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Abstract

Molecular geometry is crucial for biological activity and chemical reactivity; how-
ever, computational methods for generating 3D structures are limited by the vast
scale of conformational space and the complexities of stereochemistry. Here
we present an approach that combines an expansive dataset of molecular con-
formers with generative diffusion models to address this problem. We introduce
ChEMBL3D, which contains over 250 million molecular geometries for 1.8 mil-
lion drug-like compounds, optimized using AIMNet2 neural network potentials
to a near-quantum mechanical accuracy with implicit solvent effects included.
This dataset captures complex organic molecules in various protonation states and
stereochemical configurations. We then developed LoQI, a stereochemistry-aware
diffusion model that learns molecular geometry distributions directly from this
data. Through graph augmentation, LoQI accurately generates molecular struc-
tures with targeted stereochemistry, representing a significant advance in modeling
capabilities over previous generative methods. The model outperforms traditional
approaches, achieving up to tenfold improvements in energy accuracy and effec-
tive recovery of optimal conformations. Benchmark tests on complex systems,
including macrocycles and flexible molecules, as well as validation with crystal
structures, show LoQI can perform low energy conformer search efficiently. The
model code and dataset will be available before the workshop.

1 Introduction

Molecular conformation plays a fundamental role in determining the behavior and function of chem-
ical compounds across diverse domains, from materials science to pharmacology. A prototypical
example of the critical role that molecular conformation plays is in specificity of protein active site,
where the three-dimensional (3D) geometry of a ligand must complement the shape and electrostat-
ics of the binding pocket to enable favorable interactions, such as hydrogen bonds and hydrophobic
contacts [1, 2]. Poorly fitting conformers are known to cause steric clashes or suboptimal binding,
leading to a reduction in affinity and efficacy. Stereochemistry adds another layer of complexity,
as many biological targets are chiral and can distinguish between stereoisomers, often resulting in
significant differences in potency or toxicity. One exemplary case is thalidomide, where only one
enantiomer is therapeutically safe. Despite advances in computational methods, generating accu-
rate low-energy conformers at thousands-to-millions scale remains prohibitively expensive, limiting
their use in high-throughput settings and creating a persistent bottleneck in structure-based molecu-
lar design [3].

Modern conformational analysis must account for both thermodynamic stability and kinetic acces-
sibility. For example, studies have shown that many bioactive conformations lie close to the global
energy minimum, emphasizing the importance of understanding the conformational landscape [4].
Reliable generation of low-energy diverse conformers anchored to realistic energy landscapes is
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therefore critical for downstream applications such as docking, virtual screening, and binding-free
energy estimation [5–8].

Classical approaches for conformer generation rely primarily on heuristic algorithms and force
fields. Examples include single-conformer generators such as CORINA, as well as ensemble-based
methods like ETKTG, OMEGA [5], ConfGen [9], Frog2 [10], and Multiconf-DOCK [11]. De-
spite their efficiency, these methods frequently struggle with molecules characterized by significant
flexibility, including macrocycles and ”beyond rule-of-five” chemotypes [12]. As a consequence,
classical force-field-based methods often yield significant errors in energy rankings and incomplete
coverage of conformational ensembles, particularly as molecular complexity increases [13, 14].

Recent advances in machine-learned interatomic potentials (MLIPs), such as AIMNet2 [15],
ANI [16], MACE [17], and UMA [18] have shown great promise in addressing these limitations.
MLIPs can offer near-density functional theory (DFT) accuracy at substantially reduced computa-
tional cost, thereby enabling rapid and reliable geometry optimization.

In parallel, deep generative modeling techniques have gained widespread adoption in computational
chemistry [19]. These models have been mostly trained on the GEOM dataset [20], which was cre-
ated with the CREST software [21] based on semi-empirical quantum methods. One of the models,
Torsional Diffusion [22] introduced a diffusion-based framework that operates within the torsion
space. Other group of methods directly model atomic coordinates, the group including GeoD-
iff [23], Molecular Conformer Fields (MCF)[24], Diffusion Molecular Transformer (DMT)[25],
and AvgFlow [26]. However, all of these models completely disregard stereochemistry, making
them poorly suited for chiral or stereochemically rich molecules.

In this work, we combine the strengths of MLIP energy evaluation with AIMNet2 and advanced
generative models to develop a robust and widely applicable workflow for conformer generation.
Specifically, we introduce ChEMBL3D, an extensive dataset containing over 250 million AIMNet2-
optimized conformers for approximately 1.8 million unique molecules covering both charged and
neutral states within an implicit solvent environment. We present LoQI(Low-energy QM Informed
conformer generative model), a stereochemistry-aware, equivariant generative model trained end-
to-end on ChEMBL3D. In extensive tests on molecules, LoQI outperformed conventional chemin-
formatics tools and generative models while explicitly encoding stereochemistry.

2 Methods

2.1 ChEMBL3D dataset

The ChEMBL3D dataset was curated from the ChEMBL v34 database [27]. Initial processing
involved generating protomers in neutral and non-ionized states using OpenEye FixpKa, and sub-
sequently merging these with the original structures. OpenEye’s Flipper tool has been used to enu-
merate stereocenters with missing annotation. Reference topology structures, including hydrogens
but without explicit 3D coordinates, were created with Open Babel [28]. The molecules were sorted
by the number of atoms and the training conformers were generated using the OpenEye Omega
classic [5], followed by structural optimization using the FIRE algorithm [29] with a variant of the
AIMNet2 [15] neural network potential, trained to reproduce the DFT energies within a CPCM sol-
vation model. Unlike previous datasets that rely on classical force fields or semi-empirical quantum
computations, all conformations were optimized under implicit solvation conditions to near DFT
accuracy using AIMNet2.

The conformer dataset initially comprised approximately 505 million conformers prior to post-
processing. Downstream steps included topology validation, energy-based filtering, and deduplica-
tion, resulting in a final dataset of 252 million processed conformers for 2,417,498 unique structures
(representing 1,786,517 distinct ChEMBL molecules). Our deduplication procedure is based on the
relative changes in the distance matrix, following the assumption that only one enantiomer of each
pair is retained, in accordance with the protocol described in the work of Pracht [30]. Aftere this
filtering, the dataset contains 187 million conformers within a 6 kcal/mol energy window, 94 million
within 2.5 kcal/mol, and 38 million within 1 kcal/mol. ChEMBL3D is orders of magnitude larger
than previous 3D conformer datasets (e.g., GEOM), and to our knowledge it is the first to incor-
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porate both an implicit solvent model and exhaustive stereochemistry/protomer enumeration at this
scale. This makes it a uniquely comprehensive benchmark for generative models.

ChEMBL3D should be regarded as a collection of unique, relaxed conformers for ChEMBL
molecules rather than a thermodynamical ensemble (e.g., GEOM-Drugs). Since a lot of recent
generative molecular models employs only a limited number of conformations per molecule during
training [25, 26, 31–34], we believe that providing a large-scale dataset of conformers with near QM
accuracy will benefit the research community and facilitate further advances in generative modeling.

Flipper
Enumerate 

Missing 
Stereocenters 

2.1M Initial 
Molecules

OMEGA Classic
Up to 200 

conformers
per molecule

FixpKa
Ionized 

and 
De-ionized

500M CPCM 
AimNet2

Geometry 
Optimizations

• 1.8M unique 
molecules

• 180M conformers 
within 6 kcal/mol

ChEMBL3D

Figure 1: Overview of the ChEMBL3Ddataset construction workflow. Molecules from ChEMBL
v34 were expanded via protomer generation (OpenEye FixpKa), conformer generation (Open-
Eye Omega Classic), and stereoisomer enumeration (OpenEye Flipper). Conformers were
geometry-optimized with AIMNet2 and filtered for broken topologies and duplicates. The final
ChEMBL3Ddataset contains approximately 1.8 million unique molecules and 180 millions con-
formers within a 6 kcal/mol energy window.

2.2 Model Architecture and Training Objective

LoQI utilizes the recently introduced Megalodon architecture from [33], which shows great results
for 3D molecule generation. This architecture combines a Diffusion Transformer (DiT) [35] layer,
which processes invariant features, with an equivariant graph neural network (EGNN) [36] that up-
dates atomic coordinates. Specifically, each transformer module integrates discrete atomic features,
such as atom types and charges, and bond features, such as bond types and geometric features (pair-
wise distances and dot products). These combined features are processed through DiT layer which
represents multi-head attention with adaptive layer normalization. After DiT layer, the resulting
atom and bond features serve as additional inputs for coordinate updates performed by a structure
layer based on EGNN. This structure-update step employs distance-based EGNN updates enhanced
by a cross-product term refining atomic coordinates.

In adapting the Megalodon framework, our approach simplifies the prediction task by exclusively
focusing on atomic coordinates, using atom types, charges, and bonds solely as inputs. This design
choice capitalizes on Megalodon’s demonstrated strengths in accurately predicting molecular coor-
dinates, thus streamlining computational efficiency without explicit modeling of discrete bond or
atom-type outputs.

Our training procedure employs a diffusion-based approach consistent with few recent developments
in generative modeling [31, 32]. Specifically, we utilize weighted cosine noise schedules within
a standard denoising diffusion probabilistic model (DDPM). Comprehensive technical details and
exact model configurations can be found in the original Megalodon paper [33] and implementation.
Remarkably, we observe that for conformer generative task, only 25 diffusion steps are sufficient to
reach peak performance.

3 Results

The LoQI model has been trained to generate lowest energy conformer from ChEMBL3D utilizing
a diffusion training objective. Rather than navigating the space with predefined rules, LoQI learns
directly to produce chemically valid, low-energy 3D geometries. This data-driven modeling strat-
egy is not restricted by predefined rotatable bonds or fragment libraries, which crucially allows our
model to efficiently handle the generation of complex molecular geometries. In the following sec-
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Figure 2: LoQI is a Megalodon-based adaptation [33] tailored for denoising diffusion over 25 steps,
where the model iteratively predicts denoised atomic coordinates from progressively noised inputs.
(a) The overall neural network architecture processes discrete atom features, bond features, diffu-
sion timestep embeddings, and atomic coordinates; (b) A structure layer based on EGNN performs
equivariant coordinate updates using equivariant and invariant features; (c) A DiT-style transformer
block updates invariant atom and edge features conditioned on diffusion timestep.

tions, we benchmark LoQI against classical and generative baselines on multiple datasets to assess
its performance and generalizability.

3.1 Hold-Out Set Performance

The generalization of LoQI has been rigorously evaluated using a newly constructed hold-out set of
37,075 molecules (including diverse isomeric and protonation states) sampled from ChEMBL3D.
None of these molecules were used during training, allowing us to assess performance in a realis-
tic setting, where the model must generate low-energy conformers without relying on memorized
patterns or specific heuristics. The results are presented in Table 1.

LoQI consistently outperforms all baselines across key metrics. It achieves a median relative energy
of 0.33 kcal/mol, significantly lower than both retrained generative baselines (e.g., 0.45 kcal/mol
for DMT-B) and classical methods like RDKit and Omega (3.39 and 1.42 kcal/mol, respectively).
Notably, LoQI finds conformers within 0.1 kcal/mol of the minimum of the dataset in 38. 5% of
molecules, nearly doubling all other methods, without pretraining on our dataset. In other words,
generating and optimizing a single conformer using LoQI achieves, in 38. 5% cases, results equiv-
alent to optimizing up to 200 conformers produced by OpenEye Omega Classic. Furthermore, in
14.0% of the cases, the generated conformer has a lower energy compared to the reference conformer
in ChEMBL3D, highlighting the ability of the model to perform low-energy conformer search.

The generative model has been trained on the AIMNet2 optimized conformers; therefore, it is worth
confirming that the conformers with lower energy than those in the dataset are not an artifact or
errors of the MLIP model. We selected 88 examples from the test set in which the model, using
single-shot generation, identified conformers at least 1kcal/mol lower in energy compared to the
dataset reference. To validate these results, we performed density functional theory (DFT) calcula-
tions with a CPCM implicit solvent model. Of the 77 molecules that successfully completed DFT
geometry optimization, only one had a higher energy (0.8 kcal/mol) compared to the reference. For
56 molecules, DFT optimization confirmed an energy improvement of at least 0.5 kcal/mol, vali-
dating the accuracy of our generative model (see Figure 3 for examples and plot). These results
demonstrate that LoQI can efficiently search conformers with DFT-level accuracy at computational
costs significantly lower than direct DFT-level geometry optimization.

LoQI excels not only on conformational energy metrics but also structurally. Geometry opti-
mization converged of the generated conformers converged in nearly every case, perserving the
molecular topology defined by the input structure. Additionally, the median relaxation energy
(∆Erelax)—the energy adjustment required after post-generation geometry optimization—is mini-
mal (3.48kcal/mol), indicating that LoQI produces conformations remarkably close to true minima,
requiring little subsequent refinement. This reduces the need for costly refinement steps, making the
approach highly suitable for applications requiring high-throughput, structure-based analysis.
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a b

Figure 3: Comparison of AIMNet2 and DFT energies for molecules where LoQI identified a lower-
energy conformer via single-shot generation. (a) Three representative examples illustrating struc-
tural differences between the ChEMBL3D reference conformers (gray) and the generated conform-
ers (green), along with corresponding energy differences computed using AIMNet2 and DFT. (b)
Correlation between energy differences computed using AIMNet2 and those obtained from DFT,
both evaluated on DFT-optimized structures across all 77 successfully optimized molecules. The
strong agreement highlights the reliability of AIMNet2 for accurately guiding low-energy conformer
generation.

Classical methods, while highly reliable in preserving topology (e.g., RDKit at 99.5%), struggle to
generate accurate low-energy conformations. RDKit finds near-optimal conformers in only 10.4%
of molecules and improves upon the dataset minimum in just 3.1%. Omega performs similarly,
reflecting the limitations of heuristic-driven sampling in covering the true conformational landscape.

Among the generative model baselines, retrained DMT-B is the most competitive, achieving 33.4%
within 0.1 kcal/mol of the minimum. That model exhibits a substantially higher relaxation energy
(43.42 kcal/mol), indicating its generated conformers substantially deviate from true local minima
and revealing a fundamental limitation in learning the underlying energy landscape. Models without
retraining perform substantially worse, underscoring the value of both the method and the training
data.

Together, these results support a broader conclusion: LoQI represents a practical solution to the long-
standing problem of efficient low-energy conformer search without relying on heuristics, predefined
rotatable bonds, or fragment templates.

Table 1: Performance comparison of low-energy conformer generation methods on the ChEMBL3D
hold-out set. Metrics include optimization success, topological fidelity, and energy-based accuracy.

Method
Median
∆Eopt

relative
1

(kcal/mol)

% ∆Eopt
relative

1

< 0.1 kcal/mol
% ∆Eopt

relative
1

< −0.1 kcal/mol
Minimization
Converged, %

Topology
Preserved, %

Median
∆Erelax

2

(kcal/mol)

RDKit 3.39 10.4 3.1 99.5 99.5 64.50
OEOmega 1.42 15.7 13.0 99.8 99.8 13.19
TorsDiff 2.62 15.3 7.7 99.0 97.4 63.09
DMT-B 1.81 19.9 11.5 99.8 99.8 82.70
DMT-L 1.72 20.8 12.4 99.9 99.8 86.43

TorsDiff3 4.66 7.7 2.7 94.6 87.3 92.02
DMT-B3 0.45 33.4 12.5 99.5 95.7 43.42
LoQI 0.33 38.5 14.0 100 99.9 3.48

3.2 LoQI is a Stereochemistry-Aware Model

A significant limitation of current all-atom generative models operating directly on molecular graphs
is the lack of explicit stereochemical encoding. Unlike torsion-based methods such as Torsional
Diffusion, which theoretically preserve stereochemistry by modeling conformers in torsional space,
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Cartesian coordinate-based models rely only on relative atomic arrangements and element types. As
a result, they are unable to recover stereochemical configurations such as E/Z isomerism and R/S
chirality, which makes these tools less practical.

We address this challenge by introducing a simple yet effective graph augmentation that encodes
stereochemical information directly into the input graph (see Figure 4). For E/Z stereochemistry, we
add four auxiliary edges between neighbors of each double bond with possible E/Z isomerism: two
“joint” Z-bonds connecting adjacent substituents and two “diagonal” E-bonds connecting across
the double bond. This distinguishes stereoisomers based on relative substituent positioning. For
R/S stereocenters, the lowest-priority (according to Cahn-Ingold-Prelog rules) atom connects to the
remaining three via undirected edges, while the other three form a directed cycle consistent with
the stereochemical configuration. These augmentations, combined with directional message pass-
ing, provide sufficient context for the neural networks to drive stereochemistry-aware 3D structure
generation.

The stereochemical augmentation is both architecture-agnostic and easily generalizable to other
stereochemical types, such as axial or planar chirality. It effectively bridges a gap between the
classical cheminformatics tools that inherently handle stereochemistry and modern generative ap-
proaches.

Table 2 demonstrates the effectiveness of this strategy. LoQI is capable to preserve defined stereo-
chemistry, with 0.956 R/S and 0.992 E/Z accuracy, on par with traditional methods like RDKit and
OpenEye Omega, and substantially outperforming all previous generative models. Notably, even
retrained diffusion models such as Torsional Diffusion struggle with E/Z stereochemistry, despite
our best efforts to enforce correct initialization and labeling. This suggests that torsional genera-
tive models, while inherently more structured, still lack reliable mechanisms for the enforcement of
stereochemistry during sampling.

The proposed stereochemical graph encoding approach not only enhances LoQI’s practical applica-
bility but also represents, to our knowledge, the first successful integration of explicit stereochemical
encoding into an all-atom diffusion-based generative model. This advancement significantly ex-
pands the scope of generative models for reliable and accurate application across diverse chemical
and pharmaceutical use cases.

3.3 Impact of Rotatable Bonds

A critical challenge in molecular conformer generation is the exponential complexity introduced
by increasing number of rotatable bonds. To specifically assess performance under this challenge,
we created an additional test subset, which we refer to as ChEMBL3D-XL. This subset consists
of approximately 300 molecules per number of rotable bonds selected to span up to 25. For each
molecule, we generated up to 100 conformers using LoQI, RDKit ETKDG, and OE Omega Classic,
followed by optimization with the same neural network potential used during ChEMBL3D creation.
We then evaluated the probability of recovering the reference minimum conformer as a function
of the number of trials. We define success for this performance assessment as at least one attempt
producing a conformer within within 0.1 kcal/mol of the value in the dataset. We also look at the
fraction of molecules for which we were able to find better conformation with 0.5 kcal/mol margin.

The results highlight the significant gain in performance of the LoQI model, especially as molecular
complexity increases with the number of rotatable bonds. As shown on Figure 5, the model’s accu-
racy improves with increasing numbers of rotatable bonds leading to an order of magnitude higher
success rate for molecules with large number of rotable bonds compared to OE Omega and RDKit.

3.4 Fast and Accurate Estimation of Energy Differences Between Bound and Unbound
Molecular States

To demonstrate the utility of LoQI in estimating energy differences between ligand-bound and un-
bound states, we evaluated it on the Platinum Diverse dataset [4], a widely used benchmark con-
taining 2,879 ligand crystal structures. Although this dataset was originally proposed for conformer
generation benchmarking, it consists of crystal-bound conformers that often deviate significantly
from the lowest-energy gas-phase or solution-phase geometries due to intermolecular interactions
and crystal packing effects [4, 37]. Since LoQI is trained to predict low-energy conformers of iso-
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Figure 4: Stereochemistry-aware graph augmen-
tations. Top: For E/Z, four auxiliary bonds
are added—two Z-bonds (joint) and two E-
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Table 2: Stereochemistry accuracy of conformer
generation methods on the ChEMBL3D hold-
out set. Reported values indicate the fraction
of molecules with correctly generated configura-
tions for R/S and E/Z stereocenters.

Method R/S
Accuracy1

E/Z
Accuracy2

RDKit 0.993 0.993
OEOmega 0.993 0.985
TorsDiff 0.993 0.734
DMT-B 0.377 0.706
DMT-L 0.385 0.740

TorsDiff3 0.993 0.502
DMT-B3 0.793 0.990
LoQI 0.956 0.992

1 R/S accuracy: fraction of molecules with correctly
reproduced absolute stereochemistry at tetrahedral
centers.
2 E/Z accuracy: fraction of molecules with correct
stereochemistry at double bonds.
3 Indicates models retrained using the same protocol
as LoQI on ChEMBL3D.

lated molecules in CPCM implicit solvent, we do not report standard conformer generation metrics
on this set (see Appendix A for further discussion). Instead, we use the energy differences between
experimentally observed bound conformers and computationally predicted low-energy structures as
a rigorous test of the model performance.

For each ligand, we generated conformational ensembles comprising 500 structures using LoQI and
RDKit’s ETKDG algorithm. We identified the lowest-energy conformer from each ensemble as
the reference minimum. The observed energy differences showed a median of 1.84, kcal,mol−1,
consistent with the typical magnitude of the change in energy from the crystal packing (Figure 6a).
Several structures exhibited large deviations (> 10, kcal,mol−1), reflecting substantial structural
differences between the crystal-bound and isolated conformational preferences.

Figure 6b illustrates the accuracy tradeoff between the number of sampled conformers and the esti-
mated energy differences between crystal-bound and isolated minima. Notably, chemical accuracy
(mean absolute error < 1, kcal,mol−1) is achieved by LoQI with as few as five sampled conform-
ers, whereas RDKit’s ETKDG fails to reach this threshold even after generating 100 conformers.
Quantitatively, expanding the conformer ensemble from one to 99 conformers reduces mean abso-
lute prediction error from 2.29 to 0.14, kcal,mol−1 for LoQI, compared to a reduction from 5.24 to
1.31, kcal,mol−1 for RDKit ETKDG. This contrast highlights the capability of generative models
to rapidly and accurately capture nuanced conformational energy landscapes that would be difficult
to achieve with the rule-based heuristics of traditional methods.

4 Conclusions

In this study, we introduced ChEMBL3D, the largest publicly available dataset of high-quality,
DFT-level molecular conformations, comprising over 250 million optimized conformers for 1.8 mil-
lion molecules with diverse protonation states and stereochemical configurations. Leveraging this
dataset, we trained LoQI, a stereochemistry-aware diffusion model tailored explicitly for accurate
and computationally efficient low-energy conformer generation. LoQI represents the first generative
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Figure 5: (a) Fraction of molecules for which the LoQI finds the minimum-energy conformer within
a specified number of trials (1, 2, 5, 20, 100), as a function of the number of rotatable bonds. (b)
Fraction of molecules where LoQI identifies a conformer lower in energy than the ChEMBL3D
dataset reference conformer by at least 0.5 kcal/mol. (c) Example of a molecule with zero rotatable
bonds for which LoQI finds a lower-energy conformer than those in ChEMBL3D. (d) Representative
molecules with different numbers of rotatable bonds, as defined in RDKit.

a b c

J74_3M2N_A
ΔE = 7.9 kcal mol-1

IWD_3T96_B
ΔE = 7.7 kcal mol-1

Figure 6: Neural-network-driven estimation of conformational energy differences on the Plat-
inum Diverse dataset. (a) Distribution of energy differences between crystal-bound and isolated
minimal-energy conformers, highlighting significant energy deviations due to crystal packing con-
straints. (b) Mean absolute error (MAE) in energy difference estimation versus conformer ensemble
size. LoQI rapidly achieves chemical accuracy compared to RDKit’s ETKDG. (c) Representative
crystal structures demonstrating geometric deviations between crystal-bound (grey) and isolated
minimal-energy conformations (green). Crystal-bound structures are consistently more open and
strained compared to minima.

model trained on complex molecules sourced from ChEMBL. Critically, ground truth conformers
are optimized under realistic conditions with implicit solvent.

The LoQI model overcomes the challenge of conformational sampling and the need for exhaustive
multi-conformer searches by directly generating low-energy 3D geometries in a single shot, bypass-
ing the heuristic-driven exploration of vast conformational space. This enables it to consistently
produce conformers within 0.1 kcal/mol of the minimum-energy structure for a large fraction of
molecules while requiring minimal post-generation optimization. As a result, LoQI effectively in-
tegrates the conformational search and low-energy selection steps into a single generative process,
eliminating the computational cost of enumerating and optimizing large conformer ensembles.
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To facilitate widespread adoption, reproducibility, and community-driven advancements, we openly
release both the ChEMBL3D dataset and the LoQI model. The model’s code, references to datasets,
and other relevant resources will be available at the time of workshop. We believe this resource
will significantly benefit researchers and practitioners across various fields, inspiring new method-
ological developments and fostering deeper collaboration within the computational chemistry and
artificial intelligence communities.
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A Platinum-Diverse Conformer Search Benchmark

The Platinum Diverse dataset, comprising 2,879 experimentally determined ligand crystal struc-
tures [4], is a widely accepted benchmark for evaluating small-molecule conformer generation meth-
ods. However, crystal-packing effects and protein-ligand interactions frequently cause bound ligand
conformers to deviate substantially from their gas-phase or implicit-solvent energy minima. Our
model, trained exclusively on in silico conformers—specifically, ChEMBL molecules optimized
using the CPCM–AIMNet2 neural network potential to approximate implicit-solvent DFT condi-
tions—is inherently biased toward lower-energy, solution-phase geometries. As such, we anticipated
partial but not complete transferability to the more energetically diverse and structurally constrained
conformations found in the Platinum Diverse dataset.

Despite these inherent limitations, LoQI consistently yields the lowest mean and median RMSD
values across all ensemble sizes evaluated (Table 3). Notably, the model achieves a median RMSD
of 0.45Å at an ensemble size of N = 250, surpassing RDKit (0.52Å) and ETKDG (0.54Å), and
matching performance of computationally intensive genetic-algorithm methods.

These findings demonstrate that a generative model trained exclusively on low-energy solution-
phase conformations effectively generalizes to the distinct conformational landscape of protein-
bound ligands. More broadly, this benchmark underscores the potential of data-driven 3D gener-
ative models to overcome the intrinsic complexity of conformer searches, even under conditions
significantly divergent from the training distribution.

Table 3: Arithmetic mean and median RMSD (Å) for the Platinum Diverse dataset. Values in bold
indicate the best (lowest) performance in each column; values statistically indistinguishable from the
best (within ±0.02 Å) are underlined. Bold and underlined entries represent the LoQI performance
when at least one other method is within this tolerance range.

Method 10 50 250
Mean Median Mean Median Mean Median

Balloon DG 1.10 0.97 1.00 0.86 0.92 0.77
Balloon GA 1.22 1.10 0.90 0.80 0.72 0.63
RDKit 1.00 0.89 0.77 0.64 0.63 0.52
ETKDG 0.98 0.87 0.77 0.66 0.63 0.54
Frog2 1.18 1.19 0.93 0.85 0.75 0.65
Multiconf-DOCK 0.99 0.89 0.84 0.72 0.80 0.69

LoQI 0.95± 0.01 0.88 0.74± 0.01 0.65 0.58± 0.01 0.45

B Performance on Macrocycles and Complex Stereoisomers

Macrocyclic molecules are a particularly demanding class of chemical compounds for conformer
generation due to their large ring structures, inherent flexibility, and complex conformational land-
scapes. We selected six representative macrocycles from the MPCONF196 benchmark dataset [38]
to serve as a targeted assessment of LoQI’s accuracy and transferability. For each macrocyclic com-
pound, ensembles of 100 conformers were generated, and the lowest-energy conformer most closely
resembling the high-level quantum-chemical reference structures (CCSD or MP2 optimized) was
identified.

The results, illustrated in Figure 7, demonstrate that LoQI consistently generates accurate macro-
cyclic conformers closely aligned with reference structures, achieving root-mean-square deviation
(RMSD) ranging from approximately 1.0 Å (for smaller macrocycles such as POXTR) to about
1.9 Å (for larger, more flexible cases like SANGLI).

Additionally, we evaluated the performance of our method on taxol, a molecule recognized for its
challenging stereochemistry and structural complexity. Figure 7b compares the generated taxol con-
former (in green) against its experimental crystal structure obtained from the Cambridge Structural
Database (CSD) (in grey). The close alignment, 1.2 Å, underscores our model’s robustness in ac-
curately reproducing intricate stereochemical details. These results collectively highlight LoQI’s
generalizability to complex molecules with numerous stereocenters.

12



648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

a SANGLI, RMSD=1.9Å POXTRD, RMSD=1.0ÅYIVNOG, RMSD=1.7Å

CAMVES, RMSD=1.1Å CHPSAR, RMSD=1.6Å COHVAW, RMSD=1.1Å

b Taxol (paclitaxel) 
RMSD=1.2Å
CSD_ID: ZUKTEE

Figure 7: Performance on challenging macrocycles and complex stereoisomers. (a) Examples of
macrocyclic conformers generated for selected molecules from the MPCONF196 dataset. Generated
conformers (green) are overlaid with their reference structures (grey). RMSD values highlight strong
structural agreement. (b) Example of taxol, a molecule known for challenging stereochemistry,
comparing generated conformer (green) with its experimental crystal structure from CSD (grey).
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