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Abstract

Large Vision-Language Models have shown im-
pressive capabilities in tasks such as image cap-
tioning, visual question answering, and cross-
modal retrieval. However, there are still signifi-
cant challenges that need to be addressed in or-
der to fully unlock the potential of these models.
First, integrating speech, text, and vision into a
unified model is particularly difficult for tasks
like Spoken Image Captioning and Spoken Vi-
sual Question Answering, where the interaction
between these modalities introduces additional
complexity. Second, existing speech genera-
tion approaches diffe—some generate speech
directly, while others use an intermediate text
step—but their impact on fluency, coherence,
and accuracy remains unexplored. To address
these challenges, we propose SVLA, a unified
Speech-Vision-Language Assistant based on
a decoder-only transformer architecture that
seamlessly integrates multimodal inputs and
outputs. We enhance model performance with
a large-scale speech-text-image dataset con-
taining 38.2 million examples and 64.1 hours
of TTS-generated speech. Our approach ad-
vances multimodal understanding and genera-
tion, facilitating more effective integration of
speech, text, and vision (http://github.com/vIm-
svla/svla).

1 Introduction

Recent advances in Large Vision-Language Mod-
els (LVLMs) (OpenAl, 2023a; Li et al., 2023; Liu
etal., 2024; Alayrac et al., 2022) mark a significant
step toward multimodal Al, enabling models to in-
terpret and reason over visual and textual inputs.
However, these models remain constrained by their
reliance on text-based instructions and lack native
support for speech. Efforts such as LLaMA 3 (Tou-
vron et al., 2023) and Qwen-Audio (Chu et al.,
2023) have begun incorporating speech through
modality-specific encoders, these models remain
limited to speech perception and do not support
speech generation.

Recent models (Zhang et al., 2023a; Zhan et al.,
2024; Wu et al., 2024; Xu et al., 2025) address
this limitation by introducing discrete speech rep-
resentations, allowing language models to process
speech as semantic tokens within a unified speech-
text token space. This enables bidirectional mod-
eling and multimodal integration. However, most
systems remain focused on shallow tasks—such
as text-to-speech (Veaux et al., 2017), image-to-
music (Chowdhury et al., 2024), or basic audio
captioning (Kim et al., 2019)—and struggle with
more complex reasoning tasks like image caption-
ing (IC) or visual question answering (VQA) in-
volving spoken inputs or outputs. A key bottleneck
is the absence of large-scale, richly aligned datasets
spanning speech, text, and vision. Most models
are trained on unimodal or bimodal data, limiting
their ability to generalize to cognitively demanding,
speech-enabled multimodal reasoning.

Furthermore, two prominent paradigms have
emerged for enabling speech capabilities within
multimodal systems (Zhang et al., 2023a; Nach-
mani et al., 2023): Cross-modal Instruction and
Chain-of-Modality Instruction. Cross-modal In-
struction directly maps inputs across modalities,
such as converting an image to speech, offering
efficiency but frequently compromising semantic
coherence. In contrast, Chain-of-Modality Instruc-
tion involves first translating the input into textual
form, performing reasoning over the generated text,
and subsequently producing output in speech or
text form. This method leverages the structured rea-
soning and planning capabilities inherent to large
language models but may lead to verbosity. How-
ever, a comparative analysis of these paradigms
under consistent tri-modal settings within LVLMs
has not yet been conducted.

To address the above challenges, we introduce a
large-scale synthetic trimodal dataset—combining
text, image, and speech—to support instruction-
following in both written and spoken formats. This
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dataset integrates widely-used resources, includ-
ing VQAV2 (Goyal et al., 2017), LAION-600M
(Schuhmann et al., 2022), Visual Genome (Krishna
et al., 2016), LibriHeavy (Kang et al., 2024), Lib-
riSpeech (Panayotov et al., 2015), Common Voice
(Ardila et al., 2019), A-OKVQA (Schwenk et al.,
2022), VizWiz (Gurari et al., 2018), GQA (Hud-
son and Manning, 2019), and COCO-Caption (Lin
et al., 2014). To ensure natural-sounding and di-
verse speech data, we use a controllable text-to-
speech (TTS) system that varies accent, speaking
speed, and prosody. We further include noise and
stylistic augmentation from MUSAN (Snyder et al.,
2015) to improve robustness. Additionally, we im-
plement a modality-switching instruction tuning
strategy, enabling the model to flexibly process and
respond in either text or speech.

Building on this foundation, we propose SVLA
(Speech-Vision-Language Assistant), a unified,
self-supervised multimodal model capable of rea-
soning over image, text, and speech inputs and
generating outputs in either text or speech. SVLA
features a hybrid fusion architecture: it applies
early fusion between speech and text using dis-
crete semantic units, allowing both to be modeled
jointly in a shared language space (Zhan et al.,
2024; Zhang et al., 2023b), and late fusion for vi-
sual input by integrating image embeddings from
a pretrained encoder (Liu et al., 2024). This de-
sign supports complex tasks such as spoken VQA,
speech-driven image captioning, and multimodal
instruction following.

We also present the systematic evaluation com-
paring Cross-modal and Chain-of-Modality In-
struction within a unified vision-language-speech
framework. Our experiments span four con-
trolled configurations—text-to-text, text-to-speech,
speech-to-text, and speech-to-speech—using con-
sistent instruction formats and shared example nam-
ing across tasks. Benchmarks such as VQAv2 and
COCO-Captions are used to assess the trade-offs
between fluency, coherence, and semantic quality
under each setting.

Our contributions are as follows:

* We construct a large-scale, aligned speech-
text-vision dataset from diverse benchmarks,
supporting instruction-following in both tex-
tual and spoken forms.

* We propose SVLA, a unified tri-modal model
that integrates early fusion (text-speech) and

late fusion (vision) to enable robust multi-
modal reasoning and generation.

* We establish an evaluation framework that
systematically compares Cross-modal and
Chain-of-Modality paradigms across consis-
tent input-output modality configurations,
while also assessing robustness to variations
in accent and speaking speed.

2 Related Works

Speech-Enabled Vision-Language Models:
LVLMs (Yuan et al., 2021; Li et al., 2023; Liu
et al.,, 2024; Chen et al., 2024) were initially
designed for image-text reasoning, lacking native
speech support. Early extensions added speech
input and TTS output but remained limited in
conversational expressiveness (OpenAl, 2023b;
Dubey et al., 2024), with higher latency and
limited contextual adaptability due to multi-stage
pipelines. GPT-40 (OpenAl, 2024)addresses
these issues with native speech generation for
real-time, expressive interaction, though its
closed-source nature has driven open efforts to
replicate its capabilities. Models like NExT-GPT
(Wu et al., 2024), CoDi-1/2 (Tang et al., 2023a,
2024), Unified-1O (Lu et al., 2024), and AnyGPT
(Zhan et al., 2024) extend multimodal support
via modality-specific encoders or projections,
targeting perceptual tasks (e.g., image/audio/video
generation, ASR, TTS). However, cross-modal
reasoning (e.g., VQA, image captioning across
text and speech modalities) remains underexplored.
TMT (Kim et al., 2024) offers limited progress,
enabling speech output from image captions but
lacking joint multimodal reasoning.

Speech-Text-Vision Datasets: Most speech
datasets used in multimodal learning—such as Lib-
riSpeech (Panayotov et al., 2015), Common Voice
(Ardila et al., 2019), and GigaSpeech (Chen et al.,
2021)—are designed for ASR or TTS and do not
include vision. While datasets like SpeechCOCO
(Havard et al., 2017) and SpokenCOCO (Hsu et al.,
2020) add speech to image captioning, they re-
main limited in scale, task diversity, and interac-
tivity. Others, like How2 (Sanabria et al., 2018),
offer aligned speech and video, but focus on nar-
row instructional domains and do not support flex-
ible input-output modality switching. Some re-
cent works synthesize multimodal dialogues by
using large language models to generate text-based
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Figure 1: Pre-training data distribution across three
modalities: Image, Text, and Speech.

prompts, which are paired with audio and visual
content using tools like TTS and image generation
models. While useful for data augmentation, these
datasets often focus on perception tasks and lack
cognitively demanding reasoning challenges such
as VQA or multimodal instruction following.

Direct vs. Instruction-Based Speech Generation:
Speech generation in multi-modal systems gener-
ally follows one of two paradigms: direct genera-
tion, where speech is produced end-to-end with-
out textual intermediates, and instruction-based
generation, where models first generate text and
then synthesize speech from it. Instruction-based
approaches—used in models like GPT-40 (Ope-
nAl, 2024), AnyGPT (Zhan et al., 2024), NExT-
GPT (Wu et al., 2024), and SpeechGPT (Zhang
et al., 2023a)—offer modality consistency but often
produce redundant or unnatural phrasing. In con-
trast, direct approaches aim to generate speech di-
rectly from inputs (e.g., Spectron (Nachmani et al.,
2023)), allowing for more fluid prosody and con-
versational tone.

3 Data Generation

To construct a large-scale tri-modal dataset, we ex-
tend existing image-text corpora (Lin et al., 2014;
Schuhmann et al., 2022) with corresponding spo-
ken utterances. These datasets are selected for their
abundance, diversity, and broad coverage of real-
world visual and linguistic contexts, providing a
strong foundation for scalable multimodal learn-
ing. We synthesize speech from text using the
Melon-TTS model (Zhao et al., 2023), chosen for

its controllability over prosody and speaker char-
acteristics. To enhance diversity, we vary speak-
ing rates from 0.7x to 1.3x and include multiple
English accents, such as American, British, In-
dian, and Australian. Additionally, we introduce
environmental background noise—e.g., rain, foot-
steps, and ambient sounds—from the MUSAN cor-
pus (Snyder et al., 2015) to simulate realistic acous-
tic conditions. All audio is standardized to a 16
kHz sampling rate to ensure clarity and computa-
tional efficiency. This pipeline yields a rich and
varied speech-text-image dataset suitable for both
pre-training and fine-tuning multimodal models.

3.1 Pre-train dataset

Our pre-training strategy targets a unified speech-
vision-language model capable of TTS, ASR, im-
age captioning, and VQA. The training data in-
cludes: (1) 8M text-speech pairs from the pub-
licly available LibriHeavy corpus (Kang et al.,
2024) for speech generation and recognition, and
(2) 6M image-text-speech triples, where speech is
synthetically generated from image-caption pairs
in LAION-COCO (Schuhmann et al., 2022) and
question-answer pairs from Visual Genome (Kr-
ishna et al., 2016) to support vision-language rea-
soning. To enable modality switching, we use
instruction-style prompts (e.g., “Answer this ques-
tion in speech” or “Describe the image in text”),
guiding the model to produce either spoken or writ-
ten outputs. Speech outputs are capped at 5 seconds
for training efficiency. Figure 1 shows the modality
token distribution'. Additional details are provided
in Appendix A.

3.2 Visual Instruction dataset

For supervised fine-tuning (SFT), we adopt a simi-
lar structure to pre-training but introduce multi-turn
conversations to improve coherence and long-range
context retention. The text-speech subset includes
LibriSpeech (Panayotov et al., 2015) and Common-
Voice (Ardila et al., 2019), covering diverse lin-
guistic and command-oriented expressions. The
vision-text-speech subset incorporates VQAv2, A-
OKVQA (Schwenk et al., 2022), GQA (Hudson
and Manning, 2019), VizWiz (Gurari et al., 2018),
and COCO-Captions-2014, ensuring broad cover-
age of open-ended and visually grounded tasks. To
enable consistent comparison across modalities, we

'Token counts: text via Qwen-2.5-1.5B (Yang et al., 2024),
speech via SpeechTokenizer (Zhang et al., 2023b), and images
estimated at 256 tokens each.
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Figure 2: SVLA Architecture

design all tasks to support four input-output con-
figurations: text-to-text, text-to-speech, speech-to-
text, and speech-to-speech. Dialogue examples are
constructed to fit within a 10-second speech limit
and are paired with instruction prompts that guide
the model to transition between text, speech, and
vision as required. Additional details on the SFT
dataset construction are provided in Appendix A.

4 Model Architecture

Our architecture is a hybrid of LLaVA (Liu et al.,
2024) and AnyGPT (Zhan et al., 2024), combining
visual grounding with speech processing via dis-
crete tokens. It integrates speech and vision inputs
into a unified language model, denoted as fy(x),
where 6 represents model parameters. The overall
architecture is shown in Figure 2.

4.1 Vision Encoder

Given an input image X,,, we employ a pretrained
VIT-based vision encoder, such as CLIP (Radford
et al., 2021), denoted as g(+), to extract high-level
visual representations:

Zy = g(X,), Z, e RW*dv, (1)

Here, Z, is obtained from the final layer of the
vision encoder, where n, is the number of image
patches. Each visual token in Z, has a feature
dimension of d,,.

Next, to align visual embeddings with the LLM’s
word embedding space, we apply a learnable linear
projection layer W,,:

H, = W,Z,, H,¢e R, )

Here, H, represents the projected visual tokens,
now residing in the same dimensional space d;, as
the LLM’s text embeddings, ensuring compatibility
for multimodal fusion.

4.2 Speech Encoder and Tokenization

For speech input X, a pretrained speech encoder
s(-) generates a sequence of discrete tokens:

q; € {1,2,...,d5},

where T is the number of tokens and d; is the
speech vocabulary size. Each token ¢; is mapped
to a text-like representation (e.g., ((speech-i))) and
added to the LLM’s vocabulary, enabling text and
speech to be handled uniformly by the tokenizer.

Zs={q1,q,--.,q1.},

4.3 Multimodal Fusion

Given text tokens Z;, speech tokens Z,, and visual
embeddings H,, we construct the multimodal input
sequence:

X = |bos, boi, img, eoi, Z;, boa, Zs, eoa, eos],

where n = | X| is the sequence length. Special
tokens mark modality boundaries and control flow.

After embedding, we replace the placeholder
token img with H,, yielding:

El - [Eb057 Eboiy Hvy Eeoh EZtu
Eboay EZ37 Eeoaa Eeos]7
with B/ € RV *dn where n’ = n, +n — 1. The

LLM then processes E’ for multimodal understand-
ing.



Table 1: Performance of Text-Speech Tasks. We evaluate ASR on LibriSpeech (Panayotov et al., 2015) test-clean

and TTS on VCTK (Veaux et al., 2017)

ASR TTS
Model Backbone LibriSpeech VCTK

WER WER  Similarity
Human-level ‘ ‘ 5.8 ‘ 1.9 0.93
Wav2vec 2.0 (Papineni et al., 2002) 2.7
Whisper Large V3 (Radford et al., 2023) 1.8
VALL-E (Wang et al., 2023) - - 7.9 0.75
VILA (Fu et al., 2024) Mixtral 8x7B (Jiang et al., 2024) 8.1 - -
AnyGPT-7B LLaMA-2-7B 8.5 8.5 0.77
MIO-Ins (Wang et al., 2024) Yi-6B-Base (Al et al., 2024) 10.3 4.2 -
Qwen2.5-Omni-7B (Xu et al., 2025) Qwen2.5-7B (Al et al., 2024) 1.8 - -
SVLA-2B Qwen-1.5B 10.2 21.7 0.65
SVLA-2B-Text-Ins Qwen-1.5B 8.9 11.2 0.72

4.4 Speech Decoding

The multimodal LL.M outputs a sequence of pre-
dicted tokens, from which the speech-related to-
kens Z’ are extracted between the special tokens
boa and eoa. A pretrained speech decoder s~1()
then transforms these discrete tokens back into
speech waveforms:

Xi=s5"1(2)),

where Z/ represents the predicted discrete speech
token sequence, and X is the resulting synthesized
speech audio.

4.5 Instruction-Based Speech Generation

During pre-training (see Appendix A.2), the model
learns to generate both text and speech tokens di-
rectly. In SFT, text responses are always gener-
ated directly, while speech outputs follow two alter-
native strategies: direct generation or instruction-
based generation, which we compare experimen-
tally. For simpler tasks like ASR and TTS, we
apply lightweight prompts (e.g., “The transcript
of the given speech is:” for ASR, and “This is
how your text sounds in speech:” for TTS). For
more complex vision-language tasks—such as im-
age captioning and VQA—we adopt an instruction-
based approach: the model first generates a textual
response, which is then converted into speech us-
ing structured prompts like “The textual caption is
‘caption’. Therefore, the audio caption is:”.

5 Experiments

This section details our experimental setup, the
metrics used to assess performance, and the results
achieved.

5.1 Implementation Details

We use Qwen2.5-1.5B as our backbone LLM and
train it with PyTorch. The vision encoder is CLIP-
Large-Patch14-336 (Radford et al., 2021), which
produces 256 tokens per image. Speech data is han-
dled by the SpeechTokenizer (Zhang et al., 2023b),
which encodes each 1-second segment of audio into
50 discrete tokens. When higher speech fidelity is
required, SoundStorm-SpeechTokenizer? extends
this quantization approach to more nuanced tasks.
For speech-input settings in image captioning and
VQA, we use Melon-TTS to generate spoken ques-
tions or prompts, using the same configuration as
in the training set, including a mix of speaking
speeds and accents. More complementary details
are provided in Appendix B.

5.2 Metrics

Text-Output tasks: For tasks where the model
generates text outputs, we use Word Error Rate
(WER) for ASR, CIDEr (Vedantam et al., 2015)
for image captioning, and accuracy for VQA. These
metrics provide a standardized evaluation frame-
work for assessing performance across text-output
tasks.

Speech-output tasks: We evaluate speech gen-
eration using two methods: We transcribe model-
generated speech with Whisper Medium (Radford
et al., 2023) and compare the resulting text to hu-
man references (as in text-output tasks). However,
ASR models can exhibit biases that introduce tran-
scription errors, thereby distorting the perceived
quality of the generated speech. Therefore, we
use WavLM-TDNN?>to extract speech embeddings
from both generated and reference speech and mea-

Zhttps://github.com/ZhangXInFD/soundstorm-
speechtokenizer



Table 2: Comparison of models on Image Captioning and VQA tasks. We evaluate Image Captioning on COCO-
Caption-2014, COCO-Caption-2017, and Flickr8k datasets, while VQA performance is assessed on VQAv2-val,
OKVQA-test, GQA-test, and VizWiz datasets. Modalities are denoted as I (Image), T (Text), and S (Speech). *

indicates results on the test-dev set.

Model ‘ Backbone ‘ Input — Ouput ‘

Image Captioning ‘ VQA

‘ ‘COCO-2014-test COCO-2017-test  Flickr8k ‘ VQAv2-val OKVQA-test GQA-test VizWiz

TMT (Kim et al., 2024) ‘ - ‘ I-T 108.7

- 79.7 - - -

TMT (Kim et al., 2024) 1-S 78.7 - 55.2 - - -
InstructBLIP (Liu et al., 2024) Vicuna-7B +T—>T - 102.2 822 - 339 - 334
LLaVA (Liu et al., 2024) LLaMA-2-7B 4+T—-T - - 82.7 - - - -
LLaVA-1.5 (Liu et al., 2024) Vicuna-7B +T—>T - - - 78.5% - 62.0 50.0
AnyGPT-7B (Tang et al., 2023a) | LLaMA-2-7B +T—-T 107.5 - - - - - -
CoDi (Tang et al., 2023b) - +T—T 149.9 - - - - - -
MIO-Ins (Wang et al., 2024) Yi-6B-Base +T->T 120.4 - - 65.5 39.9 535
Next-GPT-7B (Wu et al., 2024) LLama-7B +T—-T 158.3 124.9 84.5 66.7 52.1 - 48.4
SVLA-2B Qwen-1.5B +T—T 120.0 117.8 61.4 68.7 454 533 57.7
Qwen-1.5B I+S—-T 114.5 107.0 57.7 529 25.1 37.7 52.3
Qwen-1.5B +T—S 2.0 22 1.7 4.0 4.0 3.7 0.0
Qwen-1.5B I+S—S 2.0 2.1 1.1 3.1 0.1 0.0 0.0
SVLA-2B-Text-Ins Qwen-1.5B +T—T 120.2 117.0 67.7 69.7 474 52.7 58.0
Qwen-1.5B +S—T 1194 112.6 59.2 52.7 28.7 38.1 51.7
Qwen-1.5B +T—S 64.7 53.36 49.4 37.5 11.6 29.6 29.8
Qwen-1.5B 1+S—S 62.2 52.18 46.4 29.4 6.08 23.7 26.1

sure their similarity (via cosine similarity). This
directly compares acoustic properties without rely-
ing on ASR.

5.3 Results

Text-Speech Performance: As shown in Table 1,
SVLA-2B-Text-Ins outperforms SVLA-2B on both
ASR and TTS, reducing ASR WER from 10.2 to
8.9 and TTS WER from 21.7 to 12 .2, while im-
proving similarity from 0.65 to 0.72. Prompting
with structured text (e.g., “This is the transcript:”)
boosts performance by providing clearer context.
While both models lag behind specialized systems
like Whisper and Wav2vec 2.0 (WER 2.7), SVLA-
2B-Text-Ins is competitive with AnyGPT-7B. The
results highlight a trade-oft: direct speech genera-
tion is more natural, but instruction-based prompts
yield greater clarity and accuracy.

Image Captioning Performance: From Table 2,
instruction tuning in SVLA-2B-Text-Ins leads to
minimal change in text-only captioning perfor-
mance. For instance, on COCO-2014, the CIDEr
score improves only slightly from 120.0 (SVLA-
2B) to 120.2. However, in the speech captioning
setting (I+S—S), instruction tuning results in a
substantial gain: SVLA-2B scores only 2.0, while
SVLA-2B-Text-Ins reaches 62.2. This highlights
the effectiveness of structured prompts (e.g., “The
textual caption is ... Therefore, the audio cap-
tion is:”) in guiding coherent speech generation.
Shttps://github.com/yangdongchao/UniAudio/

blob/main/UniAudio/tools/evaluation/compute_
similarity_vc.py

TMT (Kim et al., 2024), which performs [—S gen-
eration directly, achieves a CIDEr score of 78.7 on
COCO-2014. While upper SVLA-2B-Text-Ins, it
operates under a different paradigm—treating each
modality independently—whereas SVLA supports
unified multimodal reasoning across both text and
speech outputs.

VQA Performance: Table 2 shows that SVLA-
2B-Text-Ins performs competitively in the I[+T—T
VQA setting, despite using the smaller Qwen-
1.5B backbone compared to 7B-scale models.
While models like LLaVA-1.5 and Next-GPT-7B
achieve strong performance on benchmarks such as
VQAV2, OKVQA, and GQA, SVLA-2B-Text-Ins
achieves comparable results, with a VQAvV2 score
of 69.7 and a VizWiz score of 58.0. These results
demonstrate that a smaller, instruction-tuned model
can rival or even surpass larger alternatives.

However, performance declines in the I+S—T
setting, where the question is spoken. For example,
SVLA-2B-Text-Ins drops to 52.7 on VQAV2 and
28.7 on OKVQA—approximately 15-20 points
lower than in the I+T—T setting. This suggests
that the model performs more effectively when the
input question is provided in text rather than speech.
Speech output accuracy is generally lower than
text output across VQA tasks. In the I+T—S set-
ting, SVLA-2B-Text-Ins achieves 37.5 on VQAv2
and 11.6 on OKVQA, whereas in I+S—S, the
scores fall to 29.4 and 6.08, respectively. This
drop highlights the difficulty of reasoning directly
from speech inputs and generating accurate spoken
responses. These results suggest that using text
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Figure 3: Visualization of attention maps comparing SVLA-2B’s visual grounding accuracy with and without

intermediate textual instructions during speech generation.

as an intermediate representation enhances seman-
tic alignment, particularly for complex reasoning
tasks. By contrast, SVLA-2B completely fails to
handle VQA tasks.

5.4 Ablation Studies

Effect of Accent and Speaking Speed:
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Figure 4: Impact of accent and speaking speed on VQA
performance. Both plots show accuracy on VQAv2-val.

We evaluate the impact of different accents
and speaking speeds on VQA accuracy using the
SVLA-2B-Text-Ins model on the VQAv2-val set.
As show in table 4, in both the I+S—T and I+S—S
settings, American and British accents yield higher
performance, while Indian and Australian accents
result in noticeably lower accuracy. Notably, de-
spite being included in the training data, the In-
dian accent still underperforms, indicating potential
challenges in generalization or speech variability.
In terms of speaking speed, the model performs
best around the default rate (1.0x), with accuracy

dropping at both extremes. The decline is most
pronounced at 1.3%, suggesting that faster speech
reduces recognition and reasoning quality.

Where Do the Models Look in Images?: To
examine how different speech generation strategies
affect visual grounding, we visualize the model’s
attention maps in Figure 3. For each key word, we
show three attention maps: the first green map is
from the text output of SVLA-2B-Text-Ins, the sec-
ond green map from its instruction-based speech
output; and the blue map from SVLA-2B’s direct
speech output.The text output from SVLA-2B-Text-
Ins exhibits the most focused and accurate attention,
precisely grounding visual entities. Its speech out-
put (green) generally retains meaningful grounding,
showing acceptable attention consistency. In con-
trast, the speech output from SVLA-2B (blue) is
often unfocused or misaligned, failing to attend to
the relevant image regions. These results demon-
strate that textual instructions play a critical role in
guiding the model’s visual attention. Without the
intermediate text step, the model lacks semantic an-
choring and often fails to locate the correct objects
in the image, leading to degraded visual grounding
during speech generation.

The Limits of ASR-Based Evaluation: ASR-
based evaluation falls short in assessing speech
output quality, as it often misinterprets minor pho-
netic variations as errors—even when the spoken
response is semantically accurate. As shown in Fig-
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Figure 5: Comparison of SVLA-2B-Text-Ins and SVLA-2B in Multimodal Image Captioning and VQA Responses.

ure Sa, the model’s speech output closely matches
the intended text, yet ASR transcribes words like
“camera” as “camaral”, or “tan” as “tanh”. These
subtle differences, while perceptually acceptable,
are unfairly penalized because ASR prioritizes ex-
act word-level matching over acoustic or semantic
similarity. This limitation underscores the need
for more robust evaluation metrics that go beyond
transcription accuracy. In particular, speech-based
VQA and captioning tasks would benefit from met-
rics that directly assess the fidelity of the generated
speech waveform—capturing both semantic cor-
rectness and acoustic naturalness—without relying
solely on error-prone intermediate transcriptions.

6 [Ethical Considerations

We utilize publicly available datasets containing
licensed image-text and speech-text pairs. All
speech samples are either synthetic or derived from
open corpora, explicitly excluding personal or sen-
sitive data. While our datasets incorporate diverse
accents and varying speaking rates to enhance rep-
resentativeness, synthetic speech may still not cap-
ture the complete variability inherent in natural
human speech. Observed performance disparities
across different conditions highlight the necessity
of ongoing research in fairness and robustness.

7 Limitations:

Our study has several limitations. First, the speech
data is generated using a TTS model, which may
lack the natural prosody and emotional variation

of real human speech. Despite augmentations in
accent, speed, and noise, the resulting speech may
still be less diverse than natural input. Second, we
use the Qwen2.5-1.5B backbone due to resource
constraints, which limits model capacity. Third,
the speech tokenizer introduces decoding errors,
reducing intelligibility even when the underlying
text is accurate.

8 Conclusion

In this work, we introduce SVLA, a unified Speech-
Text-Vision Assistant capable of handling both lan-
guage tasks (ASR, TTS) and vision-language rea-
soning tasks (image captioning, VQA). To support
the community in building similar models, we also
release a large-scale tri-modal dataset encompass-
ing speech, text, and vision. Additionally, we an-
alyze two settings for speech generation: directly
producing spoken output and using a text prompt
to guide speech synthesis. Our experiments show
that while the model performs better with text out-
puts, speech outputs benefit from an instructive
text prompt, yielding more coherent. In future
work, we plan to incorporate real human speech,
improve speech tokenization quality, and explore
larger model backbones to better support nuanced
prosody, robustness to speech variability, and high-
fidelity speech generation.
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A Training

A.1 Data Generation

Table 1 provides a detailed breakdown of the pre-
training dataset, categorized into two stages: Stage
1, which consists solely of text-speech tasks, and
Stage 2, which expands to include image-text-
speech tasks. In Stage 1, the dataset comprises
2.0M samples from the Libriheavy corpus for TTS
and ASR tasks, yielding a total of 1.5M text to-
kens, 7.4B speech tokens, and approximately 8.2K
hours of speech. Stage 2 significantly scales up
the dataset, incorporating Libriheavy (6M sam-
ples) alongside multimodal datasets such as Laion
and VG, covering image-captioning (IC) and VQA
tasks in both text and speech modalities. The total
dataset spans 34.3M samples, 615.9M text tokens,
9.1B speech tokens, and 50.8K hours of speech,
making it one of the most extensive speech-text-
vision corpora for multimodal learning. Notably,
the dataset supports a diverse set of multimodal
tasks, including IC-TTT, IC-TTS, IC-STT, IC-STS,
VQA-TTT, VQA-TTS, VQA-STT, and VQA-STS,
ensuring broad coverage across different input-
output combinations.

Table 2 presents the SFT dataset, covering both
text-speech and image-text-speech tasks. The
dataset includes 2.5M samples, with 308K im-
age samples, 152M text tokens, and 920M speech
tokens, totaling 33.9M seconds (5102 hours) of
speech data. The text-speech tasks include 150K
ASR samples from Librispeech and 388K TTS
samples from CommandVoice, contributing 496
and 559 hours of speech, respectively. In the
image-text-speech tasks, various VQA datasets
(VQA, A-OKVQA, GQA, VizWiz) and COCO-
Caption-2014 support text-based (VQA-TTT, IC-
TTT), text-to-speech (VQA-TTS, IC-TTS), speech-
to-text (VQA-STT, IC-STT), and speech-to-speech
(VQA-STS, IC-STS) tasks. The dataset is diverse
and well-balanced, ensuring broad multimodal cov-
erage for fine-tuning models on speech, text, and
vision-related tasks. Figure 1, Figure 2, Figure 3,
and Figure 4 show the prompts of tasks used to
train the models.

A.2 Training Strategy

Our model is trained in three sequential phases,
progressively increasing multimodal complexity to
enhance stability, efficiency, and modality integra-
tion.
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Stage 1 - Text-Speech Pre-Training The model
learns text-speech alignment through ASR and TTS
on large-scale paired datasets, establishing a strong
linguistic foundation before incorporating vision.

Stage 2 - Vision-Text-Speech Pre-Training
Training expands to include vision-based tasks like
VQA and image captioning alongside ASR and
TTS, enabling the model to unify vision, text, and
speech representations.

Stage 3 - Supervised Fine-Tuning The model
is refined through supervised fine-tuning on
benchmark-aligned datasets, focusing on multi-
turn conversations, history retention, and multi-
modal reasoning.



Dataset Task No. Sample Image Text Tokens Speech Tokens Speech Duration (s) Speech Duration (h)
Pretrain Dataset - Stage 1
Text-Speech tasks
Libriheay TTS 1.0M 0 56.7M 730M 14.6M 4.1K
Y ASR 1.0M 0 60.0M 736M 14.7M 4.1K
Total - 2.0M 0 1.5SM 7.4B 29.3M 8.2K
Pretrain Dataset - Stage 2
Text-Speech tasks
Librihea TTS 3.0M 0 151.6M 2.2B 44.2M 12.3K
VY ASR 3.0M 0 207.6M 22B 44.4M 123K
Image-Text-Speech tasks
IC-TTT 5.8M 111.1M 0 0 0
Laion IC-TTS 5.8M 58M 48.4M 1.1B 22.0M 6.1K
ao IC-STT 58M 63.1M 1.0B 202M 5.6K
IC-STS 5.8M 0 1.9B 38.6M 10.7K
VQA-TTT 1.3M 12.1M 0 0 0
VG VQA-TTS 1.3M 108K 19.1M 97.0M 1.9M 538
VQA-STT 1.3M 2.9M 321.0M 6.4M 1.8K
VQA-STS 1.3M 0 249.6M 182.4M 1.4K
Total - 343M 23.5M 615.9M 9.1B 182.8M 50.8K
Table 1: Statistics of the pretraining dataset
Dataset Task No. Sample Image Text Tokens Speech Tokens Speech Duration (s) Speech Duration (h)
Text-Speech tasks
Librispeech ASR 150K 0 5.4M 89.2M 1.8M 496.0
CommandVoice TTS 388K 0 4.8M 101.8M 2.0M 559.3
Image-Text-Speech tasks
VQA-TTT 84K 4.7M 0 0 0
VQA-TTS 42K 3.0M 13M 260K 72
vaa VQA-STT 42K 83K 282K 46.1M 921K 256
VQA-STS 84K 0 86.0M 17.2M 476
VQA-TTT 50K 520.0K 0 0 0
VQA-TTS 25K 333K 1.4M 28K 8
A-OKVQA VQA-STT 25K 0K 31K M 102K 28
VQA-STS 50K 0 9.5M 190K 53
VQA-TTT 72K 11.5M 0 0 0
VQA-TTS 36K 6.7M 26.8M 536K 149
aQa VQA-STT 36K 72K 528.5K 100.5M 2.0M 558
VQA-STS 72K 0 168.0M 3.4M 933
VQA-TTT 20K 780.5K 0 0 0
g VQA-TTS 10K 413K 883K 17.7K 5
Vizwiz VQA-STT ok 2K 28.8K 57M 114.0K 317
VQA-STS 20K 0 11.5M 230.7K 64.1
IC-TTT 414K 107.0M 0 0 0
. IC-TTS 212K 3.3M 39.4M 789K 219
COCO-Caption-2014 1 g1p 2k K 2.4M 51.3M M 285
IC-STS 414K 0 163.7M 3.3M 909
Total - 2.5M 308K 152M 920M 33.9M 5102

Table 2: Statistics of the SFT dataset

13



ASR (Automatic Speech Recognition) Prompts:
* “Please convert this audio to text: "
* “Transcribe the following audio file, please: "
* “Can you convert this speech to text? "
* “Generate text from this audio recording: "
* “Please write out what’s being said in this audio:
* “Turn this voice recording into text, please: "
* “Please create a transcript of this audio: "
* “Can you transcribe this audio? "
* “Convert this spoken content into written text: "
* “Please extract text from this speech: "
* “Transcribe the spoken words in this audio file: "
* “Create a written version of this audio: "
* “Convert the spoken words to text: "
* “Please generate a transcript from this recording: "

¢ “Transform the audio into a text document: "

Example Usage:

"Please convert this audio to text: <speech_start>{speech_tokens}<speech_end>"

Figure 1: Prompts for ASR Tasks.

14




TTS (Text-to-Speech) Prompts:
* “Please convert this text to speech: "
* “Turn this text into audio, please: "
* “Generate speech from this text: "
* “Please speak out this text: "
* “Convert these words to speech, please: "
* “Please make an audio version of this text: "
* “Can you read this text aloud: "
* “Transform this text into speech: "
* “Please give a voice to this text: "
* “Read out this text, please: "
* “Create a spoken version of this text: "
* “Convert the written text to speech: "
* “Turn the following words into sound: "
* “Provide an audio rendition of this text: "
* “Generate an audio file of these words: "

Example Usage:

"Turn this text into audio: {transcript}”

Figure 2: Prompts for TTS Tasks.
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Captioning Prompts:
IC_TTT (Text-to-Text) and Caption_STS (Speech-to-Speech):

* “What do you see in the image?"

* “Explain what is shown in the picture."

* “Provide a caption for the image."

* “Describe the objects or people in the image."

Example Usage:

"<image>\nWhat do you see in the image?"

IC_TTS (Text-to-Speech):
* “Can you describe the image out loud?"
» “Read the description of the image aloud."
* “Turn the image caption into spoken words."
* “Provide a spoken description of the picture."

Example Usage:

"<image>\nCan you describe the image out loud?”

IC_STT (Speech-to-Text):
* “Write down what you see in the image."
* “Can you write a detailed description of the picture?"
* “Write a summary of the scene in the image."
* “Write down the elements present in the picture."

Example Usage:

"<image>\n Write down what you see in the image."”

Figure 3: Prompts for Image Captioning Tasks.
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VQA (Visual Question Answering) Prompts:
VQA_TTT (Text-to-Text) and VQA_STS (Speech-to-Speech):
Example Usage:

"<image>\n{question}\nAnswer the question using a single word or phrase."

VQA_STT (Speech-Text-to):
* “Please provide your answer in writing."
* “Respond to the question with a written explanation."
* “Answer this question using text."
* “Type your response to the question."
* “Write down your answer clearly."
* “Provide a detailed answer in text format."
* “Explain your response in written form."
* “Answer the question by typing a full response."

Example Usage:

"<image>\nPlease provide your answer in writing.\n{question}\nAnswer the quest
-ion using a single word or phrase.”

VQA_TTS (Text-to-Speech):
* ‘Respond to this question out loud."
* ‘Please give your answer verbally."
* ‘Provide a spoken response to the question."”
* ‘Answer this question using speech."
* ‘Explain your response in spoken form."

Example Usage:

"<image>\nRespond to this question out loud.\n{question}\nAnswer the quest
-ion using a single word or phrase.”

Figure 4: Prompts for VQA Tasks.
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B Implementation Details

Figure 5 compares the loss curves for pre-training
and supervised fine-tuning (SFT). Figure 5a plot
shows the pre-training loss, where the raw loss ex-
hibits high variance but progressively decreases,
stabilizing after around 400K steps. The smoothed
loss curve (window=90) highlights a consistent
downward trend, indicating stable convergence.
The 5b illustrates the SFT loss, comparing models
with and without text-output instructions. While
both configurations show a decreasing trend, the
model trained with text-output instructions (red)
achieves consistently lower loss than the version
without instructions (green), suggesting that struc-
tured textual guidance improves fine-tuning effi-
ciency and convergence. The variance in SFT loss
remains higher compared to pre-training, reflecting
the increased complexity of supervised instruction
tuning.
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Table 3: Implementation Details for Model, Pre-Training, and Supervised Fine-Tuning

Model and Hardware
LLM Qwen2.5-1.5B
Vision Encoder openai/clip-vit-large-patch14-336
Speech Encoder SpeechTokenizer (1s — 50 tokens),
Speech Decoder SoundStorm-SpeechTokenizer
Frameworks PyTorch, DeepSpeed
Training Configurations
Pre-Training Supervised Fine-Tuning
Batch Size 32 8
Epochs 1 2
Optimizer Adam Adam
Learning Rate 2% 107° 1x107°
Warmup Ratio 0.03 0.02
LR Scheduler Cosine Cosine
Training Steps 1.2M 600K
Training Epochs 1 2
Maximum Tokens 4096 4096
GPUs 8 x NVIDIA H100 4 x NVIDIA H100

DeepSpeed Config

zero2

—— Smoothed Pre-Training Loss (window=90)

Raw Pre-Training Loss

200K

400K

600K
Steps

800K 1000K.

(a) Pre-training Loss

1200K

100K 200K 300K
Steps

(b) SFT loss

Figure 5: Comparison of Pre-training and SFT Loss Curves
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C Evaluation Details

Generated Modality ‘ Text Speech

Beam size 5 1
Top-P - 0.7
maximum 256 1024
Repetition Penalty 1.0 1.3

Table 4: Comparison of Text and Speech Generation
Settings in evaluation.



ASR Prompt:

"Please convert this audio to text: <speech_start>{speech tokens}<speech_end>."
TTS Prompt:

"Please convert this text to speech: {transcript}.”

IC_TTT and IC_STS Prompt:

"<image>\nrovide a caption for the image."
IC_TTS Prompts:

"<image>\nTurn the image caption into spoken words
IC_STT Prompts:

"<image>\nWrite down what you see in the image.”
VQA_TTT and VQA_STS Prompt:
"<image>\n{question}\nAnswer the question using a single word or phrase."
VQA_TTS Prompts:

"<image>\nAnswer this question using speech.{question}\nAnswer the question
using a single word or phrase.”
VQA_STT Prompts:

"<image>\nAnswer this question using text.{question}\nAnswer the question
using a single word or phrase.”

n

Figure 6: Evaluation Prompts for different tasks.
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D Examples
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Provide a caption for the image. Provide a caption for the image.

) -
i i
[ A cat is sitting on a pillow @J [ A cat is sitting on a pillow @J
[ ? Can you describe the image out loud? J I ? Can you describe the image out loud? J
The textual caption is “A cat sitting on a pillow near someone's lap™. ----------|~-|||--~-|||-----|||1|||||||l|||||[||"||||||||||||--|||--I"l-:--||||||||||---------
Therefore, the audio caption is: adam birleys spots for sades on a rap and cushion of towl catches
st e ¢ R . )
(A cat sitting on a pillow near somewhat is lap.) @ s

I ? Answer in speech, what color is the pillow? J

-~ - - "
[ . Answer in speech, what color is the pillow? J

o

red

(red) =/ - oo
- e e " ((Answer in text, what color is the cat?)
i (Answer in text, what color is the cat?)

[The textual answer is “Red”. Therefore, the audio answer is:

White and brown @ Brown and white g

. J . J

(a) SVLA-2B-Text-Ins (b) SVLA-2B

Figure 7: Comparison of SVLA-2B-Text-Ins and SVLA-2B in Multimodal Image Captioning and VQA Responses
(Example 2).

Provide a caption for the image. Provide a caption for the image.

~ -
i i
[ A young woman holding some carnations in her hand. J [ A woman is holding some dandelions in a field. @]
[ ™ Talk about what is shown in the image. ] [ S Talk about what is shown in the imageAJ
The textual caption is “A woman in plaid shirt holding flowers.”. -----.--.-|--|||-..-|||.-.--||||||||||||||||||||||||||||]|||||..|||..]|||.....||....|||........‘
Therefore, the audio caption is: (small fimine fabrate ticket herhedawa an in the pressian neting day)

s o e e
(awoman in plat shirt holding flowers)

)

- -
[ . Please give your answer verbally, how many people are there? J

[ S Please give your answer verbally, how many people are there? ‘

oA
(one)

[The textual answer is “17. Therefore, the audio answer is:

e

[ = e J

(is there a red flower?)

(is there a red flower?)

v

[ e J

The textual answer is “No". Therefore, the audio answer is:
@
-

(noo)

J
- J & J

(a) SVLA-2B-Text-Ins (b) SVLA-2B

Figure 8: Comparison of SVLA-2B-Text-Ins and SVLA-2B in Multimodal Image Captioning and VQA Responses
(Example 3).
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