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Abstract

We introduce Prototype Generation, a stricter and more robust form of feature
visualisation for model-agnostic, data-independent interpretability of image classi-
fication models. We demonstrate its ability to generate inputs that result in natural
activation paths, countering previous claims that feature visualisation algorithms
are untrustworthy due to the unnatural internal activations. We substantiate these
claims by quantitatively measuring similarity between the internal activations of
our generated prototypes and natural images. We also demonstrate how the inter-
pretation of generated prototypes yields important insights, highlighting spurious
correlations and biases learned by models which quantitative methods over test-sets
cannot identify.

1 Introduction

Interpretability techniques have become crucial in the era of increasingly powerful artificial intel-
ligence (AI) systems [OpenAI, 2023, Anthropic, 2021, Anil et al., 2023, Touvron et al., 2023]. As
AI models continue to outperform human benchmarks across numerous tasks and domains, the
importance of understanding their decision-making processes has never been more pressing. Apart
from safety concern in high-stakes domains such as healthcare[Bohr and Memarzadeh, 2020] and
autonomous vehicles[Elallid et al., 2022], EU law requires certain AI systems to comply with the
’right to explanation’ [Goodman and Flaxman, 2017] making interpretability crucial for business
operations.

Over the past decade, various methods have been developed to improve human understanding of
complex AI models. Techniques such as LIME [Ribeiro et al., 2016], SHAP [Lundberg and Lee,
2017], CAM [Oquab et al., 2015] and Network Dissection [Bau et al., 2017, Zhou et al., 2018] have
targeted local interpretability, offering explanations of model decisions for individual data points.
However, these techniques cannot provide a global understanding of what a model has learned
overall, which is necessary for comprehensive analysis and trust in automated systems.

In this work, we focus on feature visualisation [Olah et al., 2017] as a powerful interpretability tool
able to extract such holistic insights from arbitrary neural networks. Despite its promise, feature
visualisations have not been without criticism. Past research has pointed out the disparity between
internal processing of feature visualisations as compared to other natural images [Geirhos et al., 2023]
by observing path similarity. We discuss these criticisms further in Section 2.

Addressing these limitations, we introduce Prototype Generation in Section 3, a robust visualisation
tool that not only contains determining features for any given class but also maintains equal or
better path similarity with natural images. Our experiments using Resnet-18[He et al., 2015] and
InceptionV1[Szegedy et al., 2014] show that prototypes generated using our method are highly similar
to natural images in terms of internal path activations.
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Understanding the model at a global level helps in identifying systemic biases, uncovering spurious
correlations, and potentially refining the model for better performance and fairness. We use prototype
generation to discover undesired correlations and identify failure modes on unseen data in Section 4,
demonstrating how our method provides data-independent insights. Our method helps us directly
attribute model behaviour and performance to dataset characteristics. Through this, our contribution
serves the broader goal of enhancing global data-independent interpretability in deep learning models,
thereby making them more transparent, accountable, and trustworthy.

2 Related Work

Feature visualisation is a method to extract information from a model about what it has learned [Mol-
nar, 2021, Mordvintsev et al., 2015, Erhan et al., 2009, Olah et al., 2017, Nguyen et al., 2016].
Unlike local interpretability methods that focus on individual predictions, feature visualisation is
a global interpretability method that aims to visualise the features that different neurons inside a
model have learned to respond to. Observing feature visualisations to understand model behaviour
is a data-independent approach to interpretability, allowing for qualitative assessment of a model’s
internal logic irrespective of any test dataset – and so, can be used to find failure modes irrespective
of whether examples of those failures exist in a test set. This technique works by generating an input
x̂ that maximises a chosen output logit or internal activation (in this case, output logit c with respect
to model h): x̂ = argmax

x
hc(x). Feature visualisation has been used for a number of purposes, such

as identifying specialised circuits within neural networks [Olah et al., 2020] and understanding the
learned features of individual nodes or groups of nodes [Olah et al., 2018].

Despite its utility, feature visualisation is not without its detractors. One prominent line of criticism
comes from Geirhos et al. [2023], arguing that the visualisations may not truly represent what the
model has learned, and so cannot be reliably used to predict its behaviour on unseen data in the
future. These criticisms are substantiated by experiments that manipulate feature visualisations to
produce misleading or contradictory representations without changing the model’s decision-making
process. They also introduce the path similarity metric to quantify this. This metric measures the
similarity between internal activation ’paths’ caused by two different inputs across the layers of a
neural network. If two inputs excite similar neurons, this leads to a high path similarity between
these two inputs. The measure of similarity chosen by Geirhos et al. [2023] is Spearman’s rank order
correlation (referred to as spearman similarity (SS) in the rest of this paper). This path similarity
metric is used to show the disparity between internal activations in response to natural images versus
feature visualisations of the same class.

In the sections that follow, we show that feature visualisations of a specific kind – prototypes
– generated using our method contain key features for the class they represent, and maintain a
consistent path similarity with natural images. By doing so, we overcome some of the limitations
previously associated with feature visualisation.

3 Prototype Generation

For a given model M , we define a prototype P as an input that maximally activates the logit
corresponding to c, while keeping the model’s internal activations in response to that input close to
the distribution of ’natural’ inputs. Let I represent the set of all possible natural inputs that would
be classified by model M as belonging to class c. We aim to generate a prototype P such that
it aggregates the representative features of a majority of inputs in I. Formally, we posit that the
activations AP of P are ’closer’ to the mean activations AI of all I ∈ I than any individual natural
image I across all layers L in M . We measure ’closeness’ between AP and AI using spearman
correlation.

We use spearman similarity as per Geirhos et al. [2023] to allow for direct comparison of our methods
with their published work. Denoting spearman similarity as SS, our formal assertion is that:

SS(AIl ,APcl
) ≥ SS(AIl ,AIl),∀l ∈ L,∀I ∈ I (1)

If this conditions is satisfied, we can confidently assert that prototype P shows prototypical qualities
of the class c, and contains features representative of the model’s understanding of that class.
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3.1 Our Method

(a) Flowchart for methodology used by Olah et al. [2017]

(b) Flowchart of our method

Figure 1: Comparison between our method and feature visualisation method proposed by Olah et al.
[2017]

Existing feature visualisation methods aim to generate an input that maximally activates a selected
neuron inside a neural network. Prototype generation is similarly a technique that generates an input,
but with the objective of maximally activating a selected output logit (rather than an internal activation).
This positions prototype generation as a specialised form of feature visualisation, distinguished by
its focus on class-specific logits rather than internal activations. Our approach differs from the
existing feature visualisation methodology in a number of ways, as shown in Figure 1. We compare
our implementation with the publicly available Lucent [Greentfrapp, 2018] library – the PyTorch
implementation of the methodology proposed by Olah et al. [2017].

Both implementations begin with a randomly initialised image. Lucent converts this randomly
initialised image to the Fourier basis, but we find (as shown later) that this causes the resulting feature
visualisations to be unrepresentative of natural class features. In contrast, we do not optimise in the
Fourier basis, instead optimising the input pixels directly. We first optimise to minimise what we
call probability variance loss, Lpv to generate a baseline input. This loss ensures that the output
logits for our input image are balanced i.e. the input image has roughly an equal chance of being
predicted to be a member of any class. Our preprocessing steps vary depending on the model’s
expectations; for models trained on ImageNet, this involves a normalisation shift using the mean and
standard deviation of the ImageNet training set – of whatever preprocessing the model expects for
inference. Additionally we apply random affine transformations to constrain the optimisation process
and discourage the generation of out-of-distribution (OOD) adversarial inputs – we further discuss
the effect of these transformations in Appendix A. Lucent uses similar random transformations, but
does not tune them for path similarity. The difference in the resultant prototypes for Lucent and our
method can be seen clearly by comparing Figures 2 and 3.

We define two losses: Lc, the negative of the logit for the desired class; and Lhf , the high-frequency
loss that penalises large differences between adjacent pixel values. We use both Lc and Lhf to define
our combined loss whereas Olah et al. [2017] employ only Lc.

3.2 Experiments

We assess the prototypes generated by observing how closely the prototype’s activations mirror the
average activations of natural images in the same class. We quantify closeness between activations
by calculating spearman similarity as defined in Section 2. Appendix A contains information about
hyperparameters and other implementation details.

Path similarity per layer. To characterise the path similarity of our generated prototypes, we select
11 random classes from the ImageNet dataset.

We approximate AI by averaging the activations of 100 randomly selected images from each of the
11 classes. For each class c, we generate a prototype P , capture its activations AP , and also capture
activations from the individual images in I. To alow for direct comparison of our results with those
reported by Geirhos et al. [2023], we also select 100 random images from other classes and capture
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(a) Mosquito Net (0.61) (b) Alaskan malamute (0.53) (c) Flute (0.54)

Figure 2: Example prototypes generated by our method for the ImageNet classes Mosquito Net,
Alaskan malamute and Flute with their average spearman similarity across all layers of Resnet-18

denoted in brackets

(a) Mosquito Net (0.33) (b) Alaskan Malamute (0.22) (c) Flute (0.31)

Figure 3: Example prototypes generated by Olah et al. [2017]’s method for the ImageNet classes
Mosquito Net, Alaskan malamute and Flute with their average spearman similarity across all layers

of Resnet-18 denoted in brackets

their activations denoted by AIdc . Our raw results consist of three sets of spearman similarity scores
between,

• Approximated AI and AP

• Approximated AI and AI , averaged across all I ∈ I

• Approximated AI and AIdc , averaged across all Idc ∈ Idc

This raw data is normalised such that 1 corresponds to the spearman similarity obtained by comparing
natural images of the same class, and 0 corresponds to the spearman similarity obtained by comparing
images of one class against images of different classes. Figure 4 shows the normalised path similarity
obtained by making the above comparisons. Our experimental results show that these prototypes
support our formal assertion for Spearman similarity specified in Equation 1 holds for 147/224 i.e
65.6% of all layers in InceptionV1 averaged across the same 11 classes.

4 Prototype Insights

Since our method generates prototypes that have high path similarity with natural images, 3 we
might expect to be able to better understand what models have learned about given classes simply
by observing their generated prototypes for those classes. Here follows a case study to test whether
information present in our prototypes can reliably predict model behaviour on unseen data. We focus
on prototypes for two Imagenet classes: the academic gown prototype and the mortarboard prototype,
generated by Resnet-18, as shown in Figure 5.
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(a) InceptionV1

(b) InceptionV1, results from Geirhos et al. [2023].

Figure 4: Comparison of Spearman Similarity. Spearman similarities are normalised such that 1
corresponds to the spearman similarity between natural image activations of the same class and 0
corresponds to the spearman similarity between natural image activations of different classes. Here
we show examples on two different networks, and for comparative purposes also provide the results
of the same experiment from Geirhos et al. [2023]. Note that our method produces super-normal
results, with early layer activations from prototypes being closer to the mean natural activation than
any natural input.

(a) Academic Gown Prototype (b) Mortarboard Prototype

Figure 5: Example prototypes from Resnet-18

Hypothesis 1: Resnet-18 will have higher accuracy classifying lighter skinned people wearing
academic gowns than darker skinned people wearing academic gowns.

This hypothesis emerges from the observation that the academic gown prototype in Figure 5a shows a
lighter-skinned face prominently. We test this hypothesis by observing the performance of Resnet-18
on two different sets of 50 images, one containing lighter skinned people wearing academic gowns
and the other containing darker skinned people wearing academic gowns. As shown in Table 1,
lighter-skinned people wearing academic gowns are more likely to be classified as the academic
gown class than darker-skinned people.
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Table 1: Comparison of Resnet-18 performance on light and dark skinned people wearing academic
gowns along with the probability of prediction for academic gowns(AG)

Accuracy Probability(AG)
Lighter-skinned people 72.5% 0.62
Darker-skinned people 60% 0.54

Hypothesis 2: Resnet-18 is likely to misclassify images of mortarboards as academic gowns, if the
images have a mortarboard and a face in them.

By observing differences in the mortarboard and academic gown prototypes, we see that the mortar-
board prototype has a much weaker representation of a face, compared to the academic prototype.
This leads us to hypothesise that an image containing both a mortarboard and a face is likely to be
misclassified as an academic gown. To test this hypothesis we again observe the performance of
Resnet-18 on a set of 50 images containing mortarboards with no faces and a set of images containing
mortarboards and a face. We ensure that the mortarboards with faces have no presence of academic
gowns. Results were again as expected, Table 2 shows that mortarboards with faces are more likely
to be misclassified as academic gowns.

Table 2: Comparison of Resnet-18 performance on mortarboards with and without faces along with
the probability of prediction for mortarboards(MB) and academic gowns(AG)

Accuracy Probability(MB) Probability(AG)
Mortarboard without face 92.3% 0.77 0.05

Mortarboard with face 70.5% 0.67 0.25

5 Discussion

In both cases presented in Section 4, we didn’t have to comb through the entire dataset but rather
observing the prototypes provided us with a data-independent way of understanding Resnet-18’s
behaviour on unseen data. While metrics on a test set can provide a broad overview of a model’s
performance with respect to that test set, they often don’t provide the granularity needed to understand
why a model might be likely to fail on future, unseen data. This also helps us compare quantitative
model performance to qualitative features seen in generated prototypes. Prototypes can meaningfully
augment existing evaluation metrics in a number of ways:

• Identifying dataset bias. If a model shows bias, as in the lighter-skinned academic gown
prototype, this points at bias in the data. Armed with this knowledge, the dataset can be
modified or augmented to remove this bias, and the model retrained to improve performance
on underrepresented classes or features.

• Spotting spurious correlations. By comparing prototypes for closely related classes, one
can discern which features are given undue importance, enabling deeper understanding of
model failures due to the presence of potentially misleading features.

• Rapid Iteration. Model developers can generate prototypes during training, spotting issues
like biases or potential misclassifications early in the process. These insights also enable
targeted data augmentation, necessitating the collection and preprocessing of data samples
specific to correcting a problem in the model, rather than just throwing more (potentially
also biased) data at the problem. This means more rapid iteration and correction, saving
both time and resources.

Furthermore, if a model is underperforming on a specific class and the reason is not immediately clear
from the validation data, generating a prototype can shed light on the shortcomings in its learning.
This proactive approach facilitates the identification of what the model has learned or perhaps, more
importantly, what it has failed to learn. Moreover, interpretability techniques of this kind make
knowledge discovery possible – that is, if we are able to train a model to perform a task that humans
cannot, we can use interpretability to understand what patterns it has identified in its training data
that we are unaware of, and thereby gain new insights about that data.
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A Experimental Details

Choice of classes. The 11 randomly chosen classes for our experiment in terms of Imagenet class
indices were [12, 34, 249, 429, 558, 640, 669, 694, 705, 760, 786].

Optimisation parameters. The randomly initialised image is initialised using torch.rand(3, 224,
224) and the optimisation process uses the Adam optimiser with a constant learning rate of 0.05 over
512 optimisation steps.

Selecting regularisation parameters. Generating a feature visualisation that maximises a certain
output logit related to class c without any constraints will result in adversarial images that have no
representative features of c [Erhan et al., 2009]. To guide the optimisation process towards creating
feature visualisations that maintain the natural structure of images belonging to c we need to utilise
some constraints in the form of regularisation. The concept of regularisation originates from the
broader field of optimisation and is crucial for preventing overfitting.

During the prototype generation process we need to be cautious while implementing regularisation.
An unprincipled approach can lead to undesirable outcomes, such as creating visualisations that are
aesthetically pleasing but lack meaningful information about what the model has truly learned during
training. In contrast, foregoing regularisation may result in visualisations that contain high-frequency
noise or adversarial inputs, which are not only hard to interpret but also unlikely to yield useful
insights. This brings us to the delicate balance we aim to strike: optimising the feature visualisation
in such a way that it remains useful and informative while avoiding misleading or uninterpretable
outputs. Figure 6 shows the increasing effect of regularisation on generated prototypes, starting from
no regularisation at the left and increasing towards the right, for prototypes generated using Resnet-18
for the goldfish class.

We find that path similarity can work as a reliable measure of features that conform to the natural
structure found in images belonging to a certain class in the training set. Regularisation can take
many forms [Nguyen et al., 2015, Mordvintsev et al., 2015] but our focus here will be on two specific
forms of regularisation: high-frequency penalisation and random affine transformations.

High-frequency penalisation aims to suppress unnecessary details and noise, facilitating a cleaner,
more interpretable visualisation. Transformation robustness, on the other hand, ensures that minor
alterations in the input space do not result in significantly different visualisations, thus maintaining
consistency and reliability. We perform high-frequency penalisation to minimise large variation in
magnitude of adjacent pixel values across all channels and apply it by adding the loss Lhf described
earlier in Section 3 to our overall loss. We also ensure transformation robustness using random
affine transforms made up of random scale, random translate and random rotation transforms. The
parameters of random scale, random translate and random rotation guide the degree of freedom of
the random affine transform and lead to varying visual characteristics of our generated prototype.

(a) (b) (c) (d)

Figure 6: Effect of increasing regularisation (from left to right) for the goldfish prototype

To find regularisation parameters that lead to reliable prototypes, we test the effect of random
affine transforms on the spearman similarity between prototypes generated using a particular set of
regularisations, and average natural image activations from the training set. We test a set of 125
random affine transforms with varying parameters for random scale, random translate and random
rotation transforms,

• Random scale: None, (0.9, 1.1), (0.8, 1.2), (0.7, 1.3), (0.5, 1.5)
• Random rotation: None, 30, 60, 90, 180
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• Random translate: None, (0.05, 0.05), (0.1, 0.1), (0.2, 0.2), (0.5, 0.5)

Table 3 shows the top 5 regularisation parameters we discovered, in terms of path similarity calculated
using spearman similarity between the AP (created using these regularisation parameters) and AI,
where I contains 100 natural images belonging to the goldfish class, averaged over all the layers of
our model of choice, Resnet-18. The prototype generated using the best regularisation can be seen in
Figure 6d.

Table 3: Spearman similarity of top five affine transformation protocols with respect to average
natural image activations.

Scale Rotation Translate Average path similarity
(0.7, 1.3) 180 (0.5, 0.5) 0.564
(0.5, 1.5) 30 (0.5, 0.5) 0.563
(0.8, 1.2) 30 (0.5, 0.5) 0.562
(0.5, 1.5) 60 (0.1, 0.1) 0.561
(0.7, 1.3) 30 (0.5, 0.5) 0.560

We choose the regularisation parameters that lead to the best average path similarity with the
parameters of scale, rotations and translation set at (0.7, 1.3), 180 and (0.5, 0.5) respectively.

B More Experimental Results

Figure 4 show the normalised plots for our experimental results Spearman Similarity of our generated
prototypes with natural images. In this section, we want to show normalised spearman similarity
results for Resnet-18 in Figure 7 and show the raw results before normalisation for our path similarity
experiments. Figure 8 shows how close the similarity values are to each other for most part of the
network before diverging heavily at the end of the network.

Figure 7: Comparison of normalised spearman similarity for prototypes generated from Resnet-18

Using our raw results, we also quantify the mean spearman similarity across all layers of Resnet-18
and InceptionV1 in Table 4. We can see that the average spearman similarity of our generated
prototypes is higher than other natural images belonging to the same class on average, for both
Resnet-18 and InceptionV1.
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(a) Resnet-18

(b) InceptionV1 (Googlenet)

Figure 8: Raw value plots for spearman similarity comparisons

Table 4: Comparison of average spearman similarity

Average spearman similarity
Prototype P 0.54± 0.06

Same class images Ic 0.50± 0.05
Diff class images Idc 0.41± 0.06

(a) Resnet-18

Average spearman similarity
Prototype P 0.56± 0.07

Same class images Ic 0.50± 0.05
Diff class images Idc 0.40± 0.06

(b) InceptionV1
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