Under review as a conference paper at ICLR 2026

NEURAL BANDIT BASED OPTIMAL LLM SELECTION
FOR A PIPELINE OF TASKS

Anonymous authors
Paper under double-blind review

ABSTRACT

With the increasing popularity of large language models (LLMs) for a variety
of tasks, there has been a growing interest in strategies that can predict which
out of a set of LLMs will yield a successful answer at low cost. This problem
promises to become more and more relevant as providers like Microsoft allow
users to easily create custom LLM “assistants” specialized to particular types of
queries. However, some tasks (i.e., queries) may benefit from breaking down the
task into smaller subtasks, each of which can then be executed by a LLM expected
to perform well on that specific subtask. For example, in extracting a diagnosis
from medical records, one can first select an LLM to summarize the record, select
another to validate the summary, and then select another, possibly different, LLM
to extract the diagnosis from the summarized record. Unlike existing LLM se-
lection or routing algorithms, this setting requires selecting a sequence of LLMs,
with the output of each LLM feeding into the next and potentially influencing its
success. Thus, unlike single LLM selection, the quality of each subtask’s output
directly affects the inputs, and hence the cost and success rate, of downstream
LLMs, creating complex performance dependencies that must be learned during
selection. We propose a neural contextual bandit-based algorithm that trains neu-
ral networks that model LLLM success on each subtask in an online manner, thus
learning to guide the LLM selections for the different subtasks, even in the ab-
sence of historical LLM performance data. Experiments on telecommunications
question answering and medical diagnosis prediction datasets illustrate the effec-
tiveness of our proposed approach compared to other LLM selection algorithms.

1 INTRODUCTION

Large Language Models (LLMs) have transformed numerous applications with their ability to sum-
marize, generate, and interpret text. Due to different underlying training configurations and model
structures, LLMs can show a wide variation in terms of their performance for different tasks, raising
the need to identify the best-performing model for a given task. However, with the sudden increase
in the number of LLMs available and the complexity of tasks they are asked to perform, this chal-
lenge has become increasingly complex (Shnitzer et al., [2023). Indeed, some LLM operators even
offer users the opportunity to build customized LLM agents, e.g., OpenAI’s marketplace or Azure’s
Assistants (Microsoft,[2025)), which may greatly expand the set of agents available to complete tasks.
A natural question is then: How should we select the best LLM agent to complete a given task?

Selecting the most suitable LLLM for a specific task or sequence of subtasks presents significant chal-
lenges, particularly in terms of computational efficiency and performance optimization, as has been
explored in prior work (Zhang et al.,[2024; Xia et al.|[2024} Zhao et al.,2023)). Due to computational,
monetary, and latency concerns, simply running a query or task through all the available models and
choosing the model that yields the best performance for that query is not feasible (Shazeer et al.,
2017), while simply selecting the largest LLLM for every task may be either prohibitively expensive
(as these LLMs tend to be the most costly) or ignore the potential of highly specialized LLMs to
perform well on specific types of tasks. These naive approaches become particularly infeasible for
tasks that are too complicated or difficult for an LLM to handle alone.
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of most models, showing the value of breaking down a larger task into shows the average accu-
a pipeline of smaller ones. More detailed explanations about the mod- racy of seven LLMs on
els, experimental setup and results for this experiment are in Sec.[5] ~ the task of predicting a

medical diagnosis from
medical reports. We see that using a summarizer LLM first and then passing its output as the
prompt to a diagnoser LLM, i.e., using a pipeline approach, performs better than using a single
LLM for this task. Only the Med III model sees a visible drop in accuracy from using a summarizer
in this task, which can be attributed to the fact that Med III is a finetuned GPT-40 model from the
same dataset. Using a summarizer also changes the optimal model choice for the diagnosis task:
while the Med III model performs best across all LLMs without summarizers, Llama performs best
when a summarizer is used. Thus, the LLM selected for an earlier task in the pipeline may affect
the optimal choice later in the pipeline, complicating decision-making. Similarly, LLMs selected
for the summarization task can influence the cost of using different LLMs for the diagnosis task:
the diagnoser cost will generally be proportional to the number of input tokens, which depends on
the length of the summary provided by the chosen summarizer LLM. To the best of our knowledge,
ours is the first work to examine cost-effective LLM selection within such a pipeline of tasks.

Research Challenges. In practice, users may not have historical data on LLM performance for
specific types of tasks, especially if some candidate LLMs are customized “assistants.” Thus, a
natural solution is to take an online approach, where the user both learns and optimizes the LLM
selection as it sends queries/tasks. Online LLM selection for a specific task can be viewed as an
instance of the classical contextual multi-armed bandit (MAB) problem (Chu et al., 2011} |(Chen
et al.||2013). Each LLM is modeled as an “arm,” and the MAB algorithm sequentially pulls the arm
(i.e., submits queries to the LLM), monitoring the query success and adapting future LLM selections
accordingly. MAB balances exploration, i.e., trying new models in the hope that they outperform the
identified current best model; with exploitation, i.e., selecting the best model found so far. Context,
i.e., an embedding of the current query, is used to predict the success of each LLM on this query.

Conventional contextual MAB methods do not capture the sequential nature of LLM selection in
our pipeline-of-tasks scenario: we must select one LLM for each subtask. Combinatorial variants
of contextual MAB (Chen et al.| 2018)), in which a combination of arms (here, LLLMs) are chosen in
each round, is closer to our scenario, but it requires selecting LLMs for each task at once, instead
of selecting the next LLM in the pipeline after observing the results from prior LLMs. Moreover, it
is not clear how to modify these algorithms to account for both the success rate and the monetary
cost of using each LLM. Thus, we propose a novel MAB variant designed specifically for sequential
LLM selection, which we show outperforms conventional MAB methods.

The main contributions of this work are as follows:

* We introduce a novel problem formulation of selecting a pipeline of LLMs to solve a task
decomposed into interconnected, smaller subtasks.
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* We adapt contextual MAB algorithms into the Sequential Bandit algorithm, which se-
quentially selects LLMs in the task pipeline. Sequential Bandits utilizes neural networks
to effectively learn each LLM’s success at each subtask in the pipeline and optimize a
combination of LLM success and cost in an online manner.

* To evaluate SeqBandits, we create a new diagnosis prediction dataset from an existing
medical dataset (Johnson et al.,[2016)) of deidentified patients’ medical reports.

* We experimentally show that SeqBandits identifies better LLMs than existing MAB algo-
rithms for pipelined tasks on medical diagnosis and telecommunications datasets.

We first outline related work (Sec.[2)) and describe our problem formulation (Sec. [3). We present our
SeqBandits algorithm in Sec.[d]and its experimental evaluation in Sec.[5] then conclude in Sec. [d]

2 RELATED WORK

The proliferation of LLMs has led to growing interest in methods to predict the best-performing
LLM. We divide these strategies into budget-aware frameworks, LLM cascades, and LLM routing.

Budget Constrained Online Algorithms and Bandits. These algorithms maximize cumulative
reward subject to a hard cap on total resource consumption. Primal-dual schemes embed standard
regret minimizers as black-box components to enforce long-term resource constraints via dual vari-
ables (Castiglioni et al.,[2022)), which can extend to integrate budgeted expert-query mechanisms that
judiciously allocate a limited number of advice calls to sharpen decisions (Benomar et al.| [2024)).
Non-stationarity and adaptive primal-dual updates have been shown to ensure constraint satisfac-
tion even as cost and reward distributions shift over time (Liu et al.| 2022). Most recently, weakly
adaptive regret minimizers have been woven into primal-dual frameworks to simultaneously honor
strict budget and return-on-investment limits (Castiglioni et al., [2024). Recently, contextual bandit
approaches for multi-LLM selection under evolving contexts have been proposed, highlighting the
difficulty of adapting model choices online when input distributions shift (Poon et al., [2025). None
of these, however, use sequential decision frameworks, as proposed in our setting.

Cost-Efficient LLM Cascades. In a typical cascading framework, inputs are processed through a
pre-determined sequence of LLMs, from the least to the most resource-intensive. At each stage, the
system evaluates the output to determine whether to accept the result or continue to the next model
in the sequence (Zhang et al.| [2024)). Recent advancements have focused on integrating cascading
with routing strategies, i.e., routing a query to the “best” LLM (Chen et al., 2023} |Dekoninck et al.,
2025b). Approaches like the Mixture of Thought representations combine chain-of-thought and
program-of-thought prompts, in order to adaptively route simpler queries to smaller, less costly
models, reserving more complex tasks for larger models (Cheng et al., 2023} |Gao et al., [2023)).
This strategy has demonstrated significant reductions in inference costs while maintaining accuracy
comparable to using the most robust LLM alone (Yue et al., 2024). However, cascading can be
inefficient if the sequence is not optimally configured, as each input may need to pass through
multiple models before reaching an adequate response (Dekoninck et al., 2025a). Unlike these
cascading frameworks, Sequential Bandits considers a pipeline of LLMs, in which the different
LLMs perform different subtasks that feed into each other (Li, 2025)).

Model Selection and Adaptive Routing. Dynamic routing mechanisms, which intelligently direct
queries to the most appropriate LLMs, can significantly improve performance and computational
resources (Varangot-Reille et al.| 2025; [Somerstep et al., 2025), as unlike cascades, they do not
make multiple passes through different LLMs. Systems like Tryage propose context-aware routing
mechanisms that optimally select expert models based on individual input prompts (Hari & Thom-
son, |2023)). This approach allows users to explore trade-offs between task accuracy and secondary
goals like minimizing model size and improving response readability (Sikeridis et al.,|[2024). Other
approaches like Zooter train a routing function using reward models’ scores as supervision signals
(Lu et al.| 2023)), efficiently directing queries to specialized LLMs (Chen et al., [2025)).

Within the popular mixture-of-experts framework, Routing Experts introduces a dynamic expert
scheme for multimodal LLMs that also aims to learn more efficient inference pathways (Wu et al.,
2025} Saha et al., [2024; [Liu et al., |2024). Other works focus on the challenge of dynamic rout-
ing, where new, previously unobserved LLMs become available at test time. These strategies gen-
eralize by representing each LLM as a feature vector (Jitkrittum et al., 2025). Frameworks like
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AutoMix (Aggarwal et al., 2025) focus on predicting LLM success, e.g., with a few-shot self-
verification mechanism to estimate output reliability from smaller LLMs (Ding et al.,|2024)). Recent
work like MixXLLM and BEST-Route has expanded routing by introducing architectures that dynam-
ically allocate queries across specialized LLMs, optimize test-time compute for accuracy—latency
trade-offs, and adapt routing policies to real-time budget constraints (Ding et al.,|2025; |Wang et al.,
2025). These methods, however, focus on selecting a single LLM per query, and cannot be directly
applied to selecting a pipeline of LLMs as in our setting.

3 PROBLEM FORMULATION

We consider multiple rounds ¢ = 1,2,..., where each round is defined by an incoming query ¢,.
In our formulation, we assume that the breakdown of a task into simpler subtasks {7}, T3, ..., T} }
is given. These subtasks form a directed acyclic graph (DAG), as the output of a subtask becomes
the input of the next task in the pipeline. For example, a query could be a medical diagnosis pre-
diction based on a provided medical report, broken into the subtasks of (i) summarizing the report,
(ii) validating the summary, and (ii) predicting a diagnosis given the validated summary. In the re-
mainder of the paper, our aim is to select the LLM returning the highest accuracy for each subtask.
Note that a special case of this setting is a query with one subtask (itself). Figure [2]illustrates our
pipelined/sequential problem setting. This approach is in essence similar to the popular chain-of-
thought (CoT) prompting (Wei et al., 2023)), but we allow different LLMs to complete each subtask,
unlike CoT in which a single LLM decomposes the task and completes each subtask. We formalize
this selection problem below. Throughout, we denote by [N], N € Z*, the set {1,2,..., N}.

Bandit Formulation. In this pa-
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Figure 2: Our Sequential Bandits problem setting and ap-
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resents the arm j selected from [IV;] input to the next subtask’s LLM in the pipeline.

for subtask 7. When a super arm .S; is selected in round ¢, the agent observes the base arm rewards
of the chosen super arm, namely {r; ; }am cs, and receives a total (super arm) reward of R(S;, ;)
where r; = [r¢ j]a, ;es,, i.€., the super arm reward is a function of the individual base arm rewards.
In our setting, the base arm rewards correspond to the “goodness” of the result for the subtask to
which the arm belongs, and the super arm reward is a measure of goodness of the LLMs’ collective
result on the query, which is a function of the selected base arm rewards. For example, the super-arm
reward could be the accuracy of the output returned by the last LLM in the pipeline for a prediction
task like medical diagnosis, which is the final output returned to the user. We also account for the
cost associated with deploying the selected LLM for each subtask. While we take this to be the
monetary cost, it could also be taken as the energy consumed or latency of the LLM’s inference on
the given subtask. We calculate the cost in terms of the number of input and output tokens of the
chosen LLM for the given subtask and denote as C;(g;) our predicted cost of using LLM j for a
subtask’s query ¢:. We give more detail about how C; is constructed in the next section.
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Context, Reward and Cost Estimation. In every round ¢, the agent observes the context x;(a; ;)
of arm a; ; foreach i € {1,...,k},j € [IV;], which helps guide the prediction of LLM j’s success
on subtask ¢. The context x;(a; ;) in our application is a function of the given prompt for subtask
i € {1,...,k}, which is the output of the LLM chosen for the previous subtask ¢ — 1 as shown
in Figure 2| as well as features of the LLM corresponding to arm (%, j). In our experiments, these
features include a description of the LLM’s capabilities, as well as whether it was finetuned on a
specific dataset for a certain task or if it is just a general-use LLM that is not finetuned. We will give
more details on how we construct the context of the arms in the Supplementary Material. We denote
the description of an LLM j as d; and the overall set of descriptions of all available LLMs as D.

Following prior works on neural bandits, we use a neural network(s) to learn the underlying reward
function(s). We assume that V¢ € [T7], the base arm reward 7;(a; ;) of arm a; ; (i.e., LLM j on
subtask ) is generated as follows (Zhou et al.,|2020; |[Zhang et al., [2021):

re(ai ;) = hij(xe(ai ;) + & (1)

where h; ; is the underlying unknown reward function for arm a; ; and &; is zero-mean noise, mod-
eling uncertainty in the “goodness” of the LLM output. We allow separate reward functions for
the different (subtask, arm) combinations, since each combination corresponds to a different model
structure and task. To learn the base arm reward function h; ;, we use a fully connected neural
network with depth L 4+ 1 > 3 and width n (Zhou et al.,|2020; |Zhang et al.,[2021):

fi3(x:8) = VW o (Wi ™o (..o (W()x)) @
where o (x) = max{z,0} is the ReLU activation function and 8, =
[vec(Wg}))T, ...,vec(WEE))T]T is the weight vector. We denote the weight vector in round

t for arm a; j as @] ;. We let the gradient of the neural network be g; ;(x; 8; ;) = Ve, ; fi j(x; 0; ;).

The cost C';(¢¢) for LLM j is modelled as the number of input and output tokens, multiplied by LLM
7’s corresponding per input token and output token costs in Microsoft Azure (see the Supplementary
Material for more details). We know the number of input tokens since ¢, is given. Since we do not
know the number of output tokens LLM j will output in advance for a given prompt, we train an
output token length prediction model as in|Q1u et al.| (2024a)), as detailed in the Experiments section.

Agent Objective. The main objective of the agent in this setting is to maximize the reward (ac-
curacy) while also minimizing the cost of deploying LLMs for the tasks. To combine these two
metrics into a single one, we define the net reward at time ¢ as N () = R(S¢,r¢) — - C(S;) where
a = [ag,Qg, ..., ] trades off the relative importance of reward and cost for each subtask and
C(S;) is the vector of costs associated with the chosen LLMs. Maximization of reward also leads
to the minimization of regret, a standard MAB metric that measures the gap in reward between
the optimal and selected arms. More formally, the regret R(T) = Zthl(R(St*, r;) — R(St,ry)),
where S} represents the optimal super arm at round ¢, which is the combination of arms that yield
the highest reward, and R(S¢, r;) is the reward of our chosen super arm at round ¢.

4 SEQUENTIAL BANDITS ALGORITHM

In this section, we present our proposed algorithm, Sequential Bandits (Algorithm 1), which aims to
maximize the net reward. Sequential Bandits is a neural network based contextual bandit algorithm
that initializes a neural network for every (subtask, LLM) combination. Figure [2|illustrates how
these networks are trained using reward feedback, which is formally described in Algorithm 1.

The task is first divided into simpler subtasks. For the first subtask, for every available LLM, we
construct an upper confidence bound (UCB) on the reward using the neural network estimate for
exploitation and its gradient for exploration (line 6), similar to|Zhou et al.| (2020). Here we denote
the /> norm by a positive definite matrix A by ||x||a := VxT Ax. However, unlike |Zhou et al.
(2020), our algorithm includes a cost sensitivity parameter «;, which is multiplied by the cost term
C}, the predicted cost of using the chosen LLM j for subtask ¢, and then subtracted from the UCB
term. Setting o; = 0 reduces to the cost-agnostic setting. Since the cost term is subtracted from
the UCB term in line 6, this leads to a tradeoff between the accuracy and cost. As the value of «;
increases, the algorithm will prefer cheaper models, prioritizing cost over accuracy for task .
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As described in Sec. [3} the input to the neural network includes embeddings of the description d; of
each LLM j, as well as the incoming query ¢;. We then choose the LLM that has the highest reward
estimate (line 7) and pass the output of the chosen LLM as the input prompt for the next subtask in
the pipeline (lines 8-9). For the other subtasks, we follow the same steps, except that instead of the
input query ¢, the input prompt for the LLMs in the next stage of the pipeline (next subtask) is the
output from the previously chosen LLM (lines 11-14). After choosing an LLM for every subtask, we
observe their corresponding rewards and the overall super arm reward R(S;, r;), a function of the
subtask rewards (line 17). We then update the weights of the chosen LLMs’ corresponding networks
using the observed rewards, as well as the exploration parameter (lines 18-19).

Incorporating Costs. An alternative method of incorporating the cost term would impose a cost
constraint (e.g., a monetary budget per query or task) instead of incorporating it into the objective.
However, LLM inference costs are inherently uncertain before query execution, due to their depen-
dence on the number of output tokens. Thus, a hard budget constraint could favor subtasks early
in the pipeline, as underestimations of their costs could then lead to severe budget constraints for
later subtasks. Incorporating cost into our objective also allows us to tune «; for different subtasks ¢,
which may have different inherent costs: for example a summarization task may be quite expensive
as its input consists of a long text to be summarized.

Differences from Existing Neural MAB Algorithms. Prior neural contextual bandit algorithms
(Zhou et al., |2020; |Xu et al., [2020) can be naively adapted to our problem setting by simply using
them for each subtask’s LLM selection in sequence, which we use as baselines in Sec. E} However,
such algorithms train and use one neural network for reward estimation and LLM selection for each
subtask. Using this single model for all LLMs does not account for the fact that different models
imply a different inherent reward function for the different subtasks for each LLM. Thus, Sequential
Bandits uses a separate neural network for every (subtask, arm) combination. Experimentally, we
find that using a separate neural network encourages more exploration, as using the same neural
network estimator for each (subtask, arm) combination leads to more similar success estimates. The
relative ranking of the different arms is then dominated by the (deterministic) cost estimates, limiting
exploration and increasing regret. We note that using multiple neural networks does not increase our
training overhead: while we use different networks for every (subtask, LLM) combination, in each
round we only train the neural networks of the LLMs that we have chosen for every subtask. Thus,
our required compute is no greater than the other neural contextual MAB algorithms.

5 EXPERIMENTS

In this section, we present the results of our proposed Sequential Bandits algorithm on two use
cases: medical diagnosis prediction and telecommunications question answering tasks. We compare
our algorithm with the following baselines: (1) Random, which randomly selects an LLM for each
subtask; (2) Llama or Tele, which always selects Llama or Tele for the given subtasks (Llama is
chosen as it is the best performing model across tasks for the medical setting and Tele is the best for
the telecom setting); (3) Cost-Aware NeuralUCB (Zhou et al.l [2020), which is the cost sensitive
version of NeuralUCB that uses a neural network for each subtask’s reward prediction and adds
the same weighted cost term in the objective as used in Sequential Bandits; and (4) Cost-Aware
NeuralLinUCB (Xu et al.| 2020), the cost-sensitive version of NeuralLinUCB, which makes use of
neural networks for each subtask to learn representations of the contexts, and applies a linear model
on these learned features to predict the rewards, then adds the weighted cost term to the objective,
and (5) Cost-Aware NeuralUCB Joint, which makes use of neural networks for each subtask as (3)
but selects LLMs for subtasks all at once rather than sequentially. Comparisons to these algorithms
respectively demonstrate the value of (1) having a non-static algorithm that learns over time, (2)
intelligently selecting a LLM for each subtask, (3,4) using a separate neural network to predict each
LLM’s performance on each subtask, and (5) sequentially selecting LLMs.

5.1 EXPERIMENT SETTINGS

We evaluate Sequential Bandits on two datasets: one created from MIMIC-III (see the next sub-
section), a comprehensive clinical database containing de-identified health-related data from over
40,000 critical care patients (Johnson et al., 2016); and TeleQnA, a dataset comprising 10,000
multiple-choice questions designed to assess LLMs’ knowledge in telecommunications (Maatouk
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Algorithm 1 Sequential Bandits

1: Input: LLMs m € M, descriptions d € D, queries [q1, g2, .., qr|, number of gradient de-
scent steps J, learning rate 7, cost weight parameters «;, number of rounds 7', regularization
parameter ), initialize Zy(a, ;) = M for all arms a; ;.

2. fort=1,...,7T do

3:  Observe descriptions d € D and subtasks i € {1,2,...,|T|}

4: forsubtaski=1,...,|7|do

5: if i = 1: then

6: Compute Vj € [Ny, uij = fij(qe,dy) + |gi;(xe(as;); 9231)/\/ﬁ||z;jl(ai,j) -
@;Cj(qt)

7: 5; = argmax; (u;) (LLM chosen for subtask 7)

8: Pass query ¢; through LLM s;

9: Observe output p; 41 of the chosen LLM

10: else

11: Compute Vj € [Nil, wij = fij(pi,d;) + llgij(xe(ai):0;5)/Vllz-1 o,y —
a;C;(pi)

12: s; = argmax ; (u;) (LLM chosen for subtask i)

13: Pass prompt p; through LLM s;

14: Observe output p; 1 of the chosen LLM

15: end if

16:  end for

17:  Play super arm S; and observe rewards {7 ; }4, ;es, and super arm reward R(Sy, ;)

18:  For selected arms a;j; € Sy, update  Z(a; ;) = Zi_1(a;;) +

Y ses, 8i (Xe(aiy); 07518 (xe(ai ) 055" /n

19:  Update weights of selected arms 6 ,; by minimizing the MSE loss using gradient descent
with step size 7 for J iterations by using the reward feedback.

20: end for

et al.,[2023). We thus assess our framework’s performance across diverse, domain-specific tasks. We
use pipelines with 2 and 3 subtasks respectively for the medical and telecommunications datasets.

Subtasks. Our two subtasks on the medical dataset are (1) a summarizer that summarizes the long
medical report, whose summary is then fed to (2) a diagnoser that gives a diagnosis based on the
summary. The rewards for the summarization subtask are obtained using an evaluation LLM that is
fed the prompt, context, and benchmark. The reward for the diagnosis subtask given the summarized
report compares the diagnoses that the LLM outputs to the actual diagnoses of the patient, which
also serves as the super arm reward. For example, if a patient has two diagnoses, and the second
subtask’s LLM correctly predicts one of the two diagnoses of the patient, we assign a reward of 0.5.

For TeleQnA, we have a 3 subtask structure. We start with a summary subtask with a similar reward
metric as the medical dataset’s summary task. The second subtask is to answer the question, for
which we compute the LLM rewards by comparing their output choice (among the 4-5 options) to
the correct one. The third subtask was to explain the answer obtained from the previous subtask,
whose reward is obtained by comparison to TeleQnA’s explanation benchmark.

Cost Prediction. For the output token length prediction model, which is used to construct the
expected cost (C; in Algorithm 1) of LLM query execution, we train a Bert regression model on
the LMSYS-Chat-1M dataset (Zheng et al.| 2023) using L1 loss, following [Qiu et al.| (2024a). This
model is kept fixed during the online training loop. We provide more information about the training
of this model and the loss curves in the supplementary material.

All of the models we used in our experiments were deployed on Microsoft Azure. The models in-
clude a combination of base models (GPT-3.5-turbo, GPT-40, Llama-3.3-70B-instruct, Mistral-3B,
Phi-4), finetuned models that were finetuned using Azure on general medical and telecom knowl-
edge, and GPT-3.5-turbo assistants that used file search prompted with relevant field knowledge.
The models were selected in a way such that there are low performing/SLMs, base models, and fine-
tuned/custom domain knowledge possessing LLMs (Figure [T). However, as the LMSYS-Chat-1M
dataset (Zheng et al.,[2023), which we use to train our token length prediction model, does not con-
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Figure 3: (a) Net reward of our algorithm compared with other baselines for the medical pipeline (b)
Net reward of our algorithm compared with other baselines for the telecom pipeline (c) Total cost
incurred by the algorithms for the LLM selections they make for the medical pipeline (d) Total cost
incurred by the algorithms for the LLM selections they make for the telecom pipeline (e)-(h) Model
selections for the diagnosis subtask in medical experiments

tain the Mistral and Phi models, we omit them in the experiments presented in the main paper but
include them in the Supplementary Material’s cost-agnostic (o = 0) results. The models ordered
from cheapest to most expensive per token costs are: GPT-3.5-turbo, Llama 3.3, Med, Tele, Med I11.

The n2¢2 smoking dataset (Uzuner et al.}[2007)) was used to fine-tune the Med model, with individual
reports constructed into input/label pairs by extracting the diagnoses embedded within the reports.
Given the format of the medical reports, they were initially processed through a summarizer to
extract general medical knowledge before being utilized to fine-tune the GPT-40 models. The other
two fine-tuned models, Med III and Tele, were respectively fine-tuned with the MIMIC-III and
TeleQnA datasets. Evaluations were performed using the Microsoft Azure evaluator, and the fine-
tuned models generally performed better than the base models on the task they were tuned on.

5.2 DIAGNOSIS PREDICTION DATASET

There are some widely available medical datasets that include medical reports for de-identified pa-
tients. However, to our knowledge, there is no available dataset that is specifically tailored towards
diagnosis prediction based on medical reports. Hence, we developed our own dataset from MIMIC
III (Johnson et al} 2016) to be able to successfully assess Sequential Bandits’ performance.

Johnson et al.| (2016))’s MIMIC III dataset contains the admission diagnoses as well as diagnoses
identified later, along with details of patient stay in their reports. Each patient has a number of
reports based on their duration in the hospital, which we combine into a single report for each
patient. We remove all explicit mentions of the patient’s identified diagnoses, as well as diagnosis-
related comments. We include the observations made and the test results of the patients in the
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reports. Patients we included in the dataset were mainly diagnosed with diseases related to the heart,
kidneys, liver, and brain. Our dataset includes 100 medical reports with corresponding diagnoses.
We include a more comprehensive list of the diagnoses of the patients in the Supplementary Material
and some example patient reports. The full dataset is available in our released code.

5.3 EXPERIMENTAL RESULTS

We now present the experimental results for our medical diagnosis dataset and the TeleQnA dataset.
All algorithms were run ten times and five times respectively for the medical and telecommunication
settings, with tuned hyperparameters. The shaded regions in Figure [3|indicate standard deviations.

Net Reward and Cost. We first show that Sequential Bandits obtains a higher net reward N (t)
than baseline algorithms on both pipelined settings. For the medical setting, we consider the reward
to be the reward of the final subtask in the pipeline (i.e., diagnosis accuracy) while for the telecom
setting, the reward is the sum of the reward for the explanation and multiple choice answer. Figure
[3] shows that our algorithm (solid red lines) achieves the highest net reward and also the second or
third lowest cost, in both settings. When comparing the final net reward, Sequential Bandits has a
%7.60 improvement over the most competitive baseline (Llama) in the medical setting while dis-
playing a %6.51 improvement over the most competitive baseline (Random) in the telecom setting.
In fact, when we look at Figure [T} which displays the diagnosis accuracy for the different models
in the medical setting, we would expect Llama to outperform Sequential Bandits, as Llama has the
highest accuracy among the available models in this setting. However, the fact that our algorithm
outperforms Llama shows that it can learn the complex dependencies between the subtasks, as there
may be combinations other than Llama for both summarizer and diagnosis that obtain a higher net
reward. For the telecom dataset, it can be seen that the Tele baseline performs the worst among
all the baselines in terms of net reward, despite the fact that it is fine-tuned on this dataset, due to
the fact that it incurs a much higher cost, (more than $0.4) over 100 rounds. Random performs the
worst in the medical setting while it surprisingly performs well in the telecom setting.

Analyzing LLM Selections. We finally take a closer look at which LLMs are selected by each
algorithm for the medical diagnosis subtask. Figure [3{e) shows that Sequential Bandits selects
Llama and GPT 3.5 the most often (%49.1 and %39.2 respectively), which enables it to have high
net reward and low cost as these are the cheapest models, and Llama and GPT 3.5 also have the
highest and second highest accuracy for this subtask respectively. The other baselines, as shown
in Figure [3(f)-(h), select these two models less frequently and make more suboptimal choices such
as selecting the Med model more often, which has the lowest accuracy. CA NeUCB Joint selects
similar models to our algorithm for diagnosis, but it selects different summarizers from Sequential
Bandits which results in the performance difference. The pie charts for the telecommunications and
medical settings, indicating the model choices, can be found in the Supplementary Material.

Additional Experiments. We include more experimental results in the Supplementary Material,
including (i) the regret achieved by each algorithm and model accuracies on subtasks. We also
present results for (ii) a 3 subtask version of the 2 subtask medical pipeline in the main paper, and
(iii) cost-agnostic (¢ = 0) versions of the Medical Diagnosis task, as well as a single-subtask
TeleQnA task. Since the cost can also be interpreted as response latency, we further present results
on the model response latencies, showing they are hard to predict.

6 CONCLUSION

In this paper, we introduced a novel approach to selecting a pipeline of LLMs for executing decom-
posed tasks, employing a contextual MAB algorithm that sequentially chooses the best LLM for
each sub-task in an online manner. Our approach, Sequential Bandits, leverages neural networks to
model the expected success of each LLM, thereby enabling more effective task completion across
a sequence of dependent subtasks. We demonstrated the effectiveness of our method through ex-
periments involving medical diagnosis prediction and multiple choice telecommunications question
answering. Our work provides a framework that can be adapted to various domains where task
decomposition is feasible. Future work includes handling a broader range of tasks with varying
degrees of difficulty and interdependencies, and providing regret guarantees or other performance
bounds, as well as incorporating the task decomposition itself into the online learning framework.
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Reproducibility Statement We have taken several steps to ensure the reproducibility of our work.
The full problem formulation, algorithmic details, and pseudocode for Sequential Bandits are pro-
vided in the main text (Secs. 3—4) and Algorithm 1. Details about hyperparameter tuning and other
experiment settings, e.g., formation of the contexts using embeddings, may be found in the Sup-
plementary Material. All datasets we used are either public datasets mentioned in the experiment
settings or available in our code repository. We also release our training and evaluation scripts to
reproduce the main results and figures. Evaluation metrics, baseline implementations, and cost es-
timation methods are fully described in Sec. 5 and the Supplementary Material. Together, these
materials provide the necessary resources to reproduce our findings.
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