CFP-GEN: Combinatorial Functional Protein Generation via
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Abstract

Existing PLMs generate protein sequences based
on a single-condition constraint from a spe-
cific modality, struggling to simultaneously sat-
isfy multiple constraints across different modal-
ities. In this work, we introduce CFP-GEN, a
novel diffusion language model for Combinatorial
Functional Protein GENeration. CFP-GEN fa-
cilitates the de novo protein design by integrat-
ing multimodal conditions with functional, se-
quence, and structural constraints. Specifically, an
Annotation-Guided Feature Modulation (AGFM)
module is introduced to dynamically adjust the
protein feature distribution based on composable
functional annotations, e.g., GO terms, IPR do-
mains and EC numbers. Meanwhile, the Residue-
Controlled Functional Encoding (RCFE) module
captures residue-wise interaction to ensure more
precise control. Additionally, off-the-shelf 3D
structure encoders can be seamlessly integrated
to impose geometric constraints. We demonstrate
that CFP-GEN enables high-throughput genera-
tion of novel proteins with functionality compa-
rable to natural proteins, while achieving a high
success rate in designing multifunctional proteins.

1. Introduction

De novo protein design (Watson et al., 2023; Krishna et al.,
2024; Dauparas et al., 2022; Wang et al., 2024; Lisanza et al.,
2024) has emerged as a powerful strategy for numerous
biotechnological applications, including drug development,
enzyme engineering, and the creation of novel therapeutic
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Figure 1. Motivation of CFP-GEN. (a) Previous PLMs typ-
ically generate proteins based on single-modality conditioning,
considering only individual functional constraints. (b) In contrast,
CFP-GEN incorporates multiple conditions from diverse modali-
ties—function, sequence and structure—to impose comprehensive
functional constraints, thereby leading to optimized proteins.

proteins. The growing capabilities of large-scale protein
language models (PLMs) offer tremendous potential for dis-
covering novel proteins that do not exist in nature or would
require millions of years of evolution to emerge (Hayes
et al., 2025a; Madani et al., 2023; Alamdari et al., 2023).

Most current PLMs are primarily designed for unconditional
protein generation (Lin et al., 2023; Ren et al., 2024; Qu
et al., 2024), limiting their efficiency in addressing com-
plex real-world challenges. In contrast, controllable protein
generation (Listov et al., 2024; Ferruz & Hocker, 2022;
Madani et al., 2023), which tailors proteins to meet specific
biological functions by explicitly defined conditions, holds
significant promise for advancing practical applications.

Biologically meaningful proteins often simultaneously sat-
isfy multiple functional constraints across diverse modali-
ties, e.g., functional annotation, sequence or structure. As
shown in Fig. 1, previous PLMs typically generate protein
candidates based on a single-condition input from a spe-
cific modality, and thus have to rely on iterative filtering or
multi-step optimization to meet constraints across multiple
modalities (Goverde et al., 2024). Moreover, this pipeline
often struggles to satisfy all desired functionalities and be-
comes impractical when available data is limited. Therefore,
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developing an advanced protein generative model capable
of simultaneously handling multiple function constraints
within a unified model would significantly streamline the
multi-objective optimization in protein engineering.

In this work, we introduce CFP-GEN, a novel large-
scale diffusion language model specifically developed for
Combinatorial Functional Protein GENeration. CFP-
GEN iteratively denoises the input protein sequence while
simultaneously accounting for various functional conditions,
including functional annotations, desired sequence motifs
and 3D atomic coordinates of reference proteins. During
inference, composable annotation tags (e.g., GO terms, IPR
domains and EC numbers) are encoded as one-hot embed-
dings and injected to the model through an Annotation-
Guided Feature Modulation (AGFM) module. AGFM dy-
namically modulates the normalized feature distributions of
the noised protein sequence by leveraging all available an-
notation tags. Compared to classifier-guided diffusion, this
approach enables joint training to ensure strict alignment
between functions and sequences, while also allowing for
the flexible combinations of various functional annotations.
Additionally, certain amino acid residues (i.e., sequence
motif) are critical in real-world applications, as they often
determine the desired functional properties. To cater to this
need, a Residue-Controlled Functional Encoding (RCFE)
module is introduced to explicitly encode these functional
domains. RCFE employs an ESM-like transformer-based
controller to effectively capture epistasis and evolutionary
relationships among residues. As a result, this approach has
the potential to generate novel protein sequences with opti-
mized functional sites. Moreover, CFP-GEN supports direct
optimization of user-provided proteins by encoding their
3D backbone atomic coordinates as conditional features
using off-the-shelf structure encoders. By jointly incorpo-
rating functional constraints across diverse modalities, our
approach ensures that the inverse folding process preserves
structural accuracy while simultaneously satisfying func-
tional requirements. This provides a significant advantage
in tasks that demand multi-objective optimization.

Our contributions can be summarized as follows:

* A novel generative model, CFP-GEN, is developed for
de novo design of functional proteins. CFP-GEN ad-
dresses multiple functional conditions across various
modalities simultaneously, offering more promising
starting points compared to previous PLMs limited by
single-condition inputs.

¢ An Annotation-Guided Feature Modulation (AGFM)
is introduced to enable highly-controllable protein gen-
eration by incorporating commonly used functional
annotations in a composable and flexible manner.

¢ A Residue-Controlled Functional Encoder (RCFE) is
proposed to encode functional domains at the residue

level. It captures epistasis and interactions within se-
quences, enabling the generation of novel yet func-
tional proteins.

We thoroughly evaluate CFP-GEN across various tasks, in-
cluding functional sequence generation, functional protein
inverse folding, and multi-objective protein design. CFP-
GEN achieves exceptional function performance, e.g., im-
proving ESM3 by 30% in F-score, as demonstrated by lead-
ing function predictors. Additionally, it improves Amino
Acid Recovery (AAR) of DPLM by 9% in inverse fold-
ing. Notably, CFP-GEN demonstrates a remarkable success
rate in designing multi-functional proteins (e.g., enzymes
exhibiting multiple catalytic activities). We anticipate CFP-
GEN to become a valuable and practical computational tool
for addressing biomedical and biotechnological challenges.

2. Related Work

PLMs have become indispensable tools in protein science,
widely applied to both discriminative and generative tasks.
ESM2 (Lin et al., 2023) is a pioneering approach that uti-
lizes scalable language models to uncover patterns in pro-
tein sequences across evolutionary space. By optimizing a
masked modeling objective, ESM?2 learns rich sequence rep-
resentations, significantly improving performance in various
discriminative tasks, including structure prediction (Baek
et al., 2021) and functional classification (Kulmanov et al.,
2018). Meanwhile, ProtGPT2 (Ferruz et al., 2022) performs
unconditional sequence generation, akin to natural language
sentence generation. Moving toward controllable sequence
generation, ProGen (Nijkamp et al., 2023) augments the
language model with protein family tags, enabling the gen-
eration of sequences within specific functional constraints.
ProteoGAN (Kucera et al., 2022) incorporates GO terms for
sequence generation, providing detailed in silico validations
of its output sequences. Later, EvoDiff (Alamdari et al.,
2023) introduces a discrete diffusion model instead of the
masked language modeling objective. This enables condi-
tional protein generation, such as sequence inpainting and
MSA-guided generation. Further, ZymCTRL (Munsamy
et al., 2022) specializes in generating enzymes by condi-
tioning on EC numbers, successfully designing sequences
with catalytic activity. Most recently, DPLM (Wang et al.,
2024) is proposed as a new foundation model that not only
supports representation learning for discriminative tasks but
also enables conditional generation guided by secondary
structure classifications and sequence or structure motifs.

All of the above PLMs are fundamentally limited to single-
modality conditioning, i.e., generating sequences based on
one functional constraint at a time. This reduces the flexi-
bility and success rate of generated proteins when multiple
functional constraints are required. Although the recently
published ESM3 (Hayes et al., 2025b) supports multimodal
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Functional Protein Design with Multi-Modal Conditioning
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Figure 2. Pipeline of CFP-GEN model. Functional conditions from diverse modalities, combined with the noised sequence, are iteratively
processed by the model to generate desired proteins. Within each modified ESM block, AGFM adaptively adjusts the noised sequence
embedding based on combinations of various functional annotations. Furthermore, sequence motifs and backbone atomic coordinates are
embedded by RCFE and a structure encoder, respectively, providing precise and flexible guidance for the generation process.

inputs, it defines function using a limited vocabulary, re-
stricting its broader applicability. In contrast, our model
incorporates more diverse functions. This ensures more
precise control and leads to functionally superior proteins.

3. Methodology

We begin by introducing the essential concepts of CFP-
GEN in §3.1. Next, we present the AGFM module in §3.2.
Following that, we detail the RCFE module in §3.3, which
is designed to encode desired sequence motifs. Finally, we
demonstrate how CFP-GEN smoothly incorporates func-
tional conditions across diverse modalities in §3.4.

3.1. Preliminaries of CFP-GEN

Diffusion models are widely recognized for their capabil-
ity in de novo protein design. CFP-GEN is built upon the
leading diffusion protein language model DPLM (Wang
et al., 2024) to leverage its well-pretrained parameters at-
tained from evolutionary-scale datasets. Concretely, discrete
diffusion mechanism (Austin et al., 2021) is employed to
model the protein sequence distribution at the amino acid
category level. Let x ~ ¢(x) denote a protein sequence
of length L, represented as x = (z1,%2,...,z1), where
each z; € {0,1}!V]'is a one-hot vector indicating an amino

acid category from the set V' of 20 standard types. The cate-
gorical distribution Cat(x; p) models the sequence x, with
p = (P1,P2, .- ., PL) as the collection of probability vec-
tors. Each p; = (ps,1,pi2, .- -, pi,|v|) specifies the categor-
ical distribution of the i-th residue in the sequence, i.e., p; ,
represents the probability of selecting amino acid category
v, always ensuring that ) 0\, p;, = 1,Vi € {1,...,L}.

Forward Process with Discrete Diffusion. We apply dis-
crete diffusion to gradually corrupt the raw sequence x(*)
overt € {1,...,T} time steps by transitioning each amino
acid token towards a stationary noise distribution. The sta-
tionary noise distribution is parameterized by a fixed prob-
ability vector qpeise and can be expressed as:goise (x(t)) =
Cat(x™): p = quoise). Following DPLM, gpoise (x®)) satis-
fies: gnoise(x(")) = 1if x(¥) = [X] and 0 otherwise, where
[X] refers to the absorbing state (e.g., <mask> ). Once a
token transitions into this absorbing state, it will remain un-
changed in all subsequent diffusion steps. This ensures that
the forward process eventually leads all amino acid tokens to
<mask>, unifying the principles behind masked language
models (Kenton & Toutanova, 2019) and autoregressive lan-
guage models (Ferruz et al., 2022). Mathematically, the
forward transition process is given by:

g | D) = Cat(x®;p = x7DQ,), (1)



CFP-Gen

where Q; is the transition matrix at step ¢. Each row of Q; is
a probability vector defined as: Q; = 51 + (1 — B¢)Qnoise;
where I is the identity matrix and 3; € [0, 1] is the noise
schedule. Due to the Markov property, the overall transition
from x(9 to x(*) can be expressed as follows:

g(x® | x@) = Cat(x®: p = 0, x? + (1 — @) Qnoise )
@)
where oy = H§:1 B; represents the accumulated effect
of the noise schedule over ¢ steps. Ast — T, ap — 0,
ensuring that the sequence x(*) converges to the stationary

Noise Qyoise at time step 7.

Reverse Denoising with Composable Conditions. To en-
able the generation of protein sequences with desired func-
tionalities, we incorporate multimodal conditions into the
discrete diffusion framework during the reverse process, as
illustrated in Fig. 2. These include OD annotation tags cano,
1D sequence motifs cgeq, and 3D structures ¢y, encoded by
facem, frere, and fgvpr, respectively. The details of these
networks will be introduced in the following sections, where
GVPT indicates the GVP-Transformer (Hsu et al., 2022) for
encoding 3D backbone atomic coordinates.

The reverse process reconstructs the sequence by iteratively
denoising x®*) back to x(?), using the predicted x(©) at
each step, which is derived from the KL divergence, i.e.,
Dxr, [q(x®1 | x® x@) || pg(xt=1) | x)]. Thus, the
reverse step is expressed as follows:

pe(x(tfl) | x®)
2(0)

(3)
where ¢ € {Canno, Cseq, Csr } TEpresents any combinations of
conditions, depending on their availability. To predict (%),
the model incorporates c throughout the network:

po(x© | xY ¢) = Softmax(Wh(x¥, c)),
h(x"),c) =
“)
where W is the final output layer, A is a cross-attention layer
and h(x®, ¢) represents the core of CFP-GEN, sequentially
integrating modules such as fagrm, frere and foypr.

Optimization of CFP-GEN. The training objective is to
optimize the predicted x(*) against the raw sequence x(*)
using a weighted cross-entropy loss:

L=Eypon |AD 37 bilt) - log po(x(”[x®, 7(c))
1<i<L
&)
Here, A\(*) adjusts the influence of each diffusion time step ¢,

b;(t) determines the contribution of each position ¢, and v(c)
controls the strength of the condition c. In the following
sections, we demonstrate how the inclusion of ¢ facilitates

)= 3 axD [ xO, % O)py (5 [ xO,

(fRCFE(fAGFM( ®) Canno);Cseq>>fGVPT(Cslr))7

the prediction of highly functional proteins and how its
composable nature empowers CFP-GEN to achieve multi-
objective protein design.

3.2. Annotation-Guided Conditioning by AGFM

Functional annotations are both highly informative and rep-
resentative, as they are rigorously curated by biological
experts to capture essential properties of proteins. In this
work, we consider three commonly used annotations, i.e.,
GO terms (gen, 2021), IPR numbers (Hunter et al., 2009),
and EC numbers (Schomburg et al., 2004), to guide the
generation process. Typically, each type of annotation char-
acterizes the protein’s profile from a different perspective:
GO captures the molecular functions, IPR defines the func-
tional domains, and EC describes the related catalytic pro-
cesses. Unlike ESM3 (Hayes et al., 2025b) relying only on
a restricted vocabulary mapping to represent IPR annota-
tions, we adopt a more tactful approach to combine diverse
functions. While three types of annotations are presented
as examples, our paradigm is extensible to other forms of
annotations, such as Pfam (Bateman et al., 2000).

Existing PLMs often encode a single type of annotation.
For instance, ZymCTRL (Munsamy et al., 2022) designs
enzymes conditioned solely on EC numbers, while Pro-
teoGAN (Kucera et al., 2022) operates only with GO terms.
Although ProGen (Madani et al., 2023) supports multiple
annotation tags, it requires extensive fine-tuning with suffi-
cient homologous sequences to ensure performance, which

"limits its application when training samples are scarce. By

contrast, CFP-GEN is more flexible and versatile by ad-
dressing multiple annotations simultaneously, without the
need of further fine-tuning. By leveraging the complemen-
tary characteristics of these high-quality annotations, we
also enable a more comprehensive description of a protein.

As shown in Fig. 2, an Annotation-Guided Feature Modula-
tion (AGFM) module is integrated into each modified ESM
block (Lin et al., 2023), where each block has been well pre-
trained by DPLM. CFP-GEN is achieved by training only
the annotation embedding layers and a single MLP layer.
For each type of annotation (e.g., GO, IPR, EC), we maintain
a dedicated embedding layer. Each annotation is mapped
to a same-dimensional vector representation through its
respective embedding layer. This flexible design ensures
that annotations from different sources can be directly
summed together. The process is formally represented as:
Xamno = JAGFM(X, €60, CIpR, CEC), Where X, Xanno € RE*P
denotes the input feature and the modulated feature output
by AGFM within one block, based on the denoised sequence
x(®) at time step t. Concretely, the sum of embeddings is
passed through an MLP layer to regress three parameters,
ie.,v,B3,a = F(cgo+ cpr + Crc), Where v, 3 and v are
the scaling, shifting and gating factors, respectively. The
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MLP layer F follows a specialized initialization strategy:
the weights predicting « and 3 are initialized to zeros, en-
suring that conditional information is gradually injected into
x(®), while the weights predicting c are initialized to ones,
allowing for effective gating from the beginning. The scale
~ and shift 3 parameters modulate the distribution of the
noised feature x before both the self-attention (SA) and feed-
forward network (FFN) layers within each ESM block, akin
to a feature de-normalization process: Xoy = ¥ © X + (.
Additionally, the gating factor o operates on the feature
distribution x., output by the SA and FFN layers through
the following formulation: Xoy = @ ® X, + X, ;-

Through the collaboration of diverse annotations, AGFM
effectively adjusts the intermediate representations during
diffusion, resulting in higher-quality proteins compared to
previous approaches relying on single-condition control.

3.3. Sequence-Guided Conditioning with RCFE

While AGFM has provided effective control over protein
generation with annotations, certain applications require
finer-grained guidance, e.g., biological experts often focus
on functional sequence fragments (referred to as sequence
motifs) to ensure that the generated proteins retain desired
functionality associated with these motifs. Thus, we propose
the Residue-Controlled Functional Encoder (RCFE) with
an additional network branch to handle this sequence-level
condition. The core of RCFE lies in inferring the complete
sequence while preserving or even optimizing the specified
sequence motifs, akin to the sequence inpainting task intro-
duced by DPLM (Wang et al., 2024) and EvoDiff (Alamdari
et al., 2023). However, unlike these methods, which rely
on fixed amino acids throughout generation, RCFE dynam-
ically updates the specified motifs during inference. This
dynamic adjustment enables the model to emulate evolution-
ary processes, offering the potential to discover improved
sequence motifs with enhanced functional properties.

Specifically, frcre in Eq.4 consists of two branches of mod-
ified ESM blocks, along with zero-initialized linear layers to
jointly handle sequence-level and annotation-level informa-
tion. As shown in Fig.2, the bottom gray blocks represent
the main branch, which processes the noised sequence and
annotation tags, while the upper orange blocks represent the
second branch, composed of trainable copies of the main
branch, for tackling sequence-level conditioning. Inspired
by ControlNet (Zhang et al., 2023), RCFE adapts this dual-
branch design to transformer-based ESM blocks, making it
well-suited for protein sequence generation.

Let Eesm(+, Ocsm) denote a modified ESM block in the main
branch, which has been enhanced by AGFM to integrate
the functional annotations. The parameters Oy, in the
main branch blocks remain frozen during training RCFE,
while Oy in another branch blocks using a trainable copy

of Ocym need to be updated, denoted as Eeq (-, Oeq). This
design preserves the powerful representation capabilities of
the main branch that has been fully trained, while enabling
the other branch to dynamically encode sequence motifs.
Formally, we first pad the sequence motif with <mask>
and project it into the same latent space as the denoised
feature x € RL*PL within one block, which is denoted as
Cseq € RE*P In this way, the workflow of RCFE to handle
the sequence-level condition can be represented as follows:

Xseq = gesm(x; 9esm)+]:0ut(gseq (X+]:in(cseq§ ®in); eseq)§ @out)»

(6)
where Fi,(+; ©1,) denotes a zero-initialized linear layer ap-
plied to cyq. Note that this layer is only utilized in the first
block of the conditional branch. Similarly, Fou(; Ooy) is
another zero-initialized linear layer. Zero-initialization en-
ables the gradual incorporation of meaningful information
from the sequence motif condition while ensuring the stabil-
ity of the main blocks. Finally, x4 represents the updated
feature from a main block, enriched with conditional infor-
mation at both the annotation and sequence motif levels. It
is worth mentioning that, in image generation models, typi-
cally only the encoder part of a U-Net is used as the trainable
branch. Similarly, we leverage only the first half blocks of
the ESM2 model to encode sequence motifs, ensuring an
efficient yet expressive representation.

Consequently, the sequence-level condition serves as a
strong complement to the annotation-level condition, lead-
ing to enhanced controllability over the generated sequences
compared to using single condition modality alone.

3.4. Multimodal Conditioning within CFP-GEN

The fundamental principle in protein science is that function,
sequence, and structure are inherently interdependent. This
intricate relationship reveals the importance of jointly mod-
eling these modalities to achieve accurate protein design.

To this end, we consider a practical scenario where biologi-
cal experts have obtained the backbone structures of interest
(e.g., from RFDiffusion (Watson et al., 2023)) and aim to
determine the functional sequence that folds into this struc-
ture, a problem known as the inverse folding task. In the
traditional paradigm, the goal is to generate a sequence that
correctly folds into a given backbone structure. However,
when additional functional constraints c,n,, are required,
this task can be extended to functional protein inverse fold-
ing or the inverse function task - to generate a sequence
x* that maximizes sequence recovery while simultaneously
optimizing the functionality recovery matching cyno:

X" = arg m)z?xp(x | Canno Cseq> Cstr) + Sfunc(xa Canno)v (7)

where Sy, i a scoring function that evaluates how well
the generated sequence x aligns with the desired functional
properties. More discussion on Sg,e can be found in §4.2.
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Table 1. Function evaluation of the generated sequences using diverse function predictors, e.g., DeepGO-SE (Kulmanov et al., 2024)
for GO terms, InterProScan (Blum et al., 2021) for IPR domains, and CLEAN (Yu et al., 2023) for EC numbers. The best result in each
column is highlighted in bold, while the second-best is underlined (excluding the positive control).

Models | Supported Condtions | MRRT | MMD| | MMD-G| | mic. /i1 | mac. Fi? | AUPR? | AUCT
Evaluating the Protein Functionality via predicted GO Terms.
Positive Control - 0.939 0.000 0.000 0.543 0.522 0.402 0.775
Negative Control - 0.017 0.215 0.125 0.205 0.020 0.025 0.501
DPLM (Wang et al., 2024) Sequence Motif, Structure 0.134 0.189 0.109 0.332 0.189 0.109 0.581
ProteoGAN (Kucera et al., 2022) GO Term 0.277 0.095 0.055 0.376 0.093 0.121 0.510
ProGen2 (Nijkamp et al., 2023) GO Term, Sequence Motif | 0.545 0.109 0.064 0.414 0.355 0.240 0.663
CFP-GEN (w/ GO) GO, IPR, EC, Seq., Struc. | 0.601 0.112 0.060 0.429 0.370 0.245 0.674
CFP-GEN (w/ GO and IPR) GO, IPR, EC, Seq., Struc. | 0.779 0.066 0.039 0.496 0.458 0.339 0.732
CFP-GEN (w/ Motif) GO, IPR, EC, Seq., Struc. | 0.839 0.046 0.028 0.504 0.492 0.370 0.762
CFP-GEN (w/ GO, IPR and Motif) GO, IPR, EC, Seq., Struc. | 0.870 0.036 0.022 0.532 0.550 0.435 0.795
Evaluating the Protein Functionality via predicted IPR Domains.
Positive Control - 1.000 0.000 0.000 1.000 1.000 1.000 1.000
Negative Control - 0.016 0.224 0.131 0.003 0.000 0.004 0.500
DPLM (Wang et al., 2024) Sequence Motif, Structure 0.053 0.192 0.112 0.548 0.422 0.369 0.695
ESM3 (Hayes et al., 2025b) IPR Domain, Seq., Struc. | 0.148 0.101 0.060 0.690 0.565 0.502 0.762
ProGen2 (Nijkamp et al., 2023) GO Term, Sequence Motif | 0.281 0.112 0.067 0.712 0.584 0.536 0.772
CFP-GEN (w/IPR) GO, IPR, EC, Seq., Struc. | 0.332 0.094 0.056 0.882 0.826 0.782 0.899
CFP-GEN (w/ GO and IPR) GO, IPR, EC, Seq., Struc. | 0.386 0.078 0.047 0.909 0.858 0.824 0.922
CFP-GEN (w/ Motif) GO, IPR, EC, Seq., Struc. | 0.583 0.056 0.035 0.937 0.927 0.891 0.970
CFP-GEN (w/ GO, IPR and Motif) GO, IPR, EC, Seq., Struc. | 0.654 0.046 0.030 0.983 0.975 0.965 0.992
Evaluating the Protein Functionality via predicted EC Numbers.
Positive Control - 1.000 0.000 0.000 0.943 0.927 0.895 0.952
Negative Control - 0.012 0.222 0.129 0.036 0.028 0.016 0.510
DPLM (Wang et al., 2024) Sequence Motif, Structure 0.211 0.189 0.109 0.241 0.186 0.127 0.572
ProGen2 (Nijkamp et al., 2023) GO Term, Sequence Motif | 0.530 0.127 0.075 0.519 0.387 0.318 0.661
ZymCTRL (Munsamy et al., 2022) EC Number 0.562 0.044 0.026 0.901 0.774 0.743 0.876
CFP-GEN (w/EC) GO, IPR, EC, Seq., Struc. | 0.567 0.141 0.082 0.722 0.673 0.559 0.786
CFP-GEN (w/ EC, GO and IPR) GO, IPR, EC, Seq., Struc. | 0.774 0.103 0.060 0.780 0.743 0.644 0.831
CFP-GEN (w/ EC and Motif) GO, IPR, EC, Seq., Struc. | 0.898 0.049 0.029 0.937 0.920 0.883 0.946
CFP-GEN (w/ EC, GO, IPR and Motif) | GO, IPR, EC, Seq., Struc. | 0.924 0.041 0.024 0.942 0.925 0.892 0.951

To achieve the objective in Eq. 7, we employ a structure
encoder fgvpr (i.e., GVP-Transformer) to embed the back-
bone atom coordinates of the protein: ¢y, = fovpr(Csr)-
Subsequently, cg is injected into the final ESM block of the
main branch through a cross-attention layer, following the
strategy of DPLM. In our implementation, we found that
the pretrained cross-attention layer from DPLM could be
directly utilized without the need of further training, sug-
gesting that more functional adapters can be incorporated.
The denoised features, having already incorporated both
Canno and Cgeq, further interact with cg, to enable a more
precise and functionally coherent protein design.

Our functional protein inverse folding reduces the search
space from a vast sequence space to sequences that are both
structurally viable and functionally relevant. Compared to
traditional inverse folding, which rely only on structural con-
straints, our approach incorporates functional information
as an additional constraint. This leads to higher sequence re-
covery rates. We demonstrate significant improvements for
both the zero-shot and supervised fine-tuning (SFT) versions
of CFP-GEN with structural adapter in §4.3.

4. Experiments
4.1. Experimental Setup

Datasets. To collect high-quality data for training CFP-
GEN, we employ expert-curated functional annotations
from SwissProt (UniProtKB) (Consortium, 2019), Inter-
Pro (Hunter et al., 2009), and CARE (Yang et al., 2024)
databases. Two datasets were constructed for general pro-
tein design and enzyme design, respectively. For the general
protein dataset, we include 103,939 protein sequences cov-
ering 375 GO terms and 1,154 IPR domains. For the enzyme
design dataset, we intersected SwissProt with the CARE
dataset, yielding 139,551 enzyme sequences annotated with
661 EC numbers (4-level EC annotations). Additionally,
the PDB (Berman et al., 2000) and AFDB (Jumper et al.,
2021) databases were exploited to provide backbone atomic
coordinates, ensuring structural constraints are incorporated
into the dataset. Additional details regarding the datasets
can be found in the Appendix §A.

Implementation Details. Our model is built upon the pre-
trained DPLM-650M and trained in two progressive stages.
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Table 2. Evaluation of functional protein inverse folding. CFP-
GEN achieves significantly higher AAR and improved functional-
ity compared to other inverse folding methods.

Models | AAR | MRR | Fipa | s¢TM | pLDDT
Positive Control 100.00 | 0.939 | 0.574 | 0.910 | 86.12
ProteinMPNN (Dauparas et al., 2022) 4528 | 0.133 | 0.470 | 0.902 | 85.04
ESM-IF (Hsu et al., 2022) 57.39 | 0.495 | 0.551 | 0.895 | 83.49
LM-DESIGN (Zheng et al., 2023) 63.81 | 0.730 | 0.549 | 0.898 | 85.46
DPLM (Wang et al., 2024) 66.94 | 0.721 | 0.552 | 0.883 | 85.33
CFP-GEN (Zero-Shot, w/ GO and IPR) | 72.05 | 0.866 | 0.571 | 0.887 | 83.28
CFP-GEN (SFT, w/ GO and IPR) 76.39 | 0.882 | 0.581 | 0.889 | 83.53

First, we train the AGFM module to enable effective integra-
tion of functional annotations. The pretrained parameters
from the first stage are then used in the next stage, where we
train the copy ESM blocks in RCFE, allowing the model to
condition on sequence motifs. The optimization schedule is
the same as unconditional DPLM. For the structural condi-
tioning, we directly use the GVP-Transformer and structure
adapter from DPLM, which are pretrained on the CATH (Sil-
litoe et al., 2021) database, without additional fine-tuning
for CFP-GEN. During inference, users can specify any func-
tional constraints and their combinations as conditioning
signals. Further model implementation details can be found
in the Appendix §D.

4.2. Benchmarking Protein Functional Performance

In this section, we evaluate the functional properties of the
generated protein sequences. To achieve this, we split two
validation datasets from the general protein dataset and en-
zyme dataset introduced in §A. We evaluate GO and IPR
functions on the general protein dataset and EC function on
the enzyme design dataset. The functional annotations of
each natural sequence are used as conditioning prompts for
the PLMs, generating one sequence per prompt with vary-
ing length to strictly evaluate nearest-neighbor performance.
We assess the similarity between the generated and the real
sequences using various metrics, such as Maximum Mean
Discrepancy (MMD), including its Gaussian kernel vari-
ant (MMD-G), and Mean Reciprocal Rank (MRR). Then,
various function predictors (i.e., S in Eq. 7) are applied
to assign functional labels and evaluate whether the gener-
ated sequences exhibit functional consistency. Specifically,
we use DeepGO-SE (Kulmanov et al., 2024) for GO label
prediction, InterProScan (Blum et al., 2021) for homology-
based annotation, and CLEAN (Yu et al., 2023) for catalytic
function prediction. Since these predicted labels correspond
to a multi-label classification problem, we adopt commonly
used function prediction metrics (Kim et al., 2023) to quanti-
tatively evaluate the alignment between predicted functions
and the prompt functions (i.e., ground-truths), such as micro
F-score, macro F;-score, macro AUPR and macro AUC.
Details about the evaluation metrics are in Appendix §B.
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Figure 3. Examples of multi-catalytic enzymes. CFP-GEN gen-
erates high-quality proteins (i.e., TM-score above 90) with mul-
timodal conditions. The ground-truth structures from the AFDB
database are in green, while the generated structures are in red.

We conduct performance comparison against leading PLMs
under varying condition guidance. Notably, most of these
PLMs support only single-condition input, whereas CFP-
GEN allows combinations of input conditions across dif-
ferent modalities. Detailed implementation for sequence
generation using each approach can be found in the Ap-
pendix §E. Furthermore, we provide positive and negative
controls to establish the upper and lower bounds of these
evaluation metrics. The positive control consists of the real
sequences from UniProtKB, while the negative control is
the unconditionally generated sequences by DPLM.

4.2.1. EVALUATION OF GO TERMS

As shown in Tab. 1, the sequences in the negative control
exhibit little functional consistency with the prompt GO
terms (macro F-score = 0.02), proving the necessity of
conditional generation. While both DPLM and ProteoGAN
generate some functional proteins, ProGen2 achieves im-
proved function when conditioned on the first 30 residues.
In contrast, CFP-GEN demonstrates superior performance
across various conditioning levels. Firstly, the generated
sequences closely match the distribution of real sequences,
as evidenced by low MMD. Even when conditioned only
on GO terms, the model attains satisfactory functional con-
sistency. Further integrating IPR information enhances per-
formance, yielding a micro F-score of 0.496 and a macro
F|-score of 0.458. To further assess the impact of sequence
motifs, we extract sequence fragments from IPR annota-
tions, selecting those whose descriptions best align with the
corresponding GO functions (resulting in 10-30 residues).
Notably, even when using only these residues as condi-
tioning inputs, the model generates functional sequences,
reinforcing the strong correlation between sequence and
function. By combining sequence motifs and functional
annotations, the designed sequences outperform real se-
quences (positive control), achieving a macro F-score of
0.550 vs. 0.522, macro AUPR of 0.435 vs. 0.402, and AUC
of 0.795 vs. 0.775. These results highlight the effectiveness
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Figure 4. Evaluation of multi-catalytic enzyme design. Our
generated proteins exhibit high designability, meanwhile achieving
high success rate and functionality as validated by CLEAN.

of CFP-GEN in designing functionally enriched proteins.

4.2.2. EVALUATION OF IPR DOMAINS

The evaluation results based on IPR domains provide further
evidence of the superior performance of CFP-GEN. Since
running InterProScan on large-scale sequences is compu-
tationally expensive, we perform the evaluation on a uni-
formly downsampled subset, using one-tenth of the GO
validation set. We also implement the recently published
ESM3, which supports IPR domain site input. Since ESM3
is a masked prediction model, we provide an additional 30
residue from the real sequences as prompts. Similar residue
prompts are also given to DPLM and ProGen2 for sequence
inpainting. ProGen2 demonstrates improved functionality.
However, CFP-GEN demonstrates strong performance in
terms of MRR and micro/macro F-score without requiring
any sequence-level prompts. When further incorporating
sequence motifs, it achieves functionality comparable to
that of natural proteins, i.e., an macro F-score of 0.975.

4.2.3. EVALUATION OF EC NUMBERS

In this section, we mainly compare CFP-GEN with ZymC-
TRL. Please note that some EC numbers are not included
in ZymCTRL and we thus evaluate it on a subset, where
ZymCTRL achieves slightly higher results. Additionally,
we provide sequence segments derived from IPR annota-
tions as input prompts to DPLM and ProGen?2 to conduct
the sequence inpainting task for further comparison. As ex-
pected, the natural sequences in the positive control exhibit
strong enzymatic activity, validating CLEAN as a reliable
enzyme function predictor. CFP-GEN, when conditioned
only on EC numbers, generates sequences with high cat-
alytic activity. When further incorporating GO and IPR
annotations, we observe significant improvements in both
distribution-level metrics (i.e., improving 21% in MRR) and
macro F-score (i.e., improving 7%), highlighting the impor-
tance of integrating comprehensive functional annotations.
Finally, combining both functional labels and sequence mo-
tifs achieves the highest functional scores, approaching that
of natural ones (i.e., 0.925 vs. 0.924 in macro F;-score).
These results further prove the effectiveness of CFP-GEN.
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Figure 5. Comparison of sequence novelty and diversity be-
tween real and our designed proteins across 7 typical EC numbers
from different enzyme families.

4.3. Functional Protein Inverse Folding

In Tab. 2, we evaluate the inverse folding task on the gen-
eral protein dataset, where backbone structure information,
combined with the GO and IPR annotations are provided
as input. Several state-of-the-art methods, including Pro-
teinMPNN, ESM-IF, LM-DESIGN and DPLM trained on
CATH are used for comparison. Notably, most of these
methods—including CFP-GEN (Zero-Shot)—employ en-
coder networks pretrained only on UniProtKB. In particular,
CFP-GEN (Zero-Shot) does not involve any fine-tuning
of DPLM’s structural adapter. For comparison, we also
provide a supervised fine-tuned variant, CFP-GEN (SFT),
in which the structural adapter is trained on our general
protein dataset using backbone structure inputs. The gener-
ated sequences are then folded using ESMFold (Lin et al.,
2023) to assess their designability. Overall, most methods
achieve high Fy,,x-score (used in DeepGO-SE (Kulmanov
et al., 2024)), revealing the strong coupling between struc-
ture and function. Moreover, LM-DESIGN and DPLM
demonstrate superior AAR and MRR performance. CFP-
GEN (SFT), guided by functional annotations, achieves sig-
nificantly higher AAR (+9.45%) and MRR (+16.10%) com-
pared to the baseline DPLM while maintaining comparable
designability. This highlights the importance of incorporat-
ing functional annotations to guide the design process.

4.4. Multi-objective Protein Design

We further demonstrate that using combinations of mul-
timodal conditions enables the design of multi-functional
proteins. Specifically, we consider six multi-catalytic en-
zymes as design targets, each annotated at least three EC
numbers. For each enzyme, we construct three homologous
sequences as validation set. Some generated proteins are
visualized in Fig. 3 to enhance interpretability. More intro-
ductions of these enzymes can be found in the Appendix
§F. We fine-tune CFP-GEN on the enzyme design dataset,
where the homologous enzymes with same annotations are
held out from the training set. We then compare our model
against ZymCTRL by generating three sequences per en-
zyme, and the results are illustrated in Fig. 4. In particular,
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we compute the average success rate across all generated
proteins, where a design is considered successful if all as-
signed EC numbers are present in the predicted labels, while
also meeting the structural criteria of TM-score and pLDDT
above 70. According to success rate and macro F-score,
CFP-GEN significantly outperforms ZymCTRL, highlight-
ing the advantages of multimodal conditioning.

4.5. Analysis of Novelty and Diversity

A crucial aspect of de novo protein design is the ability to
generate novel and diverse proteins that do not exist in na-
ture. To examine whether our model generates truly new
proteins, we select 7 diverse EC numbers from different top-
level categories: Oxidoreductases, Transferases, Hydrolases,
Lyases, Isomerases, Ligases, and Translocases. For each
class, CFP-GEN generates 30 sequences conditioned only
on the EC number. We then compare with 30 real proteins
from the enzyme validation set with the corresponding EC
number. Novelty is computed by measuring how different
(i.e., sequence identity after alignment) each generated se-
quence is from its most similar real protein in the training set,
while diversity is computed by capturing how different the
generated sequences are from the overall training set. To en-
sure both metrics are interpretable in the same direction, we
subtract the scores from 1 (i.e., higher is better). The results
are shown in Fig. 5. We observe that CFP-GEN consistently
achieves higher sequence novelty across all 7 EC numbers,
demonstrating its strong potential for de novo protein design
beyond simply replicating known sequences. Moreover, the
generated sequences exhibit high intra-class diversity in 5
out of the 7 EC categories. These results suggest that the
model has learned a more generalized representation, rather
than overfitting to training examples. Additional analysis of
CFP-GEN is presented in Appendix §C.

5. Conclusion and Future Work

This work introduces a novel PLM, CFP-GEN, for func-
tional protein design with a multimodal conditioning mech-
anism. The core of CFP-GEN comprises three modules,
each addressing functional annotations, sequence motifs,
and backbone structures, respectively. Specifically, an
Annotation-Guided Feature Modulation (AGFM) module
is designed to flexibly and smoothly incorporate compos-
able functional tags, such as GO terms, IPR domains, and
EC numbers. A Residue-Controlled Functional Encoding
(RCFE) module is introduced to encode crucial sequence
motifs, facilitating scenarios where functional annotations
are unavailable. Finally, a structure adapter is integrated
into CFP-GEN without requiring additional training, ensur-
ing coherence between function and structure. We evaluate
CFP-GEN on three tasks: functional sequence generation,
functional inverse folding, and multi-functional protein de-

sign, where it consistently outperforms existing approaches.

Although CFP-GEN represents an early attempt to jointly
integrate multiple modalities for conditional protein gener-
ation, it has several limitations. First, it currently supports
only a subset of GO, IPR, and EC labels, limiting its gener-
alizability to broader functional categories. Second, beyond
commonly used functional annotations, richer conditional
inputs—such as physicochemical properties (e.g., hydropho-
bicity, charge, polarity)—are also essential to meet the re-
quirements of bio-manufacturing applications. Moreover,
sequence—structure co-design should be incorporated to en-
able end-to-end protein design. Future work will focus on
scaling up the training datasets, enriching the scope of func-
tional annotations, and further advancing unified models for
more scalable and function-aware protein generation.

Impact Statement

This work introduces a multimodal conditional protein de-
sign framework, enabling precise control over generated
proteins by integrating diverse functional constraints. This
approach has broad potential applications in enzyme en-
gineering, drug discovery, and synthetic biology. We also
provide a comprehensive benchmark of existing controllable
PLMs, offering valuable insights for researchers utilizing
these computational tools.

From an ethical standpoint, our model is trained entirely
on publicly available datasets (e.g., UniProtKB), ensuring
reproducibility and transparency. However, potential biases
may arise from unequal representation across protein fam-
ilies and functions, as public datasets often reflect human-
curated biases. Addressing these imbalances requires con-
tinuous expansion of training data and careful validation on
diverse proteins. Biosecurity risks must also be carefully
considered. The ability of generative models to design novel
proteins raises dual-use concerns, particularly in the con-
text of biomedical applications. The safe use of biological
generative models requires risk assessment, regulatory com-
pliance and safeguards to prevent misuse while ensuring
ethical and beneficial applications.
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Supplementary Material of CFP-GEN

A. Dataset Curation

Existing PLMs for protein generation often focus on either unconditional sequence generation or single-condition controllable
generation. For instance, ProteoGAN (Kucera et al., 2022) utilizes GO terms for functional control, ESM3 (Hayes et al.,
2025b) leverages IPR domain information, and ZymCTRL (Munsamy et al., 2022) conditions on EC numbers for enzyme
design. However, relying on single-condition constraints makes these datasets unsuitable for training a multimodal,
multi-condition controllable PLM like CFP-GEN, necessitating the curation of new datasets for functional protein design.

A protein is usually defined by three different modalities, i.e., function, sequence, and structure. These three aspects
are generally considered to be highly interdependent and mutually constraining, as a protein’s sequence determines its
structural fold, while both sequence and structure influence its functional properties. Given this intrinsic coupling, we
annotate each protein from all three perspectives to ensure a comprehensive representation. Specifically, we construct
two specialized datasets to facilitate functional protein design: (1) A general protein design dataset with GO terms, IPR
domains, functional sequence segments (motifs) and protein structures. (2) An enzyme design dataset specifically curated
for generating catalytically active proteins by further adding EC number annotations.

A.1. The General Protein Dataset.

Gene Ontology (GO) terms provide a structured and comprehensive vocabulary for annotating proteins with respect to their
molecular functions, biological processes, and cellular components, thereby offering a proper framework for understanding
protein roles in various biological contexts. In this work, we focus primarily on molecular function annotations, which offer
a more direct and interpretable characterization of each protein’s activity. In addition to GO annotations, we incorporate
InterPro (IPR) numbers, which categorize proteins based on conserved domains and families, facilitating the identification
of functional and structural relationships across diverse protein sequences. Combining GO and IPR labels allows for a
deeper understanding of proteins from both global and local perspectives and thus facilitating the protein generation process.

To build the general protein dataset, we collect protein sequences from the manually curated Swiss-Prot subset of UniPro-
tKB (Consortium, 2019), ensuring high annotation reliability. To maintain balanced class distributions, we implement
a filtering strategy that retains only GO and IPR terms with at least 100 annotated protein sequences, as suggested by
ProteoGAN, to mitigate the impact of long-tail categories. Although this inevitably excludes some sequences from the
training set, it has demonstrated the model’s capability to generalize across commonly used functional labels. Besides, our
method primarily focuses on integrating different modalities as conditioning signals, enabling more comprehensive protein
function modeling. We leave the addressing of long-tail data challenges in large-scale diffusion models to future iterations.

The final dataset contains 103,939 protein sequences covering 375 GO terms and 1,154 IPR domains. The distribution of
GO and IPR annotations in our dataset is illustrated in Fig. 6. As shown in the GO annotation distribution, 30.6% of GO
categories contain 100-200 protein sequences, while only 6.4% have more than 1,000 sequences. Similarly, in the IPR
annotation distribution, 35.4% of IPR categories consist of 100-200 sequences, whereas only 2.0% contain more than 1,000
sequences. Despite the remaining long-tail distribution in the dataset, we observe that the model generalizes well across
different categories, as indicated by the macro Fj score in Tab. 1.

Additionally, for each IPR number, we extract motif information from the annotated domain boundary positions. During both
training and inference, we select the IPR domain most relevant to the given protein’s GO annotations (if multiple domains
are present, we use their intersection) to define the functional sequence segments. These segments (motifs) are then used as
sequence-level conditioning inputs to enhance the model’s ability to capture functionally relevant patterns. Furthermore, for
each retained protein sequence, we retrieve its corresponding structural information from PDB and AlphaFold DB (AFDB)
databases. Specifically, we extract the backbone atomic coordinates of "N’, "CA’, ’C’, and *O’ and used them as structure
condition. Our analysis reveals that the backbone structure plays a crucial role in determining protein function, proving the
importance of incorporating structural features into PLMs.

To evaluate GO function, we construct a validation set by selecting 30 sequences per GO/IPR label, resulting in a subset
of 8,309 sequences. The training dataset is then formed by holding out these sequences to ensure an unbiased evaluation.
For IPR function assignment, we further perform a 10-fold uniform downsampling of the GO validation set, yielding 831
sequences, to alleviate the computational overhead associated with InterProScan.
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Figure 6. Categorical distribution of functional annotations in the two datasets. Most functional labels contain fewer than 500
sequences, highlighting the long-tail distribution issue. However, CFP-GEN exhibits strong generalization across these functions.

A.2. The Enzyme Design Dataset.

Enzymes, as a critically important class of proteins with wide applications in biotechnology and industrial catalysis, requiring
a specialized dataset for high-quality enzyme design. EC numbers (Enzyme Commission numbers) classify enzymes based
on their catalytic activities. Linking protein sequences to specific biochemical reactions facilitates a better understanding of
enzyme function. To construct a robust enzyme dataset, we leverage CARE (Yang et al., 2024), a newly curated enzyme
dataset comprising 185,995 sequences, each annotated with a level-4 EC number for precise functional clustering. To ensure
compatibility with GO and IPR annotations, we extract the subset of CARE that overlaps with Swiss-Prot, yielding a dataset
of 139,551 sequences spanning 661 EC labels. The distribution of EC categories is illustrated in Fig. 6.

In line with our approach for the General Protein Dataset, we also integrate sequence motifs from IPR annotations and
structural information from PDB/AFDB databases. To enable rigorous evaluation, we construct a validation set by sampling
30 sequences per EC label, resulting in a high-quality evaluation set of 16,187 sequences, while the remaining data is
allocated to the training set. Besides, multi-catalytic enzymes in Fig. 4 are also held out from the training set to ensure a
fair evaluation. As demonstrated in Tab. 1, our model achieves catalytic function comparable to natural enzymes on this
large-scale validation set, as assessed by the widely used CLEAN tool.

B. Evaluation Metrics
We conduct a comprehensive evaluation of the generated proteins across multiple levels to assess their quality rigorously:

(1) Sequence-level evaluation: We measure the similarity between the generated sequences and natural protein sequences.
Additionally, we analyze the inter-group distances by clustering sequences based on their functional labels, ensuring that
functionally related sequences exhibit appropriate distribution.

(2) Function-level evaluation: We assess the functional consistency between the functions of generated sequences (i.e.,
estimated by SOTA function predictors) and their input prompts (i.e., derived from natural sequences). This is evaluated
through multi-label classification metrics, ensuring that the predicted functions align with their prompt functions.

(3) Structure-level evaluation: We evaluate the structural consistency of the generated sequences by predicting their 3D
structures using ESMFold and comparing them with their corresponding PDB/AFDB structures. This ensures that the
generated proteins not only maintain sequence-level fidelity but also exhibit high designability.

B.1. Sequence Evaluation Metrics

¢ Maximum Mean Discrepancy (MMD): Maximum Mean Discrepancy (MMD) measures the distribution difference
between generated protein sequences P and their corresponding natural sequences S. Due to its efficiency and
high expressive capacity, we adopt normalized Spectrum Mapping to obtain sequence distribution, as suggested by
ProteoGAN. This method computes k-mer occurrences within a sequence, providing a sufficiently rich representation
to effectively distinguish protein properties. Given a kernel function &(-, -), MMD is computed as:

MMD?(S, P) = E, ys[k(s,s)] + Ep prp[k(p, p')] — 2Esus prplk(s,p)] 8)
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B.2.

where s,s’ € S are real sequences, and p,p’ € P are generated sequences. A lower MMD value indicates better
alignment between the generated and real distributions. For a linear kernel, the MMD computation simplifies to a direct
Euclidean distance between the mean embeddings of the two distributions:

1 & 1 &
MMDyipear (S, P) = ||us — ppll, where, pg = p. Z Si,  Mp = ij )

represent the mean embeddings of the real and generated sequences, respectively, and || - || denotes the Euclidean norm.

Gaussian Kernel MMD (MMD-G): For an RBF (Gaussian) kernel, the MMD computation incorporates the radial
basis function (RBF) to capture higher-order distributional differences:

MMDZ,,ian (S; P) poe) Zk: Si, Sj) 2 Zk Di, Pj) Zk; Si,Dj) (10)

where the Gaussian kernel function is defined as:

k(z,y) = exp (—vllz - yl*) (1)

with v typically determined via a median heuristic approach to adaptively select an appropriate kernel bandwidth, i.e.,
1
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where o is the median of all pairwise Euclidean distances between embeddings from both groups.

o = median(|z; — 2], ;), 7= (12)

By considering both the linear kernel MMD, which captures global differences, and the Gaussian kernel MMD,
which captures higher-order distributional variations, we ensure a robust evaluation of the similarity between real and
generated protein distributions.

Mean Reciprocal Rank (MRR): Mean Reciprocal Rank (MRR) evaluates how well the generated sequences P match
the real sequences S in a function-aware manner based on linear MMD distance.

We define S = {S.}¢_, as a set of real protein sequences grouped by their function label ¢, where C is the total
number of function labels (i.e., GO/IPR/EC annotations). Similarly, let P = { P.}¢_; be the corresponding generated
protein sequences for each functional group. The goal is to assess whether the generated sequences for each function
closely match the real ones. The MRR metric is defined as:

1

MRR(S P C Z ranks(MMD(Sm PC))

13)

where ranks (MMD(S.,, P.)) represents the ranking position of the MMD score between the real sequences S, and
generated sequences P.. Specifically, for each function label pair (¢, ¢), we compute MMD(S.., P,), measuring the
distributional difference between the real sequences of function ¢ and the generated sequences of function ¢’. The
ranking of MMD(SS,., P,) is then determined by sorting these MMD values across all function pairs.

MRR ensures that the evaluation considers not only how well each function’s generated sequences match their
corresponding real sequences but also their relative distinction from other functional groups. A higher MRR indicates
better functional alignment between the real and generated distributions. When MRR (.S, P) = 1, it signifies that for
each functional class, the generated sequences are the closest in distribution to their corresponding real sequences,
demonstrating high-quality protein generation.

Function Evaluation Metrics

Macro Fy-score: Macro F-score computes the per-class F|-scores, treating all classes equally, which is denoted as:

2 - Precision; - Recall;

. 14
macro F, CZ Precision; + Recall; "

where C is the number of classes, and Precision;, Recall; are the precision and recall for class 4. This metric is
particularly useful for evaluating performance across imbalanced datasets, as it ensures that smaller classes contribute
equally to the final score.
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* Micro Fy-score: In contrast, micro F-score aggregates the counts of true positives, false positives, and false negatives
across all classes before computing a single F-score:

. 2 - micro Precision - micro Recall
micro F; = - — " (15)
micro Precision + micro Recall

where micro precision and micro recall are computed as:

c c
- TP . - TP
2zt micro Recall = 2zt

micro Precision = = , =
Yo (Th + FP) S (TP + FN;)

(16)

where T'P;, F'P;, and F'N; represent true positives, false positives, and false negatives for class i, respectively. Unlike
macro F-score, micro F-score gives more weight to high-frequency classes.

* Macro AUPR (Area Under the Precision-Recall Curve): Macro AUPR computes the area under the precision-recall
curve for each class and averages them:

c
1
AUPR = — E AUPR; 17
macro c 2 (17

where AUPR; is the precision-recall area for class ¢. This metric is particularly valuable in scenarios with highly
imbalanced datasets, where precision-recall trade-offs are more informative than ROC-based metrics.

¢ Macro AUC (Area Under the Receiver Operating Characteristic Curve): Macro AUC measures classification
performance by averaging the AUC values across all classes:

c
1
AUC = — E AUC; 18
macro - 2 ; (18)

where AUC; is the ROC-AUC for class 7. Higher values indicate better model discrimination between positive and
negative instances.

e Fax-score: In Tab. 1, we evaluate function scores using standard multi-label metrics, with confidence thresholds of
0.1 for GO and 0.01 for EC. To account for the hierarchical structure of GO functions, ancestor GO terms are also
incorporated in evaluation. Additionally, in Tab. 2, to align with DeepGO-SE, we also consider a Fy,,x-score computed
at the sequence level. Given a confidence threshold 7 (ranging from 0.1 to 1.0 in increments of 0.01), we define: - T'P;:
The number of correctly predicted GO terms present in the ground truth set of each sequence. - F'P;: The number of
predicted GO terms that do not exist in the ground truth of each sequence. - F'N,: The number of ground truth GO
terms that were not predicted. Using these, Precision, and Recall; at threshold 7 are calculated as:

TP, TP,

_ 7 Recall, = ——— T 1
TP, + FP.’ oo (19)

Precision, = = TP L FN
T T

The Fp.x-score is then obtained by maximizing the F'|-score over a range of confidence thresholds:

2 - Precision, - Recall,
Precision, + Recall,

F.« = max { (20)

Unlike macro F-score, which averages per-class performance, Fy,,x focuses on per-sequence predictions.

B.3. Structure Evaluation Metrics

* Amino Acid Recovery (AAR): AAR measures how well a generated protein sequence x’ matches a reference sequence
x, given the protein structures as model inputs. Let x’ = (2}, z5,...,27) and x = (21, 22,...,zr) denote the
generated sequence and the reference sequence of length L. AAR is then defined as:

1, ifzl=ua

L
_ l / . / N\
AAR = - ;6(@-,@), 6z, ;) = { (21)

0, otherwise

The function (7}, x;) is the indicator function. A higher AAR value indicates greater sequence fidelity to the reference,
meaning the generated sequence closely resembles the original target sequence at the residue level.
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(a) Embeddings of generated sequences based on different GO functions. (b) Embeddings of real sequences based on different GO functions.

Figure 7. UMAP visualization of sequence embeddings conditioned on GO functions. The generated sequences from CFP-GEN ex-
hibit a highly similar distribution to natural sequences, demonstrating the strong expressiveness and functional consistency of our approach.

* TM-score (scTM): scTM globally evaluates the structural similarity between a generated protein sequence x’ and a
reference protein sequence x, considering the backbone structure ¢, as a conditioning factor. Let F(z) and F(z') be
the 3D structures predicted for sequences x and x’ respectively (using ESMFold in our case), then scTM is defined as:

scTM = TM-score(F(z'), F(z) | cxr) (22)

Higher scTM scores indicate better structural consistency under backbone structure guidance.

 Predicted Local Distance Difference Test (pLDDT): pLDDT quantifies the confidence of a predicted protein structure
by assessing the local agreement of residue positions. Given a predicted structure F(z) with L residues, the pPLDDT
score is computed as:
1 L
LDDT = — LDDT, 23
p s ; pLDDT; (23)

where pLDDT, is the per-residue confidence score of z; € {z}, x5, ...,z } derived from the folding model. A higher
pLDDT score indicates greater reliability in the predicted structure.

C. Extensive Analysis of CFP-GEN
C.1. Analysis of Generated Protein Embeddings

To evaluate the alignment between generated and real protein sequences, we compare their embedding distributions across
20 randomly selected GO terms, with 30 sequences per GO term for both real and generated data. The embeddings are
obtained using Spectrum Mapping, a highly expressive sequence representation method, and visualized via UMAP for
dimensionality reduction. As shown in Fig. 7, the distributions of generated sequences closely align with those of real
sequences, with each functional category maintaining a consistent spatial position across both plots. The inter-cluster
distances remain well-preserved, indicating that proteins with different functions occupy distinct embedding spaces, while
the intra-class compactness suggests that functional specificity is effectively captured. Additionally, the model generalizes
well across diverse functional spaces, preserving structured and biologically meaningful separations. Minor overlaps in
some central regions suggest that certain sequences may exhibit multiple GO functions, reflecting the inherent complexity
of protein function annotation. The overall results demonstrate that CFP-GEN leverages Spectrum Mapping embeddings to
effectively preserve the functional landscape of protein sequences, ensuring both functional coherence and class separability
in the learned representation space.
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Figure 8. Hyperparameter Analysis of CFP-GEN. We examine the the impact of control intensity and the number of copy ESM blocks.

C.2. Mitigation of Mode Collapse.

One common issue with PLMs is mode collapse in the generated sequences. To evaluate whether CFP-GEN alleviates
this problem, we analyzed the frequency of repeated n-gram patterns (n = 2, 3,4, 5,6) in sequences generated under
GO-conditioned prompts, as reported in Tab.1. Sequences generated by DPLM are used as a reference, and real protein
sequences from the validation set serve as a positive control.

As shown in Tab. 3, CFP-GEN produces a similar number of 2-grams to real proteins, while significantly reducing the
number of longer repetitive n-grams, especially 4-gram to 6-gram patterns. Notably, the more functional conditions (e.g.,
GO, IPR, Motif) are provided, the fewer repetitive patterns appear in the output, indicating better sequence quality and
reduced mode collapse. These results provide strong evidence that CFP-GEN effectively alleviates the mode collapse issue
observed in mainstream PLMs.

Table 3. Comparison of n-gram counts across different methods.

Method 2-gram 3-gram 4-gram S5-gram 6-gram
Positive Control 404 164 0 0 0
DPLM 315 462 104 46 26
CFP-GEN (w/ GO) 363 351 15 9 8
CFP-GEN (w/ GO and IPR) 365 332 9 5 4
CFP-GEN (w/ GO, IPR and Motif) 377 336 4 1 1

D. Hyperparameter Details

As introduced in the main paper, unless otherwise specified, most of the learning strategies and hyperparameters of the
diffusion model remain consistent with those of DPLM. The batch size is set to 1 million tokens, and training is conducted
on 8 NVIDIA A100 GPUs for around 72 hours of each stage. The AdamW optimizer is employed with a maximum learning
rate of 0.00004. During inference, we allow the model to perform 100 sampling steps, following the DPLM conditional
generation, with sequence length varying from 200 to 400. The total model size of CFP-GEN is 1.48B parameters, excluding
the GVP-transformer structure encoder.

During training, we adjust v(c) in Eq. 5 by applying dropout to each conditioning input. The probability of randomly
dropping out each condition and its corresponding impact on model performance is shown in Fig. 8 (a). MRR is used to
present the performance as we found this metric is more robust and expressive. The results indicate that setting the dropout
probability to 0.5 for each condition achieves the best performance. Additionally, we investigate the optimal number of ESM
block copies in the RCFE module. We compare the model performance conditioning on only the sequence motifs. As shown
in Fig. 8 (b), setting the number of blocks to 16 achieves the best trade-off between performance and model complexity.
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E. Implementation of Existing PLMs

For ProGen2, we provide the model with GO terms along with the first 30 residues of the real sequence as prompts. When
evaluating IPR/EC functions, only the first residues are used, as ProGen2 does not support EC/IPR annotations.

For ProteoGAN, we directly input the GO terms of the real sequence. However, since ProteoGAN only supports 50
predefined GO terms, for GO terms not included in ProteoGAN’s vocabulary, we attempt to map them to their closest
ancestor terms that are supported. If no suitable ancestor is found, the sequence is ignored.

For discrete diffusion models such as DPLM, we provide the model with functional motifs (30 residues) and task it with
performing sequence inpainting to reconstruct the missing residues.

For ESM3, we input both the IPR domain descriptions and their start-end positions, along with 30 residues to initialize the
sequence generation process.

For ZymCTRL, only a single EC number per sequence is provided, as the model does not support multi-label inputs. If an
EC number is not supported by ZymCTRL, we exclude the sequence from evaluation to ensure a fair comparison.

F. Introduction of Multi-catalytic Enzymes

¢ 5'/3'-Nucleotidase SurE (EC Numbers: 3.1.3.5, 3.1.3.6, 3.6.1.11): This nucleotidase has broad substrate specificity,
dephosphorylating various ribo- and deoxyribonucleoside 5'-monophosphates and ribonucleoside 3’-monophosphates,
with the highest affinity for 3’-AMP. It also hydrolyzes polyphosphate (exopolyphosphatase activity), preferentially
targeting short-chain-length substrates (P20-25). This enzyme is potentially involved in the regulation of ANTP and
NTP pools, as well as the turnover of 3’-mononucleotides, which are produced by various intracellular RNases (T1, T2,
and F) during RNA degradation.

« Fatty Acid Oxidation Complex Subunit Alpha (EC Numbers: 1.1.1.35, 4.2.1.17, 5.1.2.3, 5.3.3.8): This enzyme plays
a crucial role in the fatty acid S-oxidation cycle, enabling both aerobic and anaerobic degradation of long-chain fatty
acids. It catalyzes the conversion of enoyl-CoA to 3-oxoacyl-CoA via L-3-hydroxyacyl-CoA and can also process
D-3-hydroxyacyl-CoA and cis-3-enoyl-CoA as substrates. This pathway is fundamental for cellular energy production
and lipid metabolism.

* Geranylgeranyl Pyrophosphate Synthase (EC Numbers: 2.5.1.1, 2.5.1.10, 2.5.1.29): This enzyme catalyzes the
synthesis of geranylgeranyl pyrophosphate (GGPP) from farnesyl pyrophosphate and isopentenyl pyrophosphate,
initiating the janthitremane biosynthesis pathway. It participates in multiple steps involving prenylation, oxidation, and
cyclization, ultimately leading to the formation of complex indole diterpenes such as paspaline and shearinine A. These
compounds exhibit diverse bioactivities.

¢ Siroheme Synthase (EC Numbers: 1.3.1.76, 2.1.1.107, 4.99.1.4): This multifunctional enzyme catalyzes a series of
key reactions in the siroheme biosynthesis pathway. It first facilitates the S-adenosylmethionine (SAM)-dependent
methylation of uroporphyrinogen III at C-2 and C-7, forming precorrin-2 via precorrin-1. It then catalyzes the NAD-
dependent ring dehydrogenation of precorrin-2 to produce sirohydrochlorin. Finally, it promotes the ferrochelation of
sirohydrochlorin, leading to the formation of siroheme, an essential cofactor in sulfite and nitrite reductases.

* Putative Fatty Acid Oxidation Complex Trifunctional Enzyme (EC Numbers: 1.1.1.35, 4.2.1.17, 5.3.3.8): This enzyme
exhibits multiple catalytic activities involved in fatty acid metabolism, including 3-hydroxyacyl-CoA dehydrogenase
activity, delta(3)-delta(2)-enoyl-CoA isomerase activity, and enoyl-CoA hydratase activity. It also possesses NAD™ -
binding capacity and plays a role in fatty acid catabolic processes. This enzyme is essential in the S-oxidation pathway,
facilitating the conversion of fatty acids into energy.

¢ Purine Nucleoside Phosphorylase RC0672 (EC Numbers: 2.4.2.1, 2.4.2.28, 3.5.4.4): This purine nucleoside enzyme
catalyzes the phosphorolysis of adenosine and inosine nucleosides, producing D-ribose 1-phosphate and the respective
free bases, adenine and hypoxanthine. It also catalyzes the phosphorolysis of S-methyl-5’-thioadenosine into adenine
and S-methyl-5-thio-a-D-ribose 1-phosphate. Additionally, it exhibits adenosine deaminase activity, contributing to
purine metabolism.
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G. Visualization of Generated Proteins

In Fig. 9, we present additional visualizations of generated proteins produced by CFP-GEN under multimodal conditions,
specifically GO terms and backbone atomic coordinates. The structures are predicted using ESMFold, applied to the
generated sequences. The reference PDB/AFDB structures, from which the backbone constraints are derived, are shown in
green, while the structures of the designed proteins are shown in red. The real functions of the reference proteins are labeled
in red, whereas the predicted functions of the generated proteins, inferred using DeepGO-SE, are labeled in gray.

Several key observations can be drawn from these results. First, most generated proteins exhibit high structural fidelity, as
indicated by TM-scores and pLDDT values exceeding 90, demonstrating that CFP-GEN can effectively design structurally
stable proteins. Second, the majority of prompted functions are successfully recovered. Since DeepGO-SE also predicts
ancestor GO terms, the predicted functions often include more terms than the input prompt. Here, we display only those with
a confidence score greater than 0.3, further confirming CFP-GEN’s ability to design functionally relevant proteins. Third,
some failure cases were also identified. For instance, UniProt ID Q9FYJ2 contains long, flexible loop regions extending far
from the core fold. These regions are typically associated with intrinsically disordered regions (IDRs), which lack a single
well-defined conformation. As a result, the predicted structure exhibits high deviations in loop regions compared to the
ground truth structure. Similarly, UniProt ID Q9PS08 corresponds to an extremely short protein (around 30 residues), which
poses significant challenges for both generative and folding models, as such short sequences are underrepresented in large
protein datasets. Consequently, these proteins exhibit low TM-scores, highlighting the inherent difficulties in designing
ultra-short protein sequences. These findings demonstrate the strengths and limitations of CFP-GEN in functional protein
generation, emphasizing its effectiveness in generating proteins with both high-fidelity structures and functional relevance
while also highlighting areas for future improvements to enhance model generalization.
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Figure 9. Examples of generated functional proteins. We compare the generated proteins and their predicted functions with corre-
sponding PDB/AFDB structures and functions. These results demonstrate the effectiveness and functional consistency of CFP-GEN.
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