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Abstract
Decoding functional magnetic resonance imaging
(fMRI) signals into text has been a key challenge
in the neuroscience community, with the potential
to advance brain-computer interfaces and
uncover deeper insights into brain mechanisms.
However, existing approaches often struggle with
suboptimal predictive performance, limited task
variety, and poor generalization across subjects.
In response to this, we propose MindLLM, a
model designed for subject-agnostic and versatile
fMRI-to-text decoding. MindLLM consists of
an fMRI encoder and an off-the-shelf LLM. The
fMRI encoder employs a neuroscience-informed
attention mechanism, which is capable of accom-
modating subjects with varying input shapes and
thus achieves high-performance subject-agnostic
decoding. Moreover, we introduce Brain Instruc-
tion Tuning (BIT), a novel approach that enhances
the model’s ability to capture diverse semantic
representations from fMRI signals, facilitating
more versatile decoding. We evaluate MindLLM
on comprehensive fMRI-to-text benchmarks.
Results demonstrate that our model outperforms
the baselines, improving downstream tasks by
12.0%, unseen subject generalization by 24.5%,
and novel task adaptation by 25.0%. Furthermore,
the attention patterns in MindLLM provide inter-
pretable insights into its decision-making process.
Code is available at https://github.com/
Graph-and-Geometric-Learning/
MindLLM.

1. Introduction
Decoding human brain activity (fMRI) to text has sparked
significant interest within the neuroscience community
(Xia et al., 2024; Chen et al., 2023a; Luo et al., 2023;

*Equal contribution 1Yale University 2Dartmouth College
3University of Cambridge. Correspondence to: Weikang Qiu
<weikang.qiu@yale.edu>.

Proceedings of the 42nd International Conference on Machine
Learning, Vancouver, Canada. PMLR 267, 2025. Copyright 2025
by the author(s).

Brain
Instruction

Tuning

MindLLM

He wants to
turn off the

light.

Potential
Downstream
Application

What does the
subject want to
do right now?

Open
Question

Human
Brain

Usage

Perception & Scene Understanding

Memory & Knowledge Retrieval

MindLLM

Language & Symbolic Processing

Complex Reasoning

Subject-Agnostic
Encoder

Subject-Agnostic
Encoder

Prosthetics
movement

Embodied AI

Multiple Subjects

Training

Figure 1. The overview of our method. MindLLM is equipped
with a subject-agnostic fMRI encoder and an off-the-shelf LLM.
MindLLM is trained on multiple subjects with varying input shapes
and an instruction-tuning dataset, aiming to encode different facets
of semantic information in fMRI. After training, MindLLM is
capable of various text decoding tasks. One application is that the
decoded contents can be used to achieve neural control of existing
systems that are not designed for it.

Hmamouche et al., 2024). The ability to translate brain
activity patterns into natural language carries both academic
and societal importance. For neuroscientists, it provides
deeper and novel insights into cognition, behavior, and con-
sciousness (Qiu et al., 2023; Luo et al., 2023). On a societal
level, it presents opportunities for medical applications and
improves human-computer interaction (HCI) (Bernal et al.,
2022; Du et al., 2022). For example, for individuals with
speech impairments, this technology could restore commu-
nication capabilities, enabling them to express their thoughts
effortlessly (Card et al., 2024). Moreover, as shown in Fig-
ure 1, it benefits healthy individuals by allowing neural con-
trol of digital devices, such as embodied AIs or prosthetic
limbs, allowing for more intuitive and precise movements.

Despite its potential, decoding brain activity to language
still faces significant challenges. One major obstacle is the
need for versatile decoding tailored to specific applications.
For example, decoding may aim to translate a subject’s
movement intention to control a prosthesis, or to interpret
abstract thoughts or memories. Traditional models fail to
accommodate such diverse requirements. To address this,
UMBRAE (Xia et al., 2024) integrates a Visual Language
Model (VLM) (Chen et al., 2023b) and learns to map from
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fMRI data to corresponding stimulus images. While this
approach achieves versatility to some extent, it remains
constrained to tasks directly tied to the current stimulus
image and cannot address broader tasks, such as retrieving
memories of past visual experiences.

Another critical challenge lies in designing a unified and
subject-agnostic architecture. Current methods of brain
multimodal decoding mostly rely on a preprocessing step:
selecting responsive voxels by comparing the task-based
fMRI to the resting-state fMRI. The selection typically re-
sults in higher performance compared to using whole-brain
data. However, the varying number and irregular spatial dis-
tribution of selected voxels across subjects pose significant
challenges for developing a unified architecture. To this
end, recent studies (Wang et al., 2024a;b) have proposed
pooling or sampling voxels to standardize input dimensions.
However, as illustrated in Figure 3, these methods still suffer
from the loss of spatial information and uneven represen-
tations of certain areas, ultimately compromising perfor-
mance.

Present Work Here we present MindLLM, a subject-
agnostic and versatile model for fMRI-to-text decoding.
Our approach consists of a subject-agnostic fMRI encoder
and an off-the-shelf LLM. The subject-agnostic fMRI en-
coder incorporates a neuroscience-informed attention layer
with learnable queries, enabling dynamic feature extraction
by leveraging both spatial information and neuroscientific
priors of voxels, thereby significantly enhancing predic-
tion accuracy. The design of values and keys separates the
voxel’s functional information-which is largely consistent
across individuals-from its fMRI value, allowing the model
to benefit from shared priors across subjects and enhancing
generalization to novel subjects. Moreover, to address the
challenge of versatile decoding, we propose Brain Instruc-
tion Tuning (BIT). BIT trains the model using a diverse
dataset that employs images as intermediaries, encompass-
ing tasks designed to capture diverse aspects of semantic
information encoded in fMRI data, including perception
& scene understanding, memory & knowledge retrieval,
language & symbolic processing, and complex reasoning.
Figure 1 illustrates the corresponding components.

We evaluate our model on comprehensive benchmarks. Re-
sults reveal it outperforms baselines with 12.0% average
improvement in various downstream tasks and 24.5% im-
provement in generalization on unseen subjects. Addition-
ally, we show that our model adapts effectively to novel
tasks, demonstrating high customizability and flexibility in
real-world applications. Furthermore, our analysis of at-
tention weights offers valuable insights into the working
mechanism of our fMRI encoder.

nn.AdaptiveMaxPool1d

Neuroscience-
informed Attention

(a) MindBridge (b) UniBrain (c) MindLLM (ours)

flatten sample

Figure 2. Comparison between our model and previous unified
models. MindBridge (Wang et al., 2024a) flattens the voxels and
adaptively pools them to a fixed dimension, which overlooks the
rich information in positions. UniBrain (Wang et al., 2024b) uni-
formly samples a subset of voxels and aggregates their neighbors.
Different from these methods, we propose neuroscience-informed
attention, where each query token attends to all voxels, which
minimizes potential information loss in pooling or sampling.

2. Related Works
Brain-Conditioned Text Generation

This line of research mostly focuses on decoding perceived
visual stimuli into natural language from fMRI signals.
MindGPT (Chen et al., 2023a), UniBrain(Mai & Zhang,
2023) and BrainCap (Ferrante et al., 2023) employ an fMRI
encoder guided by CLIP (Radford et al., 2021) and use a
language model (Radford et al., 2019; Wang et al., 2022) to
decode natural language from the encoded representations.
BrainChat (Huang, 2024) utilizes multiple pretraining strate-
gies (Devlin, 2018; He et al., 2022; Yu et al., 2022) to align
fMRI with image and text embeddings. These methods fall
short in performance and versatility. UMBRAE (Xia et al.,
2024) proposes to learn a mapping from fMRI to stimulus
images, which later serves as a proxy input for an off-the-
shelf visual language model (VLM). Although they achieve
performance improvements, the strategy prevents the model
from performing tasks that are not directly related to the
stimulus images (e.g., answering memory-related questions).
In contrast, our end-to-end Brain Instruction Tuning (BIT)
ensures seamless and versatile fMRI-to-text decoding, of-
fering the potential to tackle tasks beyond vision-related
ones.

Cross-subjects Decoding In voxel-level machine learning
for brain decoding, the number of voxels varies between
subjects (Allen et al., 2022). Most prior works (Scotti et al.,
2024a;b) use an MLP for each subject individually. How-
ever, due to the fixed input size required by MLP architec-
tures, these models cannot handle varying input shapes. As
illustrated in Figure 2, MindBridge (Wang et al., 2024a)
proposed to use an adaptive max pooling layer to standard-
ize the input shapes. However, unlike images, which are
considered translation invariance, positions in fMRI carry
specific bio-informative significance that pooling operations
may overlook. UniBrain (Wang et al., 2024b) proposed to
sample groups of voxels. Such a sampling strategy, on the
one hand, may lead to information loss if some voxels are
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not included in any group. On the other hand, the irregular
spatial distribution of 3D voxels with varying density and
curvature may result in underrepresentation or overrepresen-
tation of certain areas. Different from these methods, our
model employs a neuroscience-informed attention mech-
anism that accounts for every single voxel while preserv-
ing their bio-informative positional information, ensuring a
more comprehensive and precise representation.

Multi-Modal Large Language Model Aiming to aug-
ment the perceptual capacities of Large Language Models
(LLMs), there has been a growing interest in extending them
to handle multiple modalities within a unified model. Nu-
merous studies have attempted to incorporate modalities
such as images (Alayrac et al., 2022; Zhang et al., 2023b;
Wang et al., 2023b), videos (Cheng et al., 2024; Kondratyuk
et al., 2023; Zhang et al., 2023a), and point clouds (Xu et al.,
2023; Qi et al., 2025). OneLLM (Han et al., 2024a) stands
out by aligning eight different modalities, including fMRI,
with language. However, their approach employs an individ-
ual convolution network for each subject instead of a uni-
fied architecture for fMRI encoding across subjects, which
restricts its applicability to new subjects in real-world sce-
narios. Furthermore, the approach solely relies on captions
as textual annotations, which limits the model’s capability
for versatile fMRI decoding.

Multimodal fMRI Decoding Beyond text, recent studies
have explored decoding brain signals into other modali-
ties, including images (Scotti et al., 2024b; Wang et al.,
2024a; Chen et al., 2023c), videos (Sun et al., 2024; Chen
et al., 2023d), speech (Chen et al., 2024) and music (Denk
et al., 2023), as well as in reverse directions (Toneva &
Wehbe, 2019). The encoder architectures in these works typ-
ically either adopt transformers for time-series data, which
is distinct from our voxel-based setting, or fall into one of
the architectures we have discussed in previous paragraphs.
Therefore, focusing on text generation, our work improves
the fMRI encoder architecture for voxel-level inputs, and
designs novel objectives (i.e., brain instruction tuning) for
our target modality.

3. Method
In this section, we propose a neuroscience-informed fMRI
encoder designed to achieve high-performance, subject-
agnostic decoding. To further enable versatile decoding,
we introduce the construction of a brain instruction tuning
dataset, which captures diverse semantic representations
encoded in fMRI data.

3.1. Method Overview

As illustrated in Figure 3, our model consists of an fMRI
encoder fθ and an off-the-shelf LLM. In practice, we use

Vicuna-7b (Zheng et al., 2023) as our LLM to maintain
consistency with our baseline (Xia et al., 2024). For each
sample, let v = [v1, v2, · · · , vN ] ∈ RN be the fMRI signals
of input voxels, where N is the number of voxels. Note that
N varies between different subjects, ranging from 12, 682
to 17, 907 in the dataset we use (Allen et al., 2022).

The fMRI encoder fθ, featuring a neuroscience-informed
attention layer, encodes v to fMRI tokens Xv =
[xv,1,xv,2, · · · ,xv,L] ∈ Rd×L, where L is the number of
tokens and d is the dimension of token embeddings. We
then prepend these learned fMRI tokens to the language
tokens in the BIT dataset we propose.

3.2. fMRI Encoder

As mentioned before, currently most models for fMRI de-
coding can not handle varying input shapes and are not
subject-agnostic, with only a few exceptions (Wang et al.,
2024b). However, these exceptions still suffer from informa-
tion loss and uneven representations of certain brain areas.
To this end, we propose a novel neuroscience-informed at-
tention mechanism to accommodate varying voxel numbers
across subjects, enabling a subject-agnostic encoding strat-
egy. Below we talk about the design of queries {qi}, keys
{ki} and values {vi} in the attention layer. For values, we
directly use the fMRI signal of each voxel, which means
vi = vi ∈ R. Making each voxel a value token maximally
prevents information loss compared to pooling- (Wang et al.,
2024a) or sampling-based (Mai & Zhang, 2023) methods.
The queries are randomly initialized and learnable. We ex-
pect each query to represent a certain pattern of the brain
(refer to visualizations in Section 4.8). The design of keys
will be discussed below.

Exclude fMRI values from keys The vanilla cross atten-
tion (Zhu et al., 2020; Vaswani, 2017) derives both keys
and values from the same input source. However, we found
this would lead to poor performance in fMRI. We argue the
reason: different from images or text, which are usually con-
sidered translation-invariant, the positions of voxels carry
specific brain functional information, as voxels in different
areas are associated with distinct brain functions. Conse-
quently, a voxel’s position alone can theoretically serve as
effective keys for attention weight computation (McManus,
2002; Zhang et al., 2023c; Liu et al., 2024). Including
fMRI values into keys, however, introduces additional noise
instead of valuable information, thus resulting in poorer
performance. Moreover, since brain regions tend to serve
similar functions across individuals, decoupling voxel posi-
tions from fMRI signals can facilitate the sharing of priors
across subjects, potentially improving generalization to un-
seen subjects.

In light of this, instead of the vanilla cross attention, which
derives the keys and values from the same inputs, we ex-
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clude the fMRI value of each voxel and use its positional
information alone as its key embedding. The positional in-
formation is encoded from the coordinates of each voxel, i.e.
kpos
i = PE(ci) for the i-th voxel, where ci ∈ R3 denotes

the coordinates of the voxel. In practice, we use the Fourier
positional encoding proposed in (Tancik et al., 2020) due to
its superiority in encoding coordinate information.

Incorporation of Brain Parcellations While positional
encoding alone improves performance, it lacks inherent neu-
roscientific grounding, potentially making it challenging for
the model to efficiently learn representations aligned with es-
tablished principles of brain function. To overcome this, we
incorporate existing brain region parcellations (Glasser et al.,
2016; Rolls et al., 2020) into the key embeddings. Formally,
given a parcellation P , with regions indexed by 1, · · · , NP .
Let P(i) ∈ [1, 2, · · · , NP ] be the region that the i-th voxel
belongs to, and E[P(i)] ∈ Rd be the corresponding learn-
able embedding of the region, which will be incorporated in
the key embeddings as kreg,P

i = E[P(i)] ∈ Rd.

Combining Multiple Parcellations It is crucial to choose
an appropriate brain region parcellation. Previous region-
based methods (Qiu et al., 2023; Li et al., 2021; Kan et al.,
2022) can usually only choose one arbitrarily. In contrast,
our model design allows us to combine multiple parcella-
tions P1,P2, · · · by concatenating their respective region
encodings to the key embeddings. In conclusion, the fi-
nal key embeddings are the concatenation of the positional
encoding and multiple region encodings,

ki = kpos
i ∥kreg,P1

i ∥kreg,P2

i ∥ · · · (1)

where ∥ denotes the concatenation operation. This process
is illustrated in Figure 3’s lower right part.

The positional and region encodings complement each other:
The region encodings serve as coarse-scale features, provid-
ing a neuroscientific-grounded basis, while the fine-scale
positional encoding allows our model to learn finer-grained
information directly from the data.

This attention design separates a voxel’s functional informa-
tion—which is largely consistent across individuals—from
its fMRI value, thereby enhancing generalization. Instead
of relying on pooling or sampling, the attention mechanism
employs learnable aggregation, while the integration of po-
sitional encoding and neuroscientifically informed region
encodings further ensures high performance.

After the attention layer, we obtain the hidden representa-
tions zq ∈ RNq where Nq is the number of query embed-
dings. We then employ an MLP and a reshape operation
to map the hidden representations to L fMRI tokens, i.e.,
Xv = reshape (MLP({zq})) ∈ RL×d.

The process of the fMRI encoder is illustrated in Figure 3.
The obtained fMRI tokens are then prepended to the lan-
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Figure 3. Model Architecture. The fMRI encoder maps fMRI to a
series of fMRI tokens through our proposed neuroscience-informed
attention. The large language model, with both fMRI and text
tokens, will be trained by brain instruction tuning.

guage tokens in conversations.

In addition, we provide a side-by-side comparison between
our encoder and existing ones in Appendix F.

3.3. Brain Instruction Tuning (BIT)

To enable versatile fMRI-to-text decoding, an appropriate
BIT dataset is required, yet no such dataset currently ex-
ists. To bridge this gap, we construct one based on the fact:
MSCOCO images (Chen et al., 2015) serve as stimuli for
fMRI recordings in the fMRI study (Allen et al., 2022),
and an abundance of datasets provide text annotations (e.g.,
VQA) for MSCOCO images. Using the images as interme-
diaries, we select those relevant to brain functions and pair
the fMRI data with corresponding text annotations. For ex-
ample, given an image of a billboard with annotated textual
content, we can reasonably infer that when a subject per-
ceives textual information (e.g., contents on the billboard),
corresponding representations are encoded in the brain. This
suggests the possibility of extracting such information from
fMRI signals. We select datasets to fulfill various purposes,
enabling the model to capture diverse aspects of semantic
information embedded in fMRI signals, including visual
perception & scene understanding, language & symbolic
processing, memory & knowledge retrieval and complex
reasoning, which are considered among most fundamental
and essential properties of human brains (Robertson, 2002;
Stenning & Van Lambalgen, 2012; Wade & Swanston, 2013;
Friederici, 2017).

Perception & Scene Understanding As illustrated in Fig-
ure 4, we begin by using caption tasks at both coarse and
fine-grained levels to train the model’s ability to understand
and summarize what the subject perceives visually (Chen
et al., 2015; Krause et al., 2017). Additionally, we incor-
porate QA tasks (Ren et al., 2015; Krishna et al., 2017;
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Previous Caption, OK-VQA, A-OKVQA

Brain Instruction Tuning
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COCO Caption, Paragraph Caption, 
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LLava Instruction 150K, LVIS Instruct4V, VQA-E

Figure 4. Dataset Taxonomy in Brain Instruction Tuning.

Acharya et al., 2019) to enhance the model’s ability to re-
trieve and reason about visually perceived content.

Memory & Knowledge Retrieval To go beyond tasks di-
rectly related to present visual perception, we construct
the previous captioning task, a memory-oriented task that
challenges the model to caption images that the subject pre-
viously viewed, simulating memory recall processes. Fur-
thermore, we aim to encode knowledge structures in human
brains. The OK-VQA (Marino et al., 2019) and A-OKVQA
(Schwenk et al., 2022) datasets include questions requir-
ing external knowledge that is not present in the image but
resides in human brains. For example, A photo of a hy-
drant may prompt the answer ”firetruck,” even though the
firetruck is absent in the image. This association also reflects
the way human cognition operates through a network of in-
terconnected meanings, where one concept unconsciously
triggers another. Such a process, which is called ”slippage
of the signifier” (Lacan, 2001; 1988; Miller & Lacan, 2018),
highlights the symbolic processes through which the brain
constructs and retrieves meaning.

Language & Symbolic Processing In addition to the
aforementioned OK-VQA and A-OKVQA datasets, which
are also related to symbolic process, we further combine
datasets of text recognition (Biten et al., 2019) and numeri-
cal reasoning (Acharya et al., 2019) to facilitate this aspect.

Complex Reasoning Finally, we try to approximate the rea-
soning process that happens in human brains with datasets
(Liu et al., 2023; Wang et al., 2023a; Li et al., 2018) that
require intricate logical and inferential processes. We expect
these datasets to challenge the model to extract the reason-
ing process, drawing upon both visual understanding and
abstract problem-solving, thus bridging perception, memory,
and knowledge into a cohesive cognitive framework.

We ended up with a brain instruction tuning dataset consist-
ing of 980, 610 conversations associated with fMRI record-
ings from 15 datasets. Appendix A lists the instructions and
other details for each dataset. The instruction tuning enables
versatile fMRI-to-text decoding. In particular, the introduc-
tion of tasks like previous caption empowers the model to
perform a broader range of tasks beyond vision-related ones,
which the previous model (Xia et al., 2024) fails.

To train the model with the BIT dataset, for each

sample v, we sample a multi-run conversation Xt =
(X1

u, X
1
a , · · · , XT

u , X
T
a ) from all conversations associated

with it, where T ≥ 1 represents the number of turns. a
indicates the message from the assistant and u indicates
the message is from the user. The training objective is to
maximize the probability of the assistant’s response only

argmax
θ

p(Xa|Xv, Xinst) =

T∏
t=1

p(Xt
a|X≤t

u , X≤t
a , Xinst, Xv)

Figure 5 illustrates the chat template and the training ob-
jective. We freeze the weights of the LLM and only train
the fMRI encoder since we want to preserve the LLM’s
language modeling prior and ensure a fair comparison with
baselines such as Xia et al. (2024).

Computational Complexity According to the analysis in
Appendix C, our model does not introduce additional com-
plexity compared to previous methods (Scotti et al., 2024b;
Wang et al., 2024a).

<system message>
user: Xv, Xinst, Xu

1

assistant: Xa
1

user: Xu
2

assistant: Xa
2

· · · · · ·

Figure 5. The chat template used during instruction tuning, illus-
trating two turns of conversations. Two turns of conversation are
shown. Tokens highlighted in magenta are used for next-token
prediction loss computation.

4. Experiments
In this section, we first evaluate our model on various down-
stream tasks, demonstrating its versatile decoding capa-
bilities. Next, we assess its generalizability to novel sub-
jects and its adaptability to real-world applications. Finally,
we analyze the functions of queries in our neuroscience-
informed attention mechanism.

4.1. Settings

fMRI Datasets We use the widely used Natural Scenes
Dataset (NSD) (Allen et al., 2022), a large-scale dataset
consisting of fMRI measurements of 8 healthy adult subjects.
During data collection, subjects viewed images from the
MS-COCO dataset (Lin et al., 2014) and were instructed to
press buttons to indicate whether they had previously seen
each image.

Downstream Datasets The downstream dataset will be
discussed within each experiment section. See examples and
a short description for all datasets we will use in Appendix A.
Implementation details could be found in Appendix B.
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4.2. Brain Captioning

To evaluate the model’s performance on downstream tasks,
we start with the widely used brain captioning benchmark
(Xia et al., 2024). The task, built upon COCO Caption
(Chen et al., 2015) requires the model to predict captions of
given images as fMRI stimuli.

Baselines The following baselines are considered in this ex-
periment: SDRecon (Takagi & Nishimoto, 2023), UniBrain
(Mai & Zhang, 2023), and BrainCap (Ferrante et al., 2023)
employs a linear regression, mapping the fMRI to the inputs
of an image caption model (Li et al., 2023). OneLLM (Han
et al., 2024a) is a multimodal large language models that
align 8 modalities (including fMRI) with language all in one
model. For fair and efficient comparison, we only finetune
the encoder, given that we freeze the LLM in our method
as well. UMBRAE learns an encoder that maps fMRIs to
images through an encoder similar to the MLP mixer (Tol-
stikhin et al., 2021). BrainChat (Huang, 2024) segments the
flattened voxels into 16 patches and employs a transformer
to decode text conditioned on the patches. It is worth noting
that all of these baselines require subject-specific layers or
parameters. In contrast, our model is subject-agnostic, thus
with the potential to generalize on novel subjects.

Metric Following previous works, we use five standard met-
rics for text generation: BLEU-k (Papineni et al., 2002),
ROUGE-L (Lin, 2004), CIDEr (Vedantam et al., 2015),
SPICE (Anderson et al., 2016), METEOR (Banerjee &
Lavie, 2005).

Table 1 shows that our model outperforms baselines in terms
of most metrics, with an average improvement of 3.32%,
even if our model does not have any subject-specific layers.
We argue that this is attributed to both the novel architecture
design and the introduction of BIT, which will be evident in
the next experiment.

4.3. Versatile Decoding

The purpose of experiments in this section is two-fold: 1) To
investigate the impact of our model design and the introduc-
tion of BIT on performance improvement. 2) To evaluate

the versatility of the model, i.e., its performance on various
downstream tasks.

Baselines Besides baselines that could be adapted to this
experiment from the previous one, we further consider the
following subject-agnostic models as baselines. 1) Mind-
Bridge (Wang et al., 2024a) flattens the voxels and adap-
tively adjusts the padding and stride to pool the voxels into
a fixed dimension. The original implementation of Mind-
Bridge has subject-specific parameters. However, since
those parameters are of the same size, we make them shared
across subjects and thus make the model subject-agnostic.
2) UniBrain (Wang et al., 2024b) samples voxels into a fixed
number of groups and employs a transformer where groups
are treated as tokens. This UniBrain is unrelated to the
UniBrain in the previous section; they just share the same
name.

Datasets & Metric We use the test split of all QA & caption
datasets in the BIT dataset. We strictly adhere to the official
metrics on all datasets. In summary, for sentence generation,
we use BLEU-k (Papineni et al., 2002), ROUGE-L (Lin,
2004), CIDEr (Vedantam et al., 2015), SPICE (Anderson
et al., 2016), METEOR (Banerjee & Lavie, 2005). For QA-
related tasks, we use VQA accuracy (Antol et al., 2015) as
well as special metrics proposed in the original paper (e.g.
ANLS for ST-VQA (Biten et al., 2019)).

The results on subject 1 are shown in Table 2. Our model out-
performs baselines, with an average improvement of 12.0%.
Further, by comparing instruction tuning and from-scratch
models, we find that instruction tuning has a significant pos-
itive effect, with an average improvement of 28.0%. The
results remain stable across different random seeds; for in-
stance, according to our observations, the BLEU-1 score for
paragraph captioning exhibits a maximum of ±0.3 variance.
We report experiments on other subjects in Appendix G.

4.4. Unseen Subject Generalization

Our neuroscience-informed, subject-agnostic design en-
hances generalization to novel subjects, a crucial factor
in real-world applications where training a model for each

Table 1. Results of brain captioning. The CIDEr metric is scaled by a factor of 100 for consistency with Table 1 and baselines.

Method
subject
agnostic BLEU-1 ↑ BLEU-2 ↑ BLEU-3 ↑ BLEU-4 ↑ METEOR ↑ ROUGE ↑ CIDEr ↑ SPICE ↑

SDRecon (Takagi & Nishimoto, 2023) ✗ 36.21 17.11 7.22 3.43 10.03 25.13 13.83 5.02
OneLLM (Han et al., 2024a) ✗ 47.04 26.97 15.49 9.51 13.55 35.05 22.99 6.26
UniBrain (Mai & Zhang, 2023) ✗ − − − − 16.90 22.20 − −
BrainCap (Ferrante et al., 2023) ✗ 55.96 36.21 22.70 14.51 16.68 40.69 41.30 9.06
BrainChat (Huang, 2024) ✗ 52.30 29.20 17.10 10.70 14.30 45.70 26.10 −
UMBRAE (Xia et al., 2024) ✗ 59.44 40.48 27.66 19.03 19.45 43.71 61.06 12.79
UniBrain (Wang et al., 2024b) ✓ 59.08 39.64 26.36 17.68 17.49 43.48 48.20 9.38
MindLLM (Ours) ✓ 61.75 42.84 29.86 21.24 19.54 45.82 60.97 11.79
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Table 2. Versatile decoding. A dash − means the model could not perform this task. The superscript ◦ means the model is trained from
scratch, in contrast to their BIT version. The CIDEr metric is scaled by a factor of 100 for consistency with Table 1 and baselines.

OneLLM UMBRAE BrainChat MindBridge◦ UniBrain◦ MindLLM◦ MindBridge UniBrain MindLLM

subj-agnostic ✗ ✗ ✗ ✓ ✓ ✓ ✓ ✓ ✓

COCO-QA Accuracy↑ 11.09% 22.23% 39.44% 40.19% 38.38% 42.09% 45.33% 42.00% 48.19%

VG-QA Accuracy↑ 8.76% 19.67% 21.00% 20.84% 21.27% 21.68% 23.53% 24.02% 24.06%

VQA-v2 Accuracy ↑ 33.68% 51.23% 40.02% 43.25% 46.04% 44.13% 47.91% 48.58% 52.14%

A-OKVQA Accuracy ↑ 25.23% 43.24% 20.52% 22.12% 19.47% 29.20% 50.44% 43.36% 52.21%

ST-VQA ANLS ↑ 5.74% 5.46% 9.58% 10.20% 7.01% 12.76% 11.64% 8.76% 12.92%

OK-VQA Accuracy ↑ 22.98% 10.35% 17.22% 27.63% 18.63% 27.70% 32.13% 32.30% 33.33%

TallyQA Accuracy ↑ 8.34% 44.10% 43.22% 43.49% 44.83% 43.75% 49.46% 53.77% 54.76%
RMSE ↓ 7.45 3.94 1.90 2.03 1.83 2.04 1.86 1.67 1.76

Paragraph Caption

BLEU-1↑ 0.26 29.82 22.21 21.82 25.69 26.49 25.69 28.28 29.43
BLEU-2 ↑ 0.08 14.26 10.23 10.47 12.62 12.48 13.00 15.47 15.78
BLEU-3↑ 0.03 6.52 6.38 5.58 6.70 6.43 7.10 8.90 9.14
BLEU-4↑ 0.01 2.95 2.12 3.14 3.81 3.63 4.22 5.60 5.51

METEOR ↑ 2.36 12.60 9.10 10.95 11.13 10.71 11.39 13.50 13.18
CIDEr ↑ 0.00 7.39 6.02 7.50 3.92 2.44 3.55 1.82 7.80

VQA-E

Accuracy ↑ 19.60% 47.84% 46.20% 45.40% 44.42% 44.55% 48.48% 48.39% 50.95%
BLEU-1 ↑ 17.32 29.83 35.99 35.63 35.30 35.08 36.18 37.26 37.70
BLEU-2 ↑ 7.44 14.76 18.33 18.27 18.04 17.82 19.38 20.41 20.56
BLEU-3 ↑ 3.62 8.17 10.01 10.32 10.20 10.05 11.30 12.25 12.34
BLEU-4 ↑ 1.82 4.87 6.60 6.27 6.14 6.00 7.00 7.83 7.92
CIDEr ↑ 19.32 63.26 78.33 79.05 77.31 76.80 86.62 92.09 93.60

METEOR ↑ 6.69 12.25 13.64 14.13 13.89 13.96 14.81 15.51 15.62
ROUGE ↑ 16.84 28.38 32.82 33.78 33.25 33.11 34.56 35.87 35.88

FSVQA

VQA Acc. ↑ 31.44% 40.67% 36.30% 42.00% 37.05% 42.53% 45.95% 44.58% 48.03%
FSVQA Acc. ↑ 21.02% 0.00% 30.22% 37.40% 32.30% 38.50% 40.97% 37.87% 43.00%

BLEU-1 ↑ 37.42 23.11 83.99 85.68 83.84 85.88 86.52 85.10 87.10
BLEU-2 ↑ 31.72 5.86 78.50 81.27 78.81 81.62 82.28 80.01 83.03
BLEU-3 ↑ 26.95 2.10 73.00 77.10 73.97 77.62 78.34 75.49 79.27
BLEU-4 ↑ 22.48 1.04 69.73 72.89 68.91 73.56 74.35 70.73 75.50

METEOR ↑ 26.35 8.93 44.76 47.59 45.94 47.96 48.63 46.89 49.05
CIDEr ↑ 312.75 4.07 600.00 636.40 609.00 646.26 657.02 628.83 666.26

Previous Caption

BLEU-1 ↑ 41.86 − 21.19 21.17 24.84 44.52 42.45 43.01 47.20
BLEU-2 ↑ 19.44 − 8.00 7.57 9.70 22.46 20.04 20.03 25.16
BLEU-3 ↑ 9.25 − 1.98 2.85 3.40 10.39 9.61 9.19 12.95
BLEU-4 ↑ 3.67 − 1.02 1.28 1.46 5.45 5.31 4.58 7.49

METEOR ↑ 10.14 − 6.55 6.46 7.20 11.00 10.83 10.81 11.96
ROUGE ↑ 30.19 − 21.23 20.88 23.04 33.20 32.38 31.99 34.58
CIDEr ↑ 6.65 − 9.21 8.83 11.73 9.39 7.89 7.53 16.02
SPICE ↑ 2.49 − 2.44 2.56 2.78 3.07 2.80 2.92 3.93

individual is impractical. To evaluate it, we perform instruc-
tion tuning on 7 out of the 8 subjects in the natural scene
dataset (Allen et al., 2022), and evaluate generalization on
the held-out subject. Table 3 shows our model outperforms
two other subject-agnostic baselines in most cases, with an
average improvement of 24.5% compared to the second-best
model. We anticipate further performance gains through the
application of domain adaptation techniques (Xiao et al.,
2023; Ganin & Lempitsky, 2015; Ganin et al., 2016; Gong
et al., 2012), which we leave as a direction for future work.

4.5. Adapting to New Tasks

It is common that users want to adapt the MindLLM to their
own specific use cases. To this end, we aim to assess our
model’s adaptability to new tasks.

Dataset & Metrics We use TDIUC (Kafle & Kanan, 2017),
a QA dataset consisting of 12 types of questions, as a bench-
mark to evaluate the model’s various capabilities comprehen-
sively. Additionally, we further select 2 task types-sentiment
understanding and utility/affordance tasks, that are partic-
ularly relevant to BCI applications as sub-datasets. The
utility/affordance task, for instance, enables the model to
identify useful objects in a given scene and autonomously
decide whether to utilize them. Following their paper, we
compute the accuracy of each type and report the arithmetic
mean-per-type (A-MPT) and the harmonic mean-per-type
(H-MPT). For the 2 selected types, we report the accuracy
respectively.

Table 4 shows our model achieves balanced (high harmonic
mean) and consistently improved performances with an
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Table 3. Model generalization, compared with subject-agnostic
model. We train the models on subject 1 − 7 and evaluate on
subject 8, which is the held-out subject.

MindBridge UniBrain MindLLM

COCO-QA Accuracy ↑ 35.88 24.95 38.96

VG-QA Accuracy ↑ 20.56 16.23 19.29

VQA-v2 Accuracy ↑ 42.80 40.16 46.04

A-OKVQA Accuracy ↑ 44.55 28.71 45.54

ST-VQA ANLS ↑ 9.33 9.30 13.63

OK-VQA Accuracy ↑ 21.94 17.09 25.44

TallyQA Accuracy ↑ 38.92 32.51 42.29
RMSE ↓ 2.12 2.02 2.11

COCO-Caption

BLEU-1 ↑ 39.84 41.90 44.60
BLEU-2 ↑ 19.55 19.67 24.04
BLEU-3 ↑ 9.29 8.89 12.79
BLEU-4 ↑ 5.24 4.33 7.52

METEOR ↑ 10.39 10.80 11.16
ROUGE ↑ 31.10 31.54 33.47
CIDEr ↑ 8.70 6.40 13.22
SPICE ↑ 2.67 2.39 3.82

Paragraph Caption

BLEU-1 ↑ 23.18 21.73 26.07
BLEU-2 ↑ 10.71 8.94 12.64
BLEU-3 ↑ 4.61 3.72 6.27
BLEU-4 ↑ 2.22 1.92 3.46

METEOR ↑ 9.99 9.47 11.18
CIDEr ↑ 0.71 1.56 5.61

VQA-E

Accuracy ↑ 41.78 38.53 46.19
BLEU-1 ↑ 32.54 32.86 34.54
BLEU-2 ↑ 16.13 15.48 17.54
BLEU-3 ↑ 8.82 7.98 9.84
BLEU-4 ↑ 5.16 4.42 5.81
CIDEr ↑ 68.13 58.79 73.27

METEOR ↑ 12.74 12.26 13.56
ROUGE ↑ 30.63 29.38 32.36

FSVQA

VQA Acc. ↑ 42.33 37.92 43.92
FSVQA Acc. ↑ 37.16 30.83 39.07

BLEU-1 ↑ 75.81 82.94 86.19
BLEU-2 ↑ 71.03 77.24 81.83
BLEU-3 ↑ 66.40 71.94 77.77
BLEU-4 ↑ 61.55 66.54 73.58

METEOR ↑ 45.84 45.24 47.94
CIDEr ↑ 428.39 587.78 646.30

average of 13.5%. We could also observe the performance
benefits from BIT, with 25.0% absolute improvement.

4.6. Performance scale with the number of subjects

We conducted experiments to evaluate how model perfor-
mance scales with the number of subjects and report perfor-
mances on the COCO caption task. We examined both the
in-distribution (seen subjects) setting in Figure 5 and the out-
of-distribution (held-out subjects) setting in Figure 6. Our
results show significant performance improvements as the
number of training subjects increases, demonstrating that
the model benefits from exposure to more subjects during
pre-training.

4.7. Ablation Study

We conduct ablation studies on the design of key embed-
dings in the neuroscience-informed attention module in Fig-

Table 4. Model adaptation to new tasks. sentiment understand-
ing and utility/affordance are sub-datasets from TDIUC that are
particularly relevant to BCI applications.

Method Overall Sentiment Understanding Utility/Affordance

A-MPT H-MPT Accuracy Accuracy

MindLLM◦ 41.09% 19.38% 70.00% 0.00%

MindBridge 49.77% 39.88% 80.00% 14.29%
UniBrain 51.50% 36.76% 80.00% 28.57%

MindLLM 54.08% 45.43% 80.77% 50.00%

Table 5. Performance scaling with number of subjects (in-
distribution). Evaluation is performed on Subject 1, who is in-
cluded during training.

COCO Caption
number

of
subjects

BLEU-1 ↑ BLEU-2 ↑ BLEU-3 ↑ BLEU-4 ↑ METEOR ↑ ROUGE ↑ CIDEr ↑ SPICE ↑

1 58.05 37.95 24.40 16.14 16.62 42.03 43.04 8.81
3 56.81 37.16 24.12 16.30 16.44 41.93 40.94 9.12
5 58.17 38.65 25.49 17.30 16.97 42.36 46.54 9.19
7 58.52 39.20 25.95 17.51 17.12 42.87 47.45 9.48

Table 6. Performance scaling with number of subjects (out-of-
distribution). Evaluation is performed on Subject 8, who is held
out during training.

number
of

subjects
BLEU-1 ↑ BLEU-2 ↑ BLEU-3 ↑ BLEU-4 ↑ METEOR ↑ ROUGE ↑ CIDEr ↑ SPICE ↑

1 42.40 19.51 8.61 4.19 9.48 30.68 5.41 1.70
3 43.95 22.45 10.37 5.53 10.37 32.49 5.79 2.59
5 45.00 22.61 10.64 5.60 10.53 32.53 6.22 2.79
7 47.30 25.35 13.61 8.15 11.40 34.64 6.41 3.61

ure 6. The results strongly validate our design. The vanilla
cross attention (Pos Enc.+fMRI) leads to poor performance,
while removing fMRI values from the key embeddings (Pos
Enc.) yields a significant improvement. Replacing posi-
tional encoding with region encodings (Reg. Enc.) accel-
erates convergence in the early stages since it is grounded
by neuroscientific principles. However, it is eventually out-
performed by Pos Enc. due to the lack of finer-grained
information. Combining the positional encoding and region
encodings (Pos Enc.+Reg Enc.) achieves the best model
design. In addition, replacing positional encoding with an
MLP that maps coordinates to embeddings results in poor
performance ((x,y,z)+MLP), which indicates the amount of
high-frequency spatial information in fMRI signals. Addi-
tional ablation results on evaluation metrics are provided in
Appendix E.

4.8. Visualizations and Interpretations

Unlike previous deep learning models (Scotti et al., 2024b;
Mai & Zhang, 2023), our model allows interpretations by in-
vestigating how queries work in the neuroscience-informed
attention layer. We inspect the attention weights between
queries and voxels in Figure 7.

We found that some queries primarily focus on processing
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Figure 6. Ablation study of the key embedding design. Pos Enc.
stands for positional encoding. Reg Enc. stands for multiple region
encodings. (x, y, z)+MLP means we employ an MLP to map the
coordinates to the embeddings instead of positional encoding.
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Figure 7. Each subfigure corresponds to a specific query of subject
1. We visualize the attention map between that query token and all
voxels. Here we randomly select 6 query tokens, each of which
exhibits a distinct spatial focus.

single brain regions, such as Parahippocampal Place Area
(PPA) (Figure 7a) and Fusiform Face Area (FFA) (7b). As
previous research has shown, PPA is related to conceptual
association, semantic processing and environmental mem-
ory (Epstein et al., 1999; Köhler et al., 2002; Bar et al., 2008;
Epstein & Ward, 2010) and FFA is known for its critical role
in expertise recognition, social cognition and identity mem-
ory (Schultz et al., 2003; Tsantani et al., 2021; Xu, 2005).
Both are important brain regions for the conceptualization
of visual information and are responsible for the interaction
between real-time stimulus and past memory (Brewer et al.,
1998; Ranganath et al., 2004; Golarai et al., 2007).

Moreover, there are some queries that attend to multiple
brain regions, revealing the information transmission be-
tween low- and high-level brain regions. For instance, inter-
actions between early visual areas and higher-level regions
like PPA and IntraParietal Sulcus (IPS) (Figure 7e), reveal-
ing a potential pattern for human attention-guided actions

(Tunik et al., 2007; Connolly et al., 2016). Additionally,
queries are also found responsible for communications be-
tween high-level brain regions (Figure 7c,7f). Together,
these findings indicate that the learnable queries may reflect
the dynamics of human brain activities in the visual task,
from seeing and thinking about the image to pressing the
button for the visual recall task in NSD (Allen et al., 2022).

We provide attention map visualizations of subjects other
than subject 1 in Appendix I. We also visualize latent em-
beddings during the model forward pass in Appendix H.
Qualitative analysis of model responses could be found in
Appendix D.

5. Conclusion
In this work, we propose MindLLM, a subject-agnostic and
versatile fMRI-to-text decoding model. Our neuroscience-
informed attention mechanism in the fMRI encoder ensures
subject generalization, while brain instruction tuning en-
hances versatility. Comprehensive benchmarks demonstrate
our model’s state-of-the-art performance, and visualizations
offer insights into the patterns it leverages. We envision that
these advancements will contribute to medical treatments,
neuroscience research, and brain-computer interfaces in the
future. Limitations: This work focuses on static fMRI,
without incorporating temporal dynamics. Future research
could explore integrating temporal information and investi-
gating its relationship with other modalities such as videos.
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A. Dataset Details
A.1. Details of each dataset in brain instruction tuning

In this section, we give a brief description of each source of our brain instruction datasets as well as examples from them.

Table 7: Dataset details and examples.

Dataset Description Example

Previous Caption Generating a one-sentence caption
of the image that the subject previ-
ously saw. A neat bedroom pairs modern chairs with a glass table.

COCO Caption
(Chen et al., 2015)

Generate a one-sentence caption of
the image the subject currently sees. The pedestrian is walking down the side of the highway

by the bus.

Image Paragraph Captioning
(Krause et al., 2017)

Generate a one-paragraph caption
of the image the subject currently
sees

An elephant with a harness, and a seat on his back is
seen in a dirt field on a sunny day. The seat on the back
of the elephant is brown and is tied with ropes. The
sun is shining through the trees onto the ground below.
Behind the elephant there is a cinder block wall with grass
growing in front of the wall. There are trees behind the
wall.

COCO QA
(Ren et al., 2015)

Answer questions according to the
image. [Q]: what eats leaves from a basket in an enclosure? [A]:

Giraffe.

Visual Genome QA
(Krishna et al., 2017)

Answer image-based questions that
require richer semantic understand-
ing of the image than COCO-QA. [Q]: Where was the photo taken? [A]: In an office.

VQAv2
(Goyal et al., 2017)

Answer image-based questions
with better equality and diversity
than COCO-QA.

[Q]: What are the two white letters? [A]: hu

OK-VQA
(Marino et al., 2019)

Answer image-based questions that
require external knowledge beyond
the image itself.

[Q]: What part of the body do you wear the rightmost
objects on? [A]: Neck.

ST-VQA
(Biten et al., 2019)

Answer questions of high-level se-
mantic information present in im-
ages as the textual cue

[Q]: What is written on the front of the shirt? [A]: Marine.

TallyQA
(Acharya et al., 2019)

Count objects present in images.
[Q]: How many bats on the wall? [A]: 2

VQA-E
(Li et al., 2018)

Answer questions and generate
corresponding explanations for an
image-based question.

[Q]: Are the people going for a walk in the forest? [A]:
Yes. Here is the explanation: A picture of the land, trees,
and people passing by as they ride in a vehicle.

A-OKVQA
(Schwenk et al., 2022)

Answer multiple-choice questions. [Q]: What season is up next? Multiple Choices: A. au-
tumn B. spring C. summer D. winter [A]: B

Continued on next page
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Dataset Description Example

FSVQA
(Shin et al., 2016)

Answer the questions in full sen-
tences.

[Q]: Is this an area that is more populated with pedestrians
than cars? [A]: Yes, this is an area that is more populated
with pedestrians than cars.

VisDial
(Murahari et al., 2019)

Generate answers for image-based
questions in a multi-turn dialogue.

[Q1]: Is the photo in color? [A1]: No. [Q2]: Is the man
wearing glasses [A2]: Can’t tell. [Q3]: How many horses
are there? [A3]: 2

LLava Instruction 150K
(Liu et al., 2023)

Generate answers for object-level
and scene-level answering or rea-
soning questions for single or multi-
round conversations.

[Q1]: What is the main activity of the person in the fMRI?
[A1]: The main activity of the person in the fMRI is
brushing her teeth. [Q2]: What should be considered
when maintaining oral hygiene in a public setting? [A2]:
When maintaining oral hygiene in a public setting (as
depicted in the fMRI by a woman brushing her teeth
with a green toothbrush while carrying a shoulder bag),
factors such as cleanliness, privacy, time management, and
personal hygiene supplies should be taken into account...

LVIS Instruct4V
(Wang et al., 2023a)

Similar to LLava Instruct4V but is
finer-grained and of higher quality.

[Q1]: What is the primary object in the fMRI? [A1]: The
primary object in the fMRI is a bird. [Q2]: Can you
describe the color and appearance of the bird? [A2]: The
bird has a deep brown body with a darker head. Its eyes
are distinctively surrounded by a yellowish hue. The bird
also possesses a blue-tinted beak. [Q3]: How many birds
are in the picture?’ [A3]: There is only one bird in the
picture...

TDIUC (only used in downstream)
(Kafle & Kanan, 2017)

Generate answers for image-based
questions from 12 different task-
directed question types such as ob-
ject presence and utility/affordance.

[Q]: What object can be thrown? [A]: Baseball

A.2. Dataset statistics

Table 8 summarizes the statistics of each subject in the natural scene dataset (Allen et al., 2022).

Table 8. Number of voxels for each subject.

subject 1 2 3 4 5 6 7 8

#(input voxels) 15724 14278 15226 13153 13039 17907 126682 14386
#(samples) 30000 30000 24000 22500 30000 24000 30000 22500

A.3. Instructions

Table 9 lists instructions for each dataset (i.e. Xinst). Some instructions are inspired by (Han et al., 2024b). For question-
answering tasks, the instructions are appended after the question in a new line.

B. Implementation details
We choose Vicuna-7b (Zheng et al., 2023) as our backbone LLM. During the brain instruction tuning stage, We use AdamW
as the optimizer, with the learning rate of 1 × 10−3, weight decay of 0.01 and β1 = 0.9, β2 = 0.999. We do not use a
learning rate scheduler. We set the batch size to 64. The instruction tuning is conducted on a machine with 8× L40S GPUs
for 8 days. And each downstream fine-tuning is conducted on a single L40S GPU with a 1 × 10−4 learning rate and 48
batch size. For generations, we have adopted the greedy decoding strategy.

We use 128 as the number of fMRI tokens. We use a 4-layer MLP in the fMRI encoder. We set the number of queries to
1024. The dimension of the query embeddings is 128.
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Table 9. Instruction template and statistics of the BIT dataset. ”−” indicates that the instruction is embedded within the conversation and
does not require an additional one. Note that not all conversations are associated with fMRI recordings as only a subset of MSCOCO
images were used as stimuli in the study. Consequently, the number of usable conversations in practice will be lower.

Dataset #(conversations) Instruction

system prompt / You are a helpful agent that decodes the brain activity of a person looking at
an image.

Previous Caption 149, 875 Please describe the image the subject saw previously.
COCO Caption 616, 767 Please describe the fMRI as simply as possible.

Image Paragraph Captioning 9, 598 Describe the fMRI in one paragraph.
COCO QA 117, 684 Answer the question with a short phrase.

Visual Genome QA 676, 116 Answer the question with a short phrase.
VQAv2 6, 581, 110 Answer the question with a short phrase.

OK-VQA 140, 550 Answer the question with a short phrase.
ST-VQA 29, 751 Answer the question with a short phrase.
TallyQA 238, 056 Answer the question with a number.
VQA-E 2, 697, 860 Answer with a short phrase and provide explanation for your answer.

A-OKVQA 18, 201 Answer with the option’s letter from the given choices and provide explana-
tion for your choice.

FSVQA 369, 861 Answer the question in a full sentence.
VisDial 125, 351 −

Llava Instruct 150K 157, 712 −
LVIS Instruct4V 222, 711 −

C. Computational Complexity and Runtime Analysis
In the neuroscience-informed attention, the complexity of the dot product between queries and keys is O(dNNq). The
complexity of the aggregation of values is O(NNq), which is negligible. The MLP maps the hidden representation of
dimension Nq to L× d, therefore its complexity is dLNq. Therefore, the complexity of the fMRI encoder is O(dNNq +
dLNq) = O(dNq(L+N)) = O(dNqN) given that L ≪ N .

Table 10 summarizes the computational complexity and runtime comparison of different models. Despite its superior
performance, our model introduces only a marginal increase in encoder-side computational cost compared to other baselines.
Notably, the majority of inference time and complexity arises from the LLM component, which is shared across all models.
This highlights that the design choices in the encoder, while crucial for performance, do not significantly affect runtime.

D. Qualitative Analysis
In this section, we present a qualitative analysis of our model on COCO Captioning, COCO-QA, and OK-VQA, comparing
its performance against MindBridge (Wang et al., 2024a) and UniBrain (Wang et al., 2024b). As shown in Figure 8 and 9,
our results demonstrate significant improvements in visual understanding across multiple tasks. The model shows strength
in the following areas: Static Object Recognition. The model demonstrates superior accuracy in identifying stationary
objects. In comparison with baseline models (MindBridge and UniBrain), our approach shows improvement in spatial
context understanding. For example, when analyzing aircraft imagery (e.g., (a) of Figure 8), our model correctly identifies
”airplane sitting on the runway” while baselines incorrectly interpret the scene as ”flying in the sky” or ”flying over a city”,
demonstrating better state-space recognition. Action Recognition. Our proposed model exhibits enhanced capability in
distinguishing between similar actions. In sports scenarios (e.g., (f) of Figure 9), our model correctly identifies ”catch ball”
while both baselines incorrectly predict ”serve”, indicating improved action-state discrimination. Potential of neuroscience
application. The demonstrated improvements in object understanding and action recognition suggest the potential for
advancing brain-computer interface technology and neural processing research. The model’s enhanced capabilities in
distinguishing object states and actions could lead to more effective neural prosthetics and improved assistive technologies
for individuals with visual or motor impairments.
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Table 10. Computational complexity and runtime of each encoder and the LLM. For the first 4 lines, we only time the encoder part,
excluding the LLM. The runtime of the LLM forward pass is reported separately in the last row.

Module Forward Pass (ms/sample) Complexity Notation Explanation Approximate Values

UMBRAE 0.0109 O(dN + dN2
q )

d: hidden size
N : number of voxels
Nq: number of query tokens

d = 100
N = 15000
Nq = 200

MindBridge 0.0048 O(dN)
d: hidden size
N : number of voxels

d = 1000
N = 15000

UniBrain 0.0175 O(dGK + dN2
q )

d: hidden size
G: number of groups
K: voxels in each group
Nq: number of query tokens

d = 1000
G = 500
K = 30
Nq = 200

MindLLM 0.0181 O(dNqN)
d: hidden size
N : number of voxels
Nq: number of query tokens

d = 100
N = 15000
Nq = 100

LLM 0.0621 - - -

Ground Truth Caption: A white jet with blue and orange detailing sits on the 

runway. 

A Icelandair Airliner is preparing for take off. 

An airplane sitting at the end of a runway preparing for takeoff.

Ours: A large airplane sitting on top of an airport runway.

MindBridge: A large passenger jet flying in the sky.

UniBrain: A large airplane is flying over a city。

Ground Truth Caption: A white jet with blue and orange detailing sits on the 

runway. 

Outdoor clock with metal decoration against a blue sky. 

Closeup of a clock with a sign that reads “Uncle Bills”.

Ours: A clock tower with a clock on it.

MindBridge: A sign that says "STOP" on a pole.

UniBrain: A red and white airplane is parked on the tarmac.

Ground Truth Caption: A giraffe standing on top of a lush green field. 

Giraffe standing in middle of fenced in area looking to the ground. 

A giraffe standing in the shade of a tree.

Ours: A giraffe standing in the middle of a field.

MindBridge: A train is traveling down the tracks in the city.

UniBrain: A zebra standing in the middle of a street.

(a)

(b)

(c)

Figure 8. Qualitative Analysis of COCO Captioning.
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Questions: what are trying to 

climb on a rock

Ground Truth Answer: bears

Ours: bear

MindBridge: giraffes

UniBrain: elephants

Questions: what is the 

teenage girl swinging at a 

softball

Ground Truth Answer: bat

Ours: bat

MindBridge: ball

UniBrain: ball

Questions: what with metal 

decoration against a blue sky

Ground Truth Answer: clock

Ours: clock

MindBridge: tower

UniBrain: tower

Question: What animal 

kingdom does the animal 

belong to?

Ground Truth Answer: 

bear, mammal

Ours: mammal

MindBridge: bird

UniBrain: bird

Question: Can you guess 

the place name where the 

train is shown in this 

picture?

Ground Truth Answer: 

station

Ours: station

MindBridge: new york

UniBrain: london

Question: Why are the 

men bending down

Ground Truth Answer: 

to catch ball, catch

Ours: catch ball

MindBridge: serve

UniBrain: serve

(a)

(b)

(c)

(d)

(e)

(f)

Figure 9. Qualitative Analysis of COCO QA (left column) and OK-VQA (right column).

E. Ablation Studies on Downstream Tasks
Table 11 reports the results of the ablation study on each downstream task. The results validate the design of neuroscience-
informed attention.

F. Architecture Comparison
We make a side-by-side comparison between our model and related baselines in Table 12. Our model is the only one that
achieves the four properties listed in the table’s head.

G. Experiments on Other Subjects
We report experiments on subjects 2, 5, 7 in Table 13. We chose these subjects because they are commonly used in previous
works. We observe consistent performance gains over the baselines in the majority of scenarios.

H. Latent Space Visualization
To assess how subject-specific and subject-agnostic information evolves through the model, we visualize the latent embed-
dings at various stages of the encoder in Figure 10. The original inputs exhibit clear subject-specific clusters. After passing
through the neuroscience-informed attention layer, the embeddings remain separable by subject, indicating that subject
identity is still preserved. As the data flows through successive layers of the MLP, the subject-specific patterns become
increasingly mixed, ultimately forming a subject-agnostic representation. This transformation facilitates generalization on
held-out subjects in a zero-shot manner.

I. Brain Attention Maps of Other Subjects
We visualize the flat brain attention maps (corresponding to Figure 7a) in Figure 11. We observe that the attention maps
exhibit highly similar spatial patterns across subjects, indicating that the model captures shared structural-functional
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Table 11. Ablation study of the key embedding design. Pos Enc. stands for positional encoding. Reg Enc. stands for multiple region
encodings. (x, y, z)+MLP means we employ an MLP to map the coordinates to the embeddings instead of positional encoding. Note that
unlike in Table 2, where we fine-tune the model on each task individually, here we do not fine-tune the model on each individual task and
report the performances after brain instruction tuning.

(x, y, z) + MLP Pos Enc. + fMRI Pos Enc. Reg Enc. Pos Enc. + Reg Enc.

COCO-QA Accuracy ↑ 40.57 43.14 46.29 43.90 44.76

VG-QA Accuracy ↑ 20.29 20.39 21.12 20.83 21.12

VQA-v2 Accuracy ↑ 45.25 46.06 47.30 47.44 47.86

A-OKVQA Accuracy ↑ 46.02 44.25 45.13 42.48 46.90

ST-VQA ANLS ↑ 13.70 9.70 12.79 10.61 11.64

Tally QA Accuracy ↑ 44.63 49.77 52.29 48.84 53.01
RMSE ↓ 2.15 1.83 1.75 1.96 1.73

COCO-Caption

BLEU-1 ↑ 49.39 54.86 57.03 52.53 58.98
BLEU-2 ↑ 26.30 33.84 37.12 33.00 39.08
BLEU-3 ↑ 14.06 20.67 23.63 20.69 25.56
BLEU-4 ↑ 8.19 13.42 15.51 13.93 17.36

METEOR ↑ 12.31 14.97 16.41 14.81 17.12
ROUGE ↑ 35.45 40.17 42.14 39.62 43.34
CIDEr ↑ 18.26 32.15 41.32 34.25 46.17
SPICE ↑ 3.94 7.14 8.56 6.76 9.24

Paragraph Caption

BLEU-1 ↑ 24.13 24.57 25.90 24.74 27.17
BLEU-2 ↑ 11.88 13.03 12.41 12.61 14.50
BLEU-3 ↑ 6.12 7.16 6.10 7.20 7.99
BLEU-4 ↑ 3.55 4.24 3.22 4.35 4.67

METEOR ↑ 11.19 11.78 9.05 12.12 14.43
CIDEr ↑ 3.32 2.35 7.46 4.97 4.30

VQA-E

Accuracy ↑ 46.74 48.17 48.60 48.48 48.95
BLEU-1 ↑ 35.64 36.19 36.46 35.06 36.65
BLEU-2 ↑ 18.65 19.38 19.53 18.32 19.58
BLEU-3 ↑ 10.85 11.40 11.62 10.54 11.57
BLEU-4 ↑ 6.79 7.12 7.29 6.38 7.31
CIDEr ↑ 83.18 88.14 89.24 85.34 88.96

METEOR ↑ 14.20 14.81 15.08 14.54 15.08
ROUGE ↑ 33.81 35.15 35.17 34.28 34.76

Average Perplexity ↓ 6.39 5.82 5.47 5.73 5.38

Method cross-subject unified architecture shared parameters using all voxels

MindEye (Scotti et al., 2024a) ✗ ✗ ✗ ✓
MindEye2 (Scotti et al., 2024b) ✓ ✗ ✗ ✓

UMBRAE (Xia et al., 2024) ✓ ✗ ✗ ✓
MindBridge (Wang et al., 2024a) ✓ ✓ ✗ ✗

UniBrain (Wang et al., 2024b) ✓ ✓ ✓ ✗
MindLLM ✓ ✓ ✓ ✓

Table 12. Comparison of our model and baselines. Concepts of properties: cross-subject: the model performs across subjects; unified
architecture: the architecture for each subject is the same (the parameters might be different, e.g., MLPs with the same size but different
parameters); shared parameters: The model uses the same parameters for all subjects; using all voxels: the model uses all voxels as inputs,
thereby mitigating the risk of information loss from voxel omission. Refer to Section 2.2 and Figure 2 for details of this property.
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Table 13. Breakdown performances on subjects 2, 5, 7 respectively.

subject 2 subject 5 subject 7

UMBRAE UniBrain MindBridge MindLLM UMBRAE UniBrain MindBridge MindLLM UMBRAE UniBrain MindBridge MindLLM

COCO-QA Accuracy ↑ 26.85 47.14 49.04 51.71 29.86 45.52 50.57 53.14 25.78 45.05 50.19 50.76

VG-QA Accuracy ↑ 18.65 23.53 24.97 25.96 19.38 23.65 26.11 26.89 18.44 23.02 25.16 25.92

VQA-v2 Accuracy ↑ 49.96 48.17 51.28 53.17 51.49 48.81 51.78 53.09 50.13 47.97 50.60 52.70

A-OKVQA Accuracy ↑ 40.54 43.36 44.25 49.56 43.24 45.13 50.44 50.74 40.54 46.02 45.13 46.90

ST-VQA ANLS ↑ 6.61 9.34 10.49 10.85 4.31 9.77 10.49 9.63 5.46 8.26 13.48 13.71

OK-VQA Accuracy ↑ 20.70 32.82 33.50 35.73 22.98 30.43 34.36 35.04 17.89 34.19 34.54 34.87

TallyQA Accuracy ↑ 42.21 55.99 0.20 57.84 42.69 54.65 58.71 59.3 40.95 53.98 56.20 58.41
RMSE ↓ 4.85 1.75 1.65 1.66 4.86 1.64 1.60 1.60 3.65 1.72 1.66 1.73

Paragraph Caption

BLEU-1 ↑ 29.29 27.53 27.19 30.13 29.21 29.30 28.70 34.54 29.61 25.54 27.45 29.54
BLEU-2 ↑ 13.82 14.73 14.75 16.29 14.37 15.38 15.21 19.11 14.21 13.26 14.44 16.19
BLEU-3 ↑ 6.44 8.42 8.70 11.69 6.84 8.73 8.87 10.11 6.48 7.42 8.05 9.34
BLEU-4 ↑ 3.08 5.10 5.46 5.96 3.28 5.23 5.53 7.60 2.95 4.52 4.84 5.73

METEOR ↑ 11.94 12.31 12.36 13.06 12.68 11.63 12.63 13.09 12.47 11.31 12.57 13.54
CIDEr ↑ 5.40 7.53 0.21 11.90 7.46 6.00 8.63 12.97 8.84 4.03 5.62 8.53

VQA-E

Accuracy ↑ 47.62 50.03 52.30 54.92 49.06 50.18 54.21 55.75 48.95 49.48 53.84 54.68
BLEU-1 ↑ 30.05 36.63 37.48 38.13 30.55 37.41 38.07 38.40 29.58 36.71 38.33 38.41
BLEU-2 ↑ 14.87 19.60 20.16 20.77 14.99 19.96 20.90 21.04 14.43 19.78 20.90 20.98
BLEU-3 ↑ 8.31 11.49 11.76 12.34 8.30 11.66 12.54 12.60 7.97 11.80 12.49 12.56
BLEU-4 ↑ 4.99 7.18 7.26 7.74 4.93 7.15 7.94 8.17 4.68 7.53 7.99 7.90
CIDEr ↑ 64.60 89.50 91.93 97.68 66.47 89.91 95.30 99.48 61.34 90.49 98.23 99.36

METEOR ↑ 12.37 15.12 15.56 16.02 12.51 15.37 15.88 16.28 12.09 15.02 16.07 16.16
ROUGE ↑ 28.49 35.10 35.86 36.52 28.75 35.42 36.43 36.82 28.04 35.24 36.61 36.73

FSVQA

VQA Acc. ↑ 16.37 45.62 48.62 50.19 16.40 45.66 49.45 50.76 16.37 46.11 49.19 51.13
FSVQA Acc. ↑ 0.00 40.13 43.57 45.21 0.00 45.66 44.60 45.53 0.00 40.07 44.70 46.07

BLEU-1 ↑ 18.98 86.03 87.28 87.84 19.00 85.99 87.76 87.89 18.98 85.48 87.29 88.05
BLEU-2 ↑ 9.11 81.66 83.14 83.94 11.94 81.52 83.25 83.87 10.89 81.00 83.42 84.16
BLEU-3 ↑ 1.98 77.61 79.31 80.28 3.42 77.34 79.64 80.21 2.82 76.84 79.70 80.60
BLEU-4 ↑ 0.00 73.45 75.42 76.51 1.65 73.05 75.99 76.45 0.00 72.56 76.11 77.01

METEOR ↑ 5.65 48.06 49.26 49.88 5.67 48.01 49.57 50.10 5.66 47.86 49.74 50.18
CIDEr ↑ 3.19 647.62 671.26 681.94 3.26 648.21 675.99 684.12 3.37 643.44 676.50 684.72

Figure 10. Visualization of latent embeddings across model layers using T-SNE.
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correspondences across human brains, which is expected due to the overall anatomical and functional similarity among
individuals. At the same time, we do observe moderate subject-specific variations in the attention maps. These reflect
differences in voxel-level functional signals and individual variability in precise voxel locations. The model is able to
accommodate these differences through flexible attention mechanisms.

Figure 11. Figure 7a’s query token on different subjects. It shows similar patterns across subjects, suggesting shared brain organization,
while also capturing some subject-specific variances.
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