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Abstract

ICD coding, which indicates assigning appro-001
priate ICD codes to clinical notes, is imperative002
for various healthcare circumstances such as003
health expense claims, insurance claims, and004
disease research. However, clinical notes con-005
tain numerous non-grammatical expressions,006
abbreviations, professional terms, and syn-007
onyms, rendering them notably noisy compared008
to general documents. Additionally, ICD cod-009
ing also presents challenges such as a broad la-010
bel space and a long-tail problem. While Large011
Language Models (LLMs) possess exceptional012
ability for natural language comprehension and013
thus hold potential for high-quality ICD coding,014
fine-tuning considering the unique properties015
of clinical notes and ICD codes is requisite. In016
this research, we propose a novel fine-tuning017
framework for LLMs toward automatic ICD018
coding. Our framework includes additional019
structures of label attention mechanism, note-020
relevant knowledge injection based on medical021
expressions, and knowledge-driven sampling022
for input clinical notes to navigate the input023
token limitations of LLMs. Our experiments on024
the MIMIC-III-50 dataset demonstrate that our025
framework achieves higher scores across both026
micro and macro measurements compared to027
the vanilla fine-tuning framework, with notably028
enhanced performance improvements observed029
in encoder-decoder models.030

1 Introduction031

The International Classification of Disease (ICD)032

is a global healthcare classification system estab-033

lished by the World Health Organization (WHO)034

(Shull, 2019). Assigning ICD codes is crucial be-035

cause the assigned codes are utilized for various036

purposes including health expense claims, insur-037

ance claims, and disease research. ICD coding by038

humans is heavily dependent on clinical knowl-039

edge, and it is labor-intensive and time-consuming,040

rendering the outcome susceptible to human errors041

(Adams et al., 2002). For that reason, there has 042

been an ongoing need for automatic ICD coding. 043

The ICD coding task has two main challenges 044

to be addressed. First, clinical notes are noisy and 045

vary in length. They contain synonyms and abbre- 046

viations of clinical terminologies which may vary 047

by region, institution, and individual. The clini- 048

cal notes also include many fragmented sentences 049

without proper grammatical structure. Furthermore, 050

they vary widely in length depending on the pa- 051

tient’s medical history. For instance, the Medical 052

Information Mart for Intensive Care III (MIMIC- 053

III) (Johnson et al., 2016) dataset, a commonly used 054

medical database, contains clinical notes that range 055

in length from less than 500 words to over 3000 056

words. These could be substantive challenges for 057

both humans and machines in interpreting clinical 058

notes and assigning ICD codes accordingly (Yu 059

et al., 2002; Zhou et al., 2021). Second, ICD cod- 060

ing considers a broad label space with a long-tail 061

problem. In the MIMIC-III dataset, the top 10% of 062

all ICD codes account for 85% of all code occur- 063

rences, while about 22% of codes appear no more 064

than twice (Zhou et al., 2021). Even among the top 065

50 most frequent codes, the most frequent code ap- 066

pears about 3,200 times, and the least frequent code 067

appears about 500 times. This extremely unequal 068

distribution of appearances makes it difficult to de- 069

velop a reliable ICD code classifier (Japkowicz and 070

Stephen, 2002; Buda et al., 2018). 071

In recent years, Large Language Models (LLMs) 072

have significantly enhanced the ability of ma- 073

chines to understand and generate natural language 074

(Ouyang et al., 2022; Nori et al., 2023; Howard 075

and Ruder, 2018). However, the direct adoption of 076

LLMs in the medical domain encompasses risks 077

due to the relatively insufficient medical domain 078

data during the training of the LLMs. The short- 079

age of medical domain knowledge often leads to 080

generating erroneous responses to questions that 081

require medical expertise (Gilson et al., 2023). In 082
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our exploration, OpenAI’s GPT-4 (OpenAI, 2023)083

and Meta-AI’s LLaMA (Touvron et al., 2023a) fre-084

quently fail to provide the correct description for085

ICD-9 codes. For example, when we requested the086

description of ICD-9 code 36.15 to the models,087

GPT-4 answered ‘Insertion of drug-eluting coro-088

nary artery stent’, and LLaMA answered ‘Acute089

myocarditis’. Both answers are entirely irrelevant090

to the true description, ‘Single internal mammary-091

coronary artery bypass’. These results highlight the092

insufficient training of the current LLMs with re-093

gard to the medical domain. Therefore, additional094

fine-tuning of LLMs for ICD coding is required to095

utilize LLMs for automatic ICD coding.096

In this paper, we propose a novel fine-tuning097

framework for automatic ICD coding based on clin-098

ical notes, including three elements. First, we en-099

hance the encoding performance of the LLMs by100

integrating a label attention mechanism (Vu et al.,101

2021), which has demonstrated efficacy for multi-102

class multi-label tasks. Second, we implement a103

note-relevant medical knowledge injection mech-104

anism to supplement the LLMs with additional105

information pertaining to the medical expressions,106

abbreviations, and various synonyms present in107

clinical notes. Finally, we apply knowledge-based108

sampling to the clinical note input to ensure that109

the LLMs verify as much important information as110

possible within limited input.111

2 Related works112

Research on machine learning-based automatic113

ICD coding began in the 1990s. Larkey and Croft114

(1996) proposed an ICD code classifier using tradi-115

tional machine learning algorithms such as the K-116

nearest neighbor, relevance feedback, and Bayesian117

independence. With the rise of deep learning, Mul-118

lenbach et al. (2018) introduced CAML, which119

employs convolutional neural networks (CNNs)120

and a label-wise attention mechanism. Xie et al.121

(2019) also utilized the densely connected CNNs122

and multi-scale feature attention to enhance the ef-123

ficacy of feature extraction. Li and Yu (2020) and124

Ji et al. (2020) adopted residual connections and di-125

lated convolutions to CNNs for automatic ICD cod-126

ing, respectively. Recurrent neural network (RNN)-127

based automatic ICD coding has also been actively128

studied. Shi et al. (2017) and Xie and Xing (2018)129

attempted the automatic ICD coding using the at-130

tentive long short term memory (LSTM), and tree-131

of-sequences LSTM network, respectively. Vu et al.132

(2021) designed a hierarchical classifier utilizing 133

LSTM and label attention mechanism and achieved 134

significant performance improvement. Nonetheless, 135

these methods showed the limited capability of in- 136

terpreting medical notes composed of diverse and 137

noisy text. 138

The development of LLMs has driven dramatic 139

performance improvements across numerous nat- 140

ural language processing tasks. Google’s Text-to- 141

Text Transfer Transformer (T5) transposes a broad 142

range of natural language processing tasks into 143

a text-to-text format (Raffel et al., 2020). Subse- 144

quent to its success, OpenAI introduced ChatGPT 145

(ope) and GPT-4 (OpenAI, 2023), demonstrating 146

innovative performances. Furthermore, Meta-AI 147

has introduced the open-source LLMs, LLaMA 148

(Touvron et al., 2023a) and LLaMA2 (Touvron 149

et al., 2023b), leading the development of subse- 150

quent models, such as Alpaca (Taori et al., 2023) 151

and Vicuna (Zheng et al., 2023). Leveraging LLMs 152

for the medical domain, ClinicalT5 fine-tuned T5 153

for the MIMIC-III dataset and achieved higher per- 154

formance than T5 on several medical benchmark 155

datasets. ChatDoctor, a fine-tuned LLaMA based 156

on 100K patient-physician conversations collected 157

from online medical consultation websites (Yunx- 158

iang et al., 2023), performed similar to or better 159

than ChatGPT for a variety of medical queries. 160

Medalpaca recorded high scores on the United 161

States Medical Licensing Examination (USMLE) 162

by fine-tuning LLaMA for self-collected medical 163

datasets (Han et al., 2023). PMC-LLaMA, a fine- 164

tuned LLaMA using a knowledge injection dataset 165

constructed from 4.8M academic papers and 30k 166

medical books and a medical-specific instruction 167

tuning dataset comprising 202M tokens, demon- 168

strated top-tier performance in the Medical QA 169

task (Wu et al., 2023). Nevertheless, there has been 170

no exploration into fine-tuning LLMs for classi- 171

fying ICD codes from complex and noisy clinical 172

notes. To the best of our knowledge, this study is 173

the first attempt to find an optimal way for fine- 174

tuning LLMs toward automatic ICD coding. 175

3 Methods 176

We propose a fine-tuning framework toward the 177

automatic ICD coding for two types of LLMs, the 178

encoder-decoder models (e.g. T5) and the decoder- 179

only models (e.g. LLaMA) which is illustrated 180

in Fig. 1. Our framework contains a label atten- 181

tion mechanism, note-relevant knowledge injec- 182
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Figure 1: Structural outline of our proposed framework with label attention, note-relevant knowledge injection, and
knowledge-driven sampling for encoder-decoder and decoder-only models. The blue box in the decoder-only model
is not adopted for our final results because the module degrades the fine-tuning performance.

tion (KG-injection), and knowledge-driven sam-183

pling. The model is fine-tuned to predict true as-184

signed codes C from the entire codes Ctotal =185

{c1, c2, ..., cNC
} based on a clinical note input X186

with the prefix prompt (detailed in Appendix A).187

An objective function Lgen to train the LLMs for188

generating proper ICD codes is defined as a cross-189

entropy function between the assigned codes C and190

generated output text Ygen.191

3.1 Label attention for LLM-based ICD192

coding193

In order to encourage feature extraction for multi-194

label classification, we integrate the label atten-195

tion mechanism (Vu et al., 2021) with LLMs to196

efficiently solve the multi-label binary classifica-197

tion for a broad label space. The input of the label198

attention layer is defined as the output of the en-199

coder and decoder for the encoder-decoder and200

decoder-only models, respectively, as shown in Fig.201

1. Given the number of tokens in the input text Nx202

and the dimension of the hidden state dh, the input203

H ∈ RNx×dh for the label attention layer is defined204

as:205

H = F(X),

F =

{
encoder, if encoder-decoder model
decoder, if decoder-only model.

(1)

206

Then, the output Yatt indicating the possibilities to207

be assigned codes Ctotal is defined as:208

Z = tanh(HW ) (2)209

210
V = softmax(UZ⊤)H (3) 211

212
Yatt = fcn(V ) (4) 213

where W ∈ Rdh×da and U ∈ RNc×da are train- 214

able weight matrices, and da is the pre-defined di- 215

mension of hidden space. fcn represents fully con- 216

nected layers to classify the label domain feature 217

V ∈ RNc×dh to output possibility Yatt ∈ RNc×1. 218

Consequently, the objective function Latt is de- 219

fined as a cross-entropy function between Yatt and 220

Catt, the latter being the binary labels indicating 221

whether each code is in the C. The final objective 222

function Ltotal is defined as the summation of Lgen 223

and Latt. 224

The final ICD code prediction Y for the clinical 225

note X is obtained as 226

Y = λYgen + (1− λ)Yatt, (5) 227

where the weight value λ is determined depending 228

on the classification performance for put-aside val- 229

idation data. As Ygen contains multiple codes, we 230

elect to use a binary weight for the ensemble rather 231

than to extract assigning possibilities for each code. 232

3.2 Note-relevant medical knowledge injection 233

To enhance LLMs’ understanding of various profes- 234

sional terms, abbreviations, and synonyms in clini- 235

cal notes, we propose a KG-injection with knowl- 236

edge data for ICD-9 codes which we built using 237

ChatGPT. The details of the knowledge data are 238

in Appendix B. Given the knowledge data M , la- 239

tent features D and Dm for the clinical notes and 240

knowledge data are obtained as follows: 241
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T5-base LLaMA-7B
F1 Accuracy F1 Accuracy

Input Output
macro micro macro micro macro micro macro micro

clinical note assigned code 51.09 57.4 36.31 40.25 45.24 52.53 29.95 35.62

clinical note
assigned code

+ description
48.69 55.64 34.11 38.54 36.51 46.14 23.13 29.99

clinical note
+ total code

assigned code 50.99 57.14 36.32 40.00 35.33 43.51 20.87 27.80

clinical note
+ total code
+ description

assigned code 50.62 56.30 35.69 39.18 36.01 44.27 21.59 28.43

Table 1: Results of T5-base and LLaMA-7B fine-tuned by the MIMIC-III-50 dataset, employing different input-
output formats.

D = G(X) and Dm = G(M),where

G =

{
encoder, if encoder-decoder model
embedding, if decoder-only model.

(6)

242

Given Nm that denotes the number of tokens in243

the knowledge data, the attention matrix A that rep-244

resents the attention between the clinical note input245

and knowledge data is derived using the following246

equations.247

Zm = DmW (7)248
249

A = softmax(DZT
m) (8)250

Then, the attention-applied feature D′ is obtained251

by252

D′ = D +AZm. (9)253

3.3 Knowledge-driven sampling for clinical254

notes255

Input sequences to LLMs have a limited length256

because of resource constraints, which inevitably257

results in information loss for long clinical notes.258

When truncating the MIMIC-III discharge sum-259

maries to a limited sequence length, 2048 tokens260

in our experiments, 44.66% of the total tokens are261

eliminated, and in the case of the lengthiest dis-262

charge summary, 92.44% of the total tokens are263

eliminated. LAAT (Vu et al., 2021), an LSTM-264

based automatic ICD coding method, scored 66.6265

in macro F1 and 71.5 in micro F1 when truncating266

inputs to 4000 tokens. However, when the input267

text is truncated to 2048 tokens, the scores dimin-268

ished to 48.80 in macro F1 and 58.75 in micro269

F1 in our experiments. Considering the substantial 270

information loss, it is imperative to strategically in- 271

clude important information from long documents 272

for LLMs. We proposed a knowledge-driven sam- 273

pling approach to select meaningful parts from the 274

clinical notes. 275

Clinical notes usually can be divided into sev- 276

eral sections. Given the tokens Ti in i-th section 277

of the discharge summary, the number of tokens 278

associated with the assigned code C is defined as: 279

NTi =
∑
w∈Ti

1(w ∈
⋃
cj∈C

Mj), (10) 280

where Mj denotes a subset of the knowledge data 281

M associated with the code cj ∈ C. Sections are 282

primarily selected based on NTi , and subsequently 283

chosen and sorted according to the importance ratio 284

p, which is defined as: 285

pTi =
NTi

|Ti|
. (11) 286

After selecting sections, paragraphs within each 287

section are ordered according to the paragraph- 288

level importance ratio that is defined in the same 289

manner with pTi . 290

4 Experiments 291

4.1 MIMIC-III-50 dataset 292

We used the discharge summaries and manually an- 293

notated ICD-9 codes from the MIMIC-III dataset 294

to validate the proposed framework as in previous 295

ICD coding studies. We followed the data process- 296

ing of CAML (Mullenbach et al., 2018) and em- 297

ployed the MIMIC-III-50 dataset for experiments, 298

a subset associated with the top 50 most frequently 299

occurring codes (Mullenbach et al., 2018). This 300
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subset encompasses 11,368 discharge summaries,301

of which 8,066 samples were utilized for training,302

1,573 for validation, and 1,729 for testing. We in-303

vestigated our proposed approach using macro and304

micro F1-scores along with macro and micro accu-305

racy.306

4.2 Training details307

Four NVIDIA V100 GPUs were used for the train-308

ing and testing. We applied a full parameter fine-309

tuning for the T5 and ClinicalT5 models, while the310

decoder-based models with 7B parameters were311

fine-tuned using Low-Rank Adaptation (LoRA)312

(Hu et al., 2021) with (8, 16) coefficients due to313

the hardware limitation. The length of input tokens314

was limited to 2,048 throughout all experiments.315

The AdamW optimizer was utilized for training,316

and learning rates of 1e-4 and 3e-4 were applied317

to encoder-decoder models and decoder-only mod-318

els, respectively. We employed the base T5 and319

ClinicalT5 models with 220m parameters, while320

7B models were adopted for LLaMA, LLaMA2,321

Alpaca, Vicuna, MedAlpaca, and PMC-LLaMA.322

Fine-tuning T5 and ClinicalT5 required 8 GPU323

days, while the others required 28 GPU days. Be-324

cause of the long GPU days for training, we report325

experimental results based on a single run of train-326

ing.327

4.3 Experimented LLMs328

4.3.1 T5329

T5 (Raffel et al., 2020) is a large-scale transformer-330

based language model developed by Google Re-331

search. The model conceptualized all NLP tasks as332

a “text-to-text transformation” problem, facilitating333

a consistent framework for numerous NLP tasks.334

4.3.2 ClinicalT5335

ClinicalT5 (Lu et al., 2022) is a model derived from336

T5, fine-tuned on the MIMIC-III dataset.337

4.3.3 LLaMA338

LLaMA (Touvron et al., 2023a) is an open-source339

large language model trained on trillions of tokens340

from publicly available datasets without instruction341

tuning.342

4.3.4 LLaMA-2343

LLaMA-2 (Touvron et al., 2023b) is an advanced344

version of LLaMA. It applied a grouped query at-345

tention mechanism and was trained on a dataset346

40% larger than LLaMA.347

4.3.5 PMC-LLaMA 348

PMC-LLaMA (Wu et al., 2023) is a model derived 349

from LLaMA, fine-tuned on 4.8M medical docu- 350

ments for knowledge injection and 202M tokens 351

for medical-specific instruction tuning. 352

4.3.6 Alpaca 353

Alpaca (Taori et al., 2023) is a fine-tuned version 354

of Meta-AI’s LLaMA-7B. The model was trained 355

on 52K instruction-following demonstrations gen- 356

erated in the style of self-instruct using GPT-3.5. 357

4.3.7 Med-Alpaca 358

Med-Alpaca (Han et al., 2023) is a medical-specific 359

version of Alpaca. The model is fine-tuned on med- 360

ical domain datasets incorporating many medical 361

question-answer pairs. 362

4.3.8 Vicuna 363

Vicuna (Zheng et al., 2023) is a chatbot model 364

trained on LLaMA using a dialogue corpus col- 365

lected from ShareGPT (sha). 366

4.4 Results 367

4.4.1 Evaluation on input-output formats 368

We investigated the ICD coding performance de- 369

pending on input-output formats. The following 370

four input-output formats were examined. 371

1. Input: X , Output: C 372

2. Input: X , Output: C with description 373

3. Input: X + Ctotal, Output: C 374

4. Input: X + Ctotal with description, Output: C 375

Table 1 shows the results of T5-base and 376

LLaMA-7B models fine-tuned on the MIMIC-III- 377

50 dataset employing the aforementioned input- 378

output formats. The first format consistently ex- 379

hibits superior performance, which probably indi- 380

cates that incorporating additional information into 381

the input and output reduces the portion of the clin- 382

ical note information, and subsequently degrades 383

the ICD coding performance. Based on these re- 384

sults, all subsequent experimental results adhered 385

to the first format. 386

4.4.2 Comparison between vanilla and 387

proposed fine-tuning frameworks 388

Table 2 describes the ICD coding performance of 389

the LLMs after fine-tuning using the MIMIC-III- 390

50 dataset. The encoder-decoder models achieved 391

5



Baseline fine-tuning Fine-tuning with the proposed framework
F1 Accuracy F1 Accuracy

model macro micro macro micro macro micro macro micro
T5-base 51.09 57.40 36.31 40.25 56.01 64.14 41.27 47.21
ClinicalT5 56.59* 63.07* 40.05* 46.06* 58.88* 65.27* 43.72* 48.44*
LLaMA 45.24 52.53 29.95 35.62 47.86 54.84 32.73 37.84
LLaMA-2 49.60 56.11 31.20 39.00 49.90 57.05 32.49 39.98
PMC-LLaMA 45.45 52.30 30.73 35.41 47.47 53.70 32.63 36.70
Alpaca 44.05 50.41 28.74 33.70 46.18 53.83 31.18 36.82
Med-Alpaca 43.76 50.87 28.92 34.11 46.21 52.29 31.74 35.40
Vicuna 48.24 54.93 33.23 37.87 48.61 55.09 33.35 38.02

Table 2: Comparison of fine-tuning results using vanilla and the proposed frameworks on the MIMIC-III-50 dataset.
The bold numbers denote the best performance within each architecture type, and “*” denotes the overall best
performance.

higher scores compared to the decoder-only mod-392

els. Among the decoder-only models, LLaMA2,393

the most recently introduced model, showed the394

best performance. This indicates the correlation395

between natural language understanding capabil-396

ity and ICD coding performance. ClinicalT5 out-397

performed other models including T5, likely at-398

tributable to its prior fine-tuning on the MIMIC-399

III dataset. However, PMC-LLaMA and MedAl-400

paca did not evidently demonstrate performance401

enhancement compared with their baseline mod-402

els, i.e., LLaMA and Alpaca. This indicates the403

significant divergence between clinical notes and404

other medical documents, demonstrating the neces-405

sity for fine-tuning specifically geared toward ICD406

coding.407

The column on Fine-tuning with the proposed408

framework in Table 2 presents the results of our409

proposed framework on automatic ICD coding. De-410

riving from the results of ablation studies intro-411

duced in section 4.4.3, our fine-tuning framework412

for T5 and ClinicalT5 integrates the label atten-413

tion mechanism, KG-injection employing medical414

expressions, and knowledge-driven sampling for in-415

put clinical notes. For the decoder-only models, the416

label attention mechanism and knowledge-driven417

sampling excluding KG-injection were applied con-418

sidering the structural limitations mentioned in419

section 4.4.3. As shown in Table 2, our proposed420

framework exhibited enhanced performance across421

all models compared to the baseline. The most sig-422

nificant performance improvement was observed in423

T5-base, with score increments of 4.92, 6.74, 4.96,424

and 6.96 in macro F1, micro F1, macro accuracy,425

and micro accuracy, respectively, compared to the426

baseline. The disparity of the performance improve- 427

ments between encoder-decoder and decoder-only 428

models signifies that our framework elicits more 429

performance enhancements in the former, due to 430

the enhanced efficiency attained when label atten- 431

tion and KG-injection are implemented within the 432

latent space. Same as the baseline fine-tuning re- 433

sult, ClinicalT5 showed the highest performance 434

with fine-tuning using our proposed framework and 435

LLaMA2 showed the highest performance among 436

the decoder-only models. 437

4.4.3 Ablation studies 438

We demonstrate the effectiveness of the proposed 439

framework by conducting ablation studies. Table 3 440

summarizes the results of ablation studies, where 441

the “Classification”, “KG-injection”, and “Note 442

sampling” sections present the ICD coding perfor- 443

mance with regard to label attention, KG-injection, 444

and knowledge-driven sampling, respectively. 445

Label attention Where gen (base) denotes the 446

model fine-tuned with the vanilla fine-tuning frame- 447

work, att in the “Classification” section indicates 448

the fine-tuned model only based on the classifi- 449

cation using label attention. cmp-gen and cmp-att 450

refer to the ICD coding result from the text genera- 451

tion and label attention classification, respectively, 452

where the models were fine-tuned using both the 453

label attention and text generation losses. 454

The results show that simply applying the la- 455

bel attention classifier does not improve the ICD 456

coding performance (gen(base) vs. att), which in- 457

dicates the inefficacy of removing the text gen- 458

eration part of LLMs because the models were 459

pre-trained for the text generation. In contrast, the 460
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T5-base LLaMA-7B
F1 Accuracy F1 Accuracy

Method Setting macro micro macro micro macro micro macro micro
Baseline gen (base) 50.31 57.84 36.31 40.25 45.24 52.53 29.95 35.62

Classification
att 47.68 55.43 34.17 38.34 39.43 51.32 26.87 34.52
cmp-gen 51.09 57.40 35.37 40.69 47.05 53.44 32.06 36.47
cmp-att 52.02 60.11 37.10 42.97 39.02 51.55 25.79 34.73

KG-injection
code description 53.47 59.36 38.79 42.21 39.31 46.34 25.11 30.16
medical expressions 55.11 60.94 39.82 43.82 40.77 47.21 25.85 30.90

Note sampling
section level 55.27 59.28 39.17 41.22 45.30 52.07 30.35 35.20
+paragraph level 55.15 61.10 40.00 43.99 47.00 54.39 32.21 37.35

Table 3: Comparison of each component in the proposed method for T5-base and LLaMA-7B model on the MIMIC-
III-50 dataset. ‘+paragraph level’ denotes the paragraph-level sampling following the section-level sampling.

cmp-att results of the T5-base and cmp-gen results461

of the LLaMA-7B are better than the gen (base)462

results, respectively. This indicates that integrating463

the label attention with the text generation effec-464

tively enhances the understanding of clinical notes465

for ICD coding. The different performance supe-466

riority between cmp-gen and cmp-att toward T5-467

base and LLaMA-7B can be considered due to the468

structural distinctions of the models, i.e., encoder-469

decoder and decoder-only. In the encoder-decoder470

models, the encoding and decoding processes are471

structurally separated, allowing label attention to472

directly influence feature encoding. In contrast, the473

decoder-only models merge encoding and decod-474

ing, thus label attention only exerts an indirect ef-475

fect on feature encoding.476

Note-relevant knowledge injection We com-477

pared two types of knowledge data: detailed code478

descriptions and medical expressions (see the479

details in Appendix B). Applying KG-injection480

yielded performance improvement for the T5-base481

model. Specifically, fine-tuning using KG-injection482

with medical expressions achieved additional score483

gains of 4.80, 3.10, 3.51, and 3.57 for the macro484

F1, micro F1, macro accuracy, and micro accuracy,485

respectively, compared with the baseline results.486

The substantial enhancement in the macro scores487

particularly indicates that KG-injection improves488

the performance of codes with lower occurrence489

frequencies.490

In contrast, applying KG-injection to the491

LLaMA-7B precipitated the performance decline.492

This can be attributed to the structural differences493

between encoder-decoder and decoder-only mod-494

els. In the encoder-decoder models, KG-injection495

is applied in a well-reduced latent space following496

the encoder, whereas, in the decoder-only models,497
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Figure 2: Performance comparison of full fine-tuned
T5-base and LoRA fine-tuned T5-large depending on
the ratio of trainable parameters for T5-large LoRA fine-
tuning.

KG-injection is applied in a broader space close 498

to the observation space following the embedding 499

layers. Consequently, KG-injection is likely to be 500

inefficient in the decoder-only models. 501

Knowledge-driven sampling We examined the 502

section-level and paragraph-level knowledge- 503

driven samplings. The proposed knowledge-driven 504

sampling usually constructs input sequences by 505

selecting up to three of the most important sec- 506

tions from the input clinical note (see the details 507

in Appendix C). Regardless of the sampling level, 508

the proposed sampling approach achieved supe- 509

rior scores in all models and metrics compared to 510

the baseline fine-tuning with the slight superiority 511

of paragraph-level sorting combined with section- 512

level sorting. Compared to the baseline fine-tuning, 513

the combination of section-level and paragraph- 514

level sorting shows the performance improvements 515

in macro F1, micro F1, macro accuracy, and micro 516

accuracy were 4.84, 3.26, 3.69, and 3.74 in T5- 517

base, and 1.76, 1.86, 2.26, and 1.73 in LLaMA-7B, 518

respectively. These results also indicate that the 519

knowledge data we built exhibits a correlation with 520

important information within clinical notes. 521
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4.4.4 Explanation for the Performance of522

Decoder-Only Models523

The decoder-only models have demonstrated supe-524

rior performance in general natural language pro-525

cessing tasks over the encoder-decoder models, ow-526

ing to the larger number of trainable parameters.527

However, in our experimental results, the decoder-528

only models exhibited relatively diminished per-529

formance compared to the encoder-decoder mod-530

els, attributed to the lower number of parameters531

employed in fine-tuning the decoder-only models.532

The fine-tuning process for ICD coding with the533

decoder-only model demands significant resources534

due to lengthy text and numerous trainable param-535

eters. Constrained by hardware resources, we ap-536

plied LoRA fine-tuning to the decoder-only model537

with r = 8 and α = 16 employing a mere 0.03% of538

trainable parameters of the 7B models. Those are539

significantly insufficient for optimally fine-tuning540

the entire model. Figure 2 illustrates the results541

of applying LoRA fine-tuning with different coeffi-542

cients to T5-large with 770M parameters. While the543

performance excels over the total fine-tuning of the544

T5-base when the amount of trainable parameters545

is 1.26% of the total parameters, it recedes below546

the total fine-tuning of the T5-base at 0.32% and547

0.16%. Consequently, a substantial performance548

enhancement is anticipated in the training of the549

decoder-only model when either an increment in550

LoRA coefficients or fine-tuning across all parame-551

ters is implemented.552

5 Conclusion553

In this study, we propose a novel fine-tuning frame-554

work for LLMs toward automatic ICD coding. To555

enhance the performance of multi-class multi-label556

classification, we adopted a classifier applying a557

label attention mechanism as an additional clas-558

sifier. Furthermore, to amplify the capability of559

understanding diverse medical expressions, abbre-560

viations, and synonyms in clinical notes, we ap-561

plied KG-injection based on the knowledge data562

composed of medical expressions. Finally, to over-563

come the input length limitations of LLMs, we ap-564

plied knowledge-driven sampling to the input notes565

grounded on the medical expressions. In experi-566

ments across various LLMs, our method demon-567

strated improved performance compared to the568

conventional fine-tuning method. Notably, our pro-569

posed fine-tuning framework exhibited heightened570

efficacy in encoder-decoder models, which possess571

the structure enabling stable application of the label 572

attention mechanism and KG-injection in the latent 573

space. 574

6 Limitations 575

Our main limitations come from the restricted re- 576

sources for experiments. First, the proposed ap- 577

proach was evaluated with the absence of experi- 578

ments on the MIMIC-III full dataset. Experiments 579

for the MIMIC-III full dataset, which possesses 580

about six times more training samples and over 581

160 times wider label space than the MIMIC-III-50 582

dataset, were unfeasible with confined resources. 583

Instead, we exclusively executed experiments using 584

several LLMs and diverse experiment settings with 585

the MIMIC-III-50 dataset. Therefore, we expect 586

that the performance improvement in ICD coding 587

afforded by our proposed framework will be equiv- 588

alently achieved for the MIMIC-III full dataset. 589

Second, the fine-tuning of the decoder-only mod- 590

els was conducted by LoRA fine-tuning. Given the 591

extensive trainable parameters of the decoder-only 592

models, we adopted fine-tuning using LoRA exclu- 593

sively for the 7B models, which probably restricted 594

the potential of the models. Since our proposed 595

fine-tuning framework is not confined to model 596

size, we anticipate it will demonstrate further per- 597

formance improvement with the full fine-tuning of 598

those models. 599

Although the proposed fine-tuning approach sig- 600

nificantly improves the ICD coding performance of 601

LLMs, the performance is far from practical. Fur- 602

thermore, because of sequence length constraints, it 603

falls short of other recent methods that don’t utilize 604

LLMs. However, we believe that the LLM-based 605

approach is a promising way to solve the challenges 606

in the ICD coding task by leveraging the LLMs’ 607

capability of understanding natural language. We 608

hope this study inspires further research to bridge 609

the gap from the general LLMs to practical medical 610

applications. 611

References 612

Introducing ChatGPT — openai.com. https:// 613
openai.com/blog/chatgpt/. [Accessed 10- 614
10-2023]. 615

ShareGPT: Share your wildest ChatGPT conversa- 616
tions with one click. — sharegpt.com. https: 617
//sharegpt.com. [Accessed 12-10-2023]. 618

Diane L Adams, Helen Norman, and Valentine J Bur- 619
roughs. 2002. Addressing medical coding and 620

8

https://openai.com/blog/chatgpt/
https://openai.com/blog/chatgpt/
https://openai.com/blog/chatgpt/
https://sharegpt.com
https://sharegpt.com
https://sharegpt.com


billing part ii: a strategy for achieving compliance. a621
risk management approach for reducing coding and622
billing errors. Journal of the National Medical Asso-623
ciation, 94(6):430.624

Mateusz Buda, Atsuto Maki, and Maciej A Mazurowski.625
2018. A systematic study of the class imbalance626
problem in convolutional neural networks. Neural627
networks, 106:249–259.628

Aidan Gilson, Conrad W Safranek, Thomas Huang,629
Vimig Socrates, Ling Chi, Richard Andrew Taylor,630
David Chartash, et al. 2023. How does chatgpt per-631
form on the united states medical licensing examina-632
tion? the implications of large language models for633
medical education and knowledge assessment. JMIR634
Medical Education, 9(1):e45312.635

Tianyu Han, Lisa C Adams, Jens-Michalis Papaioan-636
nou, Paul Grundmann, Tom Oberhauser, Alexander637
Löser, Daniel Truhn, and Keno K Bressem. 2023.638
Medalpaca–an open-source collection of medical639
conversational ai models and training data. arXiv640
preprint arXiv:2304.08247.641

Jeremy Howard and Sebastian Ruder. 2018. Universal642
language model fine-tuning for text classification.643
arXiv preprint arXiv:1801.06146.644

Edward J Hu, Yelong Shen, Phillip Wallis, Zeyuan645
Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang,646
and Weizhu Chen. 2021. Lora: Low-rank adap-647
tation of large language models. arXiv preprint648
arXiv:2106.09685.649

Nathalie Japkowicz and Shaju Stephen. 2002. The class650
imbalance problem: A systematic study. Intelligent651
data analysis, 6(5):429–449.652

Shaoxiong Ji, Erik Cambria, and Pekka Marttinen. 2020.653
Dilated convolutional attention network for medical654
code assignment from clinical text. arXiv preprint655
arXiv:2009.14578.656

Alistair EW Johnson, Tom J Pollard, Lu Shen, Li-wei H657
Lehman, Mengling Feng, Mohammad Ghassemi,658
Benjamin Moody, Peter Szolovits, Leo Anthony Celi,659
and Roger G Mark. 2016. Mimic-iii, a freely accessi-660
ble critical care database. Scientific data, 3(1):1–9.661

Leah S Larkey and W Bruce Croft. 1996. Larkeyand-662
croft1996. In Proceedings of the 19th annual in-663
ternational ACM SIGIR conference on Research and664
development in information retrieval, pages 289–297.665

Fei Li and Hong Yu. 2020. Icd coding from clinical666
text using multi-filter residual convolutional neural667
network. In Proceedings of the AAAI Conference on668
Artificial Intelligence, volume 34, pages 8180–8187.669

Qiuhao Lu, Dejing Dou, and Thien Nguyen. 2022. Clin-670
icalt5: A generative language model for clinical text.671
In Findings of the Association for Computational672
Linguistics: EMNLP 2022, pages 5436–5443.673

James Mullenbach, Sarah Wiegreffe, Jon Duke, Jimeng 674
Sun, and Jacob Eisenstein. 2018. Explainable pre- 675
diction of medical codes from clinical text. arXiv 676
preprint arXiv:1802.05695. 677

Harsha Nori, Nicholas King, Scott Mayer McKinney, 678
Dean Carignan, and Eric Horvitz. 2023. Capabili- 679
ties of gpt-4 on medical challenge problems. arXiv 680
preprint arXiv:2303.13375. 681

OpenAI. 2023. Gpt-4 technical report. 682

Long Ouyang, Jeffrey Wu, Xu Jiang, Diogo Almeida, 683
Carroll Wainwright, Pamela Mishkin, Chong Zhang, 684
Sandhini Agarwal, Katarina Slama, Alex Ray, et al. 685
2022. Training language models to follow instruc- 686
tions with human feedback. Advances in Neural 687
Information Processing Systems, 35:27730–27744. 688

Colin Raffel, Noam Shazeer, Adam Roberts, Katherine 689
Lee, Sharan Narang, Michael Matena, Yanqi Zhou, 690
Wei Li, and Peter J Liu. 2020. Exploring the limits 691
of transfer learning with a unified text-to-text trans- 692
former. The Journal of Machine Learning Research, 693
21(1):5485–5551. 694

Haoran Shi, Pengtao Xie, Zhiting Hu, Ming Zhang, and 695
Eric P Xing. 2017. Towards automated icd coding us- 696
ing deep learning. arXiv preprint arXiv:1711.04075. 697

Jessica Germaine Shull. 2019. Digital health and the 698
state of interoperable electronic health records. JMIR 699
medical informatics, 7(4):e12712. 700

Rohan Taori, Ishaan Gulrajani, Tianyi Zhang, Yann 701
Dubois, Xuechen Li, Carlos Guestrin, Percy Liang, 702
and Tatsunori B Hashimoto. 2023. Stanford alpaca: 703
An instruction-following llama model. 704

Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier 705
Martinet, Marie-Anne Lachaux, Timothée Lacroix, 706
Baptiste Rozière, Naman Goyal, Eric Hambro, 707
Faisal Azhar, et al. 2023a. Llama: Open and effi- 708
cient foundation language models. arXiv preprint 709
arXiv:2302.13971. 710

Hugo Touvron, Louis Martin, Kevin Stone, Peter Al- 711
bert, Amjad Almahairi, Yasmine Babaei, Nikolay 712
Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti 713
Bhosale, et al. 2023b. Llama 2: Open founda- 714
tion and fine-tuned chat models. arXiv preprint 715
arXiv:2307.09288. 716

Thanh Vu, Dat Quoc Nguyen, and Anthony Nguyen. 717
2021. A label attention model for icd coding from 718
clinical text. In Proceedings of the Twenty-Ninth 719
International Joint Conference on Artificial Intelli- 720
gence, IJCAI’20. 721

Chaoyi Wu, Weixiong Lin, Xiaoman Zhang, Ya Zhang, 722
Yanfeng Wang, and Weidi Xie. 2023. Pmc-llama: 723
Towards building open-source language models for 724
medicine. 725

9

http://arxiv.org/abs/2303.08774
http://arxiv.org/abs/2304.14454
http://arxiv.org/abs/2304.14454
http://arxiv.org/abs/2304.14454
http://arxiv.org/abs/2304.14454
http://arxiv.org/abs/2304.14454


Pengtao Xie and Eric Xing. 2018. A neural architecture726
for automated icd coding. In Proceedings of the 56th727
Annual Meeting of the Association for Computational728
Linguistics (Volume 1: Long Papers), pages 1066–729
1076.730

Xiancheng Xie, Yun Xiong, Philip S Yu, and Yangyong731
Zhu. 2019. Ehr coding with multi-scale feature at-732
tention and structured knowledge graph propagation.733
In Proceedings of the 28th ACM international con-734
ference on information and knowledge management,735
pages 649–658.736

Hong Yu, George Hripcsak, and Carol Friedman. 2002.737
Mapping abbreviations to full forms in biomedical ar-738
ticles. Journal of the American Medical Informatics739
Association, 9(3):262–272.740

Li Yunxiang, Li Zihan, Zhang Kai, Dan Ruilong, and741
Zhang You. 2023. Chatdoctor: A medical chat model742
fine-tuned on llama model using medical domain743
knowledge. arXiv preprint arXiv:2303.14070.744

Lianmin Zheng, Wei-Lin Chiang, Ying Sheng, Siyuan745
Zhuang, Zhanghao Wu, Yonghao Zhuang, Zi Lin,746
Zhuohan Li, Dacheng Li, Eric Xing, et al. 2023. Judg-747
ing llm-as-a-judge with mt-bench and chatbot arena.748
arXiv preprint arXiv:2306.05685.749

Tong Zhou, Pengfei Cao, Yubo Chen, Kang Liu, Jun750
Zhao, Kun Niu, Weifeng Chong, and Shengping Liu.751
2021. Automatic icd coding via interactive shared752
representation networks with self-distillation mech-753
anism. In Proceedings of the 59th Annual Meet-754
ing of the Association for Computational Linguistics755
and the 11th International Joint Conference on Natu-756
ral Language Processing (Volume 1: Long Papers),757
pages 5948–5957.758

10



A Prompts and LLM Response759

Figure 3 shows the example of the prompt used760

in the LLMs’ fine-tuning process and the required761

response for ICD coding.762

B Data for knowledge injection763

B.1 Detailed code description764

The detailed code descriptions, which are used as765

additional knowledge data in our experiments, con-766

tain more detailed information than the official767

ICD-9 code description. We obtained the data using768

GPT-3.5-turbo (ope). Figure 4 displays the example769

of the prompt for obtaining detailed code descrip-770

tions using GPT-3.5-turbo and its corresponding771

response.772

B.2 Medical expressions related to ICD-9773

codes774

The knowledge data consists of all medical expres-775

sions related to the ICD code, including medical776

terms, abbreviations, and synonyms. We obtained777

the medical expressions pertaining to MIMIC-778

III-50 ICD codes from GPT-3.5-turbo (ope). In779

all requests, GPT-3.5-turbo provided 30 medical780

terms, abbreviations, and synonyms each. Figure781

5 presents the prompt and associated response for782

acquiring medical expression data.783

C Results of the knowledge-driven784

sampling785

Table 4 shows the top three sections selected by the786

knowledge-driven sampling to the MIMIC-III-50787

training dataset. The ‘Hospital course’, ‘History of788

present illness’, and ‘Pertinent result’ sections were789

identified as the most frequently sampled sections.790

However, the percentage of sampled sections for791

each was less than 1%, indicating that the impor-792

tant sections are likely to be different across note793

samples.794

Hospital course History present illness Pertinent result others
N 58.97 27.69 24.71 less then 8
p[%] 0.12 0.12 0.06 less then 0.03

Table 4: Statistical result of knowledge-driven sampling.
N and p[%] denote the number and the percentage of
samples which select the section in the sampling pro-
cess.
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Q. Below is an instruction that describes a task, paired with an 
input that provides further context. Write a response that 
appropriately completes the request.

The following note is the discharge summary of a patient. 
Provide all ICD-9 codes applicable to the patient.
Admission Date: XXXX-XX-XX Discharge Date: XXXX-XX-XX

Date of Birth: XXXX-X-XX Sex: M

Service: MEDICINE

Allergies: Penicillins / Shellfish Derived

Attending: First Name3 LF 1253

Chief Complaint: sob, confusion

Major Surgical or Invasive Procedure: Intubation, BAL

History of Present Illness:
56 yom nasal polyps, alcohol abuse, depression, anaphylactic 
rxn to shellfish and pcn,  …

A. Response: 276.1, 285.9, 287.5, 305.1, 486, 507.0, 518.81, 
33.24, 38.91, 38.93, 96.6,9 6.72

LLM

Figure 3: Example of the prompt and corresponding response for LLMs’ fine-tuning

Q. Provide a description of the given ICD-9 code in one paragraph.
ICD-9 code : 285.9 Anemia, unspecified

A. Anemia, unspecified refers to a general diagnosis of anemia without specifying the underlying cause or type. Anemia is a 
condition in which there is a deficiency of red blood cells or hemoglobin in the blood, leading to reduced oxygen-carrying capacity 
and causing symptoms such as fatigue, weakness, and pallor.

Q. Provide a description of the given ICD-9 code in one paragraph.
ICD-9 code : 585.9 Chronic kidney disease, unspecified

A. Chronic kidney disease, unspecified is a code for a progressive and long-term loss of kidney function without specifying the stage 
or underlying cause. Chronic kidney disease can result from various conditions, such as diabetes, high blood pressure, or 
autoimmune diseases, and can ultimately lead to kidney failure if not properly managed.

Q. Provide a description of the given ICD-9 code in one paragraph.
ICD-9 code : 38.93 Venous catheterization, not elsewhere classified

A. Venous catheterization, not elsewhere classified, refers to the insertion of a catheter into a vein for various purposes, such as 
administering medications, monitoring blood pressure, or drawing blood samples. The specific vein used and the purpose of the
procedure are not specified in this code.

GPT3.5

Figure 4: Examples of the prompts provided to GPT3.5 and their corresponding responses for ICD code description
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GPT3.5

Q. Could you list up the given ICD-9 code for 
which you would like me to provide all the 
related medical terms, including abbreviations 
and synonyms?
ICD-9 code : 401.9 Unspecified essential 
hypertension

A. 
Medical terms: 
Hypertension
High blood pressure
Essential hypertension
Primary hypertension.
.
.

Abbreviations: 
BP
HTN
SBP
DBP
.
.

Synonyms: 
Unspecified hypertension
Essential hypertension Not Otherwise 
Specified
Non-specific essential hypertension
Hypertensive disease
.
.

GPT3.5

Q. Could you list up the given ICD-9 code for 
which you would like me to provide all the 
related medical terms, including abbreviations 
and synonyms?
ICD-9 code : 995.92 Severe sepsis

A. 
Medical terms: 
Severe sepsis
Severe septicemia
Sepsis with organ dysfunction
Septic shock.
.
.

Abbreviations: 
SIRS
SOFA
MAP
BP
.
.

Synonyms: 
Overwhelming sepsis
Septicemia with severe illness
Septic syndrome with organ failure
Severe bacteremia
.
.

GPT3.5

Q. Could you list up the given ICD-9 code for 
which you would like me to provide all the 
related medical terms, including abbreviations 
and synonyms?
ICD-9 code : 99.15 Parenteral infusion of 
concentrated nutritional substances

A. 
Medical terms: 
Parenteral nutrition
Total parenteral nutrition
Intravenous nutrition
IV nutrition
.
.

Abbreviations: 
PN
TPN 
IV 
PPN
.
.

Synonyms: 
Intravenous infusion of concentrated 
nutritional substances
Parenteral administration of concentrated 
nutrients
Total parenteral nutrition infusion
.
.

Figure 5: Examples of the prompts provided to GPT3.5 and their corresponding responses for medical terms related
to given ICD code
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