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Abstract. Timely segmentation of retinal structures and lesions is critical for 

screening diseases such as diabetic retinopathy (DR) and retinopathy of prema-

turity (ROP), yet conventional models remain data- and compute-intensive. We 

introduce RETQuerySeg, a simple approach for adapting retinal foundation mod-

els for image segmentations by learning a single query vector. Concretely, we 

take the final vector embeddings for each patch, take the dot product with our 

learnable query and use the result as our predicted segmentation. We apply our 

approach to two openly available datasets, IDRiD and HVDROPDB, on three 

segmentation tasks using RETFound-Green as the foundation model. 

RETQuerySeg achieved strong performance for optic disc segmentation (AUC: 

0.9995, Dice: 0.9072) and reasonable performance for ROP ridge segmentation 

(AUC: 0.9847, Dice: 0.5699), demonstrating generalizability across adult and 

neonatal retinal images. Performance was limited for small diabetic lesions 

(AUC: 0.9159, Dice: 0.1173), reflecting the coarse spatial resolution constraint 

of the patch-based approach. While not achieving pixel-perfect segmentation, 

RETQuerySeg offers exceptional parameter efficiency, modularity, and compu-

tational advantages. Multiple segmentation tasks can be performed simultane-

ously with minimal additional compute cost, and segmentations can be obtained 

virtually for free when computing image-level embeddings for classification 

tasks, making it valuable for resource-constrained settings and explainable AI 

applications in retinal image analysis.  
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1 Introduction 

The retina is a light-sensitive tissue at the back of the eye that allows us to see. Ret-

inal diseases such as diabetic retinopathy (DR) [1] cause vision loss leading to reduced 

quality of life [2]. Screening for retinal disease with colour fundus retinal images is 

important as patients might only notice issues with their vision once irreversible dam-

age to their retina has already occurred, whereas early detection allows for sight-pre-

serving treatment. Retinal imaging is also key in detecting and treating retinopathy of 

prematurity (ROP), which affects low-birthweight premature infants. The burden of 

diseases like DR and ROP is set to increase globally, especially in developing countries 

which already face a shortage of specialist ophthalmologists [1], [3], [4], [5]. Deep 
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learning-based retinal image analysis is a mature field, with promising progress [6], [7], 

[8], [9], [10], [11], [12], including commercially available models [13], [14]. However, 

challenges remain particularly around generalisability and robustness [15]. 

A key challenge for medical AI more generally is the lack of large-scale datasets 

[16]. So-called foundation models, large deep learning models that have been pre-

trained on vast amounts of domain specific data, could address this issue [17], [17], 

[18]. In ophthalmology, the first foundation model for colour fundus images was RET-

Found [19], which spurred a further developments including DERETFound [20] which 

achieves competitive performance with less pre-training data and RETFound-Green 

[21]which is even more data efficient while also requiring substantially less compute.  

These foundation models are vision transformers [22] which first split an image into 

patches, tokenize these patches, and then use transformer blocks [23] to process them. 

Typically, the final representations of each patch are then averaged to obtain a single 

vector per image for fine-tuning or “linear probing”, i.e. adapting the foundation model 

by fitting a linear model to the final vector embedding.  

In this work, we investigate whether retinal foundation models can be adapted for 

image segmentation and introduce RETQuerySeg. Instead of averaging, we keep the 

vector embeddings for each patch and learn a simple, 384 parameter query vector to 

adapt the model for segmentation. We test our approach across three diverse tasks on 

two datasets – one of adult retinal images, one of neonatal retinal images – and find 

promising results. RETQuerySeg main benefit is not in providing pixel-perfect seg-

mentations. Instead, it is extremely parameter- and compute-efficient, inherently mod-

ular, and allows to obtain segmentations virtually for free if we already use the founda-

tion model for image-level predictions. 

2 Methods 

2.1 RETQuerySeg 

We propose RETQuerySeg, a method for adapting retinal foundation models for seg-

mentation by learning a query vector q. First, we use our pre-trained foundation model 

f to obtain a vector embedding vi for each patch of our input image x, instead of aver-

aging across all locations as we would when using the model for classification tasks 

𝒗 = 𝑓(𝒙). 
 We then take dot product between the query and the vectors for each location, apply 

an element-wise sigmoid activation, and use that as the prediction for a given patch 

𝑝(𝒚|𝒙) = 𝜎(𝒗 ⋅ 𝑞). We can then fit the parameters of q by minimising the binary cross 

entropy loss between our predictions and a segmentation label s for all n images in our 

training set, min
𝑞

∑ [−𝒚𝑖 log 𝜎(𝑓(𝒙𝑖) ⋅ 𝑞) + (1 − 𝒚𝑖)(log(1 − 𝜎(𝑓(𝒙𝑖) ⋅ 𝑞)))]
𝑛
𝑖 . 
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Fig. 1. An overview of our proposed RETQuerySeg approach. Top: We obtain a vector embed-

ding for each patch of the input image, take the dot product with our learned query vector and 

apply a sigmoid activation to get a prediction for each patch. Bottom left: During training, we 

use parameter-free bilinear upsampling to compute the binary cross entropy loss at a higher res-

olution. Bottom right: During inference, we only need to compute the vector embeddings once 

and can then very cheaply obtain segmentations for various target classes. 

 An overview of our approach is given in Fig. 1. Concretely, RETFound-Green pro-

cesses images at a resolution of 392x392 pixels and uses a patch size of 14 pixels. 

392/14=28, thus we have 28x28 patches. The input resolution and patch size are two 

key reasons why we use RETFound-Green rather than the original RETFound. The 

latter uses an input resolution of 224 and a patch size of 16 pixels, thus it only has 14x14 

patches in its internal resolution. Another benefit of RETFound-Green is the computa-

tional efficiency. 

The internal dimension of RETFound-Green is 384, i.e. each vector embedding con-

sists of 384 floating point numbers. Thus, our learnable query vector also has a dimen-

sionality of 384. Taking the dot product between the vector embeddings and each query 

yields a single number for each patch. 

 As an implementation detail, we use bilinear upsampling to bring our prediction up 

to the input resolution so we can compute the loss with the segmentation label. Bilinear 

upsampling is parameter-free and the foundation model is kept frozen, so we only need 

to learn the 384 query parameters. 

 We do not propose RETQuerySeg as a way to achieve optimal segmentations: The 

relatively coarse spatial resolution of our vector embeddings is of course an obvious 

limitation of our approach, and indeed we would not expect it to be competitive with 

standard segmentation approaches like UNets [24]. Instead, our approach has other ad-

vantages compared to standard image segmentation.  

First, it is a very-low-parameter approach, as we only fit a single 384-dimensional 

vector. This query vector can then be very easily shared and stored. Second, for infer-

ence, virtually all the computational cost is due to obtaining the vector embeddings 

themselves, while the dot product is a rounding error. Thus, if we have multiple query 

vectors relating to different segmentation tasks, we can obtain multiple segmentations 

at essentially no additional compute cost. Third, as we leverage a pre-trained foundation 

model that is kept frozen, our approach is inherently modular. New query vectors – 
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either queries trained on one’s own data or ones that are shared by others – can easily 

be added to an inference pipeline. Fourth, when computing average per-image vector 

embeddings for linear probing, we can again obtain RETQuerySeg’s coarse segmenta-

tions without meaningful additional compute. These segmentations could then be used 

for explainability and to highlight possible areas of concern to a clinician.   

 

 

2.2 Datasets 

We use two openly available datasets of retinal colour fundus images. First, the Indian 

Diabetic Retinopathy image Dataset (IDRiD) [25]. IDRiD contains images related to 

Diabetic Retinopathy (DR), a key retinal disease that is a leading cause of sight-loss 

worldwide [1], [5]. The dataset has annotations for four types of DR-related lesions 

(microaneurysm, hemorrhages, hard exudates, soft exudates) which we aggregate into 

a single label for the present manuscript. IDRiD further has labels for the optic disc, a 

key anatomical structure in the eye where the nerves and blood vessels pass through the 

retina. Second, the HVDROPDB dataset [26] of neonatal colour fundus images in the 

context of retinopathy of prematurity (ROP). ROP is a condition affecting low-birth-

weight premature infants and can lead to blindness if untreated. HVDROPDB has seg-

mentation labels for the ROP “ridge”, a key landmark which is the boundary between 

vascularized and unvascularized retina.  

IDRiD has an official train-test-split with 54 images for training and 27 images for 

testing. HVDROPDB has 100 images with ridge labels. Two cameras were used to 

acquire the images: RetCam (Clarity MSI, US) and Neo (Forus Healthcare, Bangalore, 

India), with exactly half of the images being from either camera. We randomly select 

25% of the images for each label for testing. 

 

2.3 Experimental setup 

We initialise our query with all zeroes and then train for 150 epochs using a batch size 

of 16 using the AdamW [27] optimizer with a learning rate of 10-2 and weight decay of 

10-8 using binary cross entropy as loss. Note that RETFound-Green is kept frozen 

throughout, we only optimise the parameters of our query vector. The learning rate is 

linearly warmed up from 0 for the first 10 epochs and then after epoch 50 decayed to 

10-4 using a cosine schedule [28]. For the training set, we use random rotation, flipping, 

brightness and contrast, as well as scaling as data augmentation. Images are resized to 

392x392 and we compute the segmentation loss at that resolution after parameter-free 

bilinear upsampling of the predictions from 28x28. 

As metrics we use the area under the receiver operating characteristic curve (AUC) 

and Dice score. The AUC captures whether the probabilistic predictions correctly rank 

positive and negative pixels, while Dice score evaluates performance at a single bina-

rization threshold of 0.5. For AUC, we use an exact, efficient implementation kindly 

provided by the authors of [29] which allows us to calculate the AUC across millions 

of individual pixels. We compute the metrics at the image-level and report the average, 

worst, and best case performance for each metric. 

 



 RETQuery 5 

3 Results 

3.1 Optic disc segmentation 

 

Fig. 2. Example optic disc segmentations for held-out test images from IDRiD.  

For disc segmentation, RETQuerySeg achieved an average AUC of 0.9995 (min: 

0.9988, max: 0.9999) and an average Dice score of 0.9072 (min: 0.8130, max: 0.9634) 

on the IDRiD test images. Fig. 2 shows some examples. Overall, the disc is correctly 

identified in all images. However, for the concrete outline, the predictions show some 

deviation. This is primarily due to the fact that the disc is a round structure, while the 

patches are square. In some cases, the bilinear interpolation can approximate the outline 

quite well (e.g. Fig. 2 top left), but in other cases it does so less well (e.g. Fig. 2 bottom 

left).  

 

3.2 Diabetic lesion segmentation 

 

Fig. 3. Example lesion segmentations for held-out test images from IDRiD.  

Performance for segmentation of diabetic lesions was much worse overall. The an av-

erage AUC of 0.9159 (min: 0.7737, max: 0.9685) indicates somewhat reasonable per-

formance, while the average Dice score of 0.1173 (min: 0.0000, max: 0.3916) suggests 

quite poor performance. This is not entirely unexpected, as some of the diabetic lesions 

are much smaller than the patch size. In such cases, RETQuerySeg can indicate that a 

patch likely contains a lesion, but not where exactly the lesion is.  
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Relatedly, the model rarely has high confidence, unless a whole patch belongs to a 

lesion. If we changed the binarization from p>0.5 to p>0.1, the average Dice score 

would improve to 0.3680 (min: 0.1210, max: 0.5779) which is still quite poor, but a 

meaningful improvement. This indicates that our model is underconfident for lesion 

segmentation. 

 However, qualitatively the performance is not as poor as the Dice score suggests. 

Fig. 3 shows some example segmentations. Generally, the model appears to recognize 

all larger lesions, areas with many small lesions, and even some isolated smaller lesions. 

The bottom right image in Fig. 3 is the worst case performance of RETQuerySeg in the 

test set, which only has comparatively few, very small lesions. 

 

3.3 Retinopathy of prematurity ridge segmentation 

 

Fig. 4. Example ridge segmentations for held-out test images from HVDROPDB.  

For segmenting the ridge in ROP images, performance was in-between the previous 

two extremes with an average AUC of 0.9847 (min: 0.9367, max: 0.9968) and an aver-

age Dice score of 0.5699 (min: 0.0824, max: 0.8267). This is in part due to the coarse-

ness of the labels and the challenging nature of taking retinal images of neonatal infants. 

In many images, the location of the ridge is obvious in parts of the images and specu-

lative in other parts of the images due to blurriness and imperfect illumination. 

Fig. 4 shows some example segmentations. While there are clear differences be-

tween the labels and predictions, the general location of the ridge in the predictions 

matches that of the ground truths. Taking a closer look at the ground truths themselves, 

the width of the ridge appears to be somewhat approximate, i.e. exact pixel-wise agree-

ment is not necessarily desirable, the clinical relevant aspect is the general location of 

the ridge. 

 

3.4 Inference efficiency 

We measured the time it took to process a batch of 25 test images on a low-end GPU 

workstation (Intel i5-12600k, Nvidia 5070ti). We are reporting the mean ± standard 

deviation across 20 runs. On CPU, obtaining the vector embeddings for all 25 images 

required 2.7714 ± 0.0564 seconds, while on GPU it only took 0.1301 ± 0.0569 seconds. 

Thus, for obtaining the vector embeddings, the CPU was about 21 times slower than 
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GPU. Once the vector embeddings were computed, taking the dot product with the 

query and applying the sigmoid activation only took 0.0014 ± 0.0026 second on CPU 

and 0.0001 ± 0.0001 on GPU. In other words, computing the vector embeddings them-

selves takes orders of magnitude more compute, while the RETQuerySeg segmenta-

tions are effectively a rounding error for the overall computational requirement. 

4 Conclusion 

Overall, our RETQuerySeg approach yielded reasonable results across three segmenta-

tion tasks and two diverse datasets. For the large optic disc, performance was generally 

quite good, with only small errors at the margins owing to the limitation of an internal 

resolution of 28x28. Similarly, for ROP ridge segmentation, performance was generally 

good with errors partially attributable to poor image quality and coarse annotations. 

However, for diabetic lesions, performance was poor in terms of Dice and only reason-

able in terms of AUC, highlighting the limitations of our approach. Especially isolated 

lesions that are much smaller than the patch size of RETFound-Green were not de-

tected. Still, qualitatively examining the predicted segmentations shows that 

RETQuerySeg still highlighted the main areas of pathology. 

 Regarding the ROP results, a further point of note is that RETFound-Green was not 

pre-trained on any neonatal images and instead had previously only seen retinal images 

of adults. Neonatal images are quite different in terms of anatomy, pathology, image 

quality, and use dedicated cameras distinct from those used for adults. Thus, the ROP 

results demonstrate some generalisability of our approach. 

 Our approach clearly does not provide optimal segmentation and is not meant to 

compete with traditional segmentation methods either. Instead, it has a few key ad-

vantages that make it useful in settings where other segmentation approaches would not 

be applicable. RETQuerySeg is not only very parameter efficient and thus the queries 

are very easy to share, but virtually all inference compute is used for the foundation 

model itself. This means that we can obtain multiple predictions using different queries 

without meaningful increase in compute cost. If we are computing image-level vector 

embeddings anyway for linear probing, we can also obtain RETQuerySeg-based seg-

mentations without additional cost. Finally, RETQuerySeg is modular as the underlying 

foundation model stays unchanged. Thus, we can add new queries to an existing pipe-

line.  

 

Beyond more comprehensive experiments, including in other medical imaging mo-

dalities, there are a few interesting directions for future work. First, overcoming the 

limitation of the internal resolution. This could be accomplished with a foundation 

model pre-trained for a higher resolution or by relaxing the simplicity of our approach, 

e.g. combining the patch-wise features with pixel-level features (pixel values, basic 

edge detection, etc.), or fitting a small convolutional decoder instead of a simple query 

vector. Second, we are interested in using the RETQuerySeg segmentations to take 

weighted averaged for image-level linear probing. Currently, RETFound-Green uses 

simple average pooling, which might degrade performance for tasks where the 
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pathology of interest is only a small part of the overall image. Weighing the average 

using a learned query related to the task of interest would not meaningfully affect the 

efficiency of linear probing, but address this challenge. Finally, we currently learn the 

query vector using segmentation labels. In future work, we want to explore learning it 

using image-level labels instead, by using the query for a weighted average pooling 

followed by a linear classification layer which we optimise jointly with our query. This 

could provide model-level explainability by investigating what features the query is 

highlighting, and faithful instance-level explainability since we can visualise which ar-

eas of an image were weighted heavily for a given prediction. 
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