How to Scale Second-Order Optimization

Zixi (Charlie) Che Shikai Qiu* HoangPhan QiLei Andrew Gordon Wilson
NYU NYU NYU NYU NYU

Abstract

Several recently introduced deep learning optimizers inspired by second-order
methods have shown promising speedups relative to the current dominant optimizer
AdamW, particularly in relatively small-scale experiments. However, efforts to
validate and replicate their successes have reported mixed results, with some
finding quickly diminishing advantage over AdamW with scale. In this work, we
investigate how to scale second-order optimizers to achieve optimal performance
at scale. Through theoretical and empirical analysis, we derive scaling rules for
hyperparameters such as learning rate and weight decay as we scale up model width
and depth for a wide range of optimizers, including Shampoo, SOAP, and Muon,
accounting for the impact of commonly used techniques such as blocking and
grafting. For compute-optimal scaling, we find scaling independent weight decay
as 1/width is nearly optimal across optimizers, and that second-order optimizers
have a substantially larger optimal model size compared to AdamW for a fixed
compute budget. Applying these scaling rules, we show Muon consistently achieves
close to 1.4 x speedup over AdamW for training transformer models ranging from
190M to 1.4B, while incorrect scaling rapidly diminishes the speedup to around
1.1x.

1 Introduction

The non-convex and ill-conditioned loss landscapes of neural networks seem ideally suited for
advanced higher-order optimization algorithms. Yet, simple first-order optimizers — AdamW, in
particular [[11] — continue to dominate the majority of deep learning workloads, including the
training of state-of-the-art language models [30} [12]. Recently, however, second-order approaches
have regained attention, catalyzed by Shampoo’s first place in the AlgoPerf benchmark competitions
[22] 133]]. Since then, the deep learning community introduced a new wave of optimizers that
approximate or take inspiration from second-order methods [35, 20} 23, 5]]. The recent success of
Muon in training trillion-parameter language models [34] points to the potential in replacing AdamW
as the default choice for deep learning at scale.

To understand and fully realize the practical value of second-order optimizers, it is essential to
understand the interventions required to effectively employ second-order optimizers as we scale up
the models. A key lesson from scaling up deep learning over recent years is that choices such as
model size, training horizon, initialization, and learning rate needs to be carefully covaried as the
compute budget is scaled to achieve optimal performance [18} 121140, 14} 26]]. How to systematically
generalize existing scaling rules developed for traditional optimizers such as Adam to second-order
optimizers is non-trivial, due to their more complex update rules. In practice, practitioners typically
rely on heuristics, such as matching the average update entry size to Adam [24} 2,133 for learning rate
scaling, and reusing the 20 tokens per parameter rule for choosing the optimal model size [18]], which
we will show is suboptimal. We hypothesize the lack of good scaling prescriptions for these recently
introduced optimizers may contribute to the inconsistent observations in the literature regarding their
relative performance to AdamW (24, 34} 137, 131]].

*Equal contribution. Correspondence to zc2157@nyu. edu, sq2129@nyu. edu, andrewgw@cims .nyu. edu.

39th Conference on Neural Information Processing Systems (NeurIPS 2025).

SP_ Muon Gr Shampoo? SOAP

] [—— p——
————| [——]
ﬁ 7. _ 3.3x10° .
=40 — —7 32x10° 16
|- |- [
* * s .
3.1x10° 5.,
S 1.
a5 M 3x10° | =
—_— e — [————] [———] a mm Adam R 2
1.2
— | || |————"| S29x10°| = Muon 9
0
g | —_———| | o 5
dJ40 L 0 o) |——— ——T 2.8x10°| —e— uP + 1/Width WD £10
- o
x x * - uPonly
27x10°| —v— 1/Width LR
= 1 = 1 T 0.8
10 107" 10 10 10 -4 Compute Optimal .
Learning rate 2.6 % 10° 2
10° 10° 10° 3x10%
—e— D=256 —e— D=512 D=1024 D=1280 Compute (PetaFLOPS) Compute (PetaFLOPS)

Figure 1: Proper scaling rules empowers the full potential of second-order optimizers at scale.
(left) With our pP learning rate scaling, optimal learning rate is nearly invariant across width D
under the 20 token-per-parameter compute-optimal scaling. (Middle) Muon consistently outperforms
AdamW under our scaling rules that combine P with 1/D-scaled weight decay. Ablating either
degrades Muon performance significantly. Muon performance further improves by reducing the token
per parameter (TPP) from 20 to 7. (Right) Estimated compute saving relative to AdamW. Ablating
the scaling rules reduces the saving from 1.4 for the 190M model to around 1.1x for the 640M
model, highlighting the importance of proper scaling for scaling law comparison.

In this work, we address these open questions by systematically studying scaling rules for commonly
used second-order optimizers. We summarize our main findings as follows:

1. We study how to parameterize models trained with second-order optimizers as a function of
both width and depth. With a generically applicable technique, we show how to derive the
Maximal Update Parameterization (uP) [40, 4 1] for a wide range of optimizers, including
Shampoo [16], SOAP [35]], and Muon [20], accounting for the impact of commonly used
techniques such as blocking and grafting [2,133]], and extend to depth scaling for residual
networks such as the transformer.

2. For fixed training steps, we show the optimal learning rate is stable as predicted by the
theory, but with exceptions that reveal the limited applicability of uP in reasoning about
the finite-width behavior of models trained with some preconditioners that inflate the stable
rank of the update. As an example, we find learning rate transfers better for SOAP if we
assume no alignment between the update and the input.

3. For compute-optimal scaling, we find 1) our scaling rules produce nearly stable optimal
learning rate, and outperform the standard parameterization with unscaled learning rate, 2)
scaling the independent weight decay as 1/width as suggested in Xiao [39] is near-optimal
across optimizers, and 3) second-order optimizers have larger optimal model size for a fixed
compute compared to Adam.

4. We show that applying these scaling rules is crucial for good performance at scale. We find
Muon achieves a consistent 1.4x speedup over AdamW in training transformer language
models, while incorrect scaling can decrease the speedup from 1.4x to below 1.1x from
190M to 1.4B parameter models.

‘We make our code available here.

2 Background

Second-Order Optimizers in Deep Learning. Natural Gradient Descent (NGD), a classical second-
order optimizer, accelerates convergence by preconditioning the gradient with the inverse of the
empirical Fisher information matrix. AdaGrad [13] maintains the cumulative outer product of

gradients €, = Zi=1 gsg9! and preconditions updates with €, /2 For cross-entropy loss, AdaGrad
approximates NGD, up to step-size difference. However, computing a full Fisher is infeasible even
for a moderately-sized model, necessitating structured approximation in practice. Adam [[11] adopts
a diagonal approximation, while K-FAC [15]] exploits a Kronecker-factored representation.

Shampoo [16} 2} 33]] is an effective second-order optimizer that demonstrated strong performance in
a comprehensive optimization benchmark [22]. Its preconditioner can be interpreted as a one-step

https://github.com/shikaiqiu/scaling-second-order

approximation of the empirical Fisher using power iteration [27]]. Let W; denote the weight matrix of
a given layer and G the gradient estimate at W, at time ¢. The Shampoo update rule is given by

Wt+1 :Wt—U(Lt—‘rGI)_eLGt(Rt—FGI)_eR, (1)
where 7 is the learning rate, € is a regularization parameter, and ey, and ey are tunable positive
exponents. In this work, we refer to the update rule with e;, = eg = 1/4 as Shampoo [16] and
er, = er = 1/2 as Shampoo? [27,[33]. L; € R™*™ and R; € R™*" are given by L; = E[G;GT]
and R; = E[G] G,], with the expectation estimated using an exponential moving average over the
trajectory.

A key weakness of Shampoo is that the matrix inversion scales cubically with the width of layer and
is numerically unstable. To make Shampoo practical, blocking [33}135] partitions the parameter into
sub-blocks, thereby decreasing the size of the preconditioners; infrequently updating preconditioners
[33}135] amortizes the cost of matrix inversion. Grafting [2,133} 1], which is used to enhance stability,
renormalizes the Shampoo update by another first-order method, usually Adam.

Following Shampoo’s strong performance in the AlgoPerf benchmark [22], several new second-order
optimizers have emerged. Bernstein and Newhouse [5] showed that without exponentially moving
average, Shampoo simplifies to:

W1 — Wi = —n - (GGT)VAGU(GTGy) ™ = —n - UV, (2)
where G; = U X, VtT is the SVD of the gradient matrix. The Muon optimizer [20] leverages this
insight, employing an iterative method to compute U, V,! directly. Muon has gained traction due to
its algorithmic simplicity and robust performance. While the community disagrees on whether Muon
should be considered second-order, we include in our analysis due to its promising performance and
close connection to methods like Shampoo.

SOAP [35]], another Shampoo-inspired algorithm, recognizes that Shampoo effectively applies
AdaFactor in a transformed coordinate system before mapping back to the original parameter space.
SOAP extends this insight by applying Adam-style updates within this transformed coordinate
representation. By a slight abuse of notation, the update is given by:

Wipr = Wi —nQr Adam(QT G Qr)QF, 3)
where Adam(-) is the Adam update rule. The orthogonal matrices ()7, € R™*™ and Qr € R™"*"
are given by Qr = eigvec(E[G;GT]) and Qg = eigvec(E[GT G;]), where eigvec(A) gives the
eigenvectors of A. We provide a more detailed version of update rules in Appendix [A]

Feature Learning and Hyperparameter Transfer. The maximal-update parametrization (uP) [40]
formalizes how learning rate should be scaled with width to maintain non-negligible feature update
in the infinite width limit by ensuring the amount by which the features change per step is consistent
across widths. Under uP, hyperparameters (HPs) tuned on a small model can be transferred to models
that are orders of magnitude wider with little or no re-tuning, dramatically reducing training cost
[43]. To extend feature learning to a joint infinite-width—infinite-depth limit, subsequent works have
proposed to multiply the residual branch by 1/L“ and scale the learning rate accordingly to ensure the
rate of feature learning is consistent across depth, where L is the depth and « € [0.5, 1] [45] 68 [10].
Together, principled width and depth scalings provide learning rate transfer for scaling first-order
optimizers like SGD and Adam, but analogous prescriptions for second-order methods remain largely
unexplored, with the exception of the recent work by Ishikawa and Karakida [[19]] deriving uP for
Shampoo and K-FAC. Throughout our experiments, we use a number of variants of Shampoo and
Shampoo?, such as blocking grafting by Adam, which require different scalings compared to what is
derived in Ishikawa and Karakida [[19] and have been shown to perform better [33]].

Compute-Optimal Scaling. Empirical scaling laws show that test loss falls as a power law in
model parameters and data[21 [18]]. Yet existing analyses assume first-order updates; how curvature-
aware optimizers reshape these laws, or alter constants like the Chinchilla token-per-parameter ratio,
has been an open question. We show that second-order optimizers indeed alter compute-optimal
scaling laws: they are often significantly more sample-efficient and require much less data to be
computate-optimal.

3 Hyperparameter Transfer Over Width and Depth

In this section, we present our scaling rules for the per-layer learning rate and regularization parameter
€ as a function of width and depth to ensure consistent feature learning as the model scales, summa-

Table 1: Summary of hyperparameter scaling rules for learning rate n and damping parameter € as a
function of the input dimension d;,,, output dimension dy,, depth L, and number of blocks Ny as
used in blocking. A = j’“t is the aspect ratio. A multiplier 1/L is assumed to apply to the output of
every residual block. For parameters outside of the residual blocks (e.g. embedding and last layer),
set L = 1. g, denotes the correctly scaled learning rate under preconditioner (). We include SGD
and Adam here for completeness. The exact definition of € is described in Appendix [A]

SGD Adam Shampoo (¢, er) SOAP Muon Grafting Q; — Q-
n LA ﬁ L172(eL+eR)AlfeL7eR/Nb€1ﬁ+€R \/Z \/Z nQ»
—1 —1
€ N/A Ldlout LzAlelk L\l/Z Ng \/Z an\/‘Z

rized in Table[I] We provide a high-level overview of the derivation here and leave the full details
to Appendix [B] We adopt Big-Theta notation along with an elementwise convention for vectors.
Specifically, for vector v € R?, v = ©(g(d)) is a shorthand for ||v|zys = ©(g(d)), where the

normalized root mean square is defined by [|v|gys = /5 >; v2. We use the notation a ~ b to
indicate a/b = ©(1). We provide the experiment details in Appendix [D}

3.1 Width Scaling via ;P

In this section, we focus on how hyperparameters should be scaled as a function of width for a wide
variety of optimizers by analyzing their Maximal Update Parameterization (uP) [40, 42| 41} 144]. P
ensures the rate of feature learning is consistent across width in every layer and that the training
dynamics converges to a well-defined large-width limit.

We now show a simple and general procedure suffices for determining the pP scaling applicable to
a wide range of second-order optimizer used in deep learning, each requiring only a few lines of
derivation. For concreteness, we consider training an L-layer (L assumed fixed for now) MLP that
outputs f(£) on an input & as follows:

20(€) = & he(€) = Wewe-1(€), 2e(€) = ¢(he(€)), £=1,...,L =1, f(§) = hr(§) = wizr-1(E),
where weights are drawn from a Gaussian A (0, o7) with layerwise variances o7 and ¢ is an element-

wise nonlinear function. For simplicity, we assume ¢ € R, f(&) € R, hy(¢) € R? for £ =
1,...,L — 1, and refer to d as the width.

We will now analyze the conditions for P up to the first gradient step. By satisfying these conditions,
the network will be in ¢P in all subsequent steps by induction. To do so, we track the change in layer
outputs on a generic input £’ induced by the first gradient update on £. We denote the change in any
quantity X after this step as AX. Extension to batch size B greater than 1 is straightforward as long
as B is constant in width, which we discuss in Appendix [C]

Initialization and Gradient Scales are Optimizer-Independent. Before discussing specialization to
any particular optimizer, we make the observation that the initialization scale o, of W} is independent
of the optimizer, with oy = ©(1//din¢) for £ < L and o, = ©(1/d). This result follows from
the combination of stability and feature learning condition of uP. Specifically, to ensure stability at
initialization, P requires all activations in the hidden layers have ©(1) entries and that the function
output is O(1):

he(€) = Wexe1 (&) =0(1), £=1,....L -1, f({)=0(1) 4)

The first condition implies that W, have entries of scale o, = ©(1//diy ¢) for all but the last layer,
where diy, ¢ is the input dimension of the ¢ layer (din,¢ = 1if £ > 1 and 1 if £ = 1), while second
condition implies that o;, = O(1/ \/&) To then ensure non-negligible feature learning, i.e. the
change in the last layer feature Az y,_1(¢’) is ©(1) per step, while ensuring the resulting change in
the output A f(¢') is ©(1) (predictions are updated without diverging), the last layer weights w;, must
be ©(1/d). To see that, note Af(¢') = w] Azy,_ is a sum of d i.i.d. random variables, each with a
generically non-zero mean due to the correlation between elements in wy, and elements in Az .
The correlation is induced by backpropagation, causing Az, _; to be a function of wy,, regardless of
the specific optimizer. Therefore, given Azp_; is O(1), wy, and thus oz, must be ©(1/d).

As aresult, the entries of the gradient of the loss w.r.t. the pre-activations 6¢(£') = V,,(¢/) L scales as
©(1/dout,¢) since backpropagating through all hidden layers preserve the scale of the gradient given

that oy = O(1/\/din,e) = O(1/+/dout,¢) for 1 < £ < L. With these results, we are now ready to
state the simplified P condition for any optimizer.

Maximal Update For Any Optimizer. To ensure each layer is subsequently updated as much as
possible and not divergent, uP requires each layer produces O(1) update to its output for every
gradient step. Let AT, denote the update to T, due to training on £ € R, this condition states

Ang‘g,l(f/) = @(1), = 1, .. .,L. (5)

The gradient of W, computed on a datapoint ¢ € R is Go(&) = Vw,L(€) = 80(&)ze—1(E) T,
where §¢(£) € Réoutt z,(¢) € Réne. Let Q(Gy(€)) be the preconditioned gradient returned by
the optimizer, we therefore wish to choose learning rate 7, such that 7,Q(G¢(&))ze—1(¢") = O(1),
where

Go(&) = 60(&)ze—1(8) T, 60(&) = O(1/dout,e), e—1(8) "we—1(£') = O(din 0).- (6)

Moving forward, we will omit the layer subscripts and abbreviate x (&) as z, ©(&') as 2/, §(€) as 0,
and G(§) as G. As aresult, the following holds for all layers:

r=0(1), ' =001), z'2'=06(dn), 6=01/dow), 06 0=0(1/dow). (7)

It turns out these scaling relations are sufficient to determine the P scaling rules. With these relations,
solving for the learning rate (and additional hyperparameters) now reduces to straightforward algebraic
manipulations. To illustrate, we now show how to derive the scaling rules for Shampoo. We provide
full derivations for all optimizers in Table[I]in Appendix [B] Our result for Shampoo reproduces that
in Ishikawa and Karakida [[19].

Example: Shampoo. Let ey, e € [0, 1]. The rank—1 Gram matrices are L = § (z "z) 8T, R=

x(670)z " with unique nonzero eigenvalues \;, = A\g = (zz)(576) = (d n) The precondi-

tioned update is
QShampoo(G> = (L + GBI)_eL G (R + EAI)_eR. ®)
Since G = §z ' lies in the principal directions,

176L7€R
QShampoo(G) x' ~ ()\L + 6B)_EL (/\R + 6A)_ER) (-rTxl) = @<(;E::t>)7)

l—er—epr
hence 7shampoo = © (%) . To keep the action of the regularization on the active

directions neither trivial nor ill-conditioned, € 4, € g must balance the only large scale there, namely

ALR = @(d‘i‘“) SO €, €EB = @(%).

out

Example: SOAP. SOAP applies Adam in the eigenbasis U and V' of the Shampoo preconditioners L
and R. The top eigenvectors are u; = 6/||d|| and v; = «/||z||. Then

@ =UTav = (|5l el excT, |] ||a:||=e() (10)

dout

Ignoring momentum, SOAP applies elementwise G’ = (|G| + €)~! ® G’. To avoid degeneracy,

must match the active magnitude, so esoap = @(, / i“t) Transforming back,

- T,/
Qsoar(G) =UG' VT =0(1)uv], Qsoar(G) 2’ =O(1)6 ||§|| ﬁ;” = @(j) (11)

which yields 7goap = @(%)

Example: Grafting. Grafting normalizes Shampoo update’s Frobenius norm by that of Adam’s. As
can be seen from the derivation for Shampoo and SOAP, the main insight is that in the infinite-width
limit, the gradient and the preconditioners are low-rank, with aligned singular vectors. As a result, the
Shampoo update remains (stable) low rank, implying that its Frobenius norm scales identically with
its spectral norm. Prior works have shown that Adam updates also have ©(1) stable rank [44} [41]].
Consequently, grafting by Adam requires simply scaling the learning rate with the yP scaling for
Adam.

SP_ Muon Muon Adam Shampoo Block Shampoo SOAP Gr Shampoo Gr Shampoo?

— e —_— —— ~Se— ——— —~/ —_—
1.4 — e —r—— of —
——— — [—_———— —
== — | = T = . /A
—_— e ——— (= P — —
12 ¥ £ pa——a ¥ *

1072 107 1072 107* 107t 107t 1072 1072 1072

—_—
— e ———— ———— Tr———— L — — P —
———
—
x

Loss

1072 107t 1072 107! 107! 107t 1072 1072 1072
Learning rate

1.55

1'35\ \ \ % \ \J\ ¥_

3x102 3x10° 3x10? 3x102 3x10® 3x102 3x10° 3x10® 3x10® 3x102 3x10° 3x10%2 3x10°
Model width

—e— D=128 —e— D=256 —e— D=512 —e— D=1024 D=2048 D=4096 —e— SP —e— P

Figure 2: uP for scaling learning rate with width in second-order optimizers on OpenWebText.
(Top row) We show that the optimal learning rate shifts in the standard parameterization (SP) for
seven variants of second-order optimizers. (Middle row) Our proposed scaling rules, on the other
hand, keep the optimal learning rate stable across widths. (Bottom row) pP enables better zero-shot
transferring of the optimal learning rate found in the smallest model to larger models. The learned
features for both scaling approach are provided in Appendix to further justify the correctness of
our approach. Muon Adam uses Adam for embedding and readout layers. Block Shampoo adopts
blocking with block size 128. ‘Gr* stands for grafting by Adam.

3.2 Empirical Validation of ;P and Diagnosis of Poor Transfer

In Figure 2] we validate our pP scaling rules on transformers trained on the OpenWebText dataset for
100M tokens. We use a small vocabulary with only 96 unique tokens so we can feasibly apply the
full preconditioners on the embedding and readout layers. We describe the full experiment setup in
Appendix [D| Across seven optimizers, we find P led to significantly more stable optimal learning
rate as width scales from D = 128 to D = 4096, and consistently outperform SP when zero-shot
transferring the optimal learning rate found on the D = 128 model (indicated by the dashed vertical
line).

Grafting by Frobenius Norm Breaks Learning Rate Transfer. Upon further inspection, we see
that the optimal learning rate still drifts noticeably in uP for Grafted Shampoo, Grafted Shampoo?,
and SOAP. In Figure 3left), we show the increasing optimal learning rate for Grafted Shampoo is
due to a transition from the stable rank scaling as ©(1) to growing with D. As training progresses,
the preconditioner update leaves the asymtotically large D, low-rank regime, causing the Frobenius
normalization to undershoot the spectral norm of the update for large D in the hidden layers, resulting
in slower feature evolution and increasing optimal learning rate. While the same transition occurs for
the vanilla Shampoo, the absence of Frobenius normalization preserves the right spectral norm and
feature update scale. Based on this observation, we argue gratfting should be done in the spectral
norm rather than the Frobenius norm, in order to enable learning rate transfer for preconditioners
that signifcaintly inflate the stable rank. The exception is if we use blocking with a ©(1) block size,
which caps the stable rank.

Corrected SOAP Scaling by Assuming No Alignment. In Figure [3[right) SOAP, we observe
the opposite trend for SOAP, where feature updates grow with D as training progresses, leading
to a decreasing optimal learning rate. We hypothesize this is due to SOAP amplifying entries in
G’ (Equation (10)) which vanish in the infinite-width limit but remain non-zero at finite width by
applying Adam in the eigenbasis, producing a dense rather than a sparse G’ that aligns weakly with
the input. Thus, we introduce a corrected scaling rule whereby we assume no alignment between the
SOAP update and the input, scaling 7 as 1/1/d;, instead. Figure d) shows this correction leads to
more stable optimal learning rate and consistent feature updates (after an initial transient). We adopt
this corrected scaling rule SOAP in the subsequent experiments.

Shampoo Gr Shampoo
S S —
R 4| SOAP SOAP (corrected)
e S C— _— .
3 s _ —_— . —— .
1.2 * 1.2 : x
* a 14 . — e S S S—
107! 10 S S e a—e— D ——
Learning rate Learning rate 1.2 ;‘*-;—_-.—' ¥
€ 107 = |) 102 102
P 10) h
& 90| — M Learning rate Learning rate
@ | 10! M
21072 / / -
a 100 - 5 100 e 10° ‘ AP
10 102 109 10 102 103 = 10-1 ol |
0 .
Step Step S 1072 S
o / 1072 7
E . — e :
810 / 1072 |7 "'\ 100 102 103 100 102 103
e f -3
S107 | 10 | Step Step
3 10-4 —— D=128 — D=512 D=2048
a — D=256 —— D=1024 D=4096
10! 102 10° 10t 102 10°

Step

Step

Figure 3: Diagnosing poor learning rate transfer in ;P for Grafted Shampoo and SOAP on
OpenWebText. (Left) P scaling fails to transfer the optimal learning rate for Grafter Shampoo,
where the scale of the feature updates across consecutive steps decreases with width as training
progresses due to spectral norm shrinking with D as a result of Frobenius normalization and growing
stable rank. By contrast, vanilla Shampoo’s feature updates are stable despitete growing stable rank.
(Right) Learning transfer fails for SOAP due to diverging feature update size with D. We identify a
different scaling of the learning rate corresponding to assuming no alignment between the update and
the input, leading to a more stable optimal learning rate and consistent feature update across widths.

3.3 Depthwise Hyperparameter Transfer

We now consider depth scaling for architectures with residual blocks (e.g. the transformer). In the
MLP example, we replace Equation () with

he = Wexe—1, 20 = x0-1 + ¢(he). 12)
In general, the residual block can be more complex, such as involving layer normalization and
multiple matrix multiplies as in the case of a transformer. Recent work has shown that by scaling
down the output of each residual block by 1/L while ensuring ©(1) feature learning inside each
block leads to well-defined and performant depth scaling limits for transformers trained with SGD
and Adam [8}|10], referred to as the CompleteP. We derive the depth scaling rules for second-order

optimizers based on the same principle. Given our setup so far, the only change to the previous
derivation in the width-only scaling case is that gradients in the residual blocks now scale as —=

Ldout
rather than % Propagating these additional L-dependent factors to the solution of 7 and € scaling

leads to the final width-depth joint scaling rules in Table [I We include detailed derivations in
Appendix [B]

Figure [4] (left) verifies the depth scaling rules yield more stable optimal learning rate across depths
from L = 3 to L = 96, and consistently lower loss when zero-shot transferring learning rate from
the 3 layer model. While we observe less sensitivity to mis-scaled learning rate for depth scaling
in SP, we verify the depth scaling rules are necessary for consistent feature learning across depths

(Figure {right).

4 Compute-Optimal Scaling Rules

Equipped with the tools for scaling hyperparameters across model sizes, we now investigate how to
scale second-order optimizers in the compute-optimal regime where training tokens are scaled jointly
with model size [18} 21]]. In this section, we switch to FineWeb with full vocabulary. We detail the
experiment setup in Appendix [D}

2
s Muon Shampoo Gr Shampoo SOAP _s»___Muon Gr Shampoo Gr Shampoo? SOAP

+*

* * — * 10

] e e e I s
| ——|

S S == e | e 7w

— Em"

102

Depth-Scaled 10°* Deptscated

* * * 102

o e e == 5
—_— w P 5w
PR E S ey T ‘__H s
S —_— S x 10
102 101 101 102 10-2 07
Learning rate Learning rate Learning rate Learning rate 102
100 102 10° 100 102 10° 10t 102 10° 100 10?2 10°
15 Step Step Step Step
w1
3 L=3 —e— [=12 —e— [=48 —e— SP
13
—e— =6 —e— [=24 —e— [=96 —e— Depth-Scaled

100 10? 100 102 10t 100 10t 102
Model depth Model depth Model depth Model depth

Figure 4: Depth scaling on OpenWebText. Our depth scaling rules, which apply a 1/L residual
branch multiplier and depth-scaling factors to the learning rate, improve the stability of the optimal
learning rate (left), and ensure that the feature learning scale is consistent as the depth increases
(right). With SP, even though the optimal learning rate looks relatively stable, the RMS of feature
updates measured between consecutive evaluation steps shows a clear trend of diverging with depth.
Zero-shot transferring the optimal learning rate (the gray dashed line) yields better performance as
depth increases with our depth scaling rule (bottom left).

4.1 Approximately Stable Learning Rate in ;P

While P learning rate scaling is derived assuming ©(1) training steps, we find it also helps stabilize
the optimal learning rate in the 20 tokens per parameter compute-optimal regime (Figure [3]left), in
contrast to SP where the optima shift significantly towards smaller values. We apply our scaling
rules in the subsequent compute-optimal scaling experiments, but note there are mixed results in
the literature regarding whether learning rate scaling derived for ©(1) training time translates to
compute-optimal scaling [[14}[10].

4.2 1/D-scaled Weight Decay (WD)

Properly specifying the weight decay is crucial for achieving optimal performance at scale [37,136,38].
In Figure[5(right), we show the combination AD is stable across scale under compute-optimal training,
where A is the independent (decoupled) weight decay [25]], corresponding to the A = ©(1/D) scaling
proposed in Xiao [39]. By default, we adopt this scaling for subsequent experiments. Note this differs
from the ©(1) weight decay prescribed by uP, as well as the constant weight decay EMA time-scale
in [36, 13 4].

4.3 Optimal Token to Parameter Ratio

One key question relevant to compute-optimal scaling is whether second-order optimizers alter any of
the constants and exponents in scaling laws of the form L(t, P) = (P/Py)~% + (t/to) " commonly
observed in natural data [17,32] where P is the number of parameters and ¢ indexes the training
tokens. As the first term, referred to as model bottleneck [[7]], describes loss at convergence, we expect
both P, and the exponent « to be fixed across optimizers. For any optimizer that outperforms Adam,
the second term known as time-bottleneck [[7]] must improve, by either decreasing the constant ¢y or
increasing the exponent /3. If 8 is improved, then the optimal token scales with a smaller exponent
with respect to parameters. Otherwise, if only ¢, is improved, then the optimal token per parameter
would be reduced by a multiplicative factor.

In either case, we expect optimizers that train faster than Adam to prefer a larger model size at a fixed
compute budget. Surprisingly, prior work studying the efficiency of second-order optimizers have
neglected to validate or quantify this effect. We verify that Muon indeed requires fewer tokens than
Adam to achieve compute-optimal in Appendix

S Scaling Law Comparison

Params SeqLen HiddenDim Inter Dim # Layers # Heads

190M 1024 512 2048 32 8
380M 1024 768 3072 32 12
640M 1024 1024 4096 32 16

1.4B 1024 1536 6144 32 24

Table 2: Architecture specifications for each model size we studied.

In this section, we compare the scaling behavior of Muon and AdamW when training larger Trans-
former models on the FineWeb dataset. Our setup closely follows Wen et al. [37], with the main
difference being the dataset: all models here are trained on FineWeb tokenized using the GPT-2
tokenizer. We use the LLaMA architecture, matching width and depth configurations from Wen et al.
[37]. For completeness, the model specifications are provided in Table[2] We adopt a context length
of 1024 and batch size of 128. Unless stated otherwise, hyperparameter tuning is performed on the
base model—32 layers, embedding dimension 512, and 190M parameters. For Muon, the embedding
layers use Adam for optimization.

To improve tuning efficiency, we divide hyperparameters into subsets and tune them sequentially
via grid sweeps. At each stage of tuning, previously selected hyperparameters remain fixed. After
determining optimal settings for the base model, we fix compute budgets and tune model widths to
find the optimal tokens-per-parameter ratio using Approach 2 from Hoffmann et al. [18]. Further
tuning details are provided in Appendix [D.1]

During scaling, we apply the learning-rate and weight-decay scaling rules from Section] while
keeping all other hyperparameters constant. In particular, we fix the warmup tokens, and we also
ablate the alternative strategy that keeps the warmup-token ratio fixed. To assess the robustness of
our scaling rule, we perturb the scaled learning rate and weight decay by factors of 2x and 0.5x.
As shown in Figure[f] these ablations confirm that our scaling rule yields an approximately optimal
configuration.

As shown in Figure [7| combining uP learning-rate scaling with 1/D-scaled weight decay allows
Muon to outperform AdamW across model sizes. Muon consistently achieves a ~ 1.4 x speedup on
models ranging from 190M to 1.4B parameters using the default 20-TPP setting, and compute-optimal
TPP values further improve Muon’s efficiency.

To isolate which components of our scaling rule drive this improvement, we perform several ablations,
summarized in the right panel of Figure[7] Scaling only the learning rate with P while keeping
weight decay constant places performance between SP and our full approach. Scaling both learning

a5 SP Muon Gr Shampoo? SOAP as Muon Gr Shampoo? SOAP
ST T [—— ——— : I * *
" ’*—(—'-:‘ —_—— Te—e—— " -~ —_— ——"
n — —— —e—— @ _ —_———" ———
o o
4.0 /‘/ e ——7 - 4.0 I — e ————
> * * —— —_—— —_—
* * *
10° 107* 1073 105 107* 1073 107° 10™* 1073
P Weight decay
4.5 K
—] [———] [——— 45
—_———— * * *
—_— ———— —————
a *\-._/ R ——
—————— —————— Al ——
Sao| ||l e T e — —
»*- * * - 4.0 - —— " —
* * * —_— " _——
1072 107! 1072 107! 1071 102 10-1 100 102 101 100 102 10-1 100
Learning rate Weight decay x model width
—e— D=256 —eo— D=512 D=1024 D=1280 D=256 —#— D=384 —— D=512 —@— D=768 —@— D=1024

Figure 5: Stable optimality of learning rate and weight decay under our proposed ¢ P and 1/D
weight-scaled weight decay on FineWeb. With yP and 1/D-scaled weight decay, we observe that
the optimal learning rate (left) and weight decay (right) are roughly consistent across model scales
under compute-optimal training with 20 tokens per parameter on FineWeb.

768 1024 768 1024
Model width Model width

B Ours B Double LR B Half LR B Double WD mm Half WD B Fix warmup ratio

Figure 6: Loss multiplier under different hyperparameter perturbations. The loss multiplier
is defined as the ratio between the loss of a perturbed configuration and the baseline loss obtained
using our scaling strategy. Error bars reflect a +0.001 variation in loss, corresponding to the observed
randomness across different random seeds. Perturbing the scaled hyperparameters—either doubling
or halving the learning rate or weight decay—results in comparable or worse performance, indicating
that our scaling approach yields near-optimal hyperparameter settings.

3.3x10°

3.2 100 >

g
o

3.1x10°

I
IS

3x10°
Adam

(9]

§ 2.9x100| E=E Muon DR
-&- SP
2.8x10°| —e— P + 1/Width WD
—— uPonly

2.7 x10%| —v— 1/Width LR

---&-- Compute Optimal

=
[S)

/
Compute multiplier
I
N

o
o

2.6 x10°

104 10° 10* 3x10*
Compute (PetaFLOPS) Compute (PetaFLOPS)

Figure 7: Muon improve Compute-Optimal Scaling Laws of transformers trained on FineWeb
Over AdamW (Left) Loss vs compute. Muon consistently outperforms AdamW under our scaling
rules that combine pP with 1/D-scaled weight decay. Muon performance further improves by
reducing the token per parameter (TPP) from 20 to 7. (Right) Estimated compute multipliers quantify
how much additional compute Adam would require to match the loss achieved by the optimizer under
the particular scaling configuration. Adam’s equivalent compute is estimated by shifting its loss curve
using the observed loss gap and the fitted power-law slope in the log-log scale. Removing either the
learning-rate scaling or the weight-decay scaling rapidly closes the gap between Muon and Adam as
model size increases.

rate and weight decay by 1/width—similar to a pure uP rule for Adam—improves over scaling the
learning rate alone, but still falls short of our method. These results indicate that both components of
our scaling strategy are necessary to achieve the best observed performance.

6 Discussion

Since its introduction over a decade ago, the Adam optimizer has dominated deep learning practice. It
was not until very recently that modern second-order approaches such as Shampoo and Muon started
to show significant promise in training large-scale neural networks. To fully realize the potential of
second-order optimizers, a robust understanding of how to effectively apply them at scale is essential.
By studying hyperparameter scaling rules of second-order optimizers, we have shown a number of
important scaling considerations and demonstrated proper scaling is essential to consistent efficiency
gains across model sizes.

10

Acknowledgments and Disclosure of Funding

We thank Martin Marek, Andres Potapczynski, and Sanyam Kapoor, for helpful discus-
sions. This work was supported by Google’s TPU Research Cloud (TRC) program:
https://sites.research.google/trc/.

11

References

[1] Naman Agarwal, Rohan Anil, Elad Hazan, Tomer Koren, and Cyril Zhang. Disentangling
adaptive gradient methods from learning rates. arXiv preprint arXiv:2002.11803,2020.

[2] Rohan Anil, Vineet Gupta, Tomer Koren, Kevin Regan, and Yoram Singer. Scalable second
order optimization for deep learning. arXiv preprint arXiv:2002.09018, 2020.

[3] Shane Bergsma, Nolan Dey, Gurpreet Gosal, Gavia Gray, Daria Soboleva, and Joel Hestness.
Power lines: Scaling laws for weight decay and batch size in 1lm pre-training. arXiv preprint
arXiv:2505.13738, 2025.

[4] Shane Bergsma, Bin Claire Zhang, Nolan Dey, Shaheer Muhammad, Gurpreet Gosal, and
Joel Hestness. Scaling with collapse: Efficient and predictable training of llm families. arXiv
preprint arXiv:2509.25087, 2025.

[5] Jeremy Bernstein and Laker Newhouse. Old optimizer, new norm: An anthology. arXiv preprint
arXiv:2409.20325, 2024.

[6] Blake Bordelon, Lorenzo Noci, Mufan Bill Li, Boris Hanin, and Cengiz Pehlevan. Depthwise
hyperparameter transfer in residual networks: Dynamics and scaling limit. arXiv preprint
arXiv:2309.16620, 2023.

[7] Blake Bordelon, Alexander Atanasov, and Cengiz Pehlevan. A dynamical model of neural
scaling laws. arXiv preprint arXiv:2402.01092, 2024.

[8] Blake Bordelon, Hamza Chaudhry, and Cengiz Pehlevan. Infinite limits of multi-head trans-
former dynamics. Advances in Neural Information Processing Systems, 37:35824-35878,
2024.

[9] Jie Chen and Edmond Chow. A newton-schulz variant for improving the initial convergence in
matrix sign computation. Preprint ANL/MCS-P5059-0114, Mathematics and Computer Science
Division, Argonne National Laboratory, Argonne, IL, 60439, 2014.

[10] Nolan Dey, Bin Claire Zhang, Lorenzo Noci, Mufan Li, Blake Bordelon, Shane Bergsma, Cengiz
Pehlevan, Boris Hanin, and Joel Hestness. Don’t be lazy: Completep enables compute-efficient
deep transformers. arXiv preprint arXiv:2505.01618, 2025.

[11] Jimmy Ba Diederik P. Kingma. Adam: A Method for Stochastic Optimization. International
Conference on Learning Representations (ICLR), 2015.

[12] Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey, Abhishek Kadian, Ahmad Al-Dahle,
Aiesha Letman, Akhil Mathur, Alan Schelten, Amy Yang, Angela Fan, et al. The llama 3 herd
of models. arXiv preprint arXiv:2407.21783, 2024.

[13] John Duchi, Elad Hazan, and Yoram Singer. Adaptive subgradient methods for online learning
and stochastic optimization. Journal of machine learning research, 12(7), 2011.

[14] Katie Everett, Lechao Xiao, Mitchell Wortsman, Alexander A Alemi, Roman Novak, Peter J
Liu, Izzeddin Gur, Jascha Sohl-Dickstein, Leslie Pack Kaelbling, Jachoon Lee, et al. Scaling
exponents across parameterizations and optimizers. arXiv preprint arXiv:2407.05872, 2024.

[15] Roger Grosse and James Martens. A Kronecker-Factored Approximate Fisher Matrix for
Convolution Layers. arXiv 1602.01407, 2016.

[16] Vineet Gupta, Tomer Koren, and Yoram Singer. Shampoo: Preconditioned stochastic tensor
optimization. In International Conference on Machine Learning, pages 1842-1850. PMLR,
2018.

[17] Tom Henighan, Jared Kaplan, Mor Katz, Mark Chen, Christopher Hesse, Jacob Jackson,

Heewoo Jun, Tom B Brown, Prafulla Dhariwal, Scott Gray, et al. Scaling laws for autoregressive
generative modeling. arXiv preprint arXiv:2010.14701, 2020.

12

[18] Jordan Hoffmann, Sebastian Borgeaud, Arthur Mensch, Elena Buchatskaya, Trevor Cai, Eliza
Rutherford, Diego de Las Casas, Lisa Anne Hendricks, Johannes Welbl, Aidan Clark, et al.
Training compute-optimal large language models. arXiv preprint arXiv:2203.15556, 2022.

[19] Satoki Ishikawa and Ryo Karakida. On the parameterization of second-order optimization
effective towards the infinite width. arXiv preprint arXiv:2312.12226, 2023.

[20] Keller Jordan, Yuchen Jin, Vlado Boza, You Jiacheng, Franz Cecista, Laker Newhouse, and
Jeremy Bernstein. Muon: An optimizer for hidden layers in neural networks, 2024. URL
https://kellerjordan.github.io/posts/muon/!

[21] Jared Kaplan, Sam McCandlish, Tom Henighan, Tom B Brown, Benjamin Chess, Rewon Child,
Scott Gray, Alec Radford, Jeffrey Wu, and Dario Amodei. Scaling laws for neural language
models. arXiv preprint arXiv:2001.08361, 2020.

[22] Priya Kasimbeg, Frank Schneider, Runa Eschenhagen, Juhan Bae, Chandramouli Shama Sastry,
Mark Saroufim, BOYUAN FENG, Less Wright, Edward Z. Yang, Zachary Nado, Sourabh
Medapati, Philipp Hennig, Michael Rabbat, and George E. Dahl. Accelerating neural network
training: An analysis of the algoperf competition. In The Thirteenth International Conference on
Learning Representations, 2025. URL https://openreview.net/forum?id=CtMbxjRSfm.

[23] Hong Liu, Zhiyuan Li, David Hall, Percy Liang, and Tengyu Ma. Sophia: A scalable stochastic
second-order optimizer for language model pre-training. arXiv preprint arXiv:2305.14342,
2023.

[24] Jingyuan Liu, Jianlin Su, Xingcheng Yao, Zhejun Jiang, Guokun Lai, Yulun Du, Yidao Qin,
Weixin Xu, Enzhe Lu, Junjie Yan, et al. Muon is scalable for llm training. arXiv preprint
arXiv:2502.16982, 2025.

[25] Ilya Loshchilov and Frank Hutter. Decoupled weight decay regularization. arXiv preprint
arXiv:1711.05101, 2017.

[26] Sam McCandlish, Jared Kaplan, Dario Amodei, and OpenAl Dota Team. An empirical model
of large-batch training. arXiv preprint arXiv:1812.06162, 2018.

[27] Depen Morwani, Itai Shapira, Nikhil Vyas, Eran Malach, Sham Kakade, and Lucas Janson. A
new perspective on shampoo’s preconditioner. arXiv preprint arXiv:2406.17748, 2024.

[28] Shikai Qiu, Atish Agarwala, Jeffrey Pennington, and Lechao Xiao. Scaling collapse reveals
universal dynamics in compute-optimally trained neural networks. In OPT 2024: Optimization
for Machine Learning.

[29] Shikai Qiu, Andres Potapczynski, Marc Finzi, Micah Goldblum, and Andrew Gordon Wil-
son. Compute better spent: Replacing dense layers with structured matrices. arXiv preprint
arXiv:2406.06248, 2024.

[30] Alec Radford, Jeffrey Wu, Rewon Child, David Luan, Dario Amodei, and Ilya Sutskever.
Language Models are Unsupervised Multitask Learners. OpenAl, 2019.

[31] Andrei Semenov, Matteo Pagliardini, and Martin Jaggi. Benchmarking optimizers for large
language model pretraining. arXiv preprint arXiv:2509.01440, 2025.

[32] Utkarsh Sharma and Jared Kaplan. Scaling laws from the data manifold dimension. Journal of
Machine Learning Research, 23(9):1-34, 2022.

[33] Hao-Jun Michael Shi, Tsung-Hsien Lee, Shintaro Iwasaki, Jose Gallego-Posada, Zhijing Li,
Kaushik Rangadurai, Dheevatsa Mudigere, and Michael Rabbat. A distributed data-parallel
pytorch implementation of the distributed shampoo optimizer for training neural networks
at-scale. arXiv preprint arXiv:2309.06497, 2023.

[34] Kimi Team, Yifan Bai, Yiping Bao, Guanduo Chen, Jiahao Chen, Ningxin Chen, Ruijue Chen,

Yanru Chen, Yuankun Chen, Yutian Chen, et al. Kimi k2: Open agentic intelligence. arXiv
preprint arXiv:2507.20534, 2025.

13

https://kellerjordan.github.io/posts/muon/
https://openreview.net/forum?id=CtM5xjRSfm

[35] Nikhil Vyas, Depen Morwani, Rosie Zhao, Itai Shapira, David Brandfonbrener, Lucas Janson,
and Sham Kakade. Soap: Improving and stabilizing shampoo using adam. arXiv preprint
arXiv:2409.11321, 2024.

[36] Xi Wang and Laurence Aitchison. How to set adamw’s weight decay as you scale model and
dataset size. arXiv preprint arXiv:2405.13698, 2024.

[37] Kaiyue Wen, David Hall, Tengyu Ma, and Percy Liang. Fantastic pretraining optimizers and
where to find them. arXiv preprint arXiv:2509.02046, 2025.

[38] Mitchell Wortsman, Peter J Liu, Lechao Xiao, Katie Everett, Alex Alemi, Ben Adlam, John D
Co-Reyes, Izzeddin Gur, Abhishek Kumar, Roman Novak, et al. Small-scale proxies for
large-scale transformer training instabilities. arXiv preprint arXiv:2309.14322, 2023.

[39] Lechao Xiao. Rethinking conventional wisdom in machine learning: From generalization to
scaling. arXiv preprint arXiv:2409.15156, 2024.

[40] Greg Yang and Edward J. Hu. Feature Learning in Infinite-Width Neural Networks. International
Conference on Machine Learning (ICML), 2021.

[41] Greg Yang and Etai Littwin. Tensor Programs IVb: Adaptive Optimization in the Infinite-Width
Limit. International Conference on Learning Representations (ICLR), 2023.

[42] Greg Yang, Edward J. Hu, Igor Babuschkin, Szymon Sidor, Xiaodong Liu, David Farhi, Nick
Ryder, Jakub Pachocki, Weizhu Chen, and Jianfeng Gao. Tensor Programs V: Tuning Large
Neural Networks via Zero-Shot Hyperparameter Transfer. Advances in Neural Information
Processing Systems (NeurlPS), 2021.

[43] Greg Yang, Edward J Hu, Igor Babuschkin, Szymon Sidor, Xiaodong Liu, David Farhi, Nick
Ryder, Jakub Pachocki, Weizhu Chen, and Jianfeng Gao. Tensor programs v: Tuning large
neural networks via zero-shot hyperparameter transfer. arXiv preprint arXiv:2203.03466, 2022.

[44] Greg Yang, James B. Simon, and Jeremy Bernstein. A Spectral Condition for Feature Learning.
Preprint arXiv:2310.17813, 2023.

[45] Greg Yang, Dingli Yu, Chen Zhu, and Soufiane Hayou. Feature learning in infinite-depth neural
networks. In NeurIPS 2023 Workshop on Mathematics of Modern Machine Learning, 2023.

14

NeurlIPS Paper Checklist

1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: The abstract and introduction accurately reflect the paper’s contributions and
scope.

Guidelines:

* The answer NA means that the abstract and introduction do not include the claims
made in the paper.

* The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

* The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

* It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: We discussed the limiations of our work in the appendix.
Guidelines:

* The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

* The authors are encouraged to create a separate "Limitations" section in their paper.

* The paper should point out any strong assumptions and how robust the results are to
violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

* The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

* The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

* The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

* If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

* While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [NA]

15

Justification: Our paper doesn’t aim to prove for theorems. Our results can be understood in
an intuitive way.

Guidelines:

The answer NA means that the paper does not include theoretical results.

All the theorems, formulas, and proofs in the paper should be numbered and cross-
referenced.

All assumptions should be clearly stated or referenced in the statement of any theorems.

The proofs can either appear in the main paper or the supplemental material, but if
they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: In the appendix, we fully described our experiment setup. We will also release
the code for reproducing the main experiments in the paper at the time of publication.

Guidelines:

The answer NA means that the paper does not include experiments.

If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example

(a) If the contribution is primarily a new algorithm, the paper should make it clear how
to reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code

16

Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: We used public dataset and public model architecture. We will also release the
code for reproducing the main experiments in the paper at the time of publication.

Guidelines:

* The answer NA means that paper does not include experiments requiring code.

* Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

* While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

* The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

* The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

* The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

* At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

* Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLSs to data and code is permitted.
6. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]
Justification: We described experiment details in the appendix.
Guidelines:

» The answer NA means that the paper does not include experiments.

* The experimental setting should be presented in the core of the paper to a level of detail
that is necessary to appreciate the results and make sense of them.

* The full details can be provided either with the code, in appendix, or as supplemental
material.
7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer:

Justification: Due to the expensive computational cost of training language models, we run
each experiment only once. Additionally, our conclusions do not rely on comparing small
differences in performance of specific experiments, but their overall scaling trends. Running
for multiple seeds will not impact the conclusion.

Guidelines:

» The answer NA means that the paper does not include experiments.

* The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

17

https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy

8.

10.

* The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

* The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

* The assumptions made should be given (e.g., Normally distributed errors).

¢ It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

* For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

* If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.
Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]
Justification: We described it in the appendix.
Guidelines:

* The answer NA means that the paper does not include experiments.

 The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

* The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

* The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

. Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines]?

Answer: [Yes]
Justification: The research conforms with the NeurIPS Code of Ethics.
Guidelines:

¢ The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

* If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

* The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).

Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]
Justification: We discuss the broader impact of this work in the Appendix.
Guidelines:

* The answer NA means that there is no societal impact of the work performed.

* If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

18

https://neurips.cc/public/EthicsGuidelines

11.

12.

» Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

* The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

* The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

* If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]
Justification: The paper poses no risk of misuse.
Guidelines:

* The answer NA means that the paper poses no such risks.

* Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

 Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

* We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: We used openly available code and datasets, and follow the license require-
ments.

Guidelines:

* The answer NA means that the paper does not use existing assets.
 The authors should cite the original paper that produced the code package or dataset.

 The authors should state which version of the asset is used and, if possible, include a
URL.

* The name of the license (e.g., CC-BY 4.0) should be included for each asset.

* For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

19

13.

14.

15.

* If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

* For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

* If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.
New assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [NA]
Justification: This paper does not release new assets
Guidelines:

» The answer NA means that the paper does not release new assets.

* Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

* The paper should discuss whether and how consent was obtained from people whose
asset is used.

* At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.
Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]
Justification: The paper did not conduct experiments with human subjects.
Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

* According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

Institutional review board (IRB) approvals or equivalent for research with human
subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]
Justification: The paper did not conduct crowdsourcing or experiments with human subjects.
Guidelines:

* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

20

paperswithcode.com/datasets

* We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

* For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
16. Declaration of LLM usage

Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.

Answer: [NA]
Justification: We didn’t use LLM in a way impacting the core value of the research.
Guidelines:

* The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

¢ Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.

21

https://neurips.cc/Conferences/2025/LLM

A Update Rules for Second-Order Optimizer

This section presents the update rules for the optimizers considered in our work, for the sake of
completeness and reproducibility. Let W; € R™*" denote the weight matrix of a layer at time ¢,
and let G; € R™*™ denote its gradient. We use w; € R™" and g; € R™" to represent the flattened
versions of the weights and gradients, respectively. The hyperparameters include the learning rate
(n), momentum coefficients (3), regularization factors (¢), and inverse exponents (e). Elementwise
multiplication is denoted by ©, and vector division is applied elementwise.

Adam [11] adjusts the magnitude of the first momentum by the second momentum. The update rule
is:

gt < vwﬁ(wt—l) (13)
my < Bimi—1 + (1 — B1)gs (14)
vy 4= Bavi—1 + (1 = B2)g: © g (15)
- my
16
. Ut
—_— 17
Vg 1— Bé ()
1
Wi — N 18
We & Wem1 — 1= (18)
Shampoo [16] preconditions the gradient with a Kronecker-factored preconditioner. The update rule
is:
My < 1M1 + (1 = B1)Gy (19)
Ly ¢ PaLey + (1 - B2)G:GY (20)
Ry« B2Re1 + (1=)G Gy @n
R L,
Ly —— (22)
RCEH)
. R,
R+ —— (23)
NCEE)
Wi < Wy = n(Ly + €)= My(Ry + eI)°F (24)
(25)
SOAP [35] runs Adam in a rotated space. The update rule is:
My < 1My + (1 —)Gy (26)
L; « BaLir + (1 - B2)GiGY @7
Ry« BoRi—1 + (1= B2)G{ Gy (28)
Q1 + Eigenvector(L;) (29)
Qr < Eigenvector(R;) (30)
G, + Q1GQr G1)
Vi B2V + (1 - ﬁz)G’ oye (32)
Wit & Wi = nQr——— \ﬁ — QR (33)
(34
Muon [20]] utilizes Newton-Schulz to compute the matrix sign [9] of the gradient. The update rule is:
My < BiMy—1 + (1 = B1)Gy (35)
M
Wit1 < Wi — nNewton-Schulz | ——— 36
o8 oo s () o
37)

22

Grafting [2| [33]] is a technique that adjusts the direction of a primary optimizer’s update to match the
step size of a reference optimizer with more stable magnitude. Let AW, denote the update from the
primary optimizer, and AW, the update from the reference (grafted) optimizer. The grafted update is
given by:

AW |2

W, W, —n——m™mMm8M—
e T ATl + €

AW, (38)

Blocking [133,135]] is a technique that partitions the weight matrix into sub-blocks, and updates are
computed independently for each block.

B Derivations of Maximum Update Parameterization

Moving forward, we will omit the layer subscripts and abbreviate x(§) as z, 2(§') as 2, 6(§) as d, and
G (&) as G. To make the scaling with width explicit, we define the following normalized quantitie

1
dout

The quantity |z) is referred to as a ket, representing a properly scaled version of z such that the entries
are ©(1), while (z| is referred to as a bra, representing a properly scaled version of z T such that
(z|z") = ©(1) for any 2’ correlated with z. Using this notation and the abbreviations, we can rewrite
the condition for the learning rate as:

=), z=z), z' =dnlz|, 6= 16, &7 = (5. (39)

Choose learning rate 1 such that

nQ(G)|z') = ©(1), where G = ji“

o)l , (z|z') = ©(1). (40)

out

Solving for the learning rate (and additional hyperparameters) now reduces to straightforward
algebraic manipulations. As an example, we next show how to derive the scaling rules for the learning
rate 17 and damping parameter € in SOAP [335]].

B.1 Warmup: SGD and Adam

As a warmup, we start with rederiving pPfor SGD and Adam under our notation.
SGD. We plug in (= id for SGD:

/ din 7 din
nQ(G) [o) = -5 15) (alay = @(n) 1)
dout ~—— dout
e(1)

Therefore we need n = G(dj“), recovering results in Yang and Hu [40], Yang et al. [44]. Note

in

that the use of bra-ket notation reduces the problem of finding the right learning rate into one
straightforward algebraic manipulation.

SignSGD and Adam. For SignSGD, we have

Q&) = (VET 1) ec “2)
— (502 g 702 4 6)_1 ol 43)
1 o
= s 10) @) +e] @ [d)al (44)
dout dout

-1
:dm(5>®2®x>®2+a> ® |6)] (45)

2This notation is directly inspired by the bra-ket notation used in Yang and Littwin [41]. However, we use it
strictly for keeping track of scaling factors rather than defining abstract infinite-width limits of gradients and
activations in the network as scalar random variables.

23

where we reparameterized € = €’ /d,ys. For € to be effective without trivializing the preconditioner,

we need ¢ = ©O(1). Yang and Littwin [41] showed that applying a ©(1) elementwise scaling
-1

10)9? @ |2)? + 6’) to |§)(z| does not change the scale of its output when applied to |a:’>
so that ©(Q(G) |2')) = O(din |0)(x| |2")) = O(din) and we should set n = O(1/diy).

The above analysis can be extended straightforwardly to Adam with the same conclusion n =
©(1/diy) since the accumulation of the gradient over the iterates does not introduce extra scaling
with width.

B.2 Second-Order Optimizers

With our setup so far, generalizing the derivation to second-order optimizers is straightforward, as one
only needs to additional keep track of width scaling in the preconditioner. We will omit accumulation
in the preconditioner and the momentum of the gradient, which does not affect the scaling with width
[41].

K-FAC. In K-FAC, we have
Q(G) = (60" +eg) oz (zx +e4) A

- (dl 1901+ GB) 1o (dhn] +))

= (19001 +)~) (12l + €)M

l—ep
dout

where eg = €3 /dout and €4 = dine’y. As d — 00, To ensure €4 and ep have a consistent effect
across widths and that each preconditioner does not trivialize to a scalar multiplication, we require
€z ~ €, ~ 1. Using the identity

T T
(vo' +al)™¢=a"° (I - Z%}) + (v v+ a)_e% 47)
we can express the matrix inverses using only outer products and inner products as:
dinl_eA
G)=—F——
Q() doutl_eB
/I—ep _ |5><5| 55 !/ \—epB |5><5|
<L (1) + @+ e s)
X [o)z]
r—ea (_ l2X2] s y—ea TN
| (1=) + el e

This form makes it clear that 1) K-FAC can be expressed using existing instructions in the Tensor
Program, a key result for establishing the existence of an infinite-width limit missing from prior work
by Ishikawa and Karakida [[19]]

When the batch size is greater than 1, expressing the matrix inverse as outer and inner products is
more involved but does not change our conclusion, which we explain in the next section.

3The output can be computed via an order-1 OuterNonlin instruction in Yang and Littwin [41]], which has
an ©(1) limit.

24

Shampoo and Muon. The analysis for K-FAC can be straightforwardly adapted to Shampoo and
Muon. Omitting accumulation and momentum, we have

QShampoo(G) = (51‘T1'§T + GB)7€L§IT(I6T5$T + EA)feR

~ (el ool +)

out

din din / e
e o] (010 ol + <)))
out out

- < din)16LER(<x|x> 16)(8] + €)

dout

x |8)a] (3]0} || + €)™

with € p = dtioil]‘,t €4, - Expressing the matrix inverses as inner and outer products:
Osrampen(G) = <(Z)i:t>1—eL—eR
x {e’BeL (1 - |<65>|<56>|> + ((wle) (610) + 633)_%'{??” -
X [0)x]
x {e’;e,{ (1 - |<f;>|<;>|> + ((z|z) (30) + ¢4)er @%]-

Therefore Shampoo and Muon can also be expressed using existing Tensor Program instructions.

din
dout

l—ep—epr
Furthermore, we can see that Qshampoo(G) [') = @() e |0), implying that we need
l—er—e
n= @(%) o for proper scaling.

SOAP. SOAP runs the Adam optimizer in the eigenbasis of Shampoo’s preconditioner. Ignoring
momentum, we have

G =U"Ggv (51)
QG)=U {(\/G@Q + e)_l ® G’] VT (52)

where U and V are the eigenbases of the left (L) and right (R) preconditioners from Shampoo. For
the single-batch case, these matrices are

din
din

R=a20"0x" +eq= d ((016) [z)] + €4) 54
out

with e'A’B = dj“” €A.B-

in

The matrix L has eigenvalue ddi“t (x|z) (8]0) + ep with eigenvector in the direction of |d), and
eigenvalue € g with multiplicity d,.; — 1 for the orthogonal subspace. Similarly, R has eigenvalue
din (§8) (x|x) + €4 with eigenvector in the direction of |z), and eigenvalue € 4 with multiplicity

out

din — 1 for the orthogonal subspace.

19)
dout (8]6)

orthonormal basis for the space orthogonal to |§). Similarly, V' is a matrix with first column

Hence, U is a matrix with the first column and the remaining columns forming an

|z)
in (] 7)

and remaining columns forming an orthonormal basis for the space orthogonal to |x).

25

Transforming the gradient to the eigenbasis:

G =U"GVv (55)
=U’ (; 5><x|) v (56)
out
|) U vl

57
\/Out5|5(out) V@) L ©7

Vvd < | () |z) U vl
5 — 58
\/7 dout | ><$| <x|x> €1 €1 (58)

[<5d|5> (o) o v T 59)
out

where ¢! and e}’ are the first standard basis vectors in the dimensions of U and V, respectively.

For € to be effective without trivializing the preconditioner, we need it to be on the same scale as G,
soe=0 (d—) = ,/%“te’ where ¢ = O(1). The Adam-like operation in the eigenbasis then

dout
gives:
-1 1 T
102 r_ - UV
(Va2 +e) oG el (60)
Transforming back to the original basis:
—1
QSOAP(G) =U |:(V G'o2 + 6) O] G/:| VT (61)
1 .
L€ /dous (0]6) \/din (2])
1 in
L1 dulie)
L+ € /dindou (3]0) (x[2)
To determine the proper learning rate, we apply the condition nQsoap(G) |2') = O(1):
1 din |6) (z]2")
x 64
ol @ = 10 Vidow 5]) o
1 11'1
) (el)

14 o (019) (x]2)
Since (z|z’) = O(1), (6]6) = O(1), and (z|z) = O(1), we have:

W din dm
QSOAP(G) ‘I > =0 <\/m> ‘5> (dout) ‘6> (66)

Therefore, the scaling is 1Qsoap(G) |2') = © (m / %), implying we need = © (, / %) for
SOAP.

Blocking. Blocking is a technique to reduce the preconditioner cost in second-order optimizers like
Shampoo by subdividing each weight matrix into byt X by, blocks and preconditioning each block
separately. We derive uP for Shampoo with Blocking but generalizing to other optimizers can be
done with a similar analysis. We simply perform the same analysis for Shampoo inside each block
and appropriately aggregate their contribution to the feature update. Let G;; = 51-:5; € Rbout Xbin

index the ij-th block of the gradient, where §; € Rbut and T € R®» are the i and j-th chunk of

the vector ¢ and z. Similarly, let ;v; € Rbn be the j-th chunk of the input vector z’. Defining the
sub-kets and sub-bras

x; = |:c;>, z; = |z;), xJT = bin (2], (67)
— 1 T _ bout
0= 10, 6] = Ml (68)

26

The i-th chunk of the update Ah; is

din/bin

Ah; =17 Z Gij) |2}, (69)

where
Q(Gij) = (6:iw] ;0 + ep) " 6iw] (v;0, 6;w] + €a) ™"

ciliiut ((@sle;) 10:)6:] + eB>>

bin bmbou e
< D 15| (oot (560) m)) (10)

dOllt out

—(erL+er)
bin binbou !/ \TEL
() (B) Gyl ik +)

dout
X 10X] ((0:0:) | Karg | + €la) ™7,
b bout

in B0y € AB- Therefore,
out

(erL+er) m/bm
Ahi:n(b&“bout) (1“) O(1) [6;) (71)

ou

(erL+er)
wx) (@) ()
= 0; 72
n(dout out 1n ‘ > ()
din binbout ~(ezten)
= ('-‘) ; 73
<n(d01lt>(dout2 >)

where we used the fact that each term in the sum is i.i.d. with a (generally) non-zero mean. Therefore

—(er+er) .
) . Alternatively, let ny, = diy /bin

witheq g =

2

the learning rate should scale as = © ((d"“") (bd"‘it

din in bout

_ _ doe 1—(eL+er) . —(er+er) o
and nouy = dout/bout, we have n = O (ninMout) . When b;,, = d;, and

in

in

l—er—er
bous = dous, We recover the regular Shampoo scaling n = © (%) . Wheney +er = %

and by, = boyt = 1, degenerating to Adam, we get the correct scaling n = © (di)
Normalization by Frobenius Norm. Consider normalizing the preconditioned gradient by its
Frobenius Norm:

@
A = 1N, e 79
_ Q1(G) s
VTG (G Q@) + < 7>

Let Q1 (G) = qé 1 where g is a scalar that absorbs all width-dependent scaling and G1 contains only
bras and kets. Then Q(G)" = qé’ir = qdd?“t G’L where X T is X T but with all vectors and their
transposes replaced with kets and bras. Therefore, we get

Q(G) = (76)

— . (77

27

We should choose € ~ ¢1+/dout /din, and 0 ~ \/dout /din .

Grafting. Grafting combines the direction of the update from one optimizer with preconditioner ()1
with the magnitude of the update from another with preconditioner ()5, with the final update given
by:

Q1(G)
Q) = G [A S — 78
:qQTr(G;GQ i G : (79)

Tr(GTG)1/2 +
1 q1(dous /din)1/?

For proper scaling, we need € ~ g1 +/dout/din and 7 ~ 1/qa, i.e. the learning rate should scale as if
we are training directly with Q5.

Depth-scaling. As explained in the main text, we scale down the output of each residual block by
1/L while ensuring ©(1) feature learning inside each block following [8] [10] which showed this
criterion led to well-defined depth-scaling limits for residual networks like the transformer. The only
change to the prev1ous width-scaling derivation is that gradients in the residual blocks now scale as
7 dl rather than o~ . Therefore, we need to update the definition of |§) and (§| to 6 = d —10)

and 5 T = (5 . Repeatmg the above derivations while accounting for these additional L-dependent
factors straightforwardly leads to the width-depth joint scaling rules in Table [} We include the
derivation for Shampoo here as a concrete example:

Qshampoo (G) = (62 26" +€ep) "% 62T (26 "o T +eq) 7R

<L2dd0ut ({z]z) [0X0] + EB)> h

< o (e (09 el +))

din l—er—er 1 1-2(er+er)
() (@)
x ((z]2) [6)(0] + €)™ [6)(x| ({3]0) |x)x| + €/y) "

©(1) as before

(80)

. L2 9 l—er—er d
with €y 5 = L-deute, o Therefore we need n ~ L'~ (EL“R)("“t) and € ~ zn

C Extension to Larger Batch Size

Throughout the main text we analysed single-sample updates (B = 1). All scaling results survive
unchanged for any constant mini-batch size B = O(1) because every object that appears in the
update rules becomes only a finite sum of the same single-sample terms.

SGD. With batch size B the raw update is

B
__n ®) ()"
w BZ& AN

b=1 " g

where each G(*) has entries ©(1/doy) (see §3.1). Averaging over the finite set {1, ..., B} do not
alter the scaling of the update with width, so the condition AW 2’ = ©(1) is met with the same
learning-rate scaling 17 = O(doyt/din) derived for B = 1.

Adam. Adam first rescales the averaged gradient by the element-wise second moment v:
AW = < ZG“”) (Vv +e),

28

Optimizer Width LR B> Adam LR. mult. Warmup Indep. WD Loss

Adam 512 4e—3 0.98 — 20% 2e—4 3.236
Muon 512 8e—-3 — 1.6 0.3% 3.2e—4 3.178
Muon 768 — — 1.6 0.3% 3.2e—4 3.157

Table 3: Best validation loss for base model after hyperparameter and token-per-parameter tuning.

Optimizer Width Loss TPP
Adam 576 3.226039 13.338798
Adam 896 2.996272 11.494327
Adam 1152 2.855488 12.975372
Muon 704 3.157175 6.607409
Muon 1024 2943154 7.071705
Muon 1344 2.805800 7.325234

Table 4: Optimal widths for the compute budgets of the 190M, 380M, and 640M models. Muon
has a 2x smaller optimal TPP than Adam.

with v = Bavgig + (1 — B2) 5 >, (G . Again since B = (1), compared to the B = 1 update,
both the numerator and denominator changes by only a ©(1) factor, giving the same width-scaling
= 0O(1/di).

Shampoo and related preconditioners. A common operation in second-order optimizers have the
form Q(G) = L% G R™°", where the L and R are left/right Gram matrices of the mini-batch
gradient (damped by €y, € as in Appendix @) Because B is O(1), each matrix is a sum of finitely
many rank-1 outer products of |§) or |z); hence every eigenvalue of L and R scales identically to
the B = 1 case, and so are the eigenvalues of L~ and R~“%. Consequently the learning-rate and
regularization rules in Table[I|require no modification.

In short, as long as the mini-batch size stays fixed with respect to width, every factor introduced by
batching is ©(1); therefore the scaling derived for B = 1 extends unchanged to all B = O(1).

D Experiment Details

D.1 Hyperparameter Tuning Details

Adam. Phase 1 sweeps the triplet {learning rate, 5, warmup steps}. The best setting is Ir = 0.004,
B2 = 0.98, and a warmup of 20% of total training steps. Holding 2 and warmup fixed, Phase 2
jointly sweeps {learning rate, weight decay}, yielding Ir = 0.004 and weight decay = 0.002. The
best loss achieved with Adam is 3.236.

Muon-Adam. Phase 1 sweeps {learning rate, Adam LR multiplier, warmup tokens}. The best setting
is Ir = 0.008, multiplier = 1.6, and a warmup of 0.003% of total training tokens. With the multiplier
and warmup fixed, Phase 2 jointly sweeps {learning rate, weight decay}, selecting Ir = 0.008 and
weight decay = 3.2 x 10~*. The best loss is 3.178.

The best validation losses and the corresponding hyperparameters are listed in Table [3]

Tokens-per-Parameter (TPP). We tune TPP by holding total FLOPs fixed and varying model
width. We find that if we scale the learning rate using uP rule and fix the product of learning rate
and independent weight decay (i.e. dependent weight decay) as constant, the weight decay and
learning rate are optimal. Therefore, we adopt this scaling rule to find the optimal TPP without tuning
hyperparameters. The optimal TPP are shown in Figure[§|and Table[d] To set the compute-optimal
scaling experiments for the 1.4B model. We fix the compute budget and choose the model width so
that the corresponding TPP is closest to what we found in Table[d] Adam uses width 1728 with TPP
12.83 and Muon uses width 2048 with TPP 6.73.

29

3.3 0 0
4.3e+18 FLOPs o 4.3e+18 FLOPs
o 1.8e+19 FLOPs 315 1.8e+19 FLOPs
3.2 ® 5e+19 FLOPs 3.10 ® 5e+19 FLOPs
O Default O Default
O Optimal 3.05 O Optimal
n 3.1 0
§ § 3.00
© 2.95 @ ®
3.0 ®
2.90
2.9 2.85
@ o ®
MO 2.80 * @ o
400 600 800 1000 1200 600 800 1000 1200 1400
Width Width

Figure 8: Tuning token-per-parameter for Adam (left) and Muon (right). Both optimizers have a
different optimal TPP from the default constant 20 from Hoffmann et al. [18]. Muon’s optimal TPP
is further from the default constant than Adam’s.

100 5P Muon Muon Adam Shampoo Block Shampoo SOAP Gr Shampoo Gr Shampoo?
102
<
;,,<’l ign Py Mﬁ“ - =3
= 10t o \ proert T 7
Z o AN /a//‘ Ve / /\
10-3 L P
100 102 103 100 102 103 100 102 10% 10t 102 10° 100 102 103 100 102 103 100 102 10%
10° i
. 10?7
5 10: - foy
» 10 PP — m - T L .
2 107 o | " | A i v \‘ wr WY
0 v / V / f :
1073 T /
10t 102 10° 100 102 10° 10t 102 10° 10t 102 10° 10t 102 10% 10t 102 10° 100 102 10°
Step Step Step Step Step Step Step
—e— D=128 —e— D=256 —e— D=512 —e— D=1024 D=2048 D=4096

Figure 9: Feature changes for OpenWebText. Our scaling approach ensures a stable feature changes
over widths whereas the naive approach doesn’t.

D.2 OpenWebText Experiments

For experiments conducted on OpenWebText, we used character-level tokenization to reduce the cost
of the embedding layers. Not doing so leads total parameter count being dominated by embedding
parameters at small scales, which has been found to lead to distorted scaling laws for small models
[29, 21]. We use the GPT-2 architecture and follow common practices of removing the bias and
replacing LayerNorm with RMSNorm. Learning rates are tuned on a small 3 layer width 128 model
and transferred to larger models. Unless stated otherwise, we use a batch size of 65536 tokens
and linearly warmup the learning rate in the first 10M tokens. Except for compute-optimal scaling
experiments, we train all models for 1B tokens with a linearly decayed learning rate schedule.

RMS change of features. Stable feature changes across model widths are frequently used as proxies
for verifying correct feature learning scaling [43,[19]. We provide the feature changes in Figure [J]as
a proof for the correctness of our scaling approach.

Tokens-per-Parameter (TPP) To verify the prediction that Muon requires less tokens to become
compute-optimal, we train a series of transformer models with different optimizers on OpenWebText,
jointly scaling width and depth with a width-depth ratio of 64 and scaling hyperparameters according
to our scaling rules using a fixed batch size of 512 sequences of length 128 each. In Figure[I0] (left),
we plot the optimal training tokens as a function of parameters using Approach 1 in Hoffmann et al.
[18] for Adam, Muon, and Shampoo. Indeed, we find Muon and Shampoo require ~ 2.5x fewer
tokens than Adam to be compute-optimal for the same model size. We show a similar multiplicative
reduction in compute-optimal tokens for transformers trained on Chess moves from the Lichess
dataset in Figure[I0] (right), showing this result is not specific to language.

30

10 | 1010
-1 g
_- ',
-~ Pt
77 — - - 2|
n 10° ; - -” v 109 -~ ;“
2 /’/ ”a ! 2 10 ’ -~ "5
g { - "‘ 1] Aqé) | - - “‘
RN Rt P - s
prag - - Pt
- I—d ! -~ _ z*
8 - s z
10 Pride ~—. Adam, 203 Tok/Param 10 prid ~—. Adam, 169 Tok/Param
==+ Shampoo, 84 Tok/Param ==+ Shampoo, 85 Tok/Param
J ==+ Muon, 79 Tok/Param ==+ Muon, 92 Tok/Param
106 107 10° 107
Parameters Parameters

Figure 10: Muon and Shampoo have up to ~ 2x smaller optimal token-per-parameter ratio

than Adam. (Left) OpenWebText. (Right) Lichess.

0.3 SP-Shampoo Shampoo? Muon Adam 030 SP_Shampoo Shampoo? Muon Adam
0 / \ 0
2 2
202 \\7/ N % 2020
ITI= == N>~ = s v
0.1 = T — — - — — — — — -y 0.10
107 102 10 1073 1072 10 107 1072 107 107 102 10 10 1072 107 107 1072 10~ 10~ 102 10~ 10~ 1072 107"
Depth-Scaled
03P 030 2P
\J 025
w \// \
§ 0.2 8020
0.15
0.1
1071072 10* 107 1072 107' 107 1072 107' 107 107 107" 07 107 107 107 107 107 107 107 107 107 107 107
Learning rate Learning rate Learning rate Learning rate Learning rate Learning rate Learning rate Learning rate
—e— D=128 —e— D=256 —e— D=512 —e— D=1024 D=2048 L=3 —— L=6 —e— L=12 —e— [=24 —e— [=48
2
0.30 SP_ Shampoo Shampoo Muon Adam Sr10t Shampoo Shampoo?
—— Width —= SP
0.25 \~ —— Depth —— Ours
2020 \ ,2x107 A
4
\ AN §
015
~ ~ ~,

10 1072 1071 102 102 107t 10 102 107t

/

107 102 107!
Learning rate

102 1072 1071

q
«

107 1072 107!
Learning rate

107 10% 107!
Learning rate

107 107 107!
Learning rate

107!

10° 10° 107

Parameters

108 10° 10° 107

Parameters

108

~o- N=0M -~ N=1M @~ N=TM - N=57M N=453M

Figure 11: Learning rate transfer in MLP. Our proposal scaling rules lead to significantly more
stable optimal learning rate for width-only scaling (top left), depth-only scaling (top right), and
joint scaling (bottom left) for the residual MLP architecture described by Eq (14). Compared to
the transformer, properly scaling the learning rate is more important for effective scaling of MLPs,
achieving lower loss compared to SP using a constant learning rate (bottom right).

D.3 MLP Experiments

To better demonstrate the impact of proper learning rate scaling, we perform experiments with the
residual MLP architecture described by Eq (14), known to be more sensitive to the learning rate than
the transformer architecture [[6]. We use the power-law Fourier features regression task [28]] as it
allows generating unlimited training data to avoid overfitting. All models are trained with 100M
examples with a batch size of 4096. Figure [[T|summarizes the results, showing our proposed scaling
rules are crucial for effectively scaling the MLP models, stabilizing the optimal learning rate across
model size and improving final performance as the model increases in size.

31

D.4 Hardware

We trained all of our models on TPU-V4 and TPU-V6e, supported by the Google TPU Research
Cloud program.

E Broader Impact and Limitations

Broader Impact. Our work improves the understanding of how to efficiently scale second-order
optimization in deep learning, which has the potential to reduce the cost of training machine learning
models and make machine learning research and workflow more accessible.

Limitation. We perceive two main limitations of our work. First, due to limited computational
budget, our experiments are relatively small in scale compared to typical training runs in industry
where models often exceed billions of parameters. Verifying how well our results generalizes to
larger models trained with more compute is an exciting future direction. Second, while we have
shown that second-order optimizers like Shampoo and Muon can significantly improve the compute
efficiency of training, we do not investigate why they improve the efficiency. Understanding this
question holds potential for designing even more efficient future optimizers.

32

	Introduction
	Background
	Hyperparameter Transfer Over Width and Depth
	Width Scaling via P
	Empirical Validation of P and Diagnosis of Poor Transfer
	Depthwise Hyperparameter Transfer

	Compute-Optimal Scaling Rules
	Approximately Stable Learning Rate in P
	1/D-scaled Weight Decay (WD)
	Optimal Token to Parameter Ratio

	Scaling Law Comparison
	Discussion
	Update Rules for Second-Order Optimizer
	Derivations of Maximum Update Parameterization
	Warmup: SGD and Adam
	Second-Order Optimizers

	Extension to Larger Batch Size
	Experiment Details
	Hyperparameter Tuning Details
	OpenWebText Experiments
	MLP Experiments
	Hardware

	Broader Impact and Limitations

