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Abstract
4D content generation aims to create dynamically evolving 3D con-
tent that responds to specific input objects such as images or 3D
representations. Current approaches typically incorporate physi-
cal priors to animate 3D representations, but these methods suffer
from significant limitations: they not only require users lacking
physics expertise to manually specify material properties but also
struggle to effectively handle the generation of multi-material com-
posite objects. To address these challenges, we propose Phys4DGen,
a novel 4D generation framework that integrates multi-material
composition perception with physical simulation. The framework
achieves automated, physically plausible 4D generation through
three innovative modules: first, the 3D Material Grouping module
partitions heterogeneous material regions on 3D representations’
surfaces via semantic segmentation; second, the Internal Physical
Structure Discovery module constructs the mechanical structure of
object interiors; finally, we distill physical prior knowledge from
multimodal large language models to enable rapid and automatic
material properties identification for both objects’ surfaces and
interiors. Experiments on both synthetic and real-world datasets
demonstrate that Phys4DGen can generate high-fidelity 4D con-
tent with physical realism in open-world scenarios, significantly
outperforming state-of-the-art methods.

CCS Concepts
• Computing methodologies→ Computer vision tasks; • In-
formation systems→Multimedia content creation.
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1 Introduction
The creation of 4D content has gained substantial importance
across multiple domains, including computer animation, interac-
tive gaming, and immersive virtual reality applications [4]. In
particular, recent advances in generative models have fundamen-
tally transformed 4D generation due to their powerful visual pri-
ors [5, 29, 34, 39, 41, 50]. They leverage dynamic priors from video
diffusion models [32, 37, 48, 49, 52], enabling the automated pro-
duction of high-quality 4D content. However, these data-driven
approaches fundamentally lack physical modeling constraints, of-
ten resulting in generated motions that violate physical laws and
exhibit noticeable inconsistencies.

To ensure the generation of physically realistic 4D content, re-
cent works [17, 44, 54] have explored the incorporation of physi-
cal priors, such as continuum mechanics, to animate 3D represen-
tations [14, 27]. PhysGaussian [44] pioneered the integration of
physical properties into 3D Gaussian Splatting (3DGS) [14] repre-
sentations, and introduced the Material Point Method (MPM) [36]
for dynamic generation. However, it requires manually setting the
material type and properties of the simulation object. Methods such
as PAC-NeRF [17] and GIC [6] are capable of estimating physical
properties under the supervision of multi-view videos. However,
they rely heavily on multi-view video data, which is often difficult
to obtain, thereby significantly hindering their practical applica-
bility. PhysDreamer [51], DreamPhysics [12], and Physics3D [21]
leverage dynamic priors from pre-trained video diffusion models
to guide the estimation of material properties, based on a given
3DGS model rather than multi-view videos. This enables automatic
material properties determination without strict input constraints.

https://doi.org/10.1145/3746027.3755647
https://doi.org/10.1145/3746027.3755647
https://doi.org/10.1145/3746027.3755647


MM ’25, October 27–31, 2025, Dublin, Ireland Jiajing Lin et al.
In

pu
t I

m
ag

e

Vi
de

o1

Vi
de

o2

Stable Video Diffusion

In
it 

E1
04

In
it 

E1
06

Physics3D

O
ur
s

Mislead

Time step Time-Space Slice

Figure 1: The red arrows indicate the direction of external
forces. We use the space-time slice (right column), where the
vertical axis represents time and the horizontal axis shows a
spatial slice of the object (marked by red lines), to reveal mo-
tion intensity and frequency. As shown in the top, diffusion
models embed unrealistic motion priors that may mislead
the estimation process—e.g., Physics3D consistently overes-
timates the softness of the ficus, deviating from physical
plausibility. Additionally, the accuracy of such approaches
heavily depends on the setting of initial material proper-
ties (e.g., Init Young’s modulus 104 vs. 106). In contrast, our
method achieves more accurate material properties estima-
tion within 14.88 seconds, enabling reliable simulation.

Despite these advances, existing methods still face several criti-
cal challenges. 1) First, these methods typically assume that objects
are uniform entities made of a single material, whereas real-world
objects often consist of multiple heterogeneous materials. Failing to
distinguish between different materials hinders the accurate simula-
tion of localized deformation behaviors, reducing physical realism.
2) Second, while 3DGS effectively captures the surface geometry of
objects, it lacks the capability to model internal structures. How-
ever, object interiors often contain multiple materials, which may
even differ from those on the surface. Simulations based on such
structure-agnostic representations are prone to structural collapse
under large deformations. 3) In addition, as shown in Fig. 1, the
dynamic priors embedded in video diffusion models, which lack
physical constraints, may mislead the estimation of material proper-
ties. Furthermore, due to their iterative optimization process, these
methods are computationally expensive. Both their convergence
speed and estimation quality are also highly sensitive to initial ma-
terial properties settings, which typically require domain-specific
physics knowledge. This poses a significant barrier for general users
who lack such expertise in 4D content generation.

To overcome the limitations of previous approaches, we intro-
duce Phys4DGen, a novel physics-driven 4D generation framework

that integrates multi-material composition perception into the 4D
generation pipeline for the first time, enabling fast, user-friendly,
and physically plausible 4D content generation from a single image
or 3D representation. Our framework addresses three key chal-
lenges: (1) the 3D Material Grouping module, which extends the
segmentation semantics of large vision models (e.g., SAM2[31])
from 2D to 3D space for accurate surface material grouping; (2)
the Internal Physical Structure Discovery module, which models
the mechanical structure of object interiors; and (3) a multimodal
physics expert that leverages physical knowledge embedded in
large language models to automatically and rapidly identify mate-
rial properties for both surfaces and internal structures. By unifying
these components, Phys4DGen enables more complete and physi-
cally realistic 4D generation. Our key contributions include:

• We propose a 4D generation framework that distills prior
knowledge from a foundation model to enable the multi-
material composite perception, while incorporating physical
simulations to achieve user-friendly and physically realistic
4D generation.

• 3D Material Grouping is introduced to partition object sur-
faces into distinct material regions, and Physical Internal
Structure Discovery for modeling internal structures, to-
gether enabling the handling of multi-material composition.

• We are the first to leverage physical prior knowledge from a
multimodal large language model to enable automatic and
efficient material identification.

• Extensive qualitative and quantitative comparisons on both
synthetic and real-world datasets demonstrate that ourmethod
can generate physically consistent and high-fidelity 4D con-
tent across various materials.

2 Related Work
2.1 4D Generation
4D generation aims to generate dynamic 3D content that aligns
with user input conditions such as text, images, and videos. Un-
like 3D generation [16, 20, 26, 30, 40, 42], which primarily focuses
on producing spatially consistent geometry and appearance, 4D
generation must additionally ensure temporal realism and con-
sistency across frames, making the task significantly more chal-
lenging. Based on the input conditions, 4D generation can be cat-
egorized into three types: text-to-4D [2, 3, 19, 35, 53], video-to-
4D [8, 11, 28, 47, 49], and image-to-4D [37, 45, 46, 52]. MAV3D [35]
first employs temporal SDS from the text-to-video diffusion model
to optimize HexPlane [7] representation. 4D-fy [3] introduces hy-
brid score distillation during training for high-quality text-to-4D
generation. Instead of text input, Consistent4D [13] uses SDS for ge-
ometry optimization and interpolation loss for spatiotemporal con-
sistency in 4D generation from monocular video. Animate124 [52]
pioneered an image-to-4D framework using a coarse-to-fine strat-
egy that combines different diffusion priors [24, 25]. Generating 4D
content from an image in DreamGaussian4D [32] avoids using tem-
poral SDS and instead performs optimization based on reference
videos generated by a video diffusion model. Our framework can
generate physically plausible and temporally coherent 4D content
efficiently, without extra optimization steps.
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Figure 2: Framework of Phys4DGen. (a) 3D Gaussians Generation: Given an input image, a static 3D Gaussians is generated under
the guidance of the diffusion model. (b) Material Grouping and Internal Discover: 3D Material Grouping is applied to partition
the 3D Gaussians into distinct material groups. Concurrently, Internal Physical Structure Discovery is used to fill internal
particles and determine their corresponding material groups. (c) MLLMs-Guided Material Identification: Surface and internal
material properties are visually inferred by MLLMs. These inferred results are then integrated into the 3D representation P
through the CLIP Fusion module, forming a material continuum representation P̃. (d) 4D Dynamics Generation: Given external
forces, MPM simulation is performed to animate the material continuum, thereby generating 4D content.

2.2 Physics-Based Dynamic Generation
Some recent methods have attempted to leverage physical simula-
tion to create visual dynamics with physical realism. PhysGen [23]
introduces rigid-body physics simulation to achieve physically
grounded video synthesis from a single image. PAC-NeRF [17]
recovers object geometry and physical properties from multi-view
videos by combining NeRF with differentiable physics, without
requiring known shapes. However, NeRF’s implicit representation
is not ideal for physical simulation. The explicit representation of
3DGS [14, 43] through a set of anisotropic Gaussian kernels, which
can be interpreted as particles in space, enables the many applica-
tions of physical simulations [10, 18, 44, 54]. PhysGaussian [44] is
the first to apply MPM to 3D Gaussian representations, enabling
the simulation of realistic physical dynamics. Spring-Mass [54]
introduces a novel integration of a spring-mass system into the
3DGS framework for elastic material simulation. However, they
require manual specification of material types, material properties,
and simulation regions. PhysDreamer [51] utilizes reference videos
from video diffusion models for supervision to estimate material
properties. Likewise, DreamPhysics and Physics3D [12, 21] use
score distillation sampling from video diffusion models to optimize
physical properties. The stochastic nature of video diffusion models
and their non-physical dynamic priors can distort material property
estimation. Our method does not require an optimization process
and can efficiently infer material properties. Notably, we uniquely
consider the possibility that a single object may comprise multiple
materials, including differing internal and external compositions.

3 Methodology
The proposed Phys4DGen is illustrated in Fig 2. Given a single input
image, a static 3D Gaussians representation is generated under
the guidance of a diffusion model (Sec. 3.1). We then employ 3D
Material Grouping (Sec. 3.2) to assign suitable material groups
to different regions of the 3D Gaussians. To further explore in-
ternal details, Internal Physical Structure Discovery (Sec. 3.3)
is employed to model internal geometries and assign the inter-
nal material groupings. Subsequently,MLLM-Guided Material
Identification (Sec. 3.4) infers both surface and internal material
properties for each material region from the input image. These are
fused into the 3D representation through CLIP Fusion, producing a
material continuum representation. Finally, given external forces
and boundary conditions, the 4D dynamics are simulated using
MPM (Sec. 3.5) based on the material continuum.

3.1 Static 3D Gaussians Generation
Given the recent advances in image-to-3D generation [38, 39],
which have demonstrated the ability to produce high-quality 3D
content, we directly employ these methods to generate static 3D
Gaussians. We choose 3DGS as a representation for its explicit
representation nature. 3DGS represents 3D objects using a collec-
tion of anisotropic Gaussian kernels [14]. Thus, 3D Gaussians can
be viewed as a discretization of the continuum, which is highly
beneficial for integrating particle-based physical simulation algo-
rithms. In this phase, we obtain a static 3D Gaussians G for sub-
sequent simulation. Each Gaussian kernel can be represented as
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G𝒌 = (x𝑘 ,Σ𝑘 , 𝛼𝑘 , c𝑘 ). Here, x𝑘 , Σ𝑘 , 𝛼𝑘 , and c𝑘 represent the cen-
ter position, covariance matrix, opacity, and color of the Gaussian
kernel 𝑘 , respectively.

3.2 3D Material Grouping
In practice, many objects are composites composed of different
materials. Prior to material identification, it is essential to group
objects into distinct material components. Thus, we propose 3D
Material Grouping, which lifts the segmentation semantics from
the vision foundation model from 2D to 3D space, enabling the
assignment of a unique material group to each Gaussian kernel.

3.2.1 Pre-Process. Given the static 3D Gaussians generated in the
previous phase, we render the scene frommultiple views, producing
an image sequence and its corresponding depthmaps. SAM2 [15, 31]
is a powerful vision foundation model, supports accurate video
segmentation. To ensure consistency of 2D mask maps across
views—i.e., that the same material region receives the same mask
index from different views—we consider the multi-view image se-
quence as a video input and apply SAM2 for segmentation to gen-
erate the associated mask maps M = {M𝑜 }𝑁𝑜=1.

3.2.2 Projection and Aggregation. We treat each mask index as a
material group label 𝑔, resulting in a sequence of mask maps with
consistent material groupings across views. For a given Gaussian
kernel G𝑘 ∈ G and a mask map M𝑜 ∈ M, we use the camera’s in-
trinsic and extrinsic parameters to project the Gaussian kernel into
2D space, obtaining its 2D coordinates x2𝑑𝑝 on the corresponding
mask map. This process can be expressed as:

x2𝑑
𝑘

= K[R𝑜 |T𝑜 ]x𝑘 , (1)

where K and [R𝑜 |T𝑜 ] represent the camera’s intrinsic and extrinsic
parameters, respectively.We use the 3DGS-estimated depth to check
if the Gaussian kernel is visible in the segmentation map M𝑜 . If it is
visible, we include the material group from this view in the voting
process. After processing the segmentation maps for all views,
we perform majority voting, assigning the material group 𝑔𝑘 that
appears most frequently across all views to Gaussian kernel G𝒌 =

(x𝑘 ,Σ𝑘 , 𝛼𝑘 , c𝑘 , 𝑔𝑘 ). Repeating these steps allows us to determine
the material groups for all Gaussian kernels G.

3.3 Physical Internal Structure Discovery
Due to an inherent limitation of the 3DGS representation, a large
number of Gaussian kernels are distributed only on the surface,
leaving the interior empty. This leads to reduced fidelity in physical
simulations, especially under large deformations. To address this
limitation, we propose a strategy termed Physical Internal Structure
Discovery, which enables internal material filling and grouping.

Concretely, grid particles are initialized by uniform sampling
within the bounding box of the 3D Gaussians G. These particles
are then projected onto multi-view mask images and depth maps.
Each particle is filtered by comparing the projected depth with the
rendered depth and checking whether it lies within the foreground
mask. Based on the 3D object represented by the valid grid particles,
we further classify them into surface and internal particles.

To distinguish surface particles, we analyze the spatial relation-
ship between each Gaussian kernel and the grid particles using the

Mahalanobis distance [9]. Specifically, for a Gaussian kernel with
mean 𝜇 and covariance Σ, the Mahalanobis distance from a particle
located at position x is computed as:

𝐷𝑀 (x) =
√︃
(x − 𝜇)𝑇 Σ−1 (x − 𝜇), (2)

If this distance is less than a predefined threshold, the grid particle is
considered to be covered by the Gaussian kernel. All such particles
are labeled as surface particles P𝑆 , while those not included by any
Gaussian are classified as internal particles P𝐼 .

Since the internal structure of an object can only be inferred
from surface information available in the input image, we establish
a surface-to-interior correspondence by assigning material groups
from surface particles to internal ones. To ensure closure of the
boundary set, we additionally designate the outermost layer of
grid particles as surface particles. Each surface particle is then as-
signed to its nearest Gaussian kernel via a nearest-neighbor search
and inherits its material group accordingly. For each internal par-
ticle, rays are cast along the six principal axes to collect material
groups from the intersected surface particles. The most frequently
observed material group 𝑔𝑖 is then assigned to the internal particle.
Subsequently, we merge 3D Gaussians G with the filled internal
particles P𝐼 to obtain a unified continuum particles representation
with material groups: P = {G|P𝐼 } = {{(x𝑘 , 𝑔𝑘 )}|{(x𝑖 , 𝑔𝑖 )}}. Based
on this representation, we can easily assign material properties to
different material regions of the 3D object.

3.4 MLLMs-Guided Material Identification
3.4.1 Material Information Reasoning. In the real world, objects are
typically composed of different materials. In 4D generation, users
often lack the necessary physical knowledge to provide reasonable
material properties for simulation. This greatly limits the physi-
cal realism of the simulation results. Recently, multimodal large
language models have advanced rapidly, exhibiting knowledge far
beyond that of humans, including rich physical prior knowledge.
Inspired by this, we introduce GPT-4o [1], which reasons the mate-
rial properties (e.g., Density 𝜌 , Young’s modulus 𝐸, Poisson’s ratio
𝜈) of the internal and external parts of objects through vision.

Specifically, the user-input image is treated as the canonical
view I𝑐 for reasoning with the MLLMs. Sub-images representing
different material components are extracted from this view based
on the segmentation mask map. Following this, the canonical view
and its segmented sub-images are fed into GPT-4o, prompting it
to reason the internal and external material types and properties
for the object described in each segmented sub-image. Detailed
prompts are provided in the appendix.

3.4.2 CLIP Fusion. To integrate the inferred surface and internal
material properties into the 3D representation. It is necessary to
align the material groupings of the continuum particles—obtained
in Sec. 3.2 and Sec. 3.3—with those derived from the canonical view.
Specifically, we first extract the CLIP embedding for all segmented
sub-images in the canonical view and the rendered image I𝑓 from
the front view, which contains the same object information as the
canonical view. This is represented as:

L𝑐 (·) = V(I𝑐 ⊙ M𝑐 (·)), (3)
L𝑓 (·) = V(I𝑓 ⊙ M𝑓 (·)), (4)
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where V is the CLIP image encoder and L represents the mask CLIP
embedding. M(·) denotes the sub-region of the mask map labeled
by the specified mask index.

Next, we calculate the similarity between the CLIP features of
the canonical view and those of the rendered image. By selecting
the matching pairs with the highest similarity, we establish a cor-
respondence between the material groupings. Based on this, we
can assign the surface and internal material information to the
corresponding continuum particles. Finally, we construct a com-
plete material continuum representation P̃ = (x𝑝 , 𝑔𝑝 , 𝜃𝑝 ), where
𝜃𝑝 denotes the material properties, for use in subsequent physical
simulation to generate 4D dynamics.

3.5 4D Dynamics Generation
Phys4DGen can integrate any particle-based physical simulation al-
gorithm. In this paper, we use theMaterial PointMethod (MPM) [44]
to simulate the dynamics of 4D content, which enables the mod-
eling of motion and deformation behavior of continuum under
external forces. For details on MPM and external forces, please
refer to the appendix. For physical simulation, we further assign
temporal properties 𝑡 to the material continuum, along with other
physical attributes involved in the simulation process, such as mass
𝑚, deformation gradient F, and velocity v. Then, we employ MPM
to perform physical simulations on the material continuum P̃𝑡 . This
allows us to track the position and local deformation of each particle
at every time step:

x𝑡+1, F𝑡+1, v𝑡+1 = MPMSimulator(P̃𝑡 ), (5)

where x𝑡+1 = {x𝑡+1𝑝 }𝑃
𝑝=1 denotes the positions of all particles at time

step 𝑡+1. F𝑡+1 = {F𝑡+1𝑝 }𝑃
𝑝=1 represents deformation gradients, which

describe the local deformation of each particle at time step 𝑡 + 1.
To reconstruct the 3D Gaussian Splatting (3DGS) representation
at time step 𝑡 from the simulation results, we isolate the 3DGS-
relevant components from the simulated material continuum. To
incorporate the local deformation behavior of each GS kernel, we
interpret the deformation gradient as a local affine transformation
applied to the Gaussian kernel. Consequently, we can derive the
covariance matrix of the Gaussian kernel 𝑘 in step 𝑡 + 1:

Σ𝑡+1
𝑘

= (F𝑡+1
𝑘

)Σ𝑡
𝑘
(F𝑡+1

𝑘
)𝑇 . (6)

At each step of the MPM simulation, we obtain the deformed 3DGS
representation. The sequence of 3DGS representations across all
time steps collectively forms the 4D content. This enables the gen-
eration of physically plausible 4D dynamics.

4 Experiments
4.1 Experimental Setup
4.1.1 Implementation Details. Phys4DGen supports both a sin-
gle image and a 3D model as input. Given a single image, we use
LGM [38] to generate static 3D Gaussians. For material grouping,
we render multiview images from the generated 3D Gaussians and
apply SAM2 [31] to obtain cross-view consistent material mask
maps. We used GPT-4o to identify the material for each material re-
gion in the image. For 4D dynamics generation, we perform physical
simulation using MPM [36]. For each example, the simulation envi-
ronment is configured based on the material information inferred

by GPT-4o, and different external forces are applied according to
the specific case, allowing the generation of physically plausible dy-
namic 4D sequences. All experiments were conducted on NVIDIA
A40(48GB) GPU. For more detailed information on the experimental
settings, please refer to the appendix.

4.1.2 Datasets. To thoroughly assess the effectiveness of our ap-
proach across varying input types, we establish separate datasets
for the Image-to-4D and 3D-to-4D tasks. For the image-to-4D task,
we use a total of 11 samples, including 8 synthetic image samples
(4 sourced from Zero123[22] and Animate124[52], and 4 created
by ourselves), as well as 3 image samples collected from the real
world. The datasets feature a range of materials, including elastic,
elastoplastic, granular media, and snow. For the 3D-to-4D task, we
choose four real-world static scenes from PhysDreamer [51] (aloca-
sia, carnations, telephone and hat), along with additional scenes:
ficus from PhysGaussain[44] and basketball from Physics3D[21].

4.1.3 Baselines. We compare our method both qualitatively and
quantitatively with existing SOTA 4D generation methods. For the
image-to-4D task, we compare our approach with several image-
to-4D generation methods, including DG4D [32], STAG4D [48],
and L4GM [33], with a primary focus on assessing their perfor-
mance in terms of spatiotemporal consistency and physical realism.
For the 3D-to-4D task, we compare our method with PhysGaus-
sian [44], PhysDreamer [51], and Physics3D [21]—approaches that
incorporate physical priors—using the PhysDreamer datasets.

4.1.4 Metrics. Following previous works [47, 52], we use CLIP-T
score which calculates the average cosine similarity between the
CLIP embeddings of every two adjacent frames in rendered video
from a given view. To further assess the spatiotemporal consistency,
we render videos from the right, back, and left views to calculate
the CLIP-T-other score. We also conduct a user preference study to
evaluate the physical realism (PR) and overall quality (OQ) of the
generated 4D content, with both metrics rated on a 10-point scale.
More details on the user study can be found in the appendix.

4.2 Showcase of 4D Generation Results
Fig. 3 visualizes the 4D content generated by Phys4DGen. For each
example, we present the perceived material properties, including
the density and Young’s modulus of both the object’s surface and
internal regions. As shown, Phys4DGen effectively discerns the ma-
terial compositions of 3D objects, such as differentiating the distinct
physical attributes of carnations’ petals and stems, and recognizing
the material differences in a doll’s fabric surface and polyester fiber-
fill interior. Furthermore, we render the corresponding 4D content
from dynamically changing viewpoints. The results demonstrate
Phys4DGen’s capability to generate physically realistic 4D content
from a single image or 3D content. Please refer to the appendix for
additional visual results.

4.3 Comparison in Image-to-4D Generation
Fig. 4 presents a qualitative comparison of our Phys4DGen method
with state-of-the-art (SOTA) image-to-4D generation methods. Gen-
erating 4D content using STAG4D and DG4D heavily depends on
the quality of reference videos produced by video diffusion models.
However, due to the inherently stochastic and data-driven nature of
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Figure 3: Visual results of Phys4DGen. Phys4DGen is capable of perceiving the multi-material composition of 3D objects and
generating physically realistic 4D content under given external forces (red arrows).

these models, it remains challenging to obtain reference videos that
simultaneously adhere to physical laws and faithfully align with the
user’s intent. This limitation is evident in Fig. 4, where the 4D con-
tent generated by STAG4D and DG4D struggles with controllability
and often violates fundamental physical principles. For example, in
Fig. 4, the 4D content generated by DG4D [32] for a balloon tied to
a wooden block moves upwards, violating gravity. In stark contrast,
Fig. 4 clearly demonstrates that our generated 4D content achieves
high fidelity and adheres physical laws, significantly outperforming
baseline methods. This qualitative observation is further supported
by the quantitative results presented in Tab. 1. As shown in the
table, our method achieves the highest CLIP-T and CLIP-T-other
scores, indicating that it is capable of generating spatiotemporally
consistent 4D content. The user study results on physical realism
(PR) and overall quality (OQ) indicate that participants found our
generated 4D content more physically plausible and expressed a
stronger preference for our results over the baselines. Additionally,
our method offers superior controllability, enabling users to adjust

external forces according to their specific needs—an aspect where
baseline approaches fall short.

4.4 Comparison in 3D-to-4D Generation
Following PhysDreamer[51], we compare our results with real cap-
tured videos and simulations from other methods using space-time
slices, where the vertical axis represents time and the horizontal
axis shows a spatial slice of the object, as indicated by the red lines
in the "object" column. We use 90-frame video sequences to gen-
erate space-time slices. This representation enables an effective
comparison of the magnitude and frequencies of the oscillatory
motions generated by different methods. Fig. 5 demonstrates that
the dynamics generated by our method more closely resemble those
of real-world videos. As shown in Tab. 2, our method achieves the
highest average scores in physical realism (PR), overall quality (OQ),
and CLIP-T, significantly outperforming baseline methods. These
results validate the effectiveness of our proposed multi-material
composition perception capability, which enables relatively accu-
rate material property estimation within only 14.88 seconds, in
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Figure 4: Qualitative comparison in image-to-4D generation. To compare the spatiotemporal consistency, the rendering view
changes with each time step. The red box highlights regions exhibiting physically implausible behavior for further observation.
The dynamics generated by our method are more consistent with physical laws compared to the baseline method.

Method PR ↑ OQ ↑ CLIP-T ↑ CLIP-T other ↑
DG4D [32] 5.90 6.25 0.98983 0.98536
STAG4D [48] 5.55 5.97 0.98813 0.98492
L4GM [33] 6.30 6.70 0.99242 0.99275

Ours 7.50 7.72 0.99459 0.99409
Table 1: Quantitative comparison in image-to-4D generation.
PR evaluates the physical realism of the 4D content, OQmea-
sures its overall quality, and CLIP and CLIP-T-other assess
its spatiotemporal consistency.

contrast to the hour-level computation time required by baseline
methods. This efficient perception contributes to the generation of
4D content that is not only physically plausible but also more pre-
ferred by human observers. More comparative results are provided
in the appendix.

4.5 Ablation Analysis
To validate the effectiveness of Internal Physical Structure Dis-
covery (IPSD) and multi-material partitioning through Material
Grouping, we conduct the ablation study illustrated in Fig. 6. As
shown in the figure, the complete model (top-left) demonstrates
ideal simulation performance. With both Material Grouping and
IPSD enabled, the bun and the beef patty exhibit different defor-
mation behaviors under the same external force: the bun, being
softer, undergoes larger deformation, while the beef, being rela-
tively stiffer, deforms less. Meanwhile, the overall structure remains

Method PR ↑ OQ ↑ CLIP-T ↑ Time ↓
PhysGaussian [44] 5.67 6.30 0.99855 -
PhysDreamer [51] 6.43 6.90 0.99862 5688.79s
Physics3D [21] 7.17 7.53 0.99852 7273.32s

Ours 7.87 7.97 0.99925 723.14s+14.88s
Table 2: Quantitative comparison in 3D-to-4D generation.
Since PhysGaussians lacks a material property estimation
stage, we exclude its runtime from our evaluation. Our
method requires only 14.88s for property estimation.

stable, reflecting strong physical plausibility and internal consis-
tency. When the Material Grouping module is removed (top-right),
internal structural cues are still present, but the model fails to dis-
tinguish between materials effectively. As a result, the bun and
beef respond with similar levels of deformation under force, which
clearly contradicts physical reality. In contrast, when the IPSD
module is removed (bottom-left), the model still captures material
differences in deformation response. However, the lack of inter-
nal structural support leads to a collapse of the overall geometry
under larger external forces, revealing significant issues in main-
taining structural stability. The worst performance occurs when
both modules are disabled (bottom-right). The simulation results
in chaotic material interactions and complete structural failure.
In summary, both Material Grouping and IPSD are essential for
enhancing the physical realism of 4D content generation. They com-
plement each other—Material Grouping ensures that the behavioral
differences between materials are properly captured, while IPSD
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Figure 5: Qualitative comparison for 3D-to-4D generation. We compare our results with real videos and baselines using space-
time slices, These slices reveal the motion’s intensity and frequency. Our results more closely match the ground truth.
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Figure 6: Ablation study on Internal Physical Structure Dis-
cover and multi-material partitions through Material Group-
ing. All examples are tested under the same external forces.
The red box is used to assist in observing the deformation.

ensures structural integrity—making them indispensable compo-
nents for achieving faithful and stable physical effects. Additional
experimental analyses can be found in the appendix.

5 Conclusion
In this paper, we propose Phys4DGen, a physics-compliant 4D
generation framework that effectively perceives complex multi-
material compositions. By seamlessly integrating these perceptual
capabilities with physical simulation, our approach enables intu-
itive and physically plausible 4D generation from a single image or
a 3D input. To handle multi-material compositions, we propose the
3D Material Grouping module, which segments an object surface,
represented by 3D Gaussians, into distinct material regions. Fur-
thermore, the internal structure of the object is modeled through
Physical Internal Structure Discovery. We distill extensive phys-
ical priors from GPT-4o to identify surface and internal material
properties, which are then assigned to the 3D representation to
construct a complete simulation object. Extensive experiments on
synthetic and real-world datasets show that our approach generates
physically realistic 4D content.
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