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Abstract

Current machine learning methods for medical image analysis primarily focus on developing
models tailored for their specific tasks, utilizing data within their target domain. These
specialized models tend to be data-hungry and often exhibit limitations in generalizing to
out-of-distribution samples. In this work, we show that employing models that incorporate
multiple domains instead of specialized ones significantly alleviates the limitations observed
in specialized models. We refer to this approach as multi-domain model and compare its
performance to that of specialized models. For this, we introduce the incorporation of diverse
medical image domains, including different imaging modalities like X-ray, MRI, CT, and
ultrasound images, as well as various viewpoints such as axial, coronal, and sagittal views.
Our findings underscore the superior generalization capabilities of multi-domain models,
particularly in scenarios characterized by limited data availability and out-of-distribution,
frequently encountered in healthcare applications. The integration of diverse data allows
multi-domain models to utilize information across domains, enhancing the overall outcomes
substantially. To illustrate, for organ recognition, multi-domain model can enhance accuracy
by up to 8% compared to conventional specialized models.

1 Introduction

In medical image analysis, existing machine learning approaches propose models to address wide range of
problems (Gulshan et al., 2016; Irvin et al., 2019; Liu et al., 2020), which have been tailored for their
designated applications and typically utilize data from a single target domain. This approach leads to data-
intensive specialized models and show limited generalization capabilities. Proposed works in medical image
analysis falls short of fully leveraging the diverse medical image data available. Various imaging modalities,
such as X-rays, magnetic resonance imaging (MRI), computed tomography (CT), ultrasound (US), and
positron emission tomography (PET), provide unique perspectives into different aspects of anatomy and
pathology. X-rays excel in revealing bone structures and detecting fractures, while MRI scans provide detailed
images of soft tissues like the brain, muscles, and organs. CT scans offer cross-sectional views, helping to
identify internal injuries and complex conditions. US images are non-invasive and excel in real-time imaging,
often used for monitoring pregnancies and examining internal organs, whereas PET provides metabolic
information, aiding in cancer detection and localization. The combination of these imaging modalities is
common in clinical practice and enhances diagnostic accuracy by providing complementary information that
might not be evident in a single imaging method. Furthermore, in medical decision-making, clinicians often
consider diverse viewpoints, since certain anomalies may be more apparent from one angle than another,
ensuring a comprehensive understanding of the patient’s condition and facilitating accurate diagnoses and
effective treatment strategies.

Our work seeks to address a pivotal question: Can the integration of diverse image domains, such as medical
imaging modalities or viewpoints, improve the generalization capabilities of models for a specific task in
medical image analysis? To answer this question, the main contributions are as follows:

• We introduce a multi-domain model, with diverse medical image data domains, such as imaging
modalities, like X-ray, MRI, CT, and US images, or various viewpoints, such as axial, coronal, and
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sagittal views, This model uses the data from different imaging domains to train for a specific task
with an off-the-shelf architecture. For comparison, we also train conventional specialized models for
the same task using data exclusively from each individual domain.

• We evaluate the performance of specialized models in comparison to multi-domain model using three
publicly available datasets, such as PolyMNIST Sutter et al. (2021), MedMNIST Yang et al. (2023)
and ImageCLEFmedical Ionescu et al. (2022). We compare their accuracy for out-of-distribution
(OOD) and data-limited scenarios, common in healthcare applications, showing that the integra-
tion of diverse data allows multi-domain models to enhance the overall outcomes in comparison to
specialized models.

This work represents the first instance where multi-domain data is assessed for a single task, different from
multi-task setups. It provides insights into the respective strengths and drawbacks of these models, showing
the potential of diverse data domains in medical image analysis applications.

1.1 Related work

Recent years have witnessed a rise of foundation models, particularly in fields like natural language process-
ing and computer vision. These models combine data from various domains and demonstrate exceptional
generalization capabilities beyond their primary training tasks. In the sphere of LLMs, noteworthy examples
include Tu et al. (2023); Zhang et al. (2023); Singhal et al. (2023); Yuan et al. (2021); Jin et al. (2019);
Yuan et al. (2022); Lee et al. (2019); Rasmy et al. (2021); Luo et al. (2022); Li et al. (2020b); Yan et al.
(2022), where some of these models utilized clinical notes and electronic health records in their development.
Additionally, large vision models for healthcare have emerged, driving significant advancements across di-
verse applications (Qiu et al., 2023). For instance, Zhou et al. (2019); Azizi et al. (2021); Zhou et al. (2020);
Huang et al. (2021); Sowrirajan et al. (2021); Zhang et al. (2022); Tiu et al. (2022); Nguyen et al. (2023)
utilize self-supervised learning for different tasks using single imaging modality such as CT, MRI or X-rays.
Efforts for multi-organ segmentation tasks also exist, such as Chen et al. (2021); Zhang et al. (2021); Xie
et al. (2021b); Valanarasu et al. (2021); Hatamizadeh et al. (2022); Cao et al. (2022); Shi et al. (2023).
These models have not only expanded in terms of their number of parameters and data handling capacities
but have also consistently demonstrated remarkable performance once pre-trained. There have been some
efforts to develop medical vision foundation models using diverse data, however, their widespread adoption
remains limited.

When aiming to enhance generalization capabilities, an alternative approach to consider is multi-task learn-
ing (Caruana, 1997). Here, the goal is to improve the performance of a model while solving multiple related
tasks simultaneously. The idea is that learning from multiple tasks can help the model capture shared pat-
terns and representations, leading to better performance on each individual task. In contrast, in our work
we focus on training with data from different domains without necessarily involving multiple tasks. As a
practical example, our setup can be trained to identify abnormalities across CT, MRI, US and PET images.
In contrast, multi-task learning focuses on detecting abnormalities while learning another related task within
a single image domain, such as using MRI scans.

Several studies have explored the role of multi-modality approaches in healthcare contexts (Huang et al.,
2021; Acosta et al., 2022; Tiu et al., 2022; Zhang et al., 2022; Yuan et al., 2023). However, these methods
predominantly focus on integrating text with a single imaging modality, rather than incorporating data from
various image domains. Closest work to ours is BenchMD (Wantlin et al., 2023), where they combined 19
publicly available datasets for 7 medical modalities, including 1D sensor data, 2D images, and 3D volumetric
scans. In the case of 2D images, BenchMD combined data from diverse sources, including chest X-rays
(CXR), mammograms, dermoscopic, and fundus images. They utilized widely-cited and large dataset as the
primary source for each imaging modality, conducting evaluations of distribution shifts on a separate test
set. Nevertheless, their analysis did not encompass an assessment of the models’ generalization capability
across various domains. In Table 1, we present a summary of our work, comparing it to related work based
on their input, output, and the data needed for training and testing.
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Input [# Images] Output [# Tasks] Dataset [# Domains] Input instance [# Domains]
Specialized Single Single Single Single
Multi-task Single Multiple Single Single
Multi-modal Multiple Single Multiple Multiple
Multi-domain Single Single Multiple Single

Table 1: Summary of our work, the multi-domain model, compared to related work of specialized, multi-task
and multi-modal models based on their input, output, and the data needed for training and testing.

Our method is most related to works on multi-domain networks (Bilen & Vedaldi, 2017; Rebuffi et al., 2017;
Rosenfeld & Tsotsos, 2018; Rebuffi et al., 2018), which focus on training a single network to handle image
classification tasks across diverse domains. The primary objective is to develop a single network capable of
compactly representing all domains with minimal task-specific parameters. These models introduce various
architectures to incorporate diverse data domains into the model parameterization and assess their models’
generalizability across different natural image datasets. In the healthcare domain, Mojab et al. (2020)
proposed a self-supervised representation learning method that integrates multiple domains into the learned
representations. However, our work differs from these methods by leveraging multi-domain data to train for
a specific task using an off-the-shelf architecture.

2 Methods

The level of generalization that multi-domain models can achieve in scenarios involving out-of-distribution
and limited data remains uncertain based on prior research involving large scale models applied to medical
image analysis (Chen et al., 2019; Singhal et al., 2023; Wang et al., 2023; Zhao et al., 2023; Wantlin et al.,
2023). To illustrate this idea, consider the following research question: Can a neural network trained
on instances of a medical condition as observed through CT, PET, and X-ray images, provide accurate
predictions when presented with MRI images, even in cases where this condition has been encountered
infrequently in the training set from MRI images? In order to delve into the specifics, we aim to explore the
potential for shared information across different data domains, such as imaging modalities or viewpoints.
To achieve this, we will first introduce the datasets employed in this study and then outline the methods
used to generate data diversity within these datasets, thereby allowing us to analyse the impact of diverse
data domains on generalizability. For reproducability, we made our code publicly available in https://
anonymous.4open.science/r/multi_domain_medical-6686/.

2.1 Datasets

Most existing datasets from various data domains are tailored to their specialized applications and these
datasets lack commonalities that would allow for evaluating potential knowledge transfer. Thus, we present
our results on the following datasets, which do not suffer from these challenges.

2.1.1 PolyMNIST

We start with the multi-modal benchmark PolyMNIST Sutter et al. (2021) to understand behaviours for
different ablations. The PolyMNIST dataset consists of sets of ten MNIST digits where each set includes
five images with the same digit label but different backgrounds and different styles of hand writing. Here,
we adopt the terminology used by authors in Sutter et al. (2021), where they refer to each background as a
“modality" to capture source specific information. Thus, for our experiments, each digit represents the shared
information across modalities and different background images represent modality-specific information. In
total we used for each digit and modality combination 1000 samples of training and validation examples
(50000 images in total for ten digits and five modalities) and 891 samples of test examples (44550 images in
total) from the original train and test split of the dataset. Our objective is to perform multi-class classification
of ten digits across five different modalities, as shown in Figure 1(a).
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Figure 1: We employ (a) PolyMNIST, multi-modal dataset for digit classification using data from different
modalities, (b) MedMNIST for the classification of organs from different views of CT image slices, and (c)
ImageCLEFmedical for organ classification using data from different imaging modalities.

2.1.2 MedMNIST

We use MedMNIST v2 Yang et al. (2023) benchmark to explore generalization across viewpoints. MedMNIST
v2 is a large-scale MNIST-like dataset collection of standardized biomedical images, including datasets of
2D and 3D data. Among these, we use Organ{A,C,S}MNIST subset, which are based on CT images from
axial, coronal and sagittal views. The visible organs within this data include bladder, left femoral head,
right femoral head, heart, left kidney, right kidney, liver, left lung, right lung, pancreas and spleen. We used
the original data split, with 61521 training (34581 for axial, 13000 for coronal and 13940 for sagittal view),
11335 validation (6491 for axial, 2392 for coronal and 2452 for sagittal view) and 34875 test (17778 for axial,
8268 for coronal and 8829 for sagittal view) samples. The goal is to perform multi-class classification of 11
body organs from axial, coronal and sagittal views. Examples of organ and view combinations are shown in
Figure 1(b). Furthermore, number of samples for each combination are shown in Figure 2(a) and Table B,
with (i) representing the training, (ii) validation, and (iii) test set.
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Figure 2: Number of images for medical datasets. (a) For MedMNIST: (i) training, (ii) validation, and (iii)
test set. (b) For ImageCLEFmedical: (i) training and validation, and (ii) test set.
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2.1.3 ImageCLEFmedical

We use ImageCLEFmedical Caption challenge Ionescu et al. (2022) dataset, a subset of the extended Ra-
diology Objects in COntext (ROCO) dataset (Pelka et al., 2018). This dataset is derived from biomedical
articles within the PMC OpenAccess subset, a comprehensive collection of figures sourced from open access
biomedical journal articles (PubMed Central), along with radiology images extracted from original medical
cases. In both training and validation data, each image is paired with Unified Medical Language Sys-
tem(UMLS) 2020 AB concepts (Bodenreider, 2004). These concepts represent UMLS terms, recognized as
as CUIs (Concept Unique Identifiers) and extracted from the accompanying image captions. For instance, if
the image caption contains terms such as “plain x-ray" or “pelvis", these concepts would be denoted for that
image by the CUIs C1306645 and C0030797. Note that the ImageCLEFmedical Caption challenge comprises
two subtasks: concept detection and concept prediction. Our experiments utilize the concept detection data
within this dataset. There are more than 8000 concepts in the dataset, each with varying frequencies of
occurrence. To enhance control and comprehension of generalization, we opted to work with a subset of
images and concepts. Our analysis focused on the 100 most frequently employed CUIs. Filtering was then
applied to images based on the semantic types of their associated concepts, specifically targeting concepts
related to “Diagnostic procedure" for imaging modality identification, and “Body Part, Organ, or Organ
Component" for presence of specific organs in the images. From the filtered list of CUIs, we selected a subset
of organs for further analysis. This subset comprised nine distinct body organs, namely pelvis, vertebral
column, lung, urinary bladder, right ventricular structure, stomach, pulmonary artery structure, anterior
descending branch of the left coronary artery, and left kidney. As for imaging modalities, we considered CT,
X-ray, MRI, US, angiogram (AG), and PET images. It’s important to note that not all body parts are
captured through all imaging modalities. Since the test images in the original dataset do not come with
their concepts, we employed the train split from the original challenge dataset for training and validation,
while the validation split was repurposed as the test set. This resulted in a dataset of 8433 images for
training and validation, with an additional 688 images reserved for testing. Our task entails multi-class
classification of the nine body organs across six distinct imaging modalities. Examples of body organ and
modality combinations are shown in Figure 1(c). Furthermore, the number of samples for each combination
are visualized in Figure 2(b) and Table C, where (i) illustrates the combined train and validation, and (ii)
the test set.

2.2 Dataset specific tasks and domains

In our experiments, we focus on classifying different digits for PolyMNIST or organs for the medical datasets
across different data domains. The datasets can be visualized as a grid structure illustrated in Figure 1 and
each square within this grid represents a unique task/domain combination. These combinations consist of
digit/modality combination for PolyMNIST, organ/view combination for MedMNIST and organ/modality
combination for ImageCLEFmedical. Each row corresponds to a class, whether it be a digit or an organ,
while each column signifies a specific data domain, such as a view or a modality. Each cell within the grid
includes all the images from a particular combination of class and domain.

2.3 Generating train and validation splits for data diversity

The objective of this work is to conduct a comparative analysis and gain insights into specialized and multi-
domain models under conditions of data-limited and OOD scenarios. To accomplish this, we create different
data subsets characterized by differing aspects and levels of data diversity. We base the generation of these
partitions on two key factors: data availability and the level of OOD, which we will explain in more detail
below. During the testing phase, we refrain from any additional data processing and exclusively employ the
predefined test splits as provided within each dataset.

2.3.1 Amount of data

For PolyMNIST, we start by constructing train and validation splits with different data distributions. For
each of the digit and modality combination in the set, we have access to 1000 samples. To introduce diversity
to data distribution, we implemented diverse probability distributions for digit and modality combinations,
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Figure 3: Data diversity evaluation for PolyMNIST: (a) normalized digit distribution using µdigit = 0 and
σdigit = 5, (b) normalized modality distribution with µmodality = 2 and σmodality = 3, (c) number of samples
from the resulting distribution for each digit/modality combination, (d) example of data distribution and
OOD scenario with a 100% OOD level for digit 2 and modality d.

as follows. We use normal distribution for digit and modality distributions with the following parameters:
the mean of the digit distribution, denoted as µdigit is set to 0, and the standard deviation, σdigit, takes values
from the set {3, 5, 9, 17}. For the modality distribution, the mean, µmodality, is chosen from {0, 2} , while
the standard deviation, σmodality, is selected from {1, 3, 5}. We normalized these distributions, ensuring that
all values are within the range of 0 to 1. We then multiply the digit and modality distributions and rescale
the product by a factor of 1000, hereby guaranteeing that each distinct modality and digit combination has
a sample count between 0 and 1000. In Figure 3(a-c), we present a graphical representation of this process,
employing the specific parameter values of µdigit = 0, σdigit = 5, µmodality = 2, and σmodality = 3. The
combination of different mean and standard deviation parameters for digit and modality distribution yields
a total of 24 distinct distributions to use, as shown in Figure A.1.

Note that the datasets for both MedMNIST and ImageCLEFmedical inherently exhibit diversity, since they
have varying sample counts for each organ across different views in MedMNIST and across different modali-
ties in ImageCLEFmedical, as shown in Figure 2. Thus, we employ a range of sampling percentages to create
distinct training and validation subsets for these datasets. We use their provided distributions and sample
training and validation subsets accordingly. The sampling percentages include {5, 10, 25, 35, 50, 75, 100}%,
where 100% indicates the utilization of the entire available training and validation data, while 50% implies
that only 50% of the data is incorporated. For instance, when employing a 100% sampling rate for MedM-
NIST, the multi-domain model utilized the complete training split consisting of 61521 images, 11335 images
from the validation split, and 34875 images from the test split. At a 50% sampling percentage, the model
then utilized 50% of the total available training and validation samples, resulting in 30760 samples from the
training set, 5668 samples from the validation set, and retained the full 34875 test samples for evaluation. As
a result, this sampling approach ensures consistent ratios of training and validation samples across different
combinations, albeit with varying sample sizes.

2.3.2 Out-of-distribution (OOD) level

To evaluate the OOD performance of both specialized and multi-domain models across various datasets, we
introduce OOD levels, as follows: for each task and data domain combination, we systematically exclude
a subset of instances from both the training and validation sets. Subsequently, we repeat the training and
validation procedures for each of the combination.

We quantify OOD levels using percentages, specifically {0, 25, 50, 75, 85, 95, 100}%, where 100% signifies that
the specific combination is entirely absent from both the training and validation sets, whereas, 0% indicates
that the training and validation datasets contain the complete set of samples for the given combination. As
a result, for each experiment, the specific combination becomes either never or less frequently observed. For
a fair representation of each combination, we ensure that every combination occurs exactly once, that is,
each row and column features only a single cell representing a specific combination.
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Figure 4: Training and evaluation schemes for specialized and multi-domain models: (a,d) represent the
training data utilized by specialized and multi-domain models using µdigit = 0, σdigit = 5, µmodality = 2 and
σmodality = 3 with a 100% OOD level for digit 2 and modality d. (b,e) show the OOD evaluation specifically
for digit 2 and modality d. (c,f) demonstrate the ID evaluation for all other digit/modality combinations
except digit 2 and modality d.

We present an illustrative example of diverse data strategies for PolyMNIST in Figure 3(d). Here, opacity is
used to represent the quantity of data, with less opacity indicating a larger amount of data. Specifically, we
employed distribution parameters µdigit = 0, σdigit = 5, µmodality = 2, and σmodality = 3 to define the data
distribution, as in Figure 3(c). Furthermore, it also showcases the OOD scenario with a 100% OOD level
for digit 2 and modality d, meaning the model will never see the digit of 2 from the modality d.

2.4 Training and testing procedure

In our experimental setup, we employ same datasets for both specialized and multi-domain models. The
key distinction lies in the manner with which (part of) data the models are trained. To elaborate, for
instance, in the case of PolyMNIST, we train and evaluate five distinct specialized models, each dedicated
to classifying digits based on five modalities using the respective data from each modality. An example
for modality-specific specialized models for the example data in Figure 3(d) is shown in Figure 4(a). In
contrast, the multi-domain model leverages the entire available data for the same digit classification task,
as shown in Figure 4(d). It’s important to clarify that the choice between a multi-domain or specialized
setup impacts the training and validation phases, determining which data partitions the models are exposed
to. When it comes to the test phase, we assess each test image to predict its designated task. Therefore,
the multi-domain doesn’t require the simultaneous input of all modalities during testing, e. g. in contrast to
multi-modal learning.

3 Experiments and Results

3.1 Experimental Setup

3.1.1 Model Architecture and Hyperparameters

In our experiments, we utilize the pre-trained ResNet-18 architecture (He et al., 2016), employing the cross-
entropy loss and the AdamW optimizer (Loshchilov & Hutter, 2017). PolyMNIST and ImageCLEFmedical
training data is split into training and validation sets with a ratio of 0.75. For testing we use the validation
data. For MedMNIST, we use the official train/validation/test splits. For MedMNIST and ImageCLEFmed-
ical datasets, we evaluate and report the average of five random seeds. We train the models for 25 epochs
and decay the learning rate by 0.1 every 5 epochs. For PolyMNIST, we set the learning rate to 0.005, use
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a batch size of 512 and employ a weight decay of 0.001. For MedMNIST, the learning rate is set to 0.001,
batch size to 128, weight decay to 0.001. For ImageCLEFmedical, we use a learning rate of 0.0005, utilize
a batch size of 128, set the weight decay to 0.00001. Note that, for hyperparameter tuning, we employed
multi-domain models and conducted a grid search for optimizing learning rate, weight decay and different
ResNet architectures such as ResNet-18, ResNet-34 and ResNet-50. We then repeated this for specialized
models, with the hyperparameters largely aligned, ensuring that they did not affect the training convergence.
The images in PolyMNIST and MedMNIST have the resolution of 28 × 28 pixels2. We pre-process these
images by resizing them to 32 × 32 pixels2. As for ImageCLEFmedical, we center crop the images to ensure
equal width and length, further augmenting them with a random 0x to 0.1x translation and resizing them
to dimensions of 224 × 224 pixels2.

3.1.2 Evaluation

We employ balanced accuracy as our evaluation metric, encompassing two distinct evaluation scenarios: out-
of-distribution (OOD) accuracy and in-distribution (ID) accuracy. This involves evaluating the accuracy of
each excluded combination and subsequently computing the average accuracy across all such combinations.
For PolyMNIST, this approach results in a total of 50 evaluations (10 digits and 5 modalities), while for
MedMNIST, we conduct 33 evaluations (11 organs and 3 views), and for ImageCLEFmedical, there are 54
evaluations (9 organs and 6 modalities) in total. We refer to the resulting metric as OOD average balanced
accuracy. In addition, we calculate the average accuracy of all combinations except for the excluded ones
and once again calculate the average of all the different combinations set. We designate this outcome as ID
average balanced accuracy. All evaluation metrics are reported in test set. As an example for PolyMNIST,
the difference between each of OOD and ID evaluation for both specialized and multi-domain models are
shown in Figure 4. Specifically, (a-c) illustrate the specialized setup, while (d,f) the multi-domain setup,
featuring a 100% OOD level for digit 2 and modality d, ensuring that the models have no exposure to cases
involving digit 2 and modality d. For the OOD evaluation, (b, e), both models are evaluated on test samples
featuring digit 2 from modality d. For the ID evaluation, (c, f), the specialized model is assessed using test
samples from modality d and all digits except 2, while the multi-domain model undergoes evaluation for all
other digit/modality combinations except digit 2 and modality d. Note that, in our work average balanced
accuracy corresponds to the mean accuracy across all task/domain combinations, which is different from
overall accuracy or balanced accuracy. Our evaluation approach involves a detailed breakdown based on
task and domain.

3.2 Results

3.2.1 PolyMNIST

We begin our analysis by assessing data diversity across various OOD levels. For this, we not only com-
pare specialized and multi-domain models, but but also introduce a modified version of specialized models,
which we refer to as specialized upsampled models: we augment the data available to specialized models,
ensuring that each digit is classified with an equal number of images for both the specialized upsampled
and multi-domain models. The original PolyMNIST dataset provides a sufficient number of samples for this
purpose. Thus, both specialized and multi-domain models have access to a maximum of 1000 images for
each digit/modality combination, while the upsampled counterparts of the specialized models benefit from
an expanded dataset, containing up to 5000 images for each such combination. Furthermore, we would like
to mention that the scenario involving specialized upsampled models is not a realistic representation but is
exclusively examined to assess the advantages and limitations associated with an augmented dataset.

Figure 5 compares the performance of specialized, specialized upsampled and multi-domain models. We
compute the area under the curve (AUC) for both the OOD and ID average balanced accuracy curves across
various data distributions. Each data point represents the AUC for different OOD level, where (a) provides
a comparison of ID average balanced accuracy across different data distributions and OOD levels, while (b)
shows OOD average balanced accuracy among specialized (blue), specialized upsampled (green), and multi-
domain (red) models. Note that, in this experiment, the highest achievable AUC for a model is marked with
a dashed black line. This is calculated using the highest possible average balanced accuracy, which can reach
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Figure 5: Evaluating OOD levels for PolyMNIST. Each point shows the area under the balanced accuracy
curve through different evaluation of data distributions for different OOD levels in x-axis.
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(c) ID evaluation for specialized up-
sampled vs multi-domain
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(d) OOD evaluation for specialized upsam-
pled vs multi-domain

Figure 6: Evaluating amount of data for PolyMNIST. Reporting balanced accuracy difference between
specialized and multi-domain models (a,b) and between specialized upsampled and multi-domain models
(c,d). Each line corresponds to different OOD levels and presents the difference between models across
various data distribution evaluations, as indicated on the x-axis.

1, and the total number of samples, maximum of 890 (as shown in Figure A.1). Consequently, the dashed
line reflects a maximum AUC of 890. The ideal outcome is represented by a flat line at maximum, indicating
perfect performance unaffected by OOD levels. Figure 6 provides an in-depth overview of the models across
diverse data distributions. To facilitate a meaningful comparison across different distributions, we have
organized the 24 distributions in ascending order based on their median values, as shown in Figure A.1. The
datapoints on x-axis represent these 24 different data distributions, labeled as the titles of each subfigure
in Figure A.1. They span from a minimum of 6 (median of the distribution in the first row, first column)
to a maximum of 890 (median of the distribution in the second row, last column). We depict the balanced
accuracy difference between specialized and multi-domain models (a,b) and specialized upsampled and multi-
domain models (c,d). Each line represents OOD levels showing the differences between models during data
distribution evaluations. For a more detailed overview, please refer to Figure 7, which provides an overview
of the average balanced accuracy scores for specialized (a,b), specialized upsampled (c,d) and multi-domain
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(a) ID evaluation for specialized models
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(b) OOD evaluation for specialized models

0 200 400 600 800
Number of samples

0.0

0.2

0.4

0.6

0.8

1.0

Av
er
ag

e 
ba

la
nc
ed

 a
cc
ur
ac
y

0%
25%
50%
75%
85%
95%
100%

(c) ID evaluation for specialized up-
sampled models
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(d) OOD evaluation for specialized upsam-
pled models
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(e) ID evaluation for multi-domain
model

0 200 400 600 800
Number of samples

0.0

0.2

0.4

0.6

0.8

1.0

Av
er
ag

e 
ba

la
nc
ed

 a
cc
ur
ac
y

0%
25%
50%
75%
85%
95%
100%

(f) OOD evaluation for multi-domain
model

Figure 7: PolyMNIST across various data distributions. We report average balanced accuracy for specialized
(a,b), specialized upsampled (c,d) and multi-domain (e,f) models across various distributions, depicted in
x-axis, and OOD levels, indicated by different color codes, for both ID (a,c,e) and OOD (b,d,f) evaluation.

(e,f) models. These are presented across various distributions on the x-axis, and OOD levels, indicated by
different color codes for both ID (a,c,e) and OOD (b,d,f) evaluation. Each data point in Figure 7 represents
the average accuracy obtained from 50 distinct experiments. In these experiments, one digit (out of 10
digits: 0 to 9) and one modality (out of 5 modalities: a to e) were systematically excluded from training and
validation, and this process was repeated 50 times to encompass all possible task/modality combinations.
Figure 5 was then calculated as the the AUC of each line representing the OOD levels in these figures.
Specifically, in Figure 5(a) and (b), the AUC values represented by the blue lines correspond to the areas
under the curves for different OOD levels illustrated in Figure 7(a) and (b). Similarly, for the red lines in
Figure 5(a) and (b), each calculated AUC value corresponds to the area under different OOD curves shown
in Figure 7(e) and (f). Additionally, we have computed the balanced accuracy difference for each OOD level
in these figures, with multi-domain minus specialized models, and the outcomes are presented in Figure 6.

When assessing the ID accuracy, our results indicate that varying levels of OOD scenarios do not notably
impact ID accuracy. The performance of the specialized models are still lower than the specialized upsampled
and multi-domain models, showing that ID accuracy can be compensated with higher number of samples.
Upon analyzing OOD performance, a notable and consistent pattern emerges: as the OOD level increases,
OOD accuracy declines noticeably for specialized and specialized upsampled models. This stands in stark
contrast to multi-domain models, which exhibit considerably greater resilience to this phenomenon. The
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difference becomes particularly pronounced for OOD levels >50%. This can be attributed to the fact that
multi-domain models benefit from shared information across different modalities for the classification task,
thereby aiding OOD recovery. Specifically, we are referring to digit specific information as part of the shared
information. In contrast, specialized models struggle to recover unseen (at OOD level 100%) or scarce
encountered (at OOD level < 100%) digit/modality combinations, even when provided with larger sample
sizes with specialized upsampled models. Furthermore, across all models, we observe a consistent trend:
both ID and OOD performance declines as the number of samples decreases. In Figure 7(e) and (f), the
accuracy does not exhibit a monotonic increase; instead, there is a peak at a smaller number of samples.
We suspect that this peak at the small sample size is caused by the double descent phenomenon. This is
because while the training error and loss function decrease in our experiments, the test error increases with
a small number of samples.

In experiments, specialized models were trained exclusively with data from their corresponding modalities.
For instance, a specialized model for modality d is exclusively trained using data from modality d and
evaluated on modality d, as illustrated in Figure 3(i-iii). We further evaluated a scenario where the specialized
model, initially trained on data from modality d, was tested on other modalities a, b, c, e to evaluate the
robustness of the learned representations of the specialized models. For this we evaluated different OOD
levels for digit 2 and modality d. In summary, training on one domain and testing on another leads to
large drops of accuracy, showing that the specialized models have limited generalization capabilities to other
domains. More specifically, for OOD level of 50%, the average balanced accuracy evaluated on digit 2 and
domain d yielded 0.95, whereas on domains a,b,c,e yielded 0.71. Average balanced accuracy tested on all
digits except digit 2 and on modality d yielded 0.94, in contrast, it was 0.77 for the modalities a,b,c,e. For
OOD level of 85%, the average balanced accuracy evaluated on digit 2 and domain d yielded 0.87, whereas
on domain a,b,c,e it was 0.59. Average balanced accuracy tested on all digits except digit 2 and on modality
d was 0.94, in contrast it was 0.73 on domains a,b,c,e. In contrast, the multi-domain model learns a single
model across all domains, is more robust to different domains, which results in OOD generalization, as shown
in Figures 6(b) and 7(f).

For testing potential knowledge transfer, we conducted another control experiment, where our goal was to
evaluate a scenario where information sharing is constrained for multi-domain model. For this, we split the
data from various modalities into two distinct domains, grouping classes as follows: 0 and 5 together as
one class, 1 and 6 as another, and so on, with classes 4 and 9 comprising the final group. Thus, we split
digits 0 through 4 into one domain and digits 5 through 9 into another. Consequently, our multi-domain
model exploits both domains, with each class encompassing two dissimilar digits. We then run OOD level
experiments for each digit and repeat this experiment for each of the original modalities a to e. In Figure 8,
we present the OOC evaluation results, showcasing the average balanced accuracy achieved by aggregating
the experiments. The lower the OOD level, the higher is the accuracy. However, when the OOD level reaches
100%, the average accuracy declines to a level expected by chance. This observation shows the fact that at
100% OOD, there is no opportunity for knowledge transfer, emphasizing the absence of information sharing.
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Figure 8: Control experiment for PolyMNIST. We test the potential knowledge transfer and evaluate a
scenario where information sharing is limited for multi-domain model. Dashed line shows the level of chance.
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3.2.2 MedMNIST

In Figure 9, we present a comparison of AUC values achieved by specialized and multi-domain models
across various sampling percentages for both ID (a) and OOD (b) average balanced accuracy curves. The
dashed black line, marked with a value of 100, represents the highest attainable AUC, which corresponds
to a 100% sampling rate and perfect accuracy. Figure 10 provides a more comprehensive analysis of the
specialized and multi-domain models with different amount of data for both ID evaluation (a) and OOD
evaluation (b). Each line corresponds to different OOD levels and illustrates the differences between the
models across different sampling percentages, as indicated on the x-axis. For a detailed overview, please
refer to Figure B.1, which presents an overview of the average balanced accuracy scores for specialized
and multi-domain models. Furthermore, in Figure B.2, Figure B.3 and B.4, we report the AUC, accuracy
differences, and model accuracies at view level.

When assessing the ID accuracy, such as in the case of PolyMNIST, our findings suggest that varying OOD
levels do not significantly impact ID accuracy and both models exhibit similar levels of accuracy. For the
OOD performance, as the OOD level increases, OOD accuracy experiences a noticeable decline for both
models. This distinction between the models becomes particularly pronounced for OOD levels exceeding
75%. In the extreme case of a 100% OOD level, the specialized model’s accuracy drops, which makes
it impossible for specialized models to predict fully unseen data. In contrast, the multi-domain model
still benefits from shared information in this scenario, namely the organ specific information across views.
Furthermore, across all models, both ID and OOD performance decrease as the number of samples for each
digit/modality combination decreases.

Figure 2(a) displays the image distribution across organ/view combinations in MedMNIST’s
train/validation/test splits. Across all splits, the axial view consistently contains the highest number of
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Figure 9: OOD levels for MedMNIST. Each point shows the area under the balanced accuracy curve through
different evaluation of data availability (sampling percentage) for different OOD levels, shown in x-axis.
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Figure 10: Amount of data for MedMNIST. Each line corresponds to different OOD levels and presents the
balanced accuracy difference between specialized and multi-domain models across different amount of data
(sampling percentage), as indicated on the x-axis.
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(a) Original distribution
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Figure 11: Evaluating data distribution in MedMNIST. ID balanced accuracy for specialized and multi-
domain models across different amount of data. Results are presented for two scenarios: (a) utilizing the
official data split and (b) employing a resampled uniform distribution.

images, notably with the liver in the axial view having the most images in both the train and test splits.
To investigate whether the matching ID accuracy between specialized and multi-domain models can be at-
tributed to data distribution, we conducted a control experiment. For this, we restructured the data by
resampling so that each organ/view combination contained 600 samples for training and 95 samples for the
validation split, aligning with the minimum sample size observed in the official training and validation split.
We repeat the experiment with using the resampled dataset and for different amount of data using sampling
percentage. As an example, with a 50% sampling percentage, each organ/view combination benefits from
300 training and 48 validation samples. Figure 11 provides a comparison of these different distributions for
OOD level of 0%. These show that the data distribution has a negligible impact on ID accuracy, as the
resampled uniform distribution data continues to demonstrate matching ID accuracy between specialized
and multi-domain models.

3.2.3 ImageCLEFmedical

In Figure 12, we compare the models in terms of their AUC values under ID (a) and OOD (b) average
balanced accuracy curves. Figure 13 presents a more in-depth comparison of the specialized and multi-
domain models in terms of varying amount of data for both ID (a) and OOD (b) evaluation. For a detailed
overview, please refer to Figure C.1, which provides a summary of the average balanced accuracy scores for
specialized and multi-domain models.

For ID accuracy, our findings are consistent with the outcomes observed in PolyMNIST and MedMNIST stud-
ies. Here, variations in OOD scenarios do not significantly impact ID accuracy. In contrast to MedMNIST,
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Figure 12: OOD levels for ImageCLEFmedical. Each point shows the area under the balanced accuracy
curve through different data availability (sampling percentage) for different OOD levels, shown in x-axis.
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Figure 13: Amount of data for ImageCLEFmedical. Each line corresponds to different OOD levels and
presents the balanced accuracy difference between specialized and multi-domain models across different
amount of data (sampling percentage), as indicated on the x-axis.

the multi-domain model demonstrates an 8% improvement in accuracy, mirroring the findings in PolyMNIST
where multi-domain model outperformed specialized models. This result is particularly intriguing given that
the utilized images are unprocessed and have remarkable diversity. Regarding OOD performance, as the
OOD level increases, both models experience a noticeable decline. Importantly, the multi-domain model
maintains a consistent 8% advantage across all OOD levels, where the multi-domain model continues to
benefit from shared information for both ID and OOD evaluation, even in data-limited and OOD scenarios.

4 Discussion and Conclusion

Motivated by the recent advancements in foundation models exploiting diverse data sources and demon-
strating exceptional generalization abilities, this work introduced a multi-domain strategy and compared its
performance with the single domain specialized approach, particularly within the context of medical image
analysis, where the latter is the norm. These are evaluated in scenarios involving OOD and data-limited
scenarios using three datasets, such as the toy dataset PolyMNIST (Sutter et al., 2021), as well as two
medical datasets, MedMNIST (Yang et al., 2023) and ImageCLEFmedical (Ionescu et al., 2022) and obtain
following key conclusions:

• Multi-domain models outperform specialized models in OOD and data-limited scenarios, capitalizing
on their ability to leverage shared information across diverse domains.

• Multi-domain models consistently either match or excel specialized models in terms of their ID
accuracy.

• Specialized models can compensate for ID accuracy with a higher number of samples. However,
they face considerable challenges in recovering OOD accuracy for tasks that are entirely unseen or
encountered only infrequently, even when provided with larger sample sizes.

• The level of OOD scenario does not impact ID accuracy for any of the models, indicating the
robustness in preserving ID accuracy across varying OOD levels.

Based on our findings, the advantage of multi-domain model is particularly pronounced for OOD tasks when
OOD level exceeds 80%. An OOD level surpassing 80% highlights instances where the model encounters
class/domain combinations either extremely rarely or never before. Such scenarios are common in medical
applications, particularly those involving rare diseases or conditions. Accessing medical conditions from
diverse data domains could be beneficial, particularly when a specific condition hasn’t been frequently
observed within a particular domain in the training data. It’s worth noting that the extent of the advantage
of knowledge transfer between domains is limited upon the availability of shared information.

As a future direction, understanding the underlying mechanisms behind the generalization capabilities of
multi-domain models for OOD and data-limited scenarios is a crucial direction. Deeper investigations into
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the information sharing within these models hold the potential to yield more efficient strategies for knowledge
transfer and domain adaptation. Moreover, a potential future work is to improve multi-domain models by
incorporating domain-specific knowledge into the training process (Li et al., 2020a; Ahn et al., 2020; Xie
et al., 2021a; Guan & Liu, 2022), e.g. through the use of alternative loss functions. Furthermore, addressing
the scalability of these models for real-world, large-scale applications remains a pressing concern for medical
image analysis. Future research can concentrate on working with refining these models for efficiency and
ensuring their practicality in real-world resource-constrained environments. Additionally, the exploration of
more diverse datasets and problem domains will be essential for validating and extending our findings.

In summary, our work underlines the effectiveness of multi-domain models in tackling OOD and data-limited
challenges, offering promising avenues for their application in medical image analysis where such challenges
are prevalent. These insights contribute to the ongoing exploration and implementation of large scale models
in diverse fields and applications.
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A PolyMNIST

In Figure A.1, we present 24 distinct data distributions, each representing the number of samples within
training and validation splits. To be able to summarize and visualize these, we calculated the median of
each of the 24 distributions. These values are displayed in the titles of each subfigure in Figure A.1 and
correspond to the x-axis values for the evaluations in Figure 6 and Figure 7.
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Figure A.1: 24 distinct data distributions, each representing the number of samples within various training
and validation splits. These are characterized by diverse probability distributions for digit and modality
combinations. They are organized in ascending order, based on their respective median values.

We conducted an additional experiment, mirroring the amount of data experiments conducted with MedM-
NIST and ImageCLEFmedical datasets using the sampling percentage. For this, we used a uniform sample
distribution for each digit/modality combination having 1000 samples. Subsequently, we performed sampling
at rates of {5, 10, 25, 35, 50, 75, 100}%, resulting further in a uniform distribution. For example, when using a
10% sampling percentage, we obtained 100 samples for each digit/modality combination. Figure A.2 reports
AUC under the average balanced accuracy curves across sampling percentage for various OOD levels for
PolyMNIST. Notably, these results underscores the similar trend to those observed in Figure 5.
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Figure A.2: OOD levels for PolyMNIST. Each point shows the area under the balanced accuracy curve
through different evaluation of sampling percentage for different OOD levels, shown in x-axis.
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B MedMNIST

Table B displays the distribution of images in the MedMNIST dataset categorized by organs including
bladder, left femoral head, right femoral head, heart, left kidney, right kidney, liver, left lung, right lung,
pancreas and spleen, as well as by axial, coronal, and sagittal views.

(i) Train
Organ Axial Coronal Sagittal
Bladder 1956 1153 1148
Left femoral head 1408 626 637
Right femoral head 1359 608 615
Heart 1474 600 721
Left kidney 3963 1088 1132
Right kidney 3817 1170 1119
Liver 6164 2986 3464
Left lung 3919 1002 741
Right lung 3929 1022 803
Pancreas 3031 1173 2004
Spleen 3561 1572 1556

(ii) Validation
Axial Coronal Sagittal

321 191 188
233 102 104
225 96 95
392 202 246
568 132 140
637 157 159
1033 429 491
1033 347 261
1009 352 275
529 179 280
511 205 213

(iii) Test
Axial Coronal Sagittal
1036 833 811
784 442 439
793 441 447
785 421 510
2064 732 704
1965 737 693
3285 1836 2078
1747 550 397
1813 558 439
1622 750 1343
1884 968 968

Table B.1: Number of images for MedMNIST dataset for (i) training, (ii) validation, and (iii) test set.

Figure B.1 presents a comprehensive summary of the average balanced accuracy scores for both specialized
and multi-domain models for different OOD levels and amount of data. We report the mean and standard
deviation (as the error bar) of the test accuracy across five random seeds.

Figure B.2 reports the AUC, Figure B.3 highlights the accuracy differences, and Figure B.4 shows the
accuracy of the specialized and multi-domain models at a more granular view level.
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Figure B.1: Comparison of models across various amount of data for MedMNIST. We report average balanced
accuracy for specialized and multi-domain models across various sampling rates, depicted in x-axis, and OOD
levels, indicated by different color codes, for both ID (a) and OOD (b) evaluation. We report the mean and
standard deviation of the test accuracy across five random seeds.
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Figure B.2: Evaluating OOD levels for MedMNIST for each of the views: axial (a,b), coronal (c,d), and
sagittal (e,f). Each point shows the area under the balanced accuracy curve through different evaluation of
data availability (sampling percentage) for different OOD levels, shown in x-axis.
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(a) ID evaluation for axial view
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(b) OOD evaluation for axial view
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(c) ID evaluation for coronal view
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(d) OOD evaluation for coronal view
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(e) ID evaluation for sagittal view
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(f) OOD evaluation for sagittal view

Figure B.3: Evaluating amount of data for MedMNIST for each of the views: axial (a,b), coronal (c,d), and
sagittal (e,f). Each line corresponds to different OOD levels and presents the balanced accuracy difference
between specialized and multi-domain models across different amount of data (sampling percentage), as
indicated on the x-axis.
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(a) ID evaluation for axial view
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(b) OOD evaluation for axial view
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(c) ID evaluation for coronal view
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(d) OOD evaluation for coronal view
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(e) ID evaluation for sagittal view
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Figure B.4: Comparison of models across various amount of data for MedMNIST for each of the views: axial
(a,b), coronal (c,d), and sagittal (e,f). We report average balanced accuracy for specialized and multi-domain
models across sampling rates, depicted in x-axis, and OOD levels, indicated by different color codes, for both
ID (a,c,e) and OOD (b,d,f) evaluation. We report the mean and standard deviation of the test accuracy
across five random seeds.
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C ImageCLEFmedical

Table C displays the distribution of images in the ImageCLEFmedical dataset categorized by organs including
pelvis, vertebral column, lung, urinary bladder, right ventricular structure, stomach, pulmonary artery struc-
ture, anterior descending branch of the left coronary artery, and left kidney, as well as imaging modalities
CT, X-ray, MRI, US, AG, and PET.

(i) Train + Validation
Organ CT X-ray MRI US AG PET
Pelvis 826 1747 262 45 20 23
Vertebral column 23 1134 101 8 3 2
Lung 492 313 14 63 6 24
Urinary bladder 251 116 116 149 14 10
Right ventricular structure 70 36 59 507 28 0
Stomach 311 171 39 71 21 3
Pulmonary artery structure 219 42 24 109 74 0
Ant. desc. b. left cor. artery 35 7 23 20 373 0
Left kidney 275 29 51 64 8 2

(ii) Test
Organ CT X-ray MRI US AG PET
Pelvis 143 45 22 2 2 0
Vertebral column 4 7 7 2 1 1
Lung 79 53 0 11 2 3
Urinary bladder 37 11 6 19 2 0
Right ventricular structure 10 4 3 47 0 0
Stomach 19 15 3 4 1 0
Pulmonary artery structure 24 2 3 8 4 0
Ant. desc. b. left cor. artery 5 0 3 2 39 0
Left kidney 23 1 3 5 1 0

Table C.1: Number of images for ImageCLEFmedical dataset for (i) train and validation and (ii) test set.

Figure C.1 presents a comprehensive summary of the average balanced accuracy scores for both specialized
and multi-domain models for different OOD levels and amount of data. We report the mean and standard
deviation (as the error bar) of the test accuracy across five random seeds.
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(a) ID evaluation
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(b) OOD evaluation

Figure C.1: Comparison of models across various amount of data for ImageCLEFmedical. We report average
balanced accuracy for specialized and multi-domain models across various sampling rates, depicted in x-axis,
and OOD levels, indicated by different color codes, for both ID (a) and OOD (b) evaluation. We report the
mean and standard deviation of the test accuracy across five random seeds.
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