RETQuerySeg: Very-low-parameter adaptation of retinal
foundation models for segmentation with query vectors
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Abstract. Timely segmentation of retinal structures and lesions is critical for
screening diseases such as diabetic retinopathy (DR) and retinopathy of prema-
turity (ROP), yet conventional models remain data- and compute-intensive. We
introduce RETQuerySeg, a simple approach for adapting retinal foundation mod-
els for image segmentations by learning a single query vector. Concretely, we
take the final vector embeddings for each patch, take the dot product with our
learnable query and use the result as our predicted segmentation. We apply our
approach to two openly available datasets, IDRiD and HVDROPDB, on three
segmentation tasks using RETFound-Green as the foundation model.
RETQuerySeg achieved strong performance for optic disc segmentation (AUC:
0.9995, Dice: 0.9072) and reasonable performance for ROP ridge segmentation
(AUC: 0.9847, Dice: 0.5699), demonstrating generalizability across adult and
neonatal retinal images. Performance was limited for small diabetic lesions
(AUC: 0.9159, Dice: 0.1173), reflecting the coarse spatial resolution constraint
of the patch-based approach. While not achieving pixel-perfect segmentation,
RETQuerySeg offers exceptional parameter efficiency, modularity, and compu-
tational advantages. Multiple segmentation tasks can be performed simultane-
ously with minimal additional compute cost, and segmentations can be obtained
virtually for free when computing image-level embeddings for classification
tasks, making it valuable for resource-constrained settings and explainable Al
applications in retinal image analysis.
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1 Introduction

The retina is a light-sensitive tissue at the back of the eye that allows us to see. Ret-
inal diseases such as diabetic retinopathy (DR) [1] cause vision loss leading to reduced
quality of life [2]. Screening for retinal disease with colour fundus retinal images is
important as patients might only notice issues with their vision once irreversible dam-
age to their retina has already occurred, whereas early detection allows for sight-pre-
serving treatment. Retinal imaging is also key in detecting and treating retinopathy of
prematurity (ROP), which affects low-birthweight premature infants. The burden of
diseases like DR and ROP is set to increase globally, especially in developing countries
which already face a shortage of specialist ophthalmologists [1], [3], [4], [5]. Deep
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learning-based retinal image analysis is a mature field, with promising progress [6], [7],
[8], 91, [10], [11], [12], including commercially available models [13], [14]. However,
challenges remain particularly around generalisability and robustness [15].

A key challenge for medical Al more generally is the lack of large-scale datasets
[16]. So-called foundation models, large deep learning models that have been pre-
trained on vast amounts of domain specific data, could address this issue [17], [17],
[18]. In ophthalmology, the first foundation model for colour fundus images was RET-
Found [19], which spurred a further developments including DERETFound [20] which
achieves competitive performance with less pre-training data and RETFound-Green
[21]which is even more data efficient while also requiring substantially less compute.

These foundation models are vision transformers [22] which first split an image into
patches, tokenize these patches, and then use transformer blocks [23] to process them.
Typically, the final representations of each patch are then averaged to obtain a single
vector per image for fine-tuning or “linear probing”, i.e. adapting the foundation model
by fitting a linear model to the final vector embedding.

In this work, we investigate whether retinal foundation models can be adapted for
image segmentation and introduce RETQuerySeg. Instead of averaging, we keep the
vector embeddings for each patch and learn a simple, 384 parameter query vector to
adapt the model for segmentation. We test our approach across three diverse tasks on
two datasets — one of adult retinal images, one of neonatal retinal images — and find
promising results. RETQuerySeg main benefit is not in providing pixel-perfect seg-
mentations. Instead, it is extremely parameter- and compute-efficient, inherently mod-
ular, and allows to obtain segmentations virtually for free if we already use the founda-
tion model for image-level predictions.

2 Methods

2.1 RETQuerySeg

We propose RETQuerySeg, a method for adapting retinal foundation models for seg-
mentation by learning a query vector g. First, we use our pre-trained foundation model
fto obtain a vector embedding v; for each patch of our input image x, instead of aver-
aging across all locations as we would when using the model for classification tasks
v = f(x).

We then take dot product between the query and the vectors for each location, apply
an element-wise sigmoid activation, and use that as the prediction for a given patch
p(y|x) = (v - q). We can then fit the parameters of ¢ by minimising the binary cross
entropy loss between our predictions and a segmentation label s for all » images in our
training set, min 3,/ [—y;log o (£ (x;) - ¢) + (1 = y1) (log(1 — o (£ (x;) - DIN]-
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Fig. 1. An overview of our proposed RETQuerySeg approach. Top: We obtain a vector embed-
ding for each patch of the input image, take the dot product with our learned query vector and
apply a sigmoid activation to get a prediction for each patch. Bottom left: During training, we

use parameter-free bilinear upsampling to compute the binary cross entropy loss at a higher res-

olution. Bottom right: During inference, we only need to compute the vector embeddings once
and can then very cheaply obtain segmentations for various target classes.

An overview of our approach is given in Fig. 1. Concretely, RETFound-Green pro-
cesses images at a resolution of 392x392 pixels and uses a patch size of 14 pixels.
392/14=28, thus we have 28x28 patches. The input resolution and patch size are two
key reasons why we use RETFound-Green rather than the original RETFound. The
latter uses an input resolution of 224 and a patch size of 16 pixels, thus it only has 14x14
patches in its internal resolution. Another benefit of RETFound-Green is the computa-
tional efficiency.

The internal dimension of RETFound-Green is 384, i.e. each vector embedding con-
sists of 384 floating point numbers. Thus, our learnable query vector also has a dimen-
sionality of 384. Taking the dot product between the vector embeddings and each query
yields a single number for each patch.

As an implementation detail, we use bilinear upsampling to bring our prediction up
to the input resolution so we can compute the loss with the segmentation label. Bilinear
upsampling is parameter-free and the foundation model is kept frozen, so we only need
to learn the 384 query parameters.

We do not propose RETQuerySeg as a way to achieve optimal segmentations: The
relatively coarse spatial resolution of our vector embeddings is of course an obvious
limitation of our approach, and indeed we would not expect it to be competitive with
standard segmentation approaches like UNets [24]. Instead, our approach has other ad-
vantages compared to standard image segmentation.

First, it is a very-low-parameter approach, as we only fit a single 384-dimensional
vector. This query vector can then be very easily shared and stored. Second, for infer-
ence, virtually all the computational cost is due to obtaining the vector embeddings
themselves, while the dot product is a rounding error. Thus, if we have multiple query
vectors relating to different segmentation tasks, we can obtain multiple segmentations
at essentially no additional compute cost. Third, as we leverage a pre-trained foundation
model that is kept frozen, our approach is inherently modular. New query vectors —
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either queries trained on one’s own data or ones that are shared by others — can easily
be added to an inference pipeline. Fourth, when computing average per-image vector
embeddings for linear probing, we can again obtain RETQuerySeg’s coarse segmenta-
tions without meaningful additional compute. These segmentations could then be used
for explainability and to highlight possible areas of concern to a clinician.

2.2 Datasets

We use two openly available datasets of retinal colour fundus images. First, the Indian
Diabetic Retinopathy image Dataset (IDRiD) [25]. IDRiD contains images related to
Diabetic Retinopathy (DR), a key retinal disease that is a leading cause of sight-loss
worldwide [1], [5]. The dataset has annotations for four types of DR-related lesions
(microaneurysm, hemorrhages, hard exudates, soft exudates) which we aggregate into
a single label for the present manuscript. IDRiD further has labels for the optic disc, a
key anatomical structure in the eye where the nerves and blood vessels pass through the
retina. Second, the HVDROPDB dataset [26] of neonatal colour fundus images in the
context of retinopathy of prematurity (ROP). ROP is a condition affecting low-birth-
weight premature infants and can lead to blindness if untreated. HVDROPDB has seg-
mentation labels for the ROP “ridge”, a key landmark which is the boundary between
vascularized and unvascularized retina.

IDRiD has an official train-test-split with 54 images for training and 27 images for
testing. HVDROPDB has 100 images with ridge labels. Two cameras were used to
acquire the images: RetCam (Clarity MSI, US) and Neo (Forus Healthcare, Bangalore,
India), with exactly half of the images being from either camera. We randomly select
25% of the images for each label for testing.

2.3  Experimental setup

We initialise our query with all zeroes and then train for 150 epochs using a batch size
of 16 using the AdamW [27] optimizer with a learning rate of 102 and weight decay of
10 using binary cross entropy as loss. Note that RETFound-Green is kept frozen
throughout, we only optimise the parameters of our query vector. The learning rate is
linearly warmed up from O for the first 10 epochs and then after epoch 50 decayed to
10 using a cosine schedule [28]. For the training set, we use random rotation, flipping,
brightness and contrast, as well as scaling as data augmentation. Images are resized to
392x392 and we compute the segmentation loss at that resolution after parameter-free
bilinear upsampling of the predictions from 28x28.

As metrics we use the area under the receiver operating characteristic curve (AUC)
and Dice score. The AUC captures whether the probabilistic predictions correctly rank
positive and negative pixels, while Dice score evaluates performance at a single bina-
rization threshold of 0.5. For AUC, we use an exact, efficient implementation kindly
provided by the authors of [29] which allows us to calculate the AUC across millions
of individual pixels. We compute the metrics at the image-level and report the average,
worst, and best case performance for each metric.
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3 Results

3.1 Optic disc segmentation

prediction Ground Tuth

Fig. 2. Example optic disc segmentations for held-out test images from IDRiD.

For disc segmentation, RETQuerySeg achieved an average AUC of 0.9995 (min:
0.9988, max: 0.9999) and an average Dice score of 0.9072 (min: 0.8130, max: 0.9634)
on the IDRID test images. Fig. 2 shows some examples. Overall, the disc is correctly
identified in all images. However, for the concrete outline, the predictions show some
deviation. This is primarily due to the fact that the disc is a round structure, while the
patches are square. In some cases, the bilinear interpolation can approximate the outline
quite well (e.g. Fig. 2 top left), but in other cases it does so less well (e.g. Fig. 2 bottom
left).

3.2 Diabetic lesion segmentation

Fig. 3. Example lesion segmentations for held-out test images from IDRIiD.

Performance for segmentation of diabetic lesions was much worse overall. The an av-
erage AUC of 0.9159 (min: 0.7737, max: 0.9685) indicates somewhat reasonable per-
formance, while the average Dice score of 0.1173 (min: 0.0000, max: 0.3916) suggests
quite poor performance. This is not entirely unexpected, as some of the diabetic lesions
are much smaller than the patch size. In such cases, RETQuerySeg can indicate that a
patch likely contains a lesion, but not where exactly the lesion is.
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Relatedly, the model rarely has high confidence, unless a whole patch belongs to a
lesion. If we changed the binarization from p>0.5 to p>0.1, the average Dice score
would improve to 0.3680 (min: 0.1210, max: 0.5779) which is still quite poor, but a
meaningful improvement. This indicates that our model is underconfident for lesion
segmentation.

However, qualitatively the performance is not as poor as the Dice score suggests.
Fig. 3 shows some example segmentations. Generally, the model appears to recognize
all larger lesions, areas with many small lesions, and even some isolated smaller lesions.

The bottom right image in Fig. 3 is the worst case performance of RETQuerySeg in the
test set, which only has comparatively few, very small lesions.
e i

Fig. 4. Example ridge segmentations for held-out test images from HVDROPDB.

3.3  Retinopathy of prematurity ridge segmentation

For segmenting the ridge in ROP images, performance was in-between the previous
two extremes with an average AUC of 0.9847 (min: 0.9367, max: 0.9968) and an aver-
age Dice score of 0.5699 (min: 0.0824, max: 0.8267). This is in part due to the coarse-
ness of the labels and the challenging nature of taking retinal images of neonatal infants.
In many images, the location of the ridge is obvious in parts of the images and specu-
lative in other parts of the images due to blurriness and imperfect illumination.

Fig. 4 shows some example segmentations. While there are clear differences be-
tween the labels and predictions, the general location of the ridge in the predictions
matches that of the ground truths. Taking a closer look at the ground truths themselves,
the width of the ridge appears to be somewhat approximate, i.e. exact pixel-wise agree-
ment is not necessarily desirable, the clinical relevant aspect is the general location of
the ridge.

3.4 Inference efficiency

We measured the time it took to process a batch of 25 test images on a low-end GPU
workstation (Intel i5-12600k, Nvidia 5070ti). We are reporting the mean + standard
deviation across 20 runs. On CPU, obtaining the vector embeddings for all 25 images
required 2.7714 + 0.0564 seconds, while on GPU it only took 0.1301 + 0.0569 seconds.
Thus, for obtaining the vector embeddings, the CPU was about 21 times slower than
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GPU. Once the vector embeddings were computed, taking the dot product with the
query and applying the sigmoid activation only took 0.0014 £ 0.0026 second on CPU
and 0.0001 £ 0.0001 on GPU. In other words, computing the vector embeddings them-
selves takes orders of magnitude more compute, while the RETQuerySeg segmenta-
tions are effectively a rounding error for the overall computational requirement.

4 Conclusion

Overall, our RETQuerySeg approach yielded reasonable results across three segmenta-
tion tasks and two diverse datasets. For the large optic disc, performance was generally
quite good, with only small errors at the margins owing to the limitation of an internal
resolution of 28x28. Similarly, for ROP ridge segmentation, performance was generally
good with errors partially attributable to poor image quality and coarse annotations.
However, for diabetic lesions, performance was poor in terms of Dice and only reason-
able in terms of AUC, highlighting the limitations of our approach. Especially isolated
lesions that are much smaller than the patch size of RETFound-Green were not de-
tected. Still, qualitatively examining the predicted segmentations shows that
RETQuerySeg still highlighted the main areas of pathology.

Regarding the ROP results, a further point of note is that RETFound-Green was not
pre-trained on any neonatal images and instead had previously only seen retinal images
of adults. Neonatal images are quite different in terms of anatomy, pathology, image
quality, and use dedicated cameras distinct from those used for adults. Thus, the ROP
results demonstrate some generalisability of our approach.

Our approach clearly does not provide optimal segmentation and is not meant to
compete with traditional segmentation methods either. Instead, it has a few key ad-
vantages that make it useful in settings where other segmentation approaches would not
be applicable. RETQuerySeg is not only very parameter efficient and thus the queries
are very easy to share, but virtually all inference compute is used for the foundation
model itself. This means that we can obtain multiple predictions using different queries
without meaningful increase in compute cost. If we are computing image-level vector
embeddings anyway for linear probing, we can also obtain RETQuerySeg-based seg-
mentations without additional cost. Finally, RETQuerySeg is modular as the underlying
foundation model stays unchanged. Thus, we can add new queries to an existing pipe-
line.

Beyond more comprehensive experiments, including in other medical imaging mo-
dalities, there are a few interesting directions for future work. First, overcoming the
limitation of the internal resolution. This could be accomplished with a foundation
model pre-trained for a higher resolution or by relaxing the simplicity of our approach,
e.g. combining the patch-wise features with pixel-level features (pixel values, basic
edge detection, etc.), or fitting a small convolutional decoder instead of a simple query
vector. Second, we are interested in using the RETQuerySeg segmentations to take
weighted averaged for image-level linear probing. Currently, RETFound-Green uses
simple average pooling, which might degrade performance for tasks where the
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pathology of interest is only a small part of the overall image. Weighing the average
using a learned query related to the task of interest would not meaningfully affect the
efficiency of linear probing, but address this challenge. Finally, we currently learn the
query vector using segmentation labels. In future work, we want to explore learning it
using image-level labels instead, by using the query for a weighted average pooling
followed by a linear classification layer which we optimise jointly with our query. This
could provide model-level explainability by investigating what features the query is
highlighting, and faithful instance-level explainability since we can visualise which ar-
eas of an image were weighted heavily for a given prediction.
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