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ABSTRACT

The advent of large language models (LLMs) capable of producing general-purpose
representations lets us revisit the practicality of deep active learning (AL): By
leveraging frozen LLM embeddings, we can mitigate the computational costs of
iteratively fine-tuning large backbones. This study establishes a benchmark and
systematically investigates the influence of LLM embedding quality on query strate-
gies in deep AL. We employ five top-performing models from the massive text
embedding benchmark (MTEB) leaderboard and two baselines for ten diverse text
classification tasks. Our findings reveal key insights: First, initializing the labeled
pool using diversity-based sampling synergizes with high-quality embeddings,
boosting performance in early AL iterations. Second, the choice of the optimal
query strategy is sensitive to embedding quality. While the computationally inex-
pensive Margin sampling can achieve performance spikes on specific datasets, we
find that strategies like Badge exhibit greater robustness across tasks. Importantly,
their effectiveness is often enhanced when paired with higher-quality embeddings.
Our results emphasize the need for context-specific evaluation of AL strategies, as
performance heavily depends on embedding quality and the target task.

1 INTRODUCTION

Self-supervised learning has transformed natural language processing (NLP), enabling models from
BERT (Devlin et al., 2019) to large language models (LLMs) like GPT variants (Radford et al., 2018;
2019; Brown et al., 2020; OpenAI, 2023) to acquire powerful capabilities from vast unlabeled datasets.
This paradigm shift, extending across domains like computer vision (Caron et al., 2021; Oquab
et al., 2024), has yielded foundation models whose pre-trained embeddings often perform effectively
without requiring full model fine-tuning (Oquab et al., 2024). Leveraging frozen embeddings offers an
efficient pathway for deep learning research: it drastically reduces computational costs, circumvents
complexities associated with fine-tuning LLMs (Rauch et al., 2023), and offers the ability to isolate
the impact of the embedding itself. Since obtaining humanly labeled data for downstream tasks is still
expensive, this renewed practicality invites a re-examination of computationally intensive methods
to save annotation costs or those that require fast downstream adaptation, like deep active learning
(AL). AL aims to maximize model performance under limited labeling budgets by selecting the most
informative instances for annotation (Settles, 2009), a process reliant on embedding quality.

However, the utility of LLM embeddings is not uniform. Their quality, reflected by their ability
to capture relevant semantic information, varies notably depending on the model architecture, pre-
training data, and training objectives (Tao et al., 2024). Benchmarks like the massive text embedding
benchmark (MTEB) (Muennighoff et al., 2023) aim to quantify this variability through evaluations
on diverse static tasks (e.g., retrieval, classification) with a dynamic leaderboard.1 However, how
these static benchmark rankings translate to the effectiveness of embeddings within the dynamic,
iterative instance selection process of AL remains largely unexplored. The effectiveness of AL query
strategies critically depends on the underlying representation’s ability to discern data characteris-
tics (Hacohen et al., 2022). High-quality embeddings should theoretically enable AL strategies to
identify ambiguous instances better or explore underrepresented data regions (Hacohen et al., 2022;
Gupte et al., 2024). This dependency extends to the initial pool selection (IPS) in AL, where using

1https://huggingface.co/spaces/mteb/leaderboard_legacy
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high-quality embeddings might offer significant advantages over the common practice of random
initialization (Huseljic et al., 2024a; Gupte et al., 2024), especially in low-budget scenarios.

Despite the intuitive link between embedding quality and AL performance, this relationship remains
unverified for LLMs as feature extractors. Deep AL research in NLP has focused on evaluating LLMs
as labeling sources (Kholodna et al., 2024; Astorga et al., 2024) and comparing query strategies
based on fine-tuning of small LMs (Rauch et al., 2023; Margatina et al., 2022; Schröder et al.,
2022). This makes it challenging to isolate the contribution of the embedding quality from the
fine-tuning dynamics, or to determine if a strategy’s success is generalizable beyond specific training
paradigms (Rauch et al., 2023). We raise the question: Is there a universally best query strategy, or
does the optimal choice depend on the interplay between the embedding model, the query strategy,
and the specific downstream task? This paper addresses this gap through a comprehensive benchmark
study focused on frozen LLM embeddings within a practical deep AL framework, providing insights
and reference performance data. Our contributions are:

Contributions
1. We conduct a comprehensive benchmark study on how LLM embedding quality affects

AL by using five top-performing LLMs on the MTEB leaderboard and two baseline models on
ten NLP tasks (Rauch et al., 2023) with seven query strategies.

2. We show that diversity-based initial pool selection (i.e., TypiClust) paired with strong
embeddings yields a notable early-round advantage over random sampling.

3. We demonstrate that AL strategy rankings vary with embedding model and task. While
Margin sampling is strong on specific datasets, Badge and Entropy demonstrate greater
robustness and benefit from higher-quality embeddings.

4. We confirm that no single strategy is universally superior, exposing limitations of static
benchmarks like MTEB for predicting AL utility and challenging future AL research to account
for these contextual factors.

5. We release an extensible deep AL frameworka built on the scikit-activeml package (Kottke
et al., 2021), enabling reproducible experiments with any frozen LLM embeddings. This
framework underpins our benchmark and fosters further research into practical deep AL
pipelines.
ahttps://anonymous.4open.science/r/al-llm-embeddings

2 RELATED WORK

Starting from Table 1, which compares related AL benchmarks, this section discusses the key features
of our benchmark in the broader context of AL and NLP research.

Embeddings in NLP. Large-scale pre-trained language models, enabled by transformers (Vaswani
et al., 2017), have revolutionized NLP. Starting with encoder models like BERT (Devlin et al., 2019),
the field has rapidly evolved towards LLMs, including decoder-centric architectures like the GPT
series (Radford et al., 2018; 2019; Brown et al., 2020; OpenAI, 2023). The resulting robust, task-
agnostic embeddings as frozen features bypass the need for full model fine-tuning (Oquab et al., 2024).
For lightweight downstream tasks or settings with limited supervision, shallow model training (e.g.,
linear probing) can yield strong performance at a fraction of the cost of full fine-tuning. Moreover,
many practical use cases, such as clustering or small-scale classification, do not require full-text
generation, making generative LLMs unnecessarily expensive and often impractical at scale (Reimers
& Gurevych, 2019). However, the quality of these embeddings varies across models, prompting
benchmarks like MTEB (Muennighoff et al., 2023) for systematic evaluation. While MTEB provides
valuable quality metrics, how this quality translates to dynamic, data-selection processes remains an
open question central to our work.

AL in NLP. Deep AL is a well-studied paradigm across domains (Huseljic et al., 2024b; Rauch et al.,
2023; 2024) aimed at reducing annotation costs by enabling a model to actively query labels for
instances from which it expects to learn the most (Settles, 2009). Despite extensive research (Huseljic
et al., 2024a), comparing the effectiveness of different AL query strategies has historically been
difficult due to diverse experimental settings, particularly in the context of deep learning (Rauch et al.,
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2023; Schröder et al., 2022; Margatina et al., 2022). Recognizing this challenge for transformer-based
LMs, the ActiveGLAE benchmark (Rauch et al., 2023) provides a comprehensive collection of
datasets (which we utilize in this study) and evaluation guidelines intended to facilitate and streamline
the assessment of deep AL across studies. It identifies key challenges hindering comparisons, namely
dataset selection, model training protocols, and AL settings. However, the initial baselines and
focus within ActiveGLAE as well as previous research (Schröder et al., 2022; Margatina et al.,
2022) primarily centered on encoder-only LMs like BERT (Devlin et al., 2019), evaluated using
iterative fine-tuning throughout the AL process. While valuable for that specific setting, our work
addresses the increasingly relevant paradigm of leveraging larger LLMs as fixed feature extractors,
a computationally efficient approach common in transfer learning. This shift is also motivated by
practical considerations: fine-tuning large generative LLMs within a typical classification-focused AL
loop presents computational challenges. It requires complex model adaptations, making comparisons
highly dependent on the specific fine-tuning protocol and the model itself. Utilizing frozen embed-
dings (i.e., linear probing) circumvents these issues, allowing us to isolate the impact of the initial
embedding quality provided by LLMs, separate from the confounding factors of model fine-tuning.
Within this frozen-embedding framework, we evaluate a range of established AL query strategies
covering the main approaches (Zhan et al., 2022). For uncertainty sampling, which targets instances
where the model is uncertain (Settles, 2009), we employ common methods like Margin sampling and
Entropy sampling (Settles, 2009). We also investigate diversity-based sampling strategies, which aim
to select instances representing the underlying data distribution, often by operating on the model’s
embeddings (Sener & Savarese, 2018). Specifically, we include CoreSet (Sener & Savarese, 2018),
ProbCover (Yehuda et al., 2022), and TypiClust (Hacohen et al., 2022). Finally, we consider hybrid
strategies that combine uncertainty and diversity principles, namely BADGE (Ash et al., 2020) and
DropQuery (Gupte et al., 2024). By systematically evaluating these diverse strategies across different
LLM embeddings of varying quality (as indicated by MTEB), we aim to understand how embedding
characteristics influence strategy selection and performance in this practical frozen-feature setting.

Table 1: Comparison of AL benchmarks.

B
en

ch
m

ar
ks

Z
ha

n
et

al
.

M
un

ja
le

ta
l.

B
ah

ri
et

al
.

H
ol

zm
ül

le
re

ta
l.

R
au

ch
et

al
.

Ji
et

al
.

L
üt

h
et

al
.

Z
ha

ng
et

al
.

W
er

ne
re

ta
l.

M
ar

gr
af

et
al

.

G
up

te
et

al
.

O
ur

s

Learning Tasks
Classification ✓ ✓ ✓ ✗ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

Regression ✗ ✗ ✗ ✓ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗
Data

Datasets [#] 35 3 69 15 10 5 5 5 9 86 12 10
Text ✗ ✗ ✗ ✗ ✓ ✗ ✗ ✓ ✓ ✗ ✗ ✓

Image ✗ ✓ ✗ ✗ ✗ ✓ ✓ ✗ ✓ ✗ ✓ ✗
Tabular ✓ ✓ ✓ ✓ ✗ ✗ ✗ ✗ ✓ ✓ ✗ ✗

Models
Variants [#] 1 4 2 1 3 2 3 16 6 8 11 7
Pre-trained ✗ ✗ ✓ ✗ ✓ ✗ ✓ ✓ ✓ ✗ ✓ ✓

LLMs ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✓
Active Learning Strategies

Query [#] 17 7 16 8 5 8 5 8 13 9 12 8
IPS [#] 1 1 1 1 1 1 1 1 1 1 2 3

Initial pool selection in AL. The AL process
is iterative, requiring an initial pool of labeled
data to train the first version of the model and en-
able uncertainty query strategies to operate, also
known as the cold-start problem (Yuan et al.,
2020). Recent research shows that the IPS is
crucial for establishing a good classifier that
works efficiently within AL and argues that IPS
is an essential step in the AL cycle (Hacohen
et al., 2022; Chen et al., 2024; Yehuda et al.,
2022). Conventionally, the instances for this
initial pool are selected randomly from the unla-
beled dataset (Huseljic et al., 2024a; Rauch et al.,
2023; Huseljic et al., 2024b). While straightfor-
ward, this random approach may not optimally
represent the underlying data space effectively,
leading to interest in exploring more informed
selection strategies for the initial labeling phase.

AL with pretrained models. The intersection of AL and pre-trained models is increasingly explored.
One relevant line of research utilizes embeddings from pre-trained models as frozen features for AL.
Notably, Gupte et al. (2024) demonstrate this approach using vision foundation models, highlighting
the influence of rich representations on AL strategies, investigating IPS, and introducing the Drop-
Query strategy. Our work builds directly on this paradigm but shifts the focus systematically to the
NLP domain, examining a diverse set of modern LLM embeddings and their quality’s impact on vari-
ous AL strategies and IPS effectiveness. Other studies have investigated AL strategy performance in
different contexts, such as Bahri et al. (2022), who found Margin sampling effective using pre-trained
models on tabular data. However, findings may not directly transfer across domains. In contrast to
the frozen-feature approach, another research direction involves iteratively fine-tuning pre-trained
models during the AL cycle (Hacohen et al., 2022; Tamkin et al., 2022). While showing benefits over
training from scratch, this differs significantly from our setting regarding computational cost and
the goal of isolating the intrinsic contribution of the initial embedding quality. Our work adopts the
computationally efficient frozen setting common in transfer learning scenarios.
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3 EXPERIMENTAL SETUP

Our experimental setup targets studying the interplay between LLM embedding quality and deep AL.

Problem setting. We implement an AL cycle where pre-trained LLMs serve as frozen feature
extractors. This follows the trend in AL for computer vision (Gupte et al., 2024; Hacohen et al., 2022).
Let hω : X → RD denote the pre-trained LLM with frozen parameters ω, mapping an input text
x ∈ X to a D-dimensional embedding hω(x). A classification head then processes this embedding,
fθt : RD → RC , where C is the number of classes. For linear probing, fθt is a linear classifier with
parameters θt at AL cycle iteration t. It predicts class probabilities p̂ = σ(fθt(hω(x))), where σ
denotes the softmax function. This frozen-feature extractor setup offers two main advantages: First,
input embeddings hω(x) only need to be computed once for all instances and can be reused throughout
the AL process, yielding notable computational savings. Second, this configuration effectively isolates
the contribution of the embedding quality (provided by hω) to the AL performance, allowing a precise
assessment across models without the confounding effects of model fine-tuning. Our experiments
operate within a pool-based AL classification setting, starting with a large unlabeled pool U (0) ⊆ D
(where D is the entire dataset) and an initially labeled pool L(0) of size k0 = |L(0)|.
Data, models, and training. To assess the impact of LLM embeddings in deep AL, our experiments
utilize the ActiveGLAE benchmark (Rauch et al., 2023). This benchmark provides a standardized set
of ten diverse NLP classification tasks, chosen to include variations in label imbalance, number of
classes, and domain focus. This variety makes the datasets well-suited for a meaningful evaluation
across different scenarios. Dataset specifics are detailed in Table 2. We select five state-of-the-art LLM
embedding models, chosen as top performers on the MTEB leaderboard (Muennighoff et al., 2023).
We compare them against two baselines: BERT (Devlin et al., 2019), prevalent in prior AL research
for NLP (Rauch et al., 2023; Schröder et al., 2022), and its successor, MODERN-BERT (Warner et al.,
2024). For each model, we obtain embeddings by pooling the appropriate token ([CLS] or [EOS])
according to its specification. Detailed information on these models, including pooling strategy,
parameter count, embedding dimension, MTEB score (the mean score determining leaderboard rank),
and ranking, is provided in Table 3. We repeat all experiments five times using distinct random seeds.
Results are presented as mean and standard deviation. For direct comparisons (e.g., evaluating the
difference between strategies, models, or cycle performance), we employed paired analyses at the
seed level (comparing seed i results only with other seed i results). Embeddings serve as inputs to the
linear classifier in the form of a logistic regression model (Pedregosa et al., 2011), which is optimized
with the LBFGS solver for up to 1,000 iterations.

Table 2: Datasets from ACTIVEGLAE.

Name |Train| |Test| # Classes Budget

AG’s News 120k 7600 4 1000
Banking77 10k 3000 77 5000
DBPedia 560k 5000 14 500
FNC-1 40k 4998 4 3500
MNLI 390k 9815 3 4000
QNLI 104k 5463 2 4500
SST-2 67k 872 2 500
TREC-6 5452 500 6 1000
Wiki Talk 159k 64k 2 3000
Yelp-5 650k 50k 5 2500

Table 3: Models from the MTEB leaderboard.2

Name # Params. # Dim. Pooling MTEB

Pos Score

NVIDIA-EMBED-V2 7.8B 4096 CLS 1 72.31
BGE-EN-ICL 7.1B 4096 EOS 2 71.67
STELLA-V5 1.5B 1536 CLS 3 71.19
SFR-EMBED-2 7.1B 4096 EOS 4 70.31
QWEN2.5-7B 7.6B 3584 EOS 6 69.59
MODERNBERT-BASE 150M 768 CLS – 62.61
BERT-BASE-UNCASED 110M 768 CLS 174 38.33

Initial pool selection. Since IPS methods are influenced by the initial pool size k0 (Hacohen et al.,
2022; Gupte et al., 2024), we first conduct experiments focused explicitly on this stage. We evaluate
two diversity-based strategies (CoreSet, TypiClust) and random sampling for selecting an initial
labeled pool L(0) of varying sizes (ranging from 50 to 5,000 instances) from U (0). To isolate the
impact of the IPS strategy and size, we train the classifier fθ1 only on the initial pool L(0) and evaluate
its initial performance. The best-performing IPS strategy in this evaluation is then used throughout
the main AL cycle experiments.

AL cycle. For the AL experiments evaluating query strategies over multiple iterations, we select an
initial labeled pool L(0). The process then iterates for T = 20 cycles. In each cycle t = 0, . . . , T − 1:

2Snapshot was taken in December 2024. We use GWEN2.5 since the 5th model was another STELLA model.
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1. A query strategy selects a batch B(t) ⊂ U (t) of size |B(t)| = b instances that it expects to
yield the highest performance gains.

2. These instances are annotated, yielding B∗(t) ⊂ D × Y .

3. The pools are updated: U (t+1) = U (t) \ B(t) and L(t+1) = L(t) ∪ B∗(t).

4. The logistic regression classifier fθt is retrained from scratch on the entire updated labeled
pool L(t+1), resulting in updated parameters θt+1.

While the number of cycle iterations is fixed, the total labeling budget B = |L(0)|+ T × b varies per
dataset. We empirically determine this budget B by observing a baseline configuration’s performance
convergence point on each dataset (BERT embeddings with random sampling). Table 2 details the
resulting dataset-specific budget sizes. After the IPS, the fixed total budget B and the number of
cycles T = 20 determine the batch size b for each AL iteration.

4 BENCHMARK RESULTS

Our benchmark investigation focuses on IPS and subsequent AL cycles under varying embedding
qualities. It yields three main findings that provide a performance landscape for this setting: (1) While
not all diversity-based IPS strategies perform well, TypiClust, which selects diverse and representative
instances from the embedding space, provides notable advantages over random sampling when
coupled with high-quality embeddings, particularly in early AL cycles or low-budget scenarios.
(2) Uncertainty-based (Margin, Entropy) and hybrid (Badge) strategies exhibit robust performance
across varying embedding qualities and tasks during the AL cycles. (3) Embedding quality directly
impacts model performance within the AL cycle, as superior representations accelerate the transition
from initial diversity-based exploration to effective uncertainty-based exploitation later in the cycle.

4.1 EFFECTIVENESS OF INFORMED INITIAL POOL SELECTION

This section compares informed IPS strategies to random initialization. In particular, we focus on the
interplay between IPS strategy, initial pool size (k0), dataset characteristics, and embedding quality.
We compare three IPS strategies: Random sampling (baseline), CoreSet (diversity), and TypiClust
(diversity and representativeness) across gradually increasing initial pool sizes, ranging from k0 = 20
to k0 = 5000 instances, using the performance achieved after training only on this initial pool.

Figure 1: Winning IPS strategy frequency
(counts), aggregated across 10 datasets and
7 embedding models for varying initial pool
sizes (k0). Ties are excluded.

Figure 2: IPS performance comparison (accu-
racy vs. initial pool size k0) for selected embed-
ding models on Banks77 (top) and QNLI (bottom)
datasets.

Aggregated results. Figure 1 aggregates the results, showing which strategy performs best most
frequently across all 10 datasets and 7 embedding models for each initial pool size. TypiClust,
which aims to select diverse and representative instances through clustering, outperforms random
sampling and CoreSet for smaller initial pools, particularly those up to approximately 250-300
instances. In contrast, CoreSet, which focuses on geometric coverage of the embedding space,
consistently performs worse than the random baseline, suggesting its diversity approach is unsuitable

5
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for informed IPS in our frozen-feature setting. This also confirms previous results for general AL
performance (Rauch et al., 2023). As the initial pool size (k0) grows beyond 300 instances, the
advantage of TypiClust diminishes, and random sampling becomes competitive. This indicates that
once a sufficiently large initial set is selected, it captures enough diversity for effective initial training.

Impact of task. The overall trend masks important details of datasets and embedding models, as
illustrated in Figure 2. This figure shows performance curves for selected models (BERT, QWEN2.5,
NV-EMBED-V2) on two contrasting datasets: Banks77 (highly multi-class, fine-grained) and QNLI
(binary classification). On Banks77, the advantage of TypiClust is pronounced and persists even with
larger initial pools (e.g., k0 > 500 for high-quality embeddings like NV-EMBED-V2). This highlights
the value of targeting representativeness via TypiClust when the task involves distinguishing between
many fine-grained classes. On QNLI, the performance differences between TypiClust and random
sampling are marginal, even for tiny initial pools (k0 = 50). This suggests that the benefit of
informed IPS strategies is limited for simpler tasks where classes might be more easily separable
in the embedding space. These examples underscore that the effectiveness of an IPS strategy is
context-dependent, influenced by factors like dataset complexity and the number of classes.

Impact of embedding model. The quality of the underlying embedding model also modulates the
effectiveness of diversity-based IPS. As seen in Figure 2 (comparing BERT vs. NV-EMBED-V2 on
Banks77), higher-quality embeddings enable TypiClust to achieve a greater performance advantage
over random sampling, and this advantage often persists across a broader range of initial pool sizes
(k0). This suggests a synergy: superior embeddings provide a richer, more discriminative feature
space where diversity and representativeness can more effectively identify a varied and informative
initial set of instances, leading to a better starting model. While not a perfect correlation across every
model-dataset pair, there is a general tendency for embeddings ranked higher on MTEB to derive
greater benefit from TypiClust initialization, especially when the initial budget (k0) is small.

Takeaway: Effectiveness of IPS
The benefit of informed IPS depends on the context. The diversity-based strategy TypiClust
provides notable advantages over random sampling, primarily for small initial labeled pools
(k0 < 300) and high-quality embeddings (according to MTEB ranks), especially on complex
datasets. The advantage diminishes with larger initial pools or simpler tasks. CoreSet consistently
underperforms random sampling for IPS in this setting. Choosing an IPS strategy requires
considering the available budget, dataset complexity, and quality of the embeddings.

4.2 IMPACT OF INFORMED INITIAL POOL SELECTION ON ACTIVE LEARNING

Figure 3: Performance difference (TypiClust IPS vs. random
IPS) over AL cycles for query strategies. Rows correspond
to datasets, columns to selected embedding models. Positive
values indicate that TypiClust IPS is better than random.

Based on our findings in the previ-
ous section, where TypiClust demon-
strated superior IPS performance over
CoreSet and random sampling, we
now investigate how the use of Typi-
Clust versus random sampling influ-
ences the performance dynamics over
subsequent AL cycles.

Impact of task and embedding
model. Figure 3 illustrates the im-
pact of the IPS choice by plotting the
performance difference (accuracy of
strategy with TypiClust IPS minus ac-
curacy of the same strategy with ran-
dom IPS) over the AL cycle for vari-
ous query strategies. The plots again
show results for selected embedding
models (BERT, QWEN2.5, NV-EMBED-V2) on two different datasets (Banks77 and MNLI). A
consistent pattern emerges across many dataset-model combinations: TypiClust IPS provides an initial
performance advantage (positive difference) in the early AL iterations. This head start is particularly
pronounced for complex, multi-class datasets like Banks77, where the initial performance gain can
be substantial (e.g., differences exceeding 5-10 percentage points for NV-EMBED-V2 in the very
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first cycles, as seen in Figure 3). This suggests that starting with a diverse set selected by TypiClust
allows the model to learn a better initial decision boundary. However, the performance difference
generally diminishes and approaches zero within approximately 5 to 10 AL cycles, indicating that the
models initialized randomly eventually catch up as more informative instances are acquired through
selected AL query strategies. For simpler tasks like MNLI, the initial advantage from TypiClust is
less pronounced and more variable across strategies and models. Additionally, the embedding quality
(i.e., the ranking in MTEB) also strongly influences the performance gains: The NV-EMBED-V2
model shows stronger improvements compared to lower ranks. A comprehensive overview of results
across all datasets and models is available in Appendix B.

Influence on query strategy. Beyond the initial performance boost, the choice of IPS influences the
relative effectiveness of query strategies during the subsequent AL cycles, as shown by the pairwise
win rate matrices in Figure 4. These matrices, aggregated across datasets, models, and cycles, reveal
that the overall hierarchy of query strategies remains largely consistent: Badge, Entropy, and Margin
consistently achieve high average win rates (0.62-0.74), while CoreSet remains the weakest (0.15
mean win rate), regardless of the IPS method. However, comparing the two figures highlights nuanced
shifts. Top-performing strategies (Badge, Entropy, Margin) exhibit slightly higher mean win rates
when initialized with TypiClust, suggesting the diverse start allows them to capitalize more effectively.
Specifically, the comparison shows that the uncertainty-based strategies, Entropy and Margin, slightly
improve their relative advantage over continued diversity-based sampling (i.e., using TypiClust as a
query strategy) when the AL process is initiated with TypiClust IPS. For example, Entropy’s win
rate against TypiClust increases from 0.69 to 0.73. This supports the intuition that TypiClust IPS
ensures initial diversity: the AL process benefits more readily from transitioning to uncertainty
sampling to refine the decision boundary, slightly diminishing the relative value of further diversity
exploration via the TypiClust query strategy itself. Thus, while not significantly altering the strategy
win rates, TypiClust IPS appears to precondition the learning process, subtly favoring subsequent
uncertainty-based or hybrid strategies like Badge.

Figure 4: Strategies’ pairwise win rates for random (left) and TypiClust (right) IPS. Values indicate
the percentage of dataset-model-cycle combinations where the strategy outperforms its opponent.

Takeaway: Impact of IPS on AL
TypiClust IPS often increases early performance, particularly for complex tasks. This increase
is larger for higher-quality embeddings (e.g., NV-EMBED-V2) but typically diminishes over
5-10 AL cycles. While the overall ranking of query strategies remains stable regardless of IPS,
TypiClust initialization enhances the effectiveness of top strategies (Badge, Entropy, Margin).
Specifically, it slightly increases the relative effectiveness of subsequent strategies prioritizing
uncertainty over continued diversity-based sampling, potentially allowing models trained on
better embeddings to transition faster towards refining decision boundaries (exploitation).

4.3 IMPACT OF EMBEDDING QUALITY ON ACTIVE LEARNING

This section analyzes the performance of various query strategies when used with embeddings from
different LLMs, ranked according to their MTEB scores (cf. Tab. 3). We aim to demonstrate the
role of embedding quality in the AL process by examining performance across multiple datasets and
query strategies. We conduct all experiments with TypiClust as our best-performing IPS strategy.
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Figure 5: Win rate of each strategy being
the top performer per AL cycle, aggregated
across all embeddings and datasets. Ties
are excluded.

General results. A primary observation is that higher-
quality embeddings from LLMs enhance the down-
stream classification performance in AL compared to
the baseline embeddings, like those from BERT. Fig-
ure 6 illustrates this at the example of the Banks77 and
MNLI datasets, where using embeddings from top-
ranked models like NV-EMBED-V2 not only leads to
higher overall accuracy but can also enable faster con-
vergence within the fixed budget compared to BERT
embeddings. The specific strategy performances in-
dicate that Margin and Badge are frequently the best-
performing strategies across all components, including
datasets, embedding models, and AL cycle iterations.
We highlight this by showcasing how these strategies
perform by isolating each component.

Impact of cycle iteration. Figure 5 tracks the prevalence of the top-performing strategy across
AL cycles, aggregated over all datasets and embeddings. Margin sampling is superior after the
initial cycle(s), holding the top spot in over 35% of cases throughout the process. However, Entropy
and Badge also demonstrate sustained high performance, each securing the top spot in roughly
20% of cases after the fifth cycle. This highlights the persistent value of uncertainty (Entropy,
Margin) and hybrid (Badge) based strategies, while diversity-based strategies like DropQuery show
diminishing returns over time. This figure visualizes shifting from diversity-centric exploration
towards uncertainty exploitation as the AL process matures (Hacohen et al., 2022).

Impact of embedding source. The influence of the specific embedding source is highlighted in
Figure 7 (left), which shows top strategy prevalence broken down by embedding model, aggregated
over datasets and cycles. Margin sampling exhibits robustness, performing well across the entire
spectrum of embedding qualities, from baseline BERT embeddings to high-ranked LLM embeddings
like NV-EMBED-V2. In contrast, the effectiveness of Badge is more strongly influenced by the
quality of the input embeddings. Badge achieves notably higher top-performance rates when utilizing
higher-quality LLM embeddings compared to the baseline BERT embeddings (with STELLA being
an exception). This suggests that Badge’s hybrid nature makes it particularly dependent on leveraging
the richer information present in better representations.

Impact of classification task. Figure 7 (right) underscores the task dependency of strategies. Margin
sampling works very well on simpler datasets (e.g., AGNews, DBPedia, TREC6) with winning
rates from 76 to 94%. However, on more complex datasets (e.g., Banks77, Yelp5, MNLI), Entropy
and Badge emerge as the winners, with Margin showing little success with low win rates. This
dataset-specific behavior, coupled with the higher average pairwise win rates observed for Badge and
Entropy (Figure 4), suggests that while Margin can be effective for less complex tasks, Badge and
Entropy offer greater overall robustness across diverse datasets and embedding types.

Figure 6: Performance comparison using NV-EMBED-V2, BGE, SFR, QWEN2.5, and BERT
embeddings on Banks77 (top) and MNLI (bottom) datasets over AL cycles with random IPS.
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Figure 7: Win rates of being the best strategy per embedding model (left grid) and per dataset (right
grid), aggregated across all datasets and AL cycles. Ties are excluded.

Takeaway: Impact of embedding quality on AL
High-quality LLM embeddings generally boost AL performance compared to baseline embed-
dings. Margin sampling exhibits strong performance spikes and is relatively robust to varying
embedding qualities. Badge and Entropy emerge as more consistently high-performing and
robust strategies across datasets and AL cycles. Notably, Badge’s effectiveness is enhanced by
higher-quality LLM embeddings. This reinforces that uncertainty-based and hybrid strategies
are adept at leveraging informative embeddings, especially as the AL process matures and shifts
from exploration (diversity) to exploitation (uncertainty). The best strategy choice remains
context-dependent, necessitating consideration of the embedding source and task characteristics.

5 CONCLUSION AND LIMITATIONS

Conclusion. This work presents a benchmark study that systematically investigated the influence
of frozen LLM embedding quality in deep AL across a diverse set of text classification tasks. Our
results also serve as a reference for future research across domains. We employed a practical frozen
feature setting while leveraging top-ranked MTEB embedding models and current AL strategies.
We examined the interplay between embedding quality, IPS, query strategy performance, and task
differences. We demonstrate that choosing an IPS strategy interacts with embedding quality. Con-
cretely, informed IPS via TypiClust provides a performance advantage in early AL cycles compared
to random IPS, particularly with high-quality embeddings on complex datasets. However, this initial
head start typically diminishes after a few AL cycles. Analyzing the query strategies, our results
revealed nuanced performances: While Margin sampling demonstrates strong efficacy on specific
tasks, strategies like Badge show greater overall robustness across tasks. The effectiveness of Badge
is often amplified when paired with higher-quality embeddings. This underscores that the optimal
query strategy is highly context-dependent, influenced by both the embedding model and the specific
task characteristics, further challenging the notion of a universally superior AL strategy. We also
observed that using TypiClust IPS subtly accelerated the transition where uncertainty-based strategies
start to outperform diversity-based ones in subsequent AL iterations. Furthermore, we reaffirmed
the impact of overall embedding quality: models with higher MTEB rankings generally facilitate
superior performance and faster convergence within the AL cycle.

Limitations. Our focus on frozen embeddings with a logistic regression classifier, while allowing
for precise analysis of embedding impact, does not explore the dynamics of fully fine-tuning LLMs
within the AL loop. Additionally, while diverse, the evaluation across ten NLP classification tasks
may not cover all possible scenarios, and the insights derived from MTEB (primarily a dynamic
retrieval-focused benchmark) might not fully generalize to all AL applications across domains.
Despite these limitations, this study highlights the complex interplay between embedding quality,
initial pool selection, query strategy selection, and task specifics in designing practical and efficient
deep AL pipelines using LLM embeddings.
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ETHICS STATEMENT

This work uses publicly available datasets from the ActiveGLAE benchmark, which may contain
societal biases (e.g., in representation or labeling). Our active learning framework does not mitigate
these biases and could potentially amplify them through query selection. The pre-trained embedding
models may propagate training data biases, and our frozen-feature setup promotes efficiency but
limits debiasing. We encourage responsible use of our released framework, especially in sensitive
domains.

REPRODUCIBILITY STATEMENT

Our experiments are reproducible via the released extensible framework (built on scikit-activeml (Kot-
tke et al., 2021)) at https://anonymous.4open.science/r/al-llm-embeddings,
which includes all code, hyperparameters, and setup instructions. We use datasets from ActiveGLAE
(Table 2), specified MTEB models (Table 3), and logistic regression via scikit-learn. All runs (5
seeds per configuration) were conducted on a NVIDIA A100 GPU for embeddings and AMD EPYC
CPUs for active learning experiments. Further details about the total CPU runtime can be found in
Appendix 5). Embeddings are pre-computed and reused for consistency and efficiency.

LLM USAGE STATEMENT

LLMs were used solely as writing assistants for improvements to tables, grammar, wording, and
clarity in the manuscript. They were also employed for light code debugging to identify and fix
minor coding tasks, such as syntax or logical errors. All core research ideas, experimental design,
primary code implementation, data analysis, and benchmark results were developed independently
by the authors without LLM involvement. This limited use aligns with our commitment to original
authorship and responsible AI practices.
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APPENDIX

A COMPUTATIONAL RESOURCES AND EXPERIMENT RUNTIME

This appendix provides the computational resources and experiment runtimes of the benchmark.
The initial computation of LLM embeddings utilized an NVIDIA A100 GPU (80GB VRAM) on
a SLURM cluster. All further experimental steps, including the iterative training of the logistic
regression classifier and the execution of active learning query strategies (some of which, e.g.,
BADGE, are memory-intensive), were carried out on AMD EPYC CPUs equipped with up to 80GB
RAM. Table 4 details the computation time required to generate embeddings for all datasets using a
single A100 GPU.

Table 4: Total Runtime to create embeddings for all datasets.

Model Runtime (dd-hh:mm)

NVIDIA-EMBED-V2 (Lee et al., 2025) 01-18:26
BGE-EN-ICL (Xiao et al., 2024) 03-09:16
STELLA-V5 Zhang et al. (2025) 00-22:06
SFR-EMBED-2 (Meng et al., 2024) 03-09:14
QWEN2.7-7B (Meng et al., 2024) 02-19:48
MODERNBERT Warner et al. (2024) 00-09:15
BERT-BASE-UNCASED (Devlin et al., 2019) 00-03:16

Table 5 presents the average runtime and standard deviation over 5 seeded runs for each strategy
and dataset combination, exemplified by the random IPS strategy across all models. The total CPU
time for our AL experiments using random IPS was approximately 30 days and 16 hours, while
experiments with TypiClust IPS took around 33 days and 3 hours.

Table 5: Average experiment runtime (mm:ss) for all strategy and dataset combinations of random
IPS across all models.

Strategy Dataset Runtime (mm:ss)

CoreSet AGNews 02:17±01:10
Banks77 15:25±06:53
DBPedia 01:55±00:55
FNC1 08:21±05:09
MNLI 09:52±06:19
QNLI 09:09±05:33
SST2 01:17±00:37
TREC6 02:09±00:54
Wikitalk 04:57±02:32
Yelp5 05:54±03:33

DropQuery AGNews 06:20±03:08
Banks77 23:08±10:22
DBPedia 06:59±03:44
FNC1 13:06±09:04
MNLI 16:49±10:52
QNLI 08:23±04:46
SST2 05:33±02:56
TREC6 03:48±01:45
Wikitalk 06:17±03:15
Yelp5 11:39±06:04

ProbCover AGNews 03:16±00:51
Banks77 16:19±06:06
DBPedia 03:33±01:23
FNC1 09:35±04:18
MNLI 11:03±04:11
QNLI 09:31±02:09
SST2 02:20±00:37
TREC6 01:31±00:28
Wikitalk 05:51±00:42
Yelp5 07:37±02:47

Strategy Dataset Runtime (mm:ss)

Badge AGNews 04:43±03:18
Banks77 22:50±33:20
DBPedia 07:34±05:35
FNC1 20:16±15:50
MNLI 15:14±11:24
QNLI 11:17±08:30
SST2 01:36±00:59
TREC6 04:02±02:36
Wikitalk 07:20±05:11
Yelp5 12:09±07:32

Entropy AGNews 01:16±00:36
Banks77 18:19±10:22
DBPedia 01:37±00:47
FNC1 07:04±05:41
MNLI 07:40±06:09
QNLI 02:22±01:52
SST2 00:30±00:06
TREC6 01:11±00:34
Wikitalk 01:54±01:02
Yelp5 05:15±03:25

Margin AGNews 02:09±01:24
Banks77 08:35±04:26
DBPedia 03:04±02:04
FNC1 04:13±03:44
MNLI 03:05±01:57
QNLI 01:01±00:35
SST2 01:04±00:38
TREC6 02:10±01:15
Wikitalk 01:21±00:38
Yelp5 04:07±02:40

Strategy Dataset Runtime (mm:ss)

Random AGNews 00:44±00:16
Banks77 08:07±04:00
DBPedia 01:16±00:32
FNC1 03:19±03:16
MNLI 04:32±03:47
QNLI 01:15±00:43
SST2 00:25±00:05
TREC6 00:39±00:13
Wikitalk 00:54±00:21
Yelp5 03:12±01:46

TypiClust AGNews 22:57±12:48
Banks77 55:36±06:29
DBPedia 11:55±06:37
FNC1 32:34±52:49
MNLI 51:58±09:13
QNLI 01:37±06:44
SST2 11:47±06:31
TREC6 10:58±05:27
Wikitalk 14:20±42:36
Yelp5 03:50±36:56
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B ADDITIONAL RESULTS

This appendix provides supplementary figures that offer a more comprehensive visualization of the
deep AL benchmark experiments discussed in the main paper. To facilitate a broad visual comparison
across different embedding models and datasets, we utilize large matrix plots. While this makes
individual subplots smaller, it enables a quick assessment of general trends.

Figure 8: Performance difference (TypiClust IPS vs. random IPS) over AL cycles (0-20). Rows
correspond to datasets, columns to embedding models. Positive values indicate that TypiClust IPS is
better than random IPS.

Specifically, Figure 8 serves as a direct extension to Figure 3 from the main text. Whereas the
main paper figure selectively illustrated the performance difference between TypiClust IPS and
random IPS for three embedding models (NV-EMBED-V2, QWEN2.5B, BERT) on two datasets
(Banks77, MNLI), this appendix figure presents the complete set of these difference plots across all
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Figure 9: Performance comparison using of models and datasets over AL cycles with Random IPS.

model-dataset combinations investigated. Furthermore, Figures 9 and 10 deliver a complete overview
of the AL performance curves for all experiments.

Figure 9 details the results when using the random IPS strategy, and Figure 10 provides the corre-
sponding comprehensive results for experiments initiated with TypiClust as the IPS strategy. These
figures show performance across all AL cycles, embedding models, and datasets.
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Figure 10: Performance comparison using of models and datasets over AL cycles with TypiClust
IPS.
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