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Abstract001

Large Vision-Language Models have shown im-002
pressive capabilities in tasks such as image cap-003
tioning, visual question answering, and cross-004
modal retrieval. However, there are still signifi-005
cant challenges that need to be addressed in or-006
der to fully unlock the potential of these models.007
First, integrating speech, text, and vision into a008
unified model is particularly difficult for tasks009
like Spoken Image Captioning and Spoken Vi-010
sual Question Answering, where the interaction011
between these modalities introduces additional012
complexity. Second, existing speech genera-013
tion approaches differ—some generate speech014
directly, while others use an intermediate text015
step—but their impact on fluency, coherence,016
and accuracy remains unexplored. To address017
these challenges, we propose SVLA, a unified018
Speech-Vision-Language Assistant based on019
a decoder-only transformer architecture that020
seamlessly integrates multimodal inputs and021
outputs. We enhance model performance with022
a large-scale speech-text-image dataset con-023
taining 38.2 million examples and 64.1 hours024
of TTS-generated speech. Our approach ad-025
vances multimodal understanding and genera-026
tion, facilitating more effective integration of027
speech, text, and vision (http://github.com/vlm-028
svla/svla).029

1 Introduction030

Recent advances in Large Vision-Language Mod-031

els (LVLMs) (OpenAI, 2023a; Li et al., 2023; Liu032

et al., 2024; Alayrac et al., 2022) mark a significant033

step toward multimodal AI, enabling models to in-034

terpret and reason over visual and textual inputs.035

However, these models remain constrained by their036

reliance on text-based instructions and lack native037

support for speech. Efforts such as LLaMA 3 (Tou-038

vron et al., 2023) and Qwen-Audio (Chu et al.,039

2023) have begun incorporating speech through040

modality-specific encoders, these models remain041

limited to speech perception and do not support042

speech generation.043

Recent models (Zhang et al., 2023a; Zhan et al., 044

2024; Wu et al., 2024; Xu et al., 2025) address 045

this limitation by introducing discrete speech rep- 046

resentations, allowing language models to process 047

speech as semantic tokens within a unified speech- 048

text token space. This enables bidirectional mod- 049

eling and multimodal integration. However, most 050

systems remain focused on shallow tasks—such 051

as text-to-speech (Veaux et al., 2017), image-to- 052

music (Chowdhury et al., 2024), or basic audio 053

captioning (Kim et al., 2019)—and struggle with 054

more complex reasoning tasks like image caption- 055

ing (IC) or visual question answering (VQA) in- 056

volving spoken inputs or outputs. A key bottleneck 057

is the absence of large-scale, richly aligned datasets 058

spanning speech, text, and vision. Most models 059

are trained on unimodal or bimodal data, limiting 060

their ability to generalize to cognitively demanding, 061

speech-enabled multimodal reasoning. 062

Furthermore, two prominent paradigms have 063

emerged for enabling speech capabilities within 064

multimodal systems (Zhang et al., 2023a; Nach- 065

mani et al., 2023): Cross-modal Instruction and 066

Chain-of-Modality Instruction. Cross-modal In- 067

struction directly maps inputs across modalities, 068

such as converting an image to speech, offering 069

efficiency but frequently compromising semantic 070

coherence. In contrast, Chain-of-Modality Instruc- 071

tion involves first translating the input into textual 072

form, performing reasoning over the generated text, 073

and subsequently producing output in speech or 074

text form. This method leverages the structured rea- 075

soning and planning capabilities inherent to large 076

language models but may lead to verbosity. How- 077

ever, a comparative analysis of these paradigms 078

under consistent tri-modal settings within LVLMs 079

has not yet been conducted. 080

To address the above challenges, we introduce a 081

large-scale synthetic trimodal dataset—combining 082

text, image, and speech—to support instruction- 083

following in both written and spoken formats. This 084
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dataset integrates widely-used resources, includ-085

ing VQAv2 (Goyal et al., 2017), LAION-600M086

(Schuhmann et al., 2022), Visual Genome (Krishna087

et al., 2016), LibriHeavy (Kang et al., 2024), Lib-088

riSpeech (Panayotov et al., 2015), CommonVoice089

(Ardila et al., 2019), A-OKVQA (Schwenk et al.,090

2022), VizWiz (Gurari et al., 2018), GQA (Hud-091

son and Manning, 2019), and COCO-Caption (Lin092

et al., 2014). To ensure natural-sounding and di-093

verse speech data, we use a controllable text-to-094

speech (TTS) system that varies accent, speaking095

speed, and prosody. We further include noise and096

stylistic augmentation from MUSAN (Snyder et al.,097

2015) to improve robustness. Additionally, we im-098

plement a modality-switching instruction tuning099

strategy, enabling the model to flexibly process and100

respond in either text or speech.101

Building on this foundation, we propose SVLA102

(Speech-Vision-Language Assistant), a unified,103

self-supervised multimodal model capable of rea-104

soning over image, text, and speech inputs and105

generating outputs in either text or speech. SVLA106

features a hybrid fusion architecture: it applies107

early fusion between speech and text using dis-108

crete semantic units, allowing both to be modeled109

jointly in a shared language space (Zhan et al.,110

2024; Zhang et al., 2023b), and late fusion for vi-111

sual input by integrating image embeddings from112

a pretrained encoder (Liu et al., 2024). This de-113

sign supports complex tasks such as spoken VQA,114

speech-driven image captioning, and multimodal115

instruction following.116

We also present the systematic evaluation com-117

paring Cross-modal and Chain-of-Modality In-118

struction within a unified vision-language-speech119

framework. Our experiments span four con-120

trolled configurations—text-to-text, text-to-speech,121

speech-to-text, and speech-to-speech—using con-122

sistent instruction formats and shared example nam-123

ing across tasks. Benchmarks such as VQAv2 and124

COCO-Captions are used to assess the trade-offs125

between fluency, coherence, and semantic quality126

under each setting.127

Our contributions are as follows:128

• We construct a large-scale, aligned speech-129

text-vision dataset from diverse benchmarks,130

supporting instruction-following in both tex-131

tual and spoken forms.132

• We propose SVLA, a unified tri-modal model133

that integrates early fusion (text-speech) and134

late fusion (vision) to enable robust multi- 135

modal reasoning and generation. 136

• We establish an evaluation framework that 137

systematically compares Cross-modal and 138

Chain-of-Modality paradigms across consis- 139

tent input-output modality configurations, 140

while also assessing robustness to variations 141

in accent and speaking speed. 142

2 Related Works 143

Speech-Enabled Vision-Language Models: 144

LVLMs (Yuan et al., 2021; Li et al., 2023; Liu 145

et al., 2024; Chen et al., 2024) were initially 146

designed for image-text reasoning, lacking native 147

speech support. Early extensions added speech 148

input and TTS output but remained limited in 149

conversational expressiveness (OpenAI, 2023b; 150

Dubey et al., 2024), with higher latency and 151

limited contextual adaptability due to multi-stage 152

pipelines. GPT-4o (OpenAI, 2024)addresses 153

these issues with native speech generation for 154

real-time, expressive interaction, though its 155

closed-source nature has driven open efforts to 156

replicate its capabilities. Models like NExT-GPT 157

(Wu et al., 2024), CoDi-1/2 (Tang et al., 2023a, 158

2024), Unified-IO (Lu et al., 2024), and AnyGPT 159

(Zhan et al., 2024) extend multimodal support 160

via modality-specific encoders or projections, 161

targeting perceptual tasks (e.g., image/audio/video 162

generation, ASR, TTS). However, cross-modal 163

reasoning (e.g., VQA, image captioning across 164

text and speech modalities) remains underexplored. 165

TMT (Kim et al., 2024) offers limited progress, 166

enabling speech output from image captions but 167

lacking joint multimodal reasoning. 168

Speech-Text-Vision Datasets: Most speech 169

datasets used in multimodal learning—such as Lib- 170

riSpeech (Panayotov et al., 2015), CommonVoice 171

(Ardila et al., 2019), and GigaSpeech (Chen et al., 172

2021)—are designed for ASR or TTS and do not 173

include vision. While datasets like SpeechCOCO 174

(Havard et al., 2017) and SpokenCOCO (Hsu et al., 175

2020) add speech to image captioning, they re- 176

main limited in scale, task diversity, and interac- 177

tivity. Others, like How2 (Sanabria et al., 2018), 178

offer aligned speech and video, but focus on nar- 179

row instructional domains and do not support flex- 180

ible input-output modality switching. Some re- 181

cent works synthesize multimodal dialogues by 182

using large language models to generate text-based 183
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Figure 1: Pre-training data distribution across three
modalities: Image, Text, and Speech.

prompts, which are paired with audio and visual184

content using tools like TTS and image generation185

models. While useful for data augmentation, these186

datasets often focus on perception tasks and lack187

cognitively demanding reasoning challenges such188

as VQA or multimodal instruction following.189

Direct vs. Instruction-Based Speech Generation:190

Speech generation in multi-modal systems gener-191

ally follows one of two paradigms: direct genera-192

tion, where speech is produced end-to-end with-193

out textual intermediates, and instruction-based194

generation, where models first generate text and195

then synthesize speech from it. Instruction-based196

approaches—used in models like GPT-4o (Ope-197

nAI, 2024), AnyGPT (Zhan et al., 2024), NExT-198

GPT (Wu et al., 2024), and SpeechGPT (Zhang199

et al., 2023a)—offer modality consistency but often200

produce redundant or unnatural phrasing. In con-201

trast, direct approaches aim to generate speech di-202

rectly from inputs (e.g., Spectron (Nachmani et al.,203

2023)), allowing for more fluid prosody and con-204

versational tone.205

3 Data Generation206

To construct a large-scale tri-modal dataset, we ex-207

tend existing image-text corpora (Lin et al., 2014;208

Schuhmann et al., 2022) with corresponding spo-209

ken utterances. These datasets are selected for their210

abundance, diversity, and broad coverage of real-211

world visual and linguistic contexts, providing a212

strong foundation for scalable multimodal learn-213

ing. We synthesize speech from text using the214

Melon-TTS model (Zhao et al., 2023), chosen for215

its controllability over prosody and speaker char- 216

acteristics. To enhance diversity, we vary speak- 217

ing rates from 0.7× to 1.3× and include multiple 218

English accents, such as American, British, In- 219

dian, and Australian. Additionally, we introduce 220

environmental background noise—e.g., rain, foot- 221

steps, and ambient sounds—from the MUSAN cor- 222

pus (Snyder et al., 2015) to simulate realistic acous- 223

tic conditions. All audio is standardized to a 16 224

kHz sampling rate to ensure clarity and computa- 225

tional efficiency. This pipeline yields a rich and 226

varied speech-text-image dataset suitable for both 227

pre-training and fine-tuning multimodal models. 228

3.1 Pre-train dataset 229

Our pre-training strategy targets a unified speech- 230

vision-language model capable of TTS, ASR, im- 231

age captioning, and VQA. The training data in- 232

cludes: (1) 8M text-speech pairs from the pub- 233

licly available LibriHeavy corpus (Kang et al., 234

2024) for speech generation and recognition, and 235

(2) 6M image-text-speech triples, where speech is 236

synthetically generated from image-caption pairs 237

in LAION-COCO (Schuhmann et al., 2022) and 238

question-answer pairs from Visual Genome (Kr- 239

ishna et al., 2016) to support vision-language rea- 240

soning. To enable modality switching, we use 241

instruction-style prompts (e.g., “Answer this ques- 242

tion in speech” or “Describe the image in text”), 243

guiding the model to produce either spoken or writ- 244

ten outputs. Speech outputs are capped at 5 seconds 245

for training efficiency. Figure 1 shows the modality 246

token distribution1. Additional details are provided 247

in Appendix A. 248

3.2 Visual Instruction dataset 249

For supervised fine-tuning (SFT), we adopt a simi- 250

lar structure to pre-training but introduce multi-turn 251

conversations to improve coherence and long-range 252

context retention. The text-speech subset includes 253

LibriSpeech (Panayotov et al., 2015) and Common- 254

Voice (Ardila et al., 2019), covering diverse lin- 255

guistic and command-oriented expressions. The 256

vision-text-speech subset incorporates VQAv2, A- 257

OKVQA (Schwenk et al., 2022), GQA (Hudson 258

and Manning, 2019), VizWiz (Gurari et al., 2018), 259

and COCO-Captions-2014, ensuring broad cover- 260

age of open-ended and visually grounded tasks. To 261

enable consistent comparison across modalities, we 262

1Token counts: text via Qwen-2.5-1.5B (Yang et al., 2024),
speech via SpeechTokenizer (Zhang et al., 2023b), and images
estimated at 256 tokens each.
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Figure 2: SVLA Architecture

design all tasks to support four input-output con-263

figurations: text-to-text, text-to-speech, speech-to-264

text, and speech-to-speech. Dialogue examples are265

constructed to fit within a 10-second speech limit266

and are paired with instruction prompts that guide267

the model to transition between text, speech, and268

vision as required. Additional details on the SFT269

dataset construction are provided in Appendix A.270

4 Model Architecture271

Our architecture is a hybrid of LLaVA (Liu et al.,272

2024) and AnyGPT (Zhan et al., 2024), combining273

visual grounding with speech processing via dis-274

crete tokens. It integrates speech and vision inputs275

into a unified language model, denoted as fθ(x),276

where θ represents model parameters. The overall277

architecture is shown in Figure 2.278

4.1 Vision Encoder279

Given an input image Xv, we employ a pretrained280

VIT-based vision encoder, such as CLIP (Radford281

et al., 2021), denoted as g(·), to extract high-level282

visual representations:283

Zv = g(Xv), Zv ∈ Rnv×dv . (1)284

Here, Zv is obtained from the final layer of the285

vision encoder, where nv is the number of image286

patches. Each visual token in Zv has a feature287

dimension of dv.288

Next, to align visual embeddings with the LLM’s289

word embedding space, we apply a learnable linear290

projection layer Wv:291

Hv = WvZv, Hv ∈ Rnv×dh . (2)292

Here, Hv represents the projected visual tokens, 293

now residing in the same dimensional space dh as 294

the LLM’s text embeddings, ensuring compatibility 295

for multimodal fusion. 296

4.2 Speech Encoder and Tokenization 297

For speech input Xs, a pretrained speech encoder 298

s(·) generates a sequence of discrete tokens: 299

Zs = {q1, q2, . . . , qTs}, qi ∈ {1, 2, . . . , ds}, 300

where Ts is the number of tokens and ds is the 301

speech vocabulary size. Each token qi is mapped 302

to a text-like representation (e.g., ⟨⟨speech-i⟩⟩) and 303

added to the LLM’s vocabulary, enabling text and 304

speech to be handled uniformly by the tokenizer. 305

4.3 Multimodal Fusion 306

Given text tokens Zt, speech tokens Zs, and visual 307

embeddings Hv, we construct the multimodal input 308

sequence: 309

X = [bos, boi, img, eoi, Zt, boa, Zs, eoa, eos], 310

where n = |X| is the sequence length. Special 311

tokens mark modality boundaries and control flow. 312

After embedding, we replace the placeholder 313

token img with Hv, yielding: 314

E′ = [Ebos, Eboi, Hv, Eeoi, EZt ,

Eboa, EZs , Eeoa, Eeos],
315

with E′ ∈ Rn′×dh , where n′ = nv + n − 1. The 316

LLM then processes E′ for multimodal understand- 317

ing. 318
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Table 1: Performance of Text-Speech Tasks. We evaluate ASR on LibriSpeech (Panayotov et al., 2015) test-clean
and TTS on VCTK (Veaux et al., 2017)

Model Backbone
ASR TTS

LibriSpeech VCTK
WER WER Similarity

Human-level - 5.8 1.9 0.93

Wav2vec 2.0 (Papineni et al., 2002) - 2.7 - -
Whisper Large V3 (Radford et al., 2023) - 1.8 - -

VALL-E (Wang et al., 2023) - - 7.9 0.75
VILA (Fu et al., 2024) Mixtral 8x7B (Jiang et al., 2024) 8.1 - -
AnyGPT-7B LLaMA-2-7B 8.5 8.5 0.77
MIO-Ins (Wang et al., 2024) Yi-6B-Base (AI et al., 2024) 10.3 4.2 -
Qwen2.5-Omni-7B (Xu et al., 2025) Qwen2.5-7B (AI et al., 2024) 1.8 - -

SVLA-2B Qwen-1.5B 10.2 21.7 0.65
SVLA-2B-Text-Ins Qwen-1.5B 8.9 11.2 0.72

4.4 Speech Decoding319

The multimodal LLM outputs a sequence of pre-
dicted tokens, from which the speech-related to-
kens Z ′

s are extracted between the special tokens
boa and eoa. A pretrained speech decoder s−1(·)
then transforms these discrete tokens back into
speech waveforms:

X ′
s = s−1(Z ′

s),

where Z ′
s represents the predicted discrete speech320

token sequence, and X ′
s is the resulting synthesized321

speech audio.322

4.5 Instruction-Based Speech Generation323

During pre-training (see Appendix A.2), the model324

learns to generate both text and speech tokens di-325

rectly. In SFT, text responses are always gener-326

ated directly, while speech outputs follow two alter-327

native strategies: direct generation or instruction-328

based generation, which we compare experimen-329

tally. For simpler tasks like ASR and TTS, we330

apply lightweight prompts (e.g., “The transcript331

of the given speech is:” for ASR, and “This is332

how your text sounds in speech:” for TTS). For333

more complex vision-language tasks—such as im-334

age captioning and VQA—we adopt an instruction-335

based approach: the model first generates a textual336

response, which is then converted into speech us-337

ing structured prompts like “The textual caption is338

‘caption’. Therefore, the audio caption is:”.339

5 Experiments340

This section details our experimental setup, the341

metrics used to assess performance, and the results342

achieved.343

5.1 Implementation Details 344

We use Qwen2.5-1.5B as our backbone LLM and 345

train it with PyTorch. The vision encoder is CLIP- 346

Large-Patch14-336 (Radford et al., 2021), which 347

produces 256 tokens per image. Speech data is han- 348

dled by the SpeechTokenizer (Zhang et al., 2023b), 349

which encodes each 1-second segment of audio into 350

50 discrete tokens. When higher speech fidelity is 351

required, SoundStorm-SpeechTokenizer2 extends 352

this quantization approach to more nuanced tasks. 353

For speech-input settings in image captioning and 354

VQA, we use Melon-TTS to generate spoken ques- 355

tions or prompts, using the same configuration as 356

in the training set, including a mix of speaking 357

speeds and accents. More complementary details 358

are provided in Appendix B. 359

5.2 Metrics 360

Text-Output tasks: For tasks where the model 361

generates text outputs, we use Word Error Rate 362

(WER) for ASR, CIDEr (Vedantam et al., 2015) 363

for image captioning, and accuracy for VQA. These 364

metrics provide a standardized evaluation frame- 365

work for assessing performance across text-output 366

tasks. 367

Speech-output tasks: We evaluate speech gen- 368

eration using two methods: We transcribe model- 369

generated speech with Whisper Medium (Radford 370

et al., 2023) and compare the resulting text to hu- 371

man references (as in text-output tasks). However, 372

ASR models can exhibit biases that introduce tran- 373

scription errors, thereby distorting the perceived 374

quality of the generated speech. Therefore, we 375

use WavLM-TDNN3to extract speech embeddings 376

from both generated and reference speech and mea- 377

2https://github.com/ZhangXInFD/soundstorm-
speechtokenizer
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Table 2: Comparison of models on Image Captioning and VQA tasks. We evaluate Image Captioning on COCO-
Caption-2014, COCO-Caption-2017, and Flickr8k datasets, while VQA performance is assessed on VQAv2-val,
OKVQA-test, GQA-test, and VizWiz datasets. Modalities are denoted as I (Image), T (Text), and S (Speech). *
indicates results on the test-dev set.

Model Backbone Input → Ouput Image Captioning VQA

COCO-2014-test COCO-2017-test Flickr8k VQAv2-val OKVQA-test GQA-test VizWiz

TMT (Kim et al., 2024) - I→T 108.7 – 79.7 – – –
TMT (Kim et al., 2024) - I→S 78.7 – 55.2 – – –

InstructBLIP (Liu et al., 2024) Vicuna-7B I+T→T – 102.2 82.2 – 33.9 – 33.4
LLaVA (Liu et al., 2024) LLaMA-2-7B I+T→T – – 82.7 – – – –
LLaVA-1.5 (Liu et al., 2024) Vicuna-7B I+T→T – – – 78.5* – 62.0 50.0
AnyGPT-7B (Tang et al., 2023a) LLaMA-2-7B I+T→T 107.5 – – – – – –
CoDi (Tang et al., 2023b) - I+T→T 149.9 – – – – – –
MIO-Ins (Wang et al., 2024) Yi-6B-Base I+T→T 120.4 – – 65.5 39.9 53.5
Next-GPT-7B (Wu et al., 2024) LLama-7B I+T→T 158.3 124.9 84.5 66.7 52.1 – 48.4

SVLA-2B Qwen-1.5B I+T→T 120.0 117.8 61.4 68.7 45.4 53.3 57.7
Qwen-1.5B I+S→T 114.5 107.0 57.7 52.9 25.1 37.7 52.3
Qwen-1.5B I+T→S 2.0 2.2 1.7 4.0 4.0 3.7 0.0
Qwen-1.5B I+S→S 2.0 2.1 1.1 3.1 0.1 0.0 0.0

SVLA-2B-Text-Ins Qwen-1.5B I+T→T 120.2 117.0 67.7 69.7 47.4 52.7 58.0
Qwen-1.5B I+S→T 119.4 112.6 59.2 52.7 28.7 38.1 51.7
Qwen-1.5B I+T→S 64.7 53.36 49.4 37.5 11.6 29.6 29.8
Qwen-1.5B I+S→S 62.2 52.18 46.4 29.4 6.08 23.7 26.1

sure their similarity (via cosine similarity). This378

directly compares acoustic properties without rely-379

ing on ASR.380

5.3 Results381

Text-Speech Performance: As shown in Table 1,382

SVLA-2B-Text-Ins outperforms SVLA-2B on both383

ASR and TTS, reducing ASR WER from 10.2 to384

8.9 and TTS WER from 21.7 to 12 .2, while im-385

proving similarity from 0.65 to 0.72. Prompting386

with structured text (e.g., “This is the transcript:”)387

boosts performance by providing clearer context.388

While both models lag behind specialized systems389

like Whisper and Wav2vec 2.0 (WER 2.7), SVLA-390

2B-Text-Ins is competitive with AnyGPT-7B. The391

results highlight a trade-off: direct speech genera-392

tion is more natural, but instruction-based prompts393

yield greater clarity and accuracy.394

Image Captioning Performance: From Table 2,395

instruction tuning in SVLA-2B-Text-Ins leads to396

minimal change in text-only captioning perfor-397

mance. For instance, on COCO-2014, the CIDEr398

score improves only slightly from 120.0 (SVLA-399

2B) to 120.2. However, in the speech captioning400

setting (I+S→S), instruction tuning results in a401

substantial gain: SVLA-2B scores only 2.0, while402

SVLA-2B-Text-Ins reaches 62.2. This highlights403

the effectiveness of structured prompts (e.g., “The404

textual caption is ... Therefore, the audio cap-405

tion is:”) in guiding coherent speech generation.406

3https://github.com/yangdongchao/UniAudio/
blob/main/UniAudio/tools/evaluation/compute_
similarity_vc.py

TMT (Kim et al., 2024), which performs I→S gen- 407

eration directly, achieves a CIDEr score of 78.7 on 408

COCO-2014. While upper SVLA-2B-Text-Ins, it 409

operates under a different paradigm—treating each 410

modality independently—whereas SVLA supports 411

unified multimodal reasoning across both text and 412

speech outputs. 413

VQA Performance: Table 2 shows that SVLA- 414

2B-Text-Ins performs competitively in the I+T→T 415

VQA setting, despite using the smaller Qwen- 416

1.5B backbone compared to 7B-scale models. 417

While models like LLaVA-1.5 and Next-GPT-7B 418

achieve strong performance on benchmarks such as 419

VQAv2, OKVQA, and GQA, SVLA-2B-Text-Ins 420

achieves comparable results, with a VQAv2 score 421

of 69.7 and a VizWiz score of 58.0. These results 422

demonstrate that a smaller, instruction-tuned model 423

can rival or even surpass larger alternatives. 424

However, performance declines in the I+S→T 425

setting, where the question is spoken. For example, 426

SVLA-2B-Text-Ins drops to 52.7 on VQAv2 and 427

28.7 on OKVQA—approximately 15–20 points 428

lower than in the I+T→T setting. This suggests 429

that the model performs more effectively when the 430

input question is provided in text rather than speech. 431

Speech output accuracy is generally lower than 432

text output across VQA tasks. In the I+T→S set- 433

ting, SVLA-2B-Text-Ins achieves 37.5 on VQAv2 434

and 11.6 on OKVQA, whereas in I+S→S, the 435

scores fall to 29.4 and 6.08, respectively. This 436

drop highlights the difficulty of reasoning directly 437

from speech inputs and generating accurate spoken 438

responses. These results suggest that using text 439
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Case A: Two people jump up trying to catch the same frisbee.

people frisbee
Case B: A man is riding on a skateboard with four wheels.

man skateboard
Case C: The man riding the horse is in uniform.

man horse

Figure 3: Visualization of attention maps comparing SVLA-2B’s visual grounding accuracy with and without
intermediate textual instructions during speech generation.

as an intermediate representation enhances seman-440

tic alignment, particularly for complex reasoning441

tasks. By contrast, SVLA-2B completely fails to442

handle VQA tasks.443

5.4 Ablation Studies444

Effect of Accent and Speaking Speed:445
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(b) I+S→S

Figure 4: Impact of accent and speaking speed on VQA
performance. Both plots show accuracy on VQAv2-val.

We evaluate the impact of different accents446

and speaking speeds on VQA accuracy using the447

SVLA-2B-Text-Ins model on the VQAv2-val set.448

As show in table 4, in both the I+S→T and I+S→S449

settings, American and British accents yield higher450

performance, while Indian and Australian accents451

result in noticeably lower accuracy. Notably, de-452

spite being included in the training data, the In-453

dian accent still underperforms, indicating potential454

challenges in generalization or speech variability.455

In terms of speaking speed, the model performs456

best around the default rate (1.0×), with accuracy457

dropping at both extremes. The decline is most 458

pronounced at 1.3×, suggesting that faster speech 459

reduces recognition and reasoning quality. 460

Where Do the Models Look in Images?: To 461

examine how different speech generation strategies 462

affect visual grounding, we visualize the model’s 463

attention maps in Figure 3. For each key word, we 464

show three attention maps: the first green map is 465

from the text output of SVLA-2B-Text-Ins, the sec- 466

ond green map from its instruction-based speech 467

output; and the blue map from SVLA-2B’s direct 468

speech output.The text output from SVLA-2B-Text- 469

Ins exhibits the most focused and accurate attention, 470

precisely grounding visual entities. Its speech out- 471

put (green) generally retains meaningful grounding, 472

showing acceptable attention consistency. In con- 473

trast, the speech output from SVLA-2B (blue) is 474

often unfocused or misaligned, failing to attend to 475

the relevant image regions. These results demon- 476

strate that textual instructions play a critical role in 477

guiding the model’s visual attention. Without the 478

intermediate text step, the model lacks semantic an- 479

choring and often fails to locate the correct objects 480

in the image, leading to degraded visual grounding 481

during speech generation. 482

The Limits of ASR-Based Evaluation: ASR- 483

based evaluation falls short in assessing speech 484

output quality, as it often misinterprets minor pho- 485

netic variations as errors—even when the spoken 486

response is semantically accurate. As shown in Fig- 487
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Provide a caption for the image.

A woman wearing a hat and holding up her camera.

Can you describe the image out loud?

The textual caption is "A woman wearing a hat and holding up camera”. 

Therefore, the audio caption is:

(a woman wearing a hat and holding up kimeroh)

Respond to this question out loud, what is on her hands?

The textual answer is "Camera". Therefore, the audio answer is:

(cameral)

(What color is her hat?)

The textual answer is "Tan". Therefore, the audio answer is:

(tanh)

(Please provide your answer in writing, what is she wearing on her left hand?)

Watch

Provide a caption for the image.

A woman taking a picture with her camera.

Can you describe the image out loud?

(fhace and undressed for twenty four people cosing how women 

boges and ar still the conjecture of the side rain)

Respond to this question out loud, what is on her hands?

(smiling)

(What color is her hat?)

(superstictation)

(Please provide your answer in writing, what is she wearing on her left hand?)

Watch

(a) SVLA-2B-Text-Ins

Provide a caption for the image.

A woman wearing a hat and holding up her camera.

Can you describe the image out loud?

The textual caption is "A woman wearing a hat and holding up camera”. 

Therefore, the audio caption is:

(a woman wearing a hat and holding up kimeroh)

Respond to this question out loud, what is on her hands?

The textual answer is "Camera". Therefore, the audio answer is:

(cameral)

(What color is her hat?)

The textual answer is "Tan". Therefore, the audio answer is:

(tanh)

(Please provide your answer in writing, what is she wearing on her left hand?)

Watch

Provide a caption for the image.

A woman taking a picture with her camera.

Can you describe the image out loud?

(fhace and undressed for twenty four people cosing how women 

boges and ar still the conjecture of the side rain)

Respond to this question out loud, what is on her hands?

(smiling)

(What color is her hat?)

(superstictation)

(Please provide your answer in writing, what is she wearing on her left hand?)

Watch

(b) SVLA-2B

Figure 5: Comparison of SVLA-2B-Text-Ins and SVLA-2B in Multimodal Image Captioning and VQA Responses.

ure 5a, the model’s speech output closely matches488

the intended text, yet ASR transcribes words like489

“camera” as “camaral”, or “tan” as “tanh”. These490

subtle differences, while perceptually acceptable,491

are unfairly penalized because ASR prioritizes ex-492

act word-level matching over acoustic or semantic493

similarity. This limitation underscores the need494

for more robust evaluation metrics that go beyond495

transcription accuracy. In particular, speech-based496

VQA and captioning tasks would benefit from met-497

rics that directly assess the fidelity of the generated498

speech waveform—capturing both semantic cor-499

rectness and acoustic naturalness—without relying500

solely on error-prone intermediate transcriptions.501

6 Ethical Considerations502

We utilize publicly available datasets containing503

licensed image-text and speech-text pairs. All504

speech samples are either synthetic or derived from505

open corpora, explicitly excluding personal or sen-506

sitive data. While our datasets incorporate diverse507

accents and varying speaking rates to enhance rep-508

resentativeness, synthetic speech may still not cap-509

ture the complete variability inherent in natural510

human speech. Observed performance disparities511

across different conditions highlight the necessity512

of ongoing research in fairness and robustness.513

7 Limitations:514

Our study has several limitations. First, the speech515

data is generated using a TTS model, which may516

lack the natural prosody and emotional variation517

of real human speech. Despite augmentations in 518

accent, speed, and noise, the resulting speech may 519

still be less diverse than natural input. Second, we 520

use the Qwen2.5-1.5B backbone due to resource 521

constraints, which limits model capacity. Third, 522

the speech tokenizer introduces decoding errors, 523

reducing intelligibility even when the underlying 524

text is accurate. 525

8 Conclusion 526

In this work, we introduce SVLA, a unified Speech- 527

Text-Vision Assistant capable of handling both lan- 528

guage tasks (ASR, TTS) and vision-language rea- 529

soning tasks (image captioning, VQA). To support 530

the community in building similar models, we also 531

release a large-scale tri-modal dataset encompass- 532

ing speech, text, and vision. Additionally, we an- 533

alyze two settings for speech generation: directly 534

producing spoken output and using a text prompt 535

to guide speech synthesis. Our experiments show 536

that while the model performs better with text out- 537

puts, speech outputs benefit from an instructive 538

text prompt, yielding more coherent. In future 539

work, we plan to incorporate real human speech, 540

improve speech tokenization quality, and explore 541

larger model backbones to better support nuanced 542

prosody, robustness to speech variability, and high- 543

fidelity speech generation. 544
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A Training804

A.1 Data Generation805

Table 1 provides a detailed breakdown of the pre-806

training dataset, categorized into two stages: Stage807

1, which consists solely of text-speech tasks, and808

Stage 2, which expands to include image-text-809

speech tasks. In Stage 1, the dataset comprises810

2.0M samples from the Libriheavy corpus for TTS811

and ASR tasks, yielding a total of 1.5M text to-812

kens, 7.4B speech tokens, and approximately 8.2K813

hours of speech. Stage 2 significantly scales up814

the dataset, incorporating Libriheavy (6M sam-815

ples) alongside multimodal datasets such as Laion816

and VG, covering image-captioning (IC) and VQA817

tasks in both text and speech modalities. The total818

dataset spans 34.3M samples, 615.9M text tokens,819

9.1B speech tokens, and 50.8K hours of speech,820

making it one of the most extensive speech-text-821

vision corpora for multimodal learning. Notably,822

the dataset supports a diverse set of multimodal823

tasks, including IC-TTT, IC-TTS, IC-STT, IC-STS,824

VQA-TTT, VQA-TTS, VQA-STT, and VQA-STS,825

ensuring broad coverage across different input-826

output combinations.827

Table 2 presents the SFT dataset, covering both828

text-speech and image-text-speech tasks. The829

dataset includes 2.5M samples, with 308K im-830

age samples, 152M text tokens, and 920M speech831

tokens, totaling 33.9M seconds (5102 hours) of832

speech data. The text-speech tasks include 150K833

ASR samples from Librispeech and 388K TTS834

samples from CommandVoice, contributing 496835

and 559 hours of speech, respectively. In the836

image-text-speech tasks, various VQA datasets837

(VQA, A-OKVQA, GQA, VizWiz) and COCO-838

Caption-2014 support text-based (VQA-TTT, IC-839

TTT), text-to-speech (VQA-TTS, IC-TTS), speech-840

to-text (VQA-STT, IC-STT), and speech-to-speech841

(VQA-STS, IC-STS) tasks. The dataset is diverse842

and well-balanced, ensuring broad multimodal cov-843

erage for fine-tuning models on speech, text, and844

vision-related tasks. Figure 1, Figure 2, Figure 3,845

and Figure 4 show the prompts of tasks used to846

train the models.847

A.2 Training Strategy848

Our model is trained in three sequential phases,849

progressively increasing multimodal complexity to850

enhance stability, efficiency, and modality integra-851

tion.852

Stage 1 - Text-Speech Pre-Training The model 853

learns text-speech alignment through ASR and TTS 854

on large-scale paired datasets, establishing a strong 855

linguistic foundation before incorporating vision. 856

Stage 2 - Vision-Text-Speech Pre-Training 857

Training expands to include vision-based tasks like 858

VQA and image captioning alongside ASR and 859

TTS, enabling the model to unify vision, text, and 860

speech representations. 861

Stage 3 - Supervised Fine-Tuning The model 862

is refined through supervised fine-tuning on 863

benchmark-aligned datasets, focusing on multi- 864

turn conversations, history retention, and multi- 865

modal reasoning. 866
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Dataset Task No. Sample Image Text Tokens Speech Tokens Speech Duration (s) Speech Duration (h)

Pretrain Dataset - Stage 1

Text-Speech tasks

Libriheavy
TTS 1.0M 0 56.7M 730M 14.6M 4.1K
ASR 1.0M 0 60.0M 736M 14.7M 4.1K

Total - 2.0M 0 1.5M 7.4B 29.3M 8.2K
Pretrain Dataset - Stage 2

Text-Speech tasks

Libriheavy
TTS 3.0M 0 151.6M 2.2B 44.2M 12.3K
ASR 3.0M 0 207.6M 2.2B 44.4M 12.3K

Image-Text-Speech tasks

Laion

IC-TTT 5.8M

5.8M

111.1M 0 0 0
IC-TTS 5.8M 48.4M 1.1B 22.0M 6.1K
IC-STT 5.8M 63.1M 1.0B 20.2M 5.6K
IC-STS 5.8M 0 1.9B 38.6M 10.7K

VG

VQA-TTT 1.3M

108K

12.1M 0 0 0
VQA-TTS 1.3M 19.1M 97.0M 1.9M 538
VQA-STT 1.3M 2.9M 321.0M 6.4M 1.8K
VQA-STS 1.3M 0 249.6M 182.4M 1.4K

Total - 34.3M 23.5M 615.9M 9.1B 182.8M 50.8K

Table 1: Statistics of the pretraining dataset

Dataset Task No. Sample Image Text Tokens Speech Tokens Speech Duration (s) Speech Duration (h)

Text-Speech tasks

Librispeech ASR 150K 0 5.4M 89.2M 1.8M 496.0
CommandVoice TTS 388K 0 4.8M 101.8M 2.0M 559.3

Image-Text-Speech tasks

VQA

VQA-TTT 84K

83K

4.7M 0 0 0
VQA-TTS 42K 3.0M 13M 260K 72
VQA-STT 42K 282K 46.1M 921K 256
VQA-STS 84K 0 86.0M 17.2M 476

A-OKVQA

VQA-TTT 50K

50K

520.0K 0 0 0
VQA-TTS 25K 333K 1.4M 28K 8
VQA-STT 25K 31K 5M 102K 28
VQA-STS 50K 0 9.5M 190K 53

GQA

VQA-TTT 72K

72K

11.5M 0 0 0
VQA-TTS 36K 6.7M 26.8M 536K 149
VQA-STT 36K 528.5K 100.5M 2.0M 558
VQA-STS 72K 0 168.0M 3.4M 933

VizWiz

VQA-TTT 20K

20K

780.5K 0 0 0
VQA-TTS 10K 413K 883K 17.7K 5
VQA-STT 10K 28.8K 5.7M 114.0K 31.7
VQA-STS 20K 0 11.5M 230.7K 64.1

COCO-Caption-2014

IC-TTT 414K

83K

107.0M 0 0 0
IC-TTS 212K 3.3M 39.4M 789K 219
IC-STT 212K 2.4M 51.3M 1M 285
IC-STS 414K 0 163.7M 3.3M 909

Total - 2.5M 308K 152M 920M 33.9M 5102

Table 2: Statistics of the SFT dataset
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ASR (Automatic Speech Recognition) Prompts:

• “Please convert this audio to text: "

• “Transcribe the following audio file, please: "

• “Can you convert this speech to text? "

• “Generate text from this audio recording: "

• “Please write out what’s being said in this audio: "

• “Turn this voice recording into text, please: "

• “Please create a transcript of this audio: "

• “Can you transcribe this audio? "

• “Convert this spoken content into written text: "

• “Please extract text from this speech: "

• “Transcribe the spoken words in this audio file: "

• “Create a written version of this audio: "

• “Convert the spoken words to text: "

• “Please generate a transcript from this recording: "

• “Transform the audio into a text document: "

Example Usage:
"Please convert this audio to text: <speech_start>{speech_tokens}<speech_end>"

Figure 1: Prompts for ASR Tasks.
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TTS (Text-to-Speech) Prompts:

• “Please convert this text to speech: "

• “Turn this text into audio, please: "

• “Generate speech from this text: "

• “Please speak out this text: "

• “Convert these words to speech, please: "

• “Please make an audio version of this text: "

• “Can you read this text aloud: "

• “Transform this text into speech: "

• “Please give a voice to this text: "

• “Read out this text, please: "

• “Create a spoken version of this text: "

• “Convert the written text to speech: "

• “Turn the following words into sound: "

• “Provide an audio rendition of this text: "

• “Generate an audio file of these words: "

Example Usage:
"Turn this text into audio: {transcript}"

Figure 2: Prompts for TTS Tasks.
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Captioning Prompts:
IC_TTT (Text-to-Text) and Caption_STS (Speech-to-Speech):

• “What do you see in the image?"

• “Explain what is shown in the picture."

• “Provide a caption for the image."

• “Describe the objects or people in the image."

Example Usage:
"<image>\nWhat do you see in the image?"

IC_TTS (Text-to-Speech):

• “Can you describe the image out loud?"

• “Read the description of the image aloud."

• “Turn the image caption into spoken words."

• “Provide a spoken description of the picture."

Example Usage:
"<image>\nCan you describe the image out loud?"

IC_STT (Speech-to-Text):

• “Write down what you see in the image."

• “Can you write a detailed description of the picture?"

• “Write a summary of the scene in the image."

• “Write down the elements present in the picture."

Example Usage:
"<image>\n Write down what you see in the image."

Figure 3: Prompts for Image Captioning Tasks.
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VQA (Visual Question Answering) Prompts:
VQA_TTT (Text-to-Text) and VQA_STS (Speech-to-Speech):
Example Usage:
"<image>\n{question}\nAnswer the question using a single word or phrase."

VQA_STT (Speech-Text-to):

• “Please provide your answer in writing."

• “Respond to the question with a written explanation."

• “Answer this question using text."

• “Type your response to the question."

• “Write down your answer clearly."

• “Provide a detailed answer in text format."

• “Explain your response in written form."

• “Answer the question by typing a full response."

Example Usage:
"<image>\nPlease provide your answer in writing.\n{question}\nAnswer the quest
-ion using a single word or phrase."

VQA_TTS (Text-to-Speech):

• ‘Respond to this question out loud."

• ‘Please give your answer verbally."

• ‘Provide a spoken response to the question."

• ‘Answer this question using speech."

• ‘Explain your response in spoken form."

Example Usage:
"<image>\nRespond to this question out loud.\n{question}\nAnswer the quest
-ion using a single word or phrase."

Figure 4: Prompts for VQA Tasks.
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B Implementation Details867

Figure 5 compares the loss curves for pre-training868

and supervised fine-tuning (SFT). Figure 5a plot869

shows the pre-training loss, where the raw loss ex-870

hibits high variance but progressively decreases,871

stabilizing after around 400K steps. The smoothed872

loss curve (window=90) highlights a consistent873

downward trend, indicating stable convergence.874

The 5b illustrates the SFT loss, comparing models875

with and without text-output instructions. While876

both configurations show a decreasing trend, the877

model trained with text-output instructions (red)878

achieves consistently lower loss than the version879

without instructions (green), suggesting that struc-880

tured textual guidance improves fine-tuning effi-881

ciency and convergence. The variance in SFT loss882

remains higher compared to pre-training, reflecting883

the increased complexity of supervised instruction884

tuning.885
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Table 3: Implementation Details for Model, Pre-Training, and Supervised Fine-Tuning

Model and Hardware
LLM Qwen2.5-1.5B
Vision Encoder openai/clip-vit-large-patch14-336
Speech Encoder SpeechTokenizer (1s → 50 tokens),
Speech Decoder SoundStorm-SpeechTokenizer
Frameworks PyTorch, DeepSpeed

Training Configurations
Pre-Training Supervised Fine-Tuning

Batch Size 32 8
Epochs 1 2
Optimizer Adam Adam
Learning Rate 2× 10−5 1× 10−5

Warmup Ratio 0.03 0.02
LR Scheduler Cosine Cosine
Training Steps 1.2M 600K
Training Epochs 1 2
Maximum Tokens 4096 4096
GPUs 8 x NVIDIA H100 4 x NVIDIA H100
DeepSpeed Config zero2
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Steps
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6
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ss

Raw Pre-Training Loss
Smoothed Pre-Training Loss (window=90)

(a) Pre-training Loss

0K 100K 200K 300K 400K 500K
Steps

0.0

0.5
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1.5

2.0

2.5

3.0

Lo
ss

Raw SFT Loss without text-output-instruct
Smoothed SFT Loss without text-output-instruct (window=90)
Raw SFT Loss with text-output-instruct
Smoothed SFT Loss with text-output-instruct (window=90)

(b) SFT loss

Figure 5: Comparison of Pre-training and SFT Loss Curves
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C Evaluation Details886

Generated Modality Text Speech

Beam size 5 1
Top-P - 0.7
maximum 256 1024
Repetition Penalty 1.0 1.3

Table 4: Comparison of Text and Speech Generation
Settings in evaluation.
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ASR Prompt:
"Please convert this audio to text: <speech_start>{speech tokens}<speech_end>."

TTS Prompt:
"Please convert this text to speech: {transcript}."

IC_TTT and IC_STS Prompt:
"<image>\nrovide a caption for the image."

IC_TTS Prompts:
"<image>\nTurn the image caption into spoken words"

IC_STT Prompts:
"<image>\nWrite down what you see in the image."

VQA_TTT and VQA_STS Prompt:
"<image>\n{question}\nAnswer the question using a single word or phrase."

VQA_TTS Prompts:
"<image>\nAnswer this question using speech.{question}\nAnswer the question
using a single word or phrase."

VQA_STT Prompts:
"<image>\nAnswer this question using text.{question}\nAnswer the question
using a single word or phrase."

Figure 6: Evaluation Prompts for different tasks.
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D Examples887
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Provide a caption for the image.

A cat is sitting on a pillow

Can you describe the image out loud?

The textual caption is “A cat sitting on a pillow near someone's lap”. 

Therefore, the audio caption is:

(A cat sitting on a pillow near somewhat is lap.)

Answer in speech, what color is the pillow?

The textual answer is “Red”. Therefore, the audio answer is:

(red)

(Answer in text, what color is the cat?)

White and brown

Provide a caption for the image.

A cat is sitting on a pillow

Can you describe the image out loud?

(adam birleys spots for sades on a rap and cushion of towl catches)

Answer in speech, what color is the pillow?

(while pillow)

((Answer in text, what color is the cat?)

Brown and white

(a) SVLA-2B-Text-Ins

Provide a caption for the image.

A cat is sitting on a pillow

Can you describe the image out loud?

The textual caption is “A cat sitting on a pillow near someone's lap”. 

Therefore, the audio caption is:

(A cat sitting on a pillow near somewhat is lap.)

Answer in speech, what color is the pillow?

The textual answer is “Red”. Therefore, the audio answer is:

(red)

(Answer in text, what color is the cat?)

White and brown

Provide a caption for the image.

A cat is sitting on a pillow

Can you describe the image out loud?

(adam birleys spots for sades on a rap and cushion of towl catches)

Answer in speech, what color is the pillow?

(while pillow)

((Answer in text, what color is the cat?)

Brown and white

(b) SVLA-2B

Figure 7: Comparison of SVLA-2B-Text-Ins and SVLA-2B in Multimodal Image Captioning and VQA Responses
(Example 2).

Provide a caption for the image.

A young woman holding some carnations in her hand.

Talk about what is shown in the image.

The textual caption is “A woman in plaid shirt holding flowers.”. 

Therefore, the audio caption is:

(a woman in plat shirt holding flowers)

Please give your answer verbally, how many people are there?

The textual answer is “1”. Therefore, the audio answer is:

(one)

(is there a red flower?)

The textual answer is "No". Therefore, the audio answer is:

(noo)

Provide a caption for the image.

A woman is holding some dandelions in a field.

Talk about what is shown in the image.

(small fimine fabrate ticket herhedawa an in the pressian neting day)

Please give your answer verbally, how many people are there?

(Onee)

(is there a red flower?)

(far)

(a) SVLA-2B-Text-Ins

Provide a caption for the image.

A young woman holding some carnations in her hand.

Talk about what is shown in the image.

The textual caption is “A woman in plaid shirt holding flowers.”. 

Therefore, the audio caption is:

(a woman in plat shirt holding flowers)

Please give your answer verbally, how many people are there?

The textual answer is “1”. Therefore, the audio answer is:

(one)

(is there a red flower?)

The textual answer is "No". Therefore, the audio answer is:

(noo)

Provide a caption for the image.

A woman is holding some dandelions in a field.

Talk about what is shown in the image.

(small fimine fabrate ticket herhedawa an in the pressian neting day)

Please give your answer verbally, how many people are there?

(Onee)

(is there a red flower?)

(far)

(b) SVLA-2B

Figure 8: Comparison of SVLA-2B-Text-Ins and SVLA-2B in Multimodal Image Captioning and VQA Responses
(Example 3).
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