had the low-
est validation RMSE in all datasets, and had the lowest test-set RMSE in all but one dataset. As
highlighted by Table A4, LCEN built the sparsest and most accurate models out of all ablated and
variant algorithms trained with the “Diesel Freezing Point” dataset. Overall, these ablation exper-
iments highlight how LCEN is the optimal algorithm to maximize accuracy and selectivity while
maintaining a low runtime.

Table A3: Relative error to the ground truth for the “Relativistic energy” dataset with 1 ≤ m < 100
at different noise levels for ablated and variant LCEN algorithms. The first coefficient is for m2 and
the second coefficient is for m2v2. Compare with the right-side table of Table 1 and a runtime of
4.79 seconds for LCEN.

Noise Level LC Error (%) ENC Error (%) LEN Error (%)
0% 36.62, 18.08 41.52, 20.91 43.75, 22.32
5% 37.68, 18.85 41.30, 21.16 43.93, 23.45

10% 18.92, 1.647 44.31, 23.70 1.137, 0.468
15% 39.71, 20.61 44.31, 23.70 46.65, 26.40
20% 39.65, 21.13 39.99, 21.95 45.87, 27.23
30% 22.35, 2.603 22.93, 2.660 7.649, 1.036

Runtime (s) 3.70 37.1 5.40

Noise Level LCL Error (%) ENCEN Error (%) LCEN→OLS
0% 0.007, 0.012 0.001, 0.006 0, 0
5% 0.011, 0.029 0.005, 0.022 0.004, 0.016

10% 0.015, 0.045 0.009, 0.038 0.008, 0.032
15% 0.019, 0.061 0.013, 0.054 0.012, 0.048
20% 0.023, 0.077 0.017, 0.070 0.016, 0.064
30% 0.031, 0.109 0.025, 0.103 0.024, 0.096

Runtime (s) 3.86 38.5 4.79

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Table A4: Results of different ablated and variant LCEN algorithms for the “Diesel Freezing Point”
dataset. Compare with Table 3.

Algorithm Test RMSE (◦C) Features Runtime (s)

LC 4.84 37 4.39
5.15 29 4.31

ENC 4.80 263 20.6
5.00 257 20.7

LEN 4.87 39 6.85

LCL 4.93 33 4.74
5.01 28 4.62

ENCEN 4.83 191 31.1
4.90 173 30.1

LCEN→OLS 5.02 36 6.54
5.07 29 6.27

Table A5: Results of different ablated and variant LCEN algorithms for the “Abalone” dataset.
Compare with Table A7 and a runtime of 19.2 seconds for LCEN.

Algorithm Test RMSE (rings) Features Runtime (s)
LC 2.1 8 11.8

ENC 2.1 8 297
LEN 2.1 8 26.3
LCL 2.0 8 12.9

ENCEN 2.1 8 308

Table A6: Results of different ablated and variant LCEN algorithms for the “Concrete Compressive
Strength” dataset. All models selected all 8 features, but a varying number of transforms of these
features. Compare with Table 4 and a runtime of 39.7 seconds for LCEN.

Algorithm Test RMSE (MPa) Runtime (s)
LC 5.53 24.6

ENC 16.5 800
LEN 5.50 44.9
LCL 5.92 26.4

ENCEN 6.12 863

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

A5 APPENDIX – ADDITIONAL RESULTS WITH ARTIFICIAL DATA

Figure A1: Plots of the Matthews Correlation Coefficients (MCCs) [top] and precision-recall (P-R)
curves [bottom] for models tested under the “Artificial Linear” dataset. Scenario conditions are as
written in each subfigure’s title. The black dotted lines in the P-R curves are F1 score isolines. The
F1 score corresponding to each isoline is shown on the right.

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Figure A2: Plots of the Matthews Correlation Coefficients (MCCs) [top] and precision-recall (P-R)
curves [bottom] for models tested under the “Artificial Linear” dataset. Scenario conditions are as
written in each subfigure’s title. The black dotted lines in the P-R curves are F1 score isolines. The
F1 score corresponding to each isoline is shown on the right.

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Figure A3: Plots of the Matthews Correlation Coefficients (MCCs) [top] and precision-recall (P-R)
curves [bottom] for models tested under the “Artificial Linear” dataset. Scenario conditions are as
written in each subfigure’s title. The black dotted lines in the P-R curves are F1 score isolines. The
F1 score corresponding to each isoline is shown on the right.

23

1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Figure A4: Plots of the Matthews Correlation Coefficients (MCCs) [top] and precision-recall (P-R)
curves [bottom] for models tested under the “Artificial Linear” dataset. Scenario conditions are as
written in each subfigure’s title. The black dotted lines in the P-R curves are F1 score isolines. The
F1 score corresponding to each isoline is shown on the right.

24

1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Figure A5: Plots of the Matthews Correlation Coefficients (MCCs) [top] and precision-recall (P-R)
curves [bottom] for models tested under the “Artificial Linear” dataset. Scenario conditions are as
written in each subfigure’s title. The black dotted lines in the P-R curves are F1 score isolines. The
F1 score corresponding to each isoline is shown on the right.

25

1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

Figure A6: Plots of the Matthews Correlation Coefficients (MCCs) [top] and precision-recall (P-R)
curves [bottom] for models tested under the “Artificial Linear” dataset. Scenario conditions are as
written in each subfigure’s title. The black dotted lines in the P-R curves are F1 score isolines. The
F1 score corresponding to each isoline is shown on the right.

26

1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457

Figure A7: Plots of the Matthews Correlation Coefficients (MCCs) [top] and precision-recall (P-R)
curves [bottom] for models tested under the “Artificial Linear” dataset. Scenario conditions are as
written in each subfigure’s title. The black dotted lines in the P-R curves are F1 score isolines. The
F1 score corresponding to each isoline is shown on the right.

27

1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511

Figure A8: Plots of the Matthews Correlation Coefficients (MCCs) [top] and precision-recall (P-R)
curves [bottom] for models tested under the “Artificial Linear” dataset. Scenario conditions are as
written in each subfigure’s title. The black dotted lines in the P-R curves are F1 score isolines. The
F1 score corresponding to each isoline is shown on the right.

28

1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565

Figure A9: Plots of the Matthews Correlation Coefficients (MCCs) [top] and precision-recall (P-R)
curves [bottom] for models tested under the “Artificial Linear” dataset. Scenario conditions are as
written in each subfigure’s title. The black dotted lines in the P-R curves are F1 score isolines. The
F1 score corresponding to each isoline is shown on the right.

29

1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619

Figure A10: Plots of the Matthews Correlation Coefficients (MCCs) [top] and precision-recall (P-
R) curves [bottom] for models tested under the “Artificial Linear” dataset. Scenario conditions are
as written in each subfigure’s title. The black dotted lines in the P-R curves are F1 score isolines.
The F1 score corresponding to each isoline is shown on the right.

30

1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673

Figure A11: Plots of the Matthews Correlation Coefficients (MCCs) [top] and precision-recall (P-
R) curves [bottom] for models tested under the “Artificial Linear” dataset. Scenario conditions are
as written in each subfigure’s title. The black dotted lines in the P-R curves are F1 score isolines.
The F1 score corresponding to each isoline is shown on the right.

31

1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727

Figure A12: Plots of the Matthews Correlation Coefficients (MCCs) [top] and precision-recall (P-
R) curves [bottom] for models tested under the “Artificial Linear” dataset. Scenario conditions are
as written in each subfigure’s title. The black dotted lines in the P-R curves are F1 score isolines.
The F1 score corresponding to each isoline is shown on the right.

32

1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781

Figure A13: LCEN model output at different X-data noise levels ϵ1 and y-data noise levels ϵ2.
Bright red squares indicate both variables were selected and their coefficients had errors ≤ 5%. Light
red squares indicate that both variables were selected and their coefficients had 5% < errors ≤ 10%.
White squares indicate that both variables were selected and their coefficients had 10% < errors ≤
20%. Light blue squares indicate that both variables were selected and their coefficients had errors
> 20%. Bright blue squares indicate that only one of the variables was selected.

33

1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835

For the “4th-degree, univariate polynomial” dataset, Sun & Braatz (2020) created four models: one
that always uses degree = 4 (“unbiased model”), one that always uses degree = 2 (“biased model”),
one that selects a degree between 1 and 10 based on cross-validation (“cv”), and one that selects a
degree equal to 2 or 4 based on cross-validation (“cv limited order”). Sun & Braatz (2021) noted
that the degree 4 “unbiased model” was the best at low noise levels, but its error quickly increases,
leading to the degree 2 “biased model” becoming the best for noise levels > 75 (Fig. 3 of Sun &
Braatz (2021); reproduced with permission here as the left subfigure of Fig. 1). The model with
degree equal to 2 or 4 “cv limited order” was typically very close in performance to the best model
at all noise levels, whereas the model with a degree between 1 and 10 “cv” had lower performance.
Sun & Braatz (2021) explain these observations with the bias-variance tradeoff: at low noise levels,
models should follow the ground truth as closely as possible; thus, the degree 4 “unbiased model”
was the best. However, at sufficiently high noise levels, it becomes impossible to obtain enough
signal to compensate for the additional degrees of freedom (variance) in a 4th degree model; thus,
the degree 2 “biased model” becomes the best. The degree between 1 and 10 “cv” model had lower
performance due to its greater hyperparameter variance, and the degree equal to 2 or 4 “cv limited
order” model struck a balance between the “unbiased model” and the “biased model”.

Similarly to the models generated using ALVEN, the LCEN model with a degree between 1 and
10 “cv” had the lowest performance and the LCEN model with degree equal to 2 or 4 “cv limited
order” had a performance between the degree 4 “unbiased model” and the degree 2 “biased model”.
However, the degree 4 “unbiased model” was always the best model, no matter the noise level used.
We attribute this considerable reduction in median test MSEs and the superiority of the degree 4
“unbiased model” created by LCEN to the improved feature selection algorithm, which is able to
better resist variance due to noise and a large number of hyperparameters. This is corroborated by
how the model with a degree between 1 and 10 “cv” tended to select degree = 4 at lower noise levels
and degree = 2 at higher noise levels (Figure A15), showing how LCEN can automatically follow
the bias-variance tradeoff hypothesis.

Figure A14: 25% (squares) and 75% quartile (triangles) test set MSEs for the LCEN model trained
for the “4th-degree, univariate polynomial” dataset. The trends tend to match those from Fig. 1.

34

1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889

Figure A15: Degrees selected by the model with a degree between 1 and 10 “cv” trained using the
LCEN algorithm. At lower noise levels (noise variance σ2 ≤ 30), LCEN tends to primarily select
degree = 4. At higher noise levels, there is a shift to primarily select degree = 2.

A6 APPENDIX – ADDITIONAL RESULTS WITH EMPIRICAL DATA

A6.1 DATASETS FOR WHICH PHYSICAL LAWS ARE AVAILABLE

The first test of an empirical dataset from a process with a known physical law uses the
“CARMENES star data” dataset from Schweitzer et al. (2019). This dataset contains information
on temperature (T), radius (R), and luminosity (L) of 293 white dwarf stars. These features are
linked together by the Stefan-Boltzmann equation, L = 4πR2σT 4, where σ is a constant. Normal-
izing this equation to values from another star (typically, the Sun), conveniently sets the constant
terms to 1. This normalization is applied to the “CARMENES star data” dataset. LCEN with
degrees from 1 to 10 was applied to this normalized dataset. Despite the very large number of
potential features (due to the high degree values used), LCEN correctly selected only the R2T 4 fea-

35

1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943

ture. The coefficient assigned to R2T 4 is 0.9826, which is well within the 2–3% error on these data
(as reported by Schweitzer et al. (2019)). LCEN retained high performance for this real data in a
high-hyperparameter variance scenario.

A potential limitation in real datasets is data scarcity. To evaluate the LCEN algorithm in a low-
data scenario, the “Kepler’s 3rd Law” datasets are created. The first version uses the original data
obtained by Kepler, first published in 1619 and republished in Kepler et al. (1997). From only
6 (slightly inaccurate) measurements, Kepler was able to derive the eponymous Kepler’s 3rd law,
which states that the period T of a celestial body is related to the semi-major axis of its orbit a by
T = ka3/2. The constant k depends on the masses of the central and orbiting bodies; however,
as the mass of the central body is typically much larger, the mass of the orbiting body is ignored.
In this and Kepler’s works, T is measured in Earth days, so the constant k is ∼365.25 when using
modern data and ∼365.15 when using Kepler’s original data. Despite the low number of data points,
LCEN correctly selected only the a3/2 feature. Moreover, the coefficient assigned to that feature was
366.82, an error of only 0.46% relative to Kepler’s k = 365.15.

LCEN is then evaluated using a modern version of the same dataset, which contains 8 points (as
Uranus and Neptune were discovered after Kepler’s observations) whose data were measured with
greater accuracy. On this modern “Kepler’s 3rd Law” dataset, LCEN again selects only the a3/2

feature. The coefficient assigned to the a3/2 feature is 365.00, an error of only 0.07% relative to the
modern value k = 365.25. LCEN did perfect feature selection in these data-scarce scenarios, with
parameter estimates minimally affected by experimental noise.

A6.2 DATASETS FOR WHICH NO PHYSICAL LAW IS AVAILABLE

Abalone (Haliotis sp.) are sea snails whose age can be determined by cutting their shells, stain-
ing them, and counting the stained shell rings under a microscope. This process is laborious and
error-prone. An alternative is to estimate the number of rings based on readily available physical
characteristics, such as weight and size. As before, LCEN was compared with other dense and
sparse machine learning models, and LCEN models with increased sparsity were also generated
(Table A7). In this problem, OLS, PLS, RR, LASSO, and EN all converged to the OLS solution
(that is, no regularization), selecting all 8 linear features and having an RMSE of 2.1 rings. On the
other hand, LCEN automatically detected that 2nd degree features would be relevant. The LCEN
algorithm model also selected all 8 features and had an RMSE of 2.0 rings. Nonlinear models had
test RMSEs between 2.0 and 2.5 rings, but most all lack the interpretability of LCEN. By increasing
the cutoff hyperparameter, sparser LCEN models may be generated. An LCEN model with only 3
features had an RMSE of 2.1 rings, and another with only 2 features had an RMSE of 2.2 rings.
This experiment further illustrates LCEN’s robust feature selection, and how very sparse LCEN
models retain significant performance. Furthermore, LCEN models with the same or lower number
of selected features had a lower test set RMSE than FS-GAMs.

The “Boston housing” dataset contains the median value of owner-occupied houses and many inter-
nal and external measurements, such as the per-capita crime rate of the region, the average number of
rooms, and the concentration of nitric oxides in the area (Harrison & Rubinfeld, 1978). We modified
this dataset to detransform the B variable into its raw value; samples in which this detransformation
led to multiple possible values were discarded. In terms of test RMSE, the linear models (OLS,
PLS, RR, EN, LASSO) tended to perform equal to each other and quite poorly on this dataset. RF
and SVM performed relatively well, but GBDT and AdaB had the two worst performances among
the nonlinear models. A dense MLP was the best model in terms of test RMSE, and the MLP-GL1

and LassoNet performed similarly but slightly worse. LCEN had a very high performance on this
regression task, reaching a test RMSE only 6% higher than that of the dense MLP. LCEN also had
the lowest validation RMSE, which was 54% lower than that of the dense MLP.

A7 APPENDIX – COMPUTATIONAL RESOURCES USED

All experiments were done in a personal computer equipped with a 13th Gen Intel® Core™ i5-
13600K CPU, 64 GB of DDR4 RAM, and an NVIDIA GeForce RTX 4090 GPU. Runtimes for
the models trained on the “Diesel Freezing Point” dataset are provided in Table 3, and runtimes for
LCEN and ablated algorithms are provided in the tables of Section A4.

36

1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997

Table A7: Results of different models for the “Abalone” dataset. The number of features that
minimizes the cross-validation MSE is 6 for FS-GAMs and 8 for LCEN. These data and results are
discussed in Section 3.2.

Model Test RMSE (rings) Features
OLS = PLS = RR =

LASSO = EN 2.1 8

SCAD 2.1 8
MCP 2.1 8

SymReg 2.3 3
RF 2.1 8

GBDT 2.2 8
AdaB 2.3 8
SVM 2.0 8
MLP 2.0 8

MLP-GL1 2.0 8
LassoNet 2.0 8

FS-GAMs
2.1 8
2.2 6
2.4 2

LCEN
2.0 8
2.1 3
2.2 2

Table A8: Results of different models for the “Boston housing” dataset.

Model Test RMSE (Thousands USD)
OLS 6.38
PLS 6.39

RR = EN 6.39
LASSO 6.38
SCAD 6.38
MCP 6.38

SymReg 6.70
RF 5.02

GBDT 5.91
AdaB 5.67
SVM 5.15
MLP 4.51

MLP-GL1 4.88
LassoNet 4.76
FS-GAMs 7.32

LCEN 4.78

37

	Introduction
	Methods
	Results
	Artificial data highlight LCEN's robustness to noise, multicollinearity, and hyperparameter variance
	LCEN surpasses many other redmethods when making predictions on empirical data

	Discussion
	Appendix – Feature Expansion Algorithm
	Appendix – Description of datasets used in this work
	Appendix – List of hyperparameters used in this work
	Appendix – Ablation tests
	Appendix – Additional results with artificial data

	Appendix – Additional results with empirical data
	Datasets for which physical laws are available
	Datasets for which no physical law is available

	Appendix – Computational resources used

