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Abstract

ICD coding, which indicates assigning appro-
priate ICD codes to clinical notes, is imperative
for various healthcare circumstances such as
health expense claims, insurance claims, and
disease research. However, clinical notes con-
tain numerous non-grammatical expressions,
abbreviations, professional terms, and syn-
onyms, rendering them notably noisy compared
to general documents. Additionally, ICD cod-
ing also presents challenges such as a broad la-
bel space and a long-tail problem. While Large
Language Models (LLMs) possess exceptional
ability for natural language comprehension and
thus hold potential for high-quality ICD coding,
fine-tuning considering the unique properties
of clinical notes and ICD codes is requisite. In
this research, we propose a novel fine-tuning
framework for LLMs toward automatic ICD
coding. Our framework includes additional
structures of label attention mechanism, note-
relevant knowledge injection based on medical
expressions, and knowledge-driven sampling
for input clinical notes to navigate the input
token limitations of LLMs. Our experiments on
the MIMIC-III-50 dataset demonstrate that our
framework achieves higher scores across both
micro and macro measurements compared to
the vanilla fine-tuning framework, with notably
enhanced performance improvements observed
in encoder-decoder models.

1 Introduction

The International Classification of Disease (ICD)
is a global healthcare classification system estab-
lished by the World Health Organization (WHO)
(Shull, 2019). Assigning ICD codes is crucial be-
cause the assigned codes are utilized for various
purposes including health expense claims, insur-
ance claims, and disease research. ICD coding by
humans is heavily dependent on clinical knowl-
edge, and it is labor-intensive and time-consuming,
rendering the outcome susceptible to human errors

(Adams et al., 2002). For that reason, there has
been an ongoing need for automatic ICD coding.

The ICD coding task has two main challenges
to be addressed. First, clinical notes are noisy and
vary in length. They contain synonyms and abbre-
viations of clinical terminologies which may vary
by region, institution, and individual. The clini-
cal notes also include many fragmented sentences
without proper grammatical structure. Furthermore,
they vary widely in length depending on the pa-
tient’s medical history. For instance, the Medical
Information Mart for Intensive Care III (MIMIC-
IIT) (Johnson et al., 2016) dataset, a commonly used
medical database, contains clinical notes that range
in length from less than 500 words to over 3000
words. These could be substantive challenges for
both humans and machines in interpreting clinical
notes and assigning ICD codes accordingly (Yu
et al., 2002; Zhou et al., 2021). Second, ICD cod-
ing considers a broad label space with a long-tail
problem. In the MIMIC-III dataset, the top 10% of
all ICD codes account for 85% of all code occur-
rences, while about 22% of codes appear no more
than twice (Zhou et al., 2021). Even among the top
50 most frequent codes, the most frequent code ap-
pears about 3,200 times, and the least frequent code
appears about 500 times. This extremely unequal
distribution of appearances makes it difficult to de-
velop a reliable ICD code classifier (Japkowicz and
Stephen, 2002; Buda et al., 2018).

In recent years, Large Language Models (LLMs)
have significantly enhanced the ability of ma-
chines to understand and generate natural language
(Ouyang et al., 2022; Nori et al., 2023; Howard
and Ruder, 2018). However, the direct adoption of
LLMs in the medical domain encompasses risks
due to the relatively insufficient medical domain
data during the training of the LLMs. The short-
age of medical domain knowledge often leads to
generating erroneous responses to questions that
require medical expertise (Gilson et al., 2023). In



our exploration, OpenAl’'s GPT-4 (OpenAl, 2023)
and Meta-Al’s LLaMA (Touvron et al., 2023a) fre-
quently fail to provide the correct description for
ICD-9 codes. For example, when we requested the
description of ICD-9 code 36.15 to the models,
GPT-4 answered ‘Insertion of drug-eluting coro-
nary artery stent’, and LLaMA answered ‘Acute
myocarditis’. Both answers are entirely irrelevant
to the true description, ‘Single internal mammary-
coronary artery bypass’. These results highlight the
insufficient training of the current LLMs with re-
gard to the medical domain. Therefore, additional
fine-tuning of LLMs for ICD coding is required to
utilize LLMs for automatic ICD coding.

In this paper, we propose a novel fine-tuning
framework for automatic ICD coding based on clin-
ical notes, including three elements. First, we en-
hance the encoding performance of the LLMs by
integrating a label attention mechanism (Vu et al.,
2021), which has demonstrated efficacy for multi-
class multi-label tasks. Second, we implement a
note-relevant medical knowledge injection mech-
anism to supplement the LL.Ms with additional
information pertaining to the medical expressions,
abbreviations, and various synonyms present in
clinical notes. Finally, we apply knowledge-based
sampling to the clinical note input to ensure that
the LLMs verify as much important information as
possible within limited input.

2 Related works

Research on machine learning-based automatic
ICD coding began in the 1990s. Larkey and Croft
(1996) proposed an ICD code classifier using tradi-
tional machine learning algorithms such as the K-
nearest neighbor, relevance feedback, and Bayesian
independence. With the rise of deep learning, Mul-
lenbach et al. (2018) introduced CAML, which
employs convolutional neural networks (CNNs)
and a label-wise attention mechanism. Xie et al.
(2019) also utilized the densely connected CNNs
and multi-scale feature attention to enhance the ef-
ficacy of feature extraction. Li and Yu (2020) and
Ji et al. (2020) adopted residual connections and di-
lated convolutions to CNNs for automatic ICD cod-
ing, respectively. Recurrent neural network (RNN)-
based automatic ICD coding has also been actively
studied. Shi et al. (2017) and Xie and Xing (2018)
attempted the automatic ICD coding using the at-
tentive long short term memory (LSTM), and tree-
of-sequences LSTM network, respectively. Vu et al.

(2021) designed a hierarchical classifier utilizing
LSTM and label attention mechanism and achieved
significant performance improvement. Nonetheless,
these methods showed the limited capability of in-
terpreting medical notes composed of diverse and
noisy text.

The development of LL.Ms has driven dramatic
performance improvements across numerous nat-
ural language processing tasks. Google’s Text-to-
Text Transfer Transformer (T5) transposes a broad
range of natural language processing tasks into
a text-to-text format (Raffel et al., 2020). Subse-
quent to its success, OpenAl introduced ChatGPT
(ope) and GPT-4 (OpenAl, 2023), demonstrating
innovative performances. Furthermore, Meta-Al
has introduced the open-source LLMs, LLaMA
(Touvron et al., 2023a) and LLaMA?2 (Touvron
et al., 2023b), leading the development of subse-
quent models, such as Alpaca (Taori et al., 2023)
and Vicuna (Zheng et al., 2023). Leveraging LLMs
for the medical domain, ClinicalT5 fine-tuned T5
for the MIMIC-III dataset and achieved higher per-
formance than T5 on several medical benchmark
datasets. ChatDoctor, a fine-tuned LLaMA based
on 100K patient-physician conversations collected
from online medical consultation websites (Yunx-
iang et al., 2023), performed similar to or better
than ChatGPT for a variety of medical queries.
Medalpaca recorded high scores on the United
States Medical Licensing Examination (USMLE)
by fine-tuning LLaMA for self-collected medical
datasets (Han et al., 2023). PMC-LLaMA, a fine-
tuned LLaMA using a knowledge injection dataset
constructed from 4.8M academic papers and 30k
medical books and a medical-specific instruction
tuning dataset comprising 202M tokens, demon-
strated top-tier performance in the Medical QA
task (Wu et al., 2023). Nevertheless, there has been
no exploration into fine-tuning LLMs for classi-
fying ICD codes from complex and noisy clinical
notes. To the best of our knowledge, this study is
the first attempt to find an optimal way for fine-
tuning LLMs toward automatic ICD coding.

3 Methods

We propose a fine-tuning framework toward the
automatic ICD coding for two types of LLMs, the
encoder-decoder models (e.g. T5) and the decoder-
only models (e.g. LLaMA) which is illustrated
in Fig. 1. Our framework contains a label atten-
tion mechanism, note-relevant knowledge injec-
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Figure 1: Structural outline of our proposed framework with label attention, note-relevant knowledge injection, and
knowledge-driven sampling for encoder-decoder and decoder-only models. The blue box in the decoder-only model
is not adopted for our final results because the module degrades the fine-tuning performance.

tion (KG-injection), and knowledge-driven sam-
pling. The model is fine-tuned to predict true as-
signed codes C from the entire codes Ciyrqp =
{c1,¢2, ..., cn, } based on a clinical note input X
with the prefix prompt (detailed in Appendix A).
An objective function L, to train the LLMs for
generating proper ICD codes is defined as a cross-
entropy function between the assigned codes C' and
generated output text Yye,.

3.1 Label attention for LLM-based ICD
coding

In order to encourage feature extraction for multi-
label classification, we integrate the label atten-
tion mechanism (Vu et al., 2021) with LLMs to
efficiently solve the multi-label binary classifica-
tion for a broad label space. The input of the label
attention layer is defined as the output of the en-
coder and decoder for the encoder-decoder and
decoder-only models, respectively, as shown in Fig.
1. Given the number of tokens in the input text NV,
and the dimension of the hidden state dj, the input
H & RN+ for the label attention layer is defined
as:

H = F(X),

{encoder, if encoder-decoder model

decoder, if decoder-only model.

(D

Then, the output Y, indicating the possibilities to
be assigned codes Clytq; is defined as:

Z = tanh(HW) ()

3
“

where W € R%*da apd U € RNe*da are train-
able weight matrices, and d,, is the pre-defined di-
mension of hidden space. fcn represents fully con-
nected layers to classify the label domain feature
V € RNexdn to output possibility Yy € RVex1,
Consequently, the objective function L is de-
fined as a cross-entropy function between Y,;; and
Catt, the latter being the binary labels indicating
whether each code is in the C'. The final objective
function Ly, is defined as the summation of L ey,
and Latt-

The final ICD code prediction Y for the clinical
note X is obtained as

V = softmax(UZ " )H
Yatt = fCl’l(V)

Y = )\Ytqen + (1 - )\)Yatta (5)
where the weight value ) is determined depending
on the classification performance for put-aside val-
idation data. As Y., contains multiple codes, we
elect to use a binary weight for the ensemble rather
than to extract assigning possibilities for each code.

3.2 Note-relevant medical knowledge injection

To enhance LLMs’ understanding of various profes-
sional terms, abbreviations, and synonyms in clini-
cal notes, we propose a KG-injection with knowl-
edge data for ICD-9 codes which we built using
ChatGPT. The details of the knowledge data are
in Appendix B. Given the knowledge data M, la-
tent features D and D,,, for the clinical notes and
knowledge data are obtained as follows:



T5-base LLaMA-7B

Tnput Output F1 . Accuracy F1 . Accuracy

macro micro macro micro | macro micro macro micro
clinical note assigned code 51.09 574 3631 40.25 | 4524 52.53 2995 35.62
clinical note 8N4 00 g 60 S5.64 3411 3854 | 3651 46.14 2303 2999

+ description

clinicalnote = i onedcode 5099 57.14 3632 40.00 | 3533 4351 2087 27.80
+ total code
clinical note
+ total code  assigned code  50.62 5630 35.69 39.18 | 36.01 4427 21.59 2843
+ description

Table 1: Results of T5-base and LLaMA-7B fine-tuned by the MIMIC-III-50 dataset, employing different input-

output formats.

D =G(X) and D,;, = G(M), where

B {enooder, if encoder-decoder model

embedding, if decoder-only model.

(6)

Given IV, that denotes the number of tokens in
the knowledge data, the attention matrix A that rep-
resents the attention between the clinical note input
and knowledge data is derived using the following
equations.

Lo, = Dy W
A = softmax(DZL%)

(7
®)
Then, the attention-applied feature D’ is obtained
by

D' =D+ AZy,. 9)

3.3 Knowledge-driven sampling for clinical
notes

Input sequences to LLMs have a limited length
because of resource constraints, which inevitably
results in information loss for long clinical notes.
When truncating the MIMIC-III discharge sum-
maries to a limited sequence length, 2048 tokens
in our experiments, 44.66% of the total tokens are
eliminated, and in the case of the lengthiest dis-
charge summary, 92.44% of the total tokens are
eliminated. LAAT (Vu et al., 2021), an LSTM-
based automatic ICD coding method, scored 66.6
in macro F1 and 71.5 in micro F1 when truncating
inputs to 4000 tokens. However, when the input
text is truncated to 2048 tokens, the scores dimin-
ished to 48.80 in macro F1 and 58.75 in micro

F1 in our experiments. Considering the substantial
information loss, it is imperative to strategically in-
clude important information from long documents
for LLMs. We proposed a knowledge-driven sam-
pling approach to select meaningful parts from the
clinical notes.

Clinical notes usually can be divided into sev-
eral sections. Given the tokens 7; in i-th section
of the discharge summary, the number of tokens
associated with the assigned code C' is defined as:

Nr, =Y 1we | J M),

weT; CJ'EC

(10)

where M denotes a subset of the knowledge data
M associated with the code ¢; € C. Sections are
primarily selected based on N, and subsequently
chosen and sorted according to the importance ratio
p, which is defined as:

_ Nr. (11)
| T3]
After selecting sections, paragraphs within each
section are ordered according to the paragraph-
level importance ratio that is defined in the same

manner with pr;.

pT;

4 Experiments

4.1 MIMIC-III-50 dataset

We used the discharge summaries and manually an-
notated ICD-9 codes from the MIMIC-III dataset
to validate the proposed framework as in previous
ICD coding studies. We followed the data process-
ing of CAML (Mullenbach et al., 2018) and em-
ployed the MIMIC-III-50 dataset for experiments,
a subset associated with the top 50 most frequently
occurring codes (Mullenbach et al., 2018). This



subset encompasses 11,368 discharge summaries,
of which 8,066 samples were utilized for training,
1,573 for validation, and 1,729 for testing. We in-
vestigated our proposed approach using macro and
micro F1-scores along with macro and micro accu-
racy.

4.2 Training details

Four NVIDIA V100 GPUs were used for the train-
ing and testing. We applied a full parameter fine-
tuning for the TS5 and ClinicalT5 models, while the
decoder-based models with 7B parameters were
fine-tuned using Low-Rank Adaptation (LoRA)
(Hu et al., 2021) with (8, 16) coefficients due to
the hardware limitation. The length of input tokens
was limited to 2,048 throughout all experiments.
The AdamW optimizer was utilized for training,
and learning rates of le-4 and 3e-4 were applied
to encoder-decoder models and decoder-only mod-
els, respectively. We employed the base TS and
ClinicalT5 models with 220m parameters, while
7B models were adopted for LLaMA, LLaMA?2,
Alpaca, Vicuna, MedAlpaca, and PMC-LLaMA.
Fine-tuning T5 and ClinicalT5 required 8 GPU
days, while the others required 28 GPU days. Be-
cause of the long GPU days for training, we report
experimental results based on a single run of train-
ing.

4.3 Experimented LLMs

431 TS5

TS5 (Raffel et al., 2020) is a large-scale transformer-
based language model developed by Google Re-
search. The model conceptualized all NLP tasks as
a “text-to-text transformation” problem, facilitating
a consistent framework for numerous NLP tasks.

4.3.2 ClinicalT5

ClinicalT5 (Lu et al., 2022) is a model derived from
TS5, fine-tuned on the MIMIC-III dataset.

4.3.3 LLaMA

LLaMA (Touvron et al., 2023a) is an open-source
large language model trained on trillions of tokens
from publicly available datasets without instruction
tuning.

4.3.4 LLaMA-2

LLaMA-2 (Touvron et al., 2023b) is an advanced
version of LLaMA. It applied a grouped query at-
tention mechanism and was trained on a dataset
40% larger than LLaMA.

4.3.5 PMC-LLaMA

PMC-LLaMA (Wu et al., 2023) is a model derived
from LLaMA, fine-tuned on 4.8M medical docu-
ments for knowledge injection and 202M tokens
for medical-specific instruction tuning.

4.3.6 Alpaca

Alpaca (Taori et al., 2023) is a fine-tuned version
of Meta-AI’s LLaMA-7B. The model was trained
on 52K instruction-following demonstrations gen-
erated in the style of self-instruct using GPT-3.5.

4.3.7 Med-Alpaca

Med-Alpaca (Han et al., 2023) is a medical-specific
version of Alpaca. The model is fine-tuned on med-
ical domain datasets incorporating many medical
question-answer pairs.

4.3.8 Vicuna

Vicuna (Zheng et al., 2023) is a chatbot model
trained on LLaMA using a dialogue corpus col-
lected from ShareGPT (sha).

4.4 Results

4.4.1 Evaluation on input-output formats

We investigated the ICD coding performance de-
pending on input-output formats. The following
four input-output formats were examined.

1. Input: X, Output: C

2. Input: X, Output: C' with description

3. Input: X + Ciptqr, Output: C

4. Input: X + Clprq With description, Output: C'

Table 1 shows the results of T5-base and
LLaMA-7B models fine-tuned on the MIMIC-III-
50 dataset employing the aforementioned input-
output formats. The first format consistently ex-
hibits superior performance, which probably indi-
cates that incorporating additional information into
the input and output reduces the portion of the clin-
ical note information, and subsequently degrades
the ICD coding performance. Based on these re-
sults, all subsequent experimental results adhered
to the first format.

4.4.2 Comparison between vanilla and
proposed fine-tuning frameworks

Table 2 describes the ICD coding performance of

the LLMs after fine-tuning using the MIMIC-III-

50 dataset. The encoder-decoder models achieved



Baseline fine-tuning Fine-tuning with the proposed framework
F1 Accuracy F1 Accuracy
model macro  micro macro micro | macro micro  macro micro
T5-base 51.09 5740 36.31 40.25 | 56.01 64.14 41.27 47.21
ClinicalT5 56.59% 63.07* 40.05* 46.06% | 58.88* 65.27* 43.72% 48.44*
LLaMA 4524 5253 2995 3562 | 4786 5484 3273 37.84
LLaMA-2 49.60 56.11 31.20 39.00 | 4990 57.05 32.49 39.98
PMC-LLaMA 4545 5230 30.73 3541 | 4747 53770 32.63 36.70
Alpaca 4405 5041 28.74 33770 | 46.18 53.83 31.18 36.82
Med-Alpaca 43776  50.87 2892 3411 | 4621 5229 31.74 35.40
Vicuna 4824 5493 3323 3787 | 4861 55.09 33.35 38.02

Table 2: Comparison of fine-tuning results using vanilla and the proposed frameworks on the MIMIC-III-50 dataset.
The bold numbers denote the best performance within each architecture type, and “*” denotes the overall best

performance.

higher scores compared to the decoder-only mod-
els. Among the decoder-only models, LLaMA2,
the most recently introduced model, showed the
best performance. This indicates the correlation
between natural language understanding capabil-
ity and ICD coding performance. ClinicalT5 out-
performed other models including T35, likely at-
tributable to its prior fine-tuning on the MIMIC-
III dataset. However, PMC-LLaMA and MedAl-
paca did not evidently demonstrate performance
enhancement compared with their baseline mod-
els, i.e., LLaMA and Alpaca. This indicates the
significant divergence between clinical notes and
other medical documents, demonstrating the neces-
sity for fine-tuning specifically geared toward ICD
coding.

The column on Fine-tuning with the proposed
framework in Table 2 presents the results of our
proposed framework on automatic ICD coding. De-
riving from the results of ablation studies intro-
duced in section 4.4.3, our fine-tuning framework
for T5 and ClinicalT5 integrates the label atten-
tion mechanism, KG-injection employing medical
expressions, and knowledge-driven sampling for in-
put clinical notes. For the decoder-only models, the
label attention mechanism and knowledge-driven
sampling excluding KG-injection were applied con-
sidering the structural limitations mentioned in
section 4.4.3. As shown in Table 2, our proposed
framework exhibited enhanced performance across
all models compared to the baseline. The most sig-
nificant performance improvement was observed in
T5-base, with score increments of 4.92, 6.74, 4.96,
and 6.96 in macro F1, micro F1, macro accuracy,
and micro accuracy, respectively, compared to the

baseline. The disparity of the performance improve-
ments between encoder-decoder and decoder-only
models signifies that our framework elicits more
performance enhancements in the former, due to
the enhanced efficiency attained when label atten-
tion and KG-injection are implemented within the
latent space. Same as the baseline fine-tuning re-
sult, ClinicalT5 showed the highest performance
with fine-tuning using our proposed framework and
LLaMA?2 showed the highest performance among
the decoder-only models.

4.4.3 Ablation studies

We demonstrate the effectiveness of the proposed
framework by conducting ablation studies. Table 3
summarizes the results of ablation studies, where
the “Classification”, “KG-injection”, and ‘“Note
sampling” sections present the ICD coding perfor-
mance with regard to label attention, KG-injection,
and knowledge-driven sampling, respectively.

Label attention Where gen (base) denotes the
model fine-tuned with the vanilla fine-tuning frame-
work, att in the “Classification” section indicates
the fine-tuned model only based on the classifi-
cation using label attention. cmp-gen and cmp-att
refer to the ICD coding result from the text genera-
tion and label attention classification, respectively,
where the models were fine-tuned using both the
label attention and text generation losses.

The results show that simply applying the la-
bel attention classifier does not improve the ICD
coding performance (gen(base) vs. att), which in-
dicates the inefficacy of removing the text gen-
eration part of LLMs because the models were
pre-trained for the text generation. In contrast, the



T5-base LLaMA-7B
F1 Accuracy F1 Accuracy
Method Setting macro micro macro micro | macro micro macro micro
Baseline gen (base) 50.31 57.84 3631 40.25 | 4524 5253 2995 35.62
att 47.68 5543 3417 3834 | 3943 5132 26.87 34.52
Classification | cmp-gen 51.09 5740 35.37 40.69 | 47.05 53.44 32.06 3647
cmp-att 52.02 60.11 37.10 4297 | 39.02 51.55 2579 34.73
KG-injection code description 5347 5936 38.79 4221 | 3931 4634 2511 30.16
medical expressions 55.11 60.94 39.82 43.82 | 40.77 47.21 25.85 30.90
Note sampling section level 55.27 59.28 39.17 4122 | 4530 52.07 3035 3520
+paragraph level 55.15 61.10 40.00 43.99 | 47.00 5439 3221 37.35

Table 3: Comparison of each component in the proposed method for T5-base and LLaMA-7B model on the MIMIC-
III-50 dataset. ‘+paragraph level’ denotes the paragraph-level sampling following the section-level sampling.

cmp-att results of the T5-base and cmp-gen results
of the LLaMA-7B are better than the gen (base)
results, respectively. This indicates that integrating
the label attention with the text generation effec-
tively enhances the understanding of clinical notes
for ICD coding. The different performance supe-
riority between cmp-gen and cmp-att toward T5-
base and LLaMA-7B can be considered due to the
structural distinctions of the models, i.e., encoder-
decoder and decoder-only. In the encoder-decoder
models, the encoding and decoding processes are
structurally separated, allowing label attention to
directly influence feature encoding. In contrast, the
decoder-only models merge encoding and decod-
ing, thus label attention only exerts an indirect ef-
fect on feature encoding.

Note-relevant knowledge injection We com-
pared two types of knowledge data: detailed code
descriptions and medical expressions (see the
details in Appendix B). Applying KG-injection
yielded performance improvement for the T5-base
model. Specifically, fine-tuning using KG-injection
with medical expressions achieved additional score
gains of 4.80, 3.10, 3.51, and 3.57 for the macro
F1, micro F1, macro accuracy, and micro accuracy,
respectively, compared with the baseline results.
The substantial enhancement in the macro scores
particularly indicates that KG-injection improves
the performance of codes with lower occurrence
frequencies.

In contrast, applying KG-injection to the
LLaMA-7B precipitated the performance decline.
This can be attributed to the structural differences
between encoder-decoder and decoder-only mod-
els. In the encoder-decoder models, KG-injection
is applied in a well-reduced latent space following
the encoder, whereas, in the decoder-only models,

(b) micro
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Figure 2: Performance comparison of full fine-tuned
T5-base and LoRA fine-tuned T5-large depending on
the ratio of trainable parameters for T5-large LoRA fine-
tuning.

KGe-injection is applied in a broader space close
to the observation space following the embedding
layers. Consequently, KG-injection is likely to be
inefficient in the decoder-only models.

Knowledge-driven sampling We examined the
section-level and paragraph-level knowledge-
driven samplings. The proposed knowledge-driven
sampling usually constructs input sequences by
selecting up to three of the most important sec-
tions from the input clinical note (see the details
in Appendix C). Regardless of the sampling level,
the proposed sampling approach achieved supe-
rior scores in all models and metrics compared to
the baseline fine-tuning with the slight superiority
of paragraph-level sorting combined with section-
level sorting. Compared to the baseline fine-tuning,
the combination of section-level and paragraph-
level sorting shows the performance improvements
in macro F1, micro F1, macro accuracy, and micro
accuracy were 4.84, 3.26, 3.69, and 3.74 in T5-
base, and 1.76, 1.86, 2.26, and 1.73 in LLaMA-7B,
respectively. These results also indicate that the
knowledge data we built exhibits a correlation with
important information within clinical notes.



4.4.4 Explanation for the Performance of
Decoder-Only Models

The decoder-only models have demonstrated supe-
rior performance in general natural language pro-
cessing tasks over the encoder-decoder models, ow-
ing to the larger number of trainable parameters.
However, in our experimental results, the decoder-
only models exhibited relatively diminished per-
formance compared to the encoder-decoder mod-
els, attributed to the lower number of parameters
employed in fine-tuning the decoder-only models.
The fine-tuning process for ICD coding with the
decoder-only model demands significant resources
due to lengthy text and numerous trainable param-
eters. Constrained by hardware resources, we ap-
plied LoRA fine-tuning to the decoder-only model
with r = 8 and o = 16 employing a mere 0.03% of
trainable parameters of the 7B models. Those are
significantly insufficient for optimally fine-tuning
the entire model. Figure 2 illustrates the results
of applying LoRA fine-tuning with different coeffi-
cients to T5-large with 770M parameters. While the
performance excels over the total fine-tuning of the
T5-base when the amount of trainable parameters
is 1.26% of the total parameters, it recedes below
the total fine-tuning of the T5-base at 0.32% and
0.16%. Consequently, a substantial performance
enhancement is anticipated in the training of the
decoder-only model when either an increment in
LoRA coefficients or fine-tuning across all parame-
ters is implemented.

5 Conclusion

In this study, we propose a novel fine-tuning frame-
work for LLMs toward automatic ICD coding. To
enhance the performance of multi-class multi-label
classification, we adopted a classifier applying a
label attention mechanism as an additional clas-
sifier. Furthermore, to amplify the capability of
understanding diverse medical expressions, abbre-
viations, and synonyms in clinical notes, we ap-
plied KG-injection based on the knowledge data
composed of medical expressions. Finally, to over-
come the input length limitations of LLMs, we ap-
plied knowledge-driven sampling to the input notes
grounded on the medical expressions. In experi-
ments across various LLLMs, our method demon-
strated improved performance compared to the
conventional fine-tuning method. Notably, our pro-
posed fine-tuning framework exhibited heightened
efficacy in encoder-decoder models, which possess

the structure enabling stable application of the label
attention mechanism and KG-injection in the latent
space.

6 Limitations

Our main limitations come from the restricted re-
sources for experiments. First, the proposed ap-
proach was evaluated with the absence of experi-
ments on the MIMIC-III full dataset. Experiments
for the MIMIC-III full dataset, which possesses
about six times more training samples and over
160 times wider label space than the MIMIC-III-50
dataset, were unfeasible with confined resources.
Instead, we exclusively executed experiments using
several LLMs and diverse experiment settings with
the MIMIC-III-50 dataset. Therefore, we expect
that the performance improvement in ICD coding
afforded by our proposed framework will be equiv-
alently achieved for the MIMIC-III full dataset.

Second, the fine-tuning of the decoder-only mod-
els was conducted by LoRA fine-tuning. Given the
extensive trainable parameters of the decoder-only
models, we adopted fine-tuning using LoRA exclu-
sively for the 7B models, which probably restricted
the potential of the models. Since our proposed
fine-tuning framework is not confined to model
size, we anticipate it will demonstrate further per-
formance improvement with the full fine-tuning of
those models.

Although the proposed fine-tuning approach sig-
nificantly improves the ICD coding performance of
LLMs, the performance is far from practical. Fur-
thermore, because of sequence length constraints, it
falls short of other recent methods that don’t utilize
LLMs. However, we believe that the LLM-based
approach is a promising way to solve the challenges
in the ICD coding task by leveraging the LLMs’
capability of understanding natural language. We
hope this study inspires further research to bridge
the gap from the general LLMs to practical medical
applications.
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A Prompts and LLLM Response

Figure 3 shows the example of the prompt used
in the LLMs’ fine-tuning process and the required
response for ICD coding.

B Data for knowledge injection

B.1 Detailed code description

The detailed code descriptions, which are used as
additional knowledge data in our experiments, con-
tain more detailed information than the official
ICD-9 code description. We obtained the data using
GPT-3.5-turbo (ope). Figure 4 displays the example
of the prompt for obtaining detailed code descrip-
tions using GPT-3.5-turbo and its corresponding
response.

B.2 Medical expressions related to ICD-9
codes

The knowledge data consists of all medical expres-
sions related to the ICD code, including medical
terms, abbreviations, and synonyms. We obtained
the medical expressions pertaining to MIMIC-
III-50 ICD codes from GPT-3.5-turbo (ope). In
all requests, GPT-3.5-turbo provided 30 medical
terms, abbreviations, and synonyms each. Figure
5 presents the prompt and associated response for
acquiring medical expression data.

C Results of the knowledge-driven
sampling

Table 4 shows the top three sections selected by the
knowledge-driven sampling to the MIMIC-III-50
training dataset. The ‘Hospital course’, ‘History of
present illness’, and ‘Pertinent result’ sections were
identified as the most frequently sampled sections.
However, the percentage of sampled sections for
each was less than 1%, indicating that the impor-
tant sections are likely to be different across note
samples.

Hospital course  History present illness  Pertinent result others
N 58.97 27.69 24.71 less then 8
pl%] 0.12 0.12 0.06 less then 0.03

Table 4: Statistical result of knowledge-driven sampling.
N and p[%)] denote the number and the percentage of
samples which select the section in the sampling pro-
cess.
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Q. Below is an instruction that describes a task, paired with an
input that provides further context. Write a response that
appropriately completes the request.

The following note is the discharge summary of a patient.
Provide all ICD-9 codes applicable to the patient.

Admission Date: XXXX-XX-XX Discharge Date: XXXX-XX-XX
Date of Birth: XXXX-X-XX Sex: M

Service: MEDICINE

Allergies: Penicillins / Shellfish Derived

Attending: First Name3 LF 1253

Chief Complaint: sob, confusion

Major Surgical or Invasive Procedure: Intubation, BAL
History of Present Iliness:

56 yom nasal polyps, alcohol abuse, depression, anaphylactic

rxn to shellfish and pcn, ...

A. Response: 276.1, 285.9, 287.5, 305.1, 486, 507.0, 518.81,
33.24, 38.91, 38.93,96.6,9 6.72

\ J

Figure 3: Example of the prompt and corresponding response for LLMs’ fine-tuning

\

Q. Provide a description of the given ICD-9 code in one paragraph.
ICD-9 code : 285.9 Anemia, unspecified

A. Anemia, unspecified refers to a general diagnosis of anemia without specifying the underlying cause or type. Anemia is a
condition in which there is a deficiency of red blood cells or hemoglobin in the blood, leading to reduced oxygen-carrying capacity
and causing symptoms such as fatigue, weakness, and pallor.

Q. Provide a description of the given ICD-9 code in one paragraph.
ICD-9 code : 585.9 Chronic kidney disease, unspecified

A. Chronic kidney disease, unspecified is a code for a progressive and long-term loss of kidney function without specifying the stage
or underlying cause. Chronic kidney disease can result from various conditions, such as diabetes, high blood pressure, or
autoimmune diseases, and can ultimately lead to kidney failure if not properly managed.

Q. Provide a description of the given ICD-9 code in one paragraph.
ICD-9 code : 38.93 Venous catheterization, not elsewhere classified

A. Venous catheterization, not elsewhere classified, refers to the insertion of a catheter into a vein for various purposes, such as
administering medications, monitoring blood pressure, or drawing blood samples. The specific vein used and the purpose of the
procedure are not specified in this code.

J

Figure 4: Examples of the prompts provided to GPT3.5 and their corresponding responses for ICD code description
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Q. Could you list up the given ICD-9 code for
which you would like me to provide all the
related medical terms, including abbreviations
and synonyms?

ICD-9 code : 401.9 Unspecified essential
hypertension

A.

Medical terms:
Hypertension

High blood pressure
Essential hypertension
Primary hypertension.

Abbreviations:
BP

HTN

SBP

DBP

Synonyms:

Unspecified hypertension

Essential hypertension Not Otherwise
Specified

Non-specific essential hypertension
Hypertensive disease

.

J

.

PT3

Q. Could you list up the given ICD-9 code for
which you would like me to provide all the
related medical terms, including abbreviations
and synonyms?

ICD-9 code : 995.92 Severe sepsis

A

Medical terms:

Severe sepsis

Severe septicemia

Sepsis with organ dysfunction
Septic shock.

Abbreviations:
SIRS

SOFA

MAP

BP

Synonyms:

Overwhelming sepsis

Septicemia with severe illness
Septic syndrome with organ failure
Severe bacteremia

J

Q. Could you list up the given ICD-9 code for
which you would like me to provide all the
related medical terms, including abbreviations
and synonyms?

ICD-9 code : 99.15 Parenteral infusion of
concentrated nutritional substances

A.

Medical terms:
Parenteral nutrition
Total parenteral nutrition
Intravenous nutrition

IV nutrition

Abbreviations:
PN

TPN

\2

PPN

Synonyms:

Intravenous infusion of concentrated
nutritional substances

Parenteral administration of concentrated
nutrients

Total parenteral nutrition infusion

.

J

Figure 5: Examples of the prompts provided to GPT3.5 and their corresponding responses for medical terms related

to given ICD code
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