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Abstract

The main objective of Knowledge Graph (KG)001
embeddings is to learn low-dimensional repre-002
sentations of entities and relations, enabling the003
prediction of missing facts. A significant chal-004
lenge in achieving better KG embeddings lies005
in capturing relation patterns, including symme-006
try, antisymmetry, inversion, commutative com-007
position, non-commutative composition, hier-008
archy, and multiplicity. This study introduces009
a novel model called 3H-TH (3D Rotation and010
Translation in Hyperbolic space) that captures011
these relation patterns simultaneously. In con-012
trast, previous attempts have not achieved satis-013
factory performance across all the mentioned014
properties at the same time. The experimental015
results demonstrate that the new model outper-016
forms existing state-of-the-art models in terms017
of accuracy, hierarchy property, and other rela-018
tion patterns in low-dimensional space, mean-019
while performing similarly in high-dimensional020
space.021

1 Introduction022

The components of a knowledge graph are collec-023

tions of factual triples, where each triple (h, r, t)024

denotes a relation r between a head entity h and025

a tail entity t; toy examples are shown in Fig. 1.026

Freebase (Bollacker et al., 2008), Yago (Suchanek027

et al., 2007), and WordNet (Miller, 1995) are some028

examples of knowledge graphs used in the real029

world. Meanwhile, applications such as question-030

answering (Hao et al., 2017), information retrieval031

(Xiong et al., 2017), recommender systems (Zhang032

et al., 2016), and natural language processing (Yang033

and Mitchell, 2019) may find significant value for034

knowledge graphs. Therefore, knowledge graph035

research is receiving increasing attention in both036

the academic and business domains.037

Predicting missing links is a crucial aspect of038

knowledge graphs, given their typical incomplete-039

ness. In recent years, significant research efforts040
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Figure 1: Toy examples for three difficult relation pat-
terns. Our approach can perform well in Hierarchy,
Multiplicity, and Non-Commutative Composition.

have focused on addressing this challenge through 041

the utilization of knowledge graph embedding 042

(KGE) techniques, which involve learning low- 043

dimensional representations of entities and rela- 044

tions (Bordes et al., 2013; Trouillon et al., 2016). 045

KGE approaches have demonstrated scalability and 046

efficiency in modeling and inferring knowledge 047

graph entities and relations based on available facts. 048

A major issue in KGE research concerned sev- 049

eral relation patterns, including symmetry, antisym- 050

metry, inversion, composition (i.e., commutative 051

and non-commutative composition), hierarchy, and 052

multiplicity (see Appendix A.8). In fact, several 053

current approaches have attempted to model one or 054

more of the above relation patterns (Bordes et al., 055

2013; Sun et al., 2019; Chami et al., 2020; Cao 056

et al., 2021). The TransE (Bordes et al., 2013), 057

which models the antisymmetry, inversion, and 058

composition patterns, represents relations as trans- 059

lations. The RotatE (Sun et al., 2019) represents 060
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Method Symmetry Antisymmetry Inversion Commutative Non-commutative Hierarchy Multiplicity
TransE (TE) ✓ ✓ ✓
RotatE (2E) ✓ ✓ ✓ ✓
QuatE (3E) ✓ ✓ ✓ ✓ ✓
MuRP (TH) ✓ ✓ ✓ ✓
RotH (2H) ✓ ✓ ✓ ✓ ✓ ✓
DualE ✓ ✓ ✓ ✓ ✓ ✓
(Proposal) 3H-TH ✓ ✓ ✓ ✓ ✓ ✓ ✓

Table 1: Relation patterns for existing and proposed models (✓means “can”)

the relation as a rotation and aims to model symme-061

try, antisymmetry, inversion, and composition. For062

some difficult patterns (see Fig. 1), including non-063

commutative composition, hierarchy, and multiplic-064

ity, the AttH (Chami et al., 2020) embeds relation065

in hyperbolic space to enable relations to acquire066

hierarchy property. The DualE (Cao et al., 2021)067

attempts to combine translation and rotation opera-068

tions to model multiple relations. Such approaches,069

however, have failed to perform well on all the070

above relation patterns simultaneously as shown in071

Table 1. Our proposed method 3H-TH, meaning072

3D rotation in hyperbolic space and translation in073

hyperbolic space, can simultaneously model these074

relation patterns.075

Here we present how our proposed method (3H-076

TH) works for the difficult relation pattern exam-077

ples in Fig. 1. By embedding the entities and078

relations in hyperbolic space, we can allow the079

KG model to acquire hierarchy properties so that080

we can more clearly distinguish between the dif-081

ferent hierarchies of entities, for example, movie082

director, name, and actor. Besides, to solve non-083

commutative problems, for example (see Fig. 1), if084

the mother of A’s father (B) is C while the father of085

A’s mother (D) is E, then C and E are equal if the086

relations were commutative, we use the quaternion087

geometry property (non-commutative) to enable088

the model to obtain a non-commutative composi-089

tion pattern. Finally, we try to combine rotation and090

translation operations to obtain multiplicity proper-091

ties, e.g. different relations exist between the same092

entities (e.g., award-winner, director).093

Moreover, our study provides some important094

insights into developing several comparable meth-095

ods to explore the impact of a combination of096

translation and rotation in Euclidean or hyperbolic097

space, as well as both simultaneously. We evalu-098

ate the new model on three KGE datasets includ-099

ing WN18RR (Dettmers et al., 2018), FB15K-237100

(Toutanova and Chen, 2015), and FB15K (Bor-101

des et al., 2013). Experimental results show that102

the new model outperforms existing state-of-the- 103

art models in terms of accuracy, hierarchy prop- 104

erty, and other relation patterns in low-dimensional 105

space, meanwhile performing similarly in high- 106

dimensional space, which indicates that the new 107

model 3H-TH can simultaneously model symmetry, 108

antisymmetry, inversion, composition, hierarchy, 109

and multiplicity relation patterns. 110

2 Related Work 111

Knowledge graph embedding has received a lot of 112

attention from researchers in recent years. One 113

of the main KGE directions has been led by 114

translation-based and rotation-based approaches. 115

Another key area is hyperbolic KGE, which en- 116

ables models to acquire hierarchy property. In par- 117

ticular, our approach advances in both directions 118

and acquires both advantages. 119

Translation-based approach. One of the widely 120

adopted methods in KGE is the translation-based 121

approach, exemplified by TransE (Bordes et al., 122

2013), which represents relation vectors as trans- 123

lations in the vector space. In this approach, the 124

relationship between the head and tail entities is 125

approximated by adding the relation vector to the 126

head entity vector, resulting in a representation that 127

is expected to be close to the tail entity vector. Af- 128

ter TransE, there has been an increasing amount 129

of literature on its extension. TransH (Wang et al., 130

2014) represents a relation as a hyperplane to help 131

the model perform better on complex relations. By 132

embedding entities and relations in separate spaces 133

with a shared projection matrix, TransR (Lin et al., 134

2015) further creates a relation-specific space to ob- 135

tain a more expressive model for different types of 136

entities and relations. Compared to TransR, TransD 137

(Ji et al., 2015) employs independent projection 138

vectors for each object and relation, which can re- 139

duce the amount of computation. Although these 140

methods are relatively simple and have only a few 141

parameters, they do not effectively express crucial 142
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relation patterns such as symmetry, hierarchy, and143

multiplicity relations (Table 1).144

Rotation-based approach. RotatE (Sun et al.,145

2019) introduced a new direction as rotation-146

based methods, which represents the relation vec-147

tors as rotation in complex vector space and can148

model various relation patterns, including sym-149

metry, antisymmetry, inversion, and composition.150

QuatE (Zhang et al., 2019) substitutes 2D rota-151

tion with quaternion operation (3D rotation) in152

quaternion space, aiming to obtain a more expres-153

sive model than RotatE. Furthermore, the incor-154

poration of 3D rotation enables the model to cap-155

ture the non-commutative composition of relations,156

leveraging the geometric properties of quaternions157

(wherein two 3D rotations are known to be non-158

commutative). However, these rotation operations159

cannot solve hierarchy and multiplicity (Table 1).160

DualE (Cao et al., 2021) presents a solution to the161

multiplicity problem by combining translation and162

rotation operations. However, the experimental163

results discussed in this paper do not provide con-164

clusive evidence of the model’s effectiveness in165

handling multiple relation data.166

Hyperbolic KGE. One of the major challenges167

for KGE is the hierarchy problem. Hyperbolic168

geometry has been shown to provide an efficient169

approach to representing KG entities and relations170

in low-dimensional space while maintaining latent171

hierarchy properties. MuRP (Balazevic et al., 2019)172

optimizes the hyperbolic distance between the pro-173

jected head entity and the translational tail entity174

to achieve comparable results by using fewer di-175

mensions than the previous methods. RotH (Chami176

et al., 2020) tries to substitute translation opera-177

tions with rotation operations to obtain more re-178

lation patterns properties like RotatE. However,179

there is still room for improvement in handling180

other relation patterns, particularly in terms of mul-181

tiplicity and non-commutative composition proper-182

ties. BiQUE(Guo and Kok, 2021) utilizes biquater-183

nions, which encompass both circular rotations in184

Euclidean space and hyperbolic rotations, aim to185

acquire hierarchy properties and RotatE-based re-186

lation patterns, while this approach struggles to187

effectively capture the Multiplicity property. Our188

proposed model 3H-TH leverages translation, 3D189

rotation, and hyperbolic embedding to offer a com-190

prehensive and expressive representation of entities191

and relations, encompassing various relation pat-192

terns (Table 1).193

3 Problem Formulation and Background 194

We describe the KGE problem and present some 195

related methods before our approach part. 196

3.1 Knowledge graph embedding 197

Given a knowledge graph with a set of fact triples 198

(h, r, t) ∈ E ⊆ V × R × V , where V and R rep- 199

resent sets of entities and relations, respectively. 200

Mapping entities v ∈ V to embeddings ev in kV 201

dimensions and relations r ∈ R to embeddings er 202

in kR dimensions is the goal of KGE. 203

We use the scoring function s : V ×R×V → R 204

to measure the difference between the transformed 205

entities and target entities, and the difference is 206

mainly composed of distance including Euclidean 207

distance: 208

dE (x,y) = ∥x− y∥ 209

and hyperbolic distance (Ganea et al., 2018): 210

dξr (x,y) =
2√
ξr
tanh−1(

√
ξr|| − x⊕ξr y||),

(1)

211

where ∥·∥, ⊕ξr , and ξr represent L2 norm, Möbius 212

addition (see Equation 11), and curvature in hyper- 213

bolic space, respectively. 214

3.2 TransE 215

Inspired by word2vec (Mikolov et al., 2013) in 216

the domain of word embedding, TransE (Bordes 217

et al., 2013) is the first translation-based work in the 218

field of KGE, representing relations as translations 219

in Euclidean space. Given triple vectors (eh ∈ 220

Rk, er ∈ Rk, et ∈ Rk), the scoring function of 221

TransE is 222

s = −dE (eh + er, et) , 223

then maximize s to train this model. 224

3.3 2D and 3D rotation 225

To enable KGE models to acquire more relation 226

patterns, including symmetry, antisymmetry, inver- 227

sion, and composition, RotatE (Sun et al., 2019) 228

represents relation as 2D rotation in complex space 229

C. Given triple vectors (eh ∈ Rk, cr ∈ C
k
2 , et ∈ 230

Rk), the scoring function of RotatE is 231

s = −dE (eh ◦ cr, et) , 232

where the elements of cr are constrained to be on 233

the unit circle in C, i.e., |(cr)i| = 1, and the symbol 234

◦ denotes Hadamard product. 235
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Model Relation embeddings Translation Rotation Scoring function
TransE (TE) er E −dE (eh + er, et) +bh+bt
RotatE (2E) cr 2D in E −dE (eh ◦ cr, et) +bh+bt
QuatE (3E) qr 3D in E (eh ⊗ q▷

r) · et +bh+bt

MuRP (TH) br H −dξr
(
bh ⊕ξr br,bt

)2
+bh+bt

RotH (2H) cr 2D in H −dξr (bh ◦ cr,bt)
2+bh+bt

3H qr 3D in H −dξr (bh ⊗ qr,bt)
2+bh+bt

2E-TE cr, er E 2D in E −dE (eh ◦ cr + er, et) +bh+bt
3E-TE qr, er E 3D in E −dE (eh ⊗ q▷

r + er, et) +bh+bt

2E-TE-2H-TH c(r,E), er, c(r,H),br E, H 2D in E, H −dξr
((
bγ ◦ c(r,H)

)
⊕ξr br,bt

)2
+bh+bt

3H-TH qr,br H 3D in H −dξr
(
(bh ⊗ q▷

r)⊕ξr br,bt

)2
+bh+bt

3E-TE-3H-TH q(r,E), er,q(r,H),br E, H 3D in E, H −dξr
((

bλ ⊗ q▷
(r,H)

)
⊕ξr br,bt

)2
+bh+bt

Table 2: Six component models and examples of composite models. 3H is a new component model for 3D rotation
in hyperbolic space. The composite model 3H-TH performed best in the experiment. E and H in the table represent
Euclidean and hyperbolic space, respectively. q▷

r denotes normalization, ◦ denotes Hadamard product, and ⊗
denotes Hamilton product. Also, bγ := eh ◦ c(r,E) + er and bλ := eh ⊗ q▷

(r,E) + er are used to simplify the
formula.

QuatE (Zhang et al., 2019) replaces 2D rota-236

tion with a quaternion operation (3D rotation)237

in quaternion space Q, with the aim of obtain-238

ing a more expressive model than RotatE. Given239

eh ∈ Rk,qr ∈ Q
k
4 , et ∈ Rk, the scoring function240

of QuatE is241

s = (eh ⊗ q▷
r) · et242

Where q▷
r , ⊗, and · represent quaternion normal-243

ization, Hamilton product, and dot product, respec-244

tively (see Appendix A.1).245

3.4 Hyperbolic geometry246

We give a brief summary of hyperbolic geometry,247

and all the hyperbolic geometry equations that we248

need to use are shown in Appendix A.2, including249

the logarithmic transformation logξr0 (v), the expo-250

nential transformation expξr0 (y), and the Möbius251

addition (x⊕ξr y).252

MuRP (Balazevic et al., 2019) is the first paper to253

introduce translation in hyperbolic space B. Given254

triple vectors (bh ∈ Bk,br ∈ Bk,bt ∈ Bk), the255

scoring function is256

s = −dξr
(
bh ⊕ξr br,bt

)2
,257

where ⊕ξr and dξr(., .) represent Möbius addition258

and hyperbolic distance respectively.259

RotH (Chami et al., 2020) aims to replace trans-260

lation operations with rotation operations in hy-261

perbolic space, similar to how RotatE operates in262

Euclidean space, in order to capture additional re-263

lational patterns. Given triple vectors (bh ∈ Bk,264

cr ∈ C
k
2 , bt ∈ Bk), the scoring function is defined 265

as 266

s = −dξr (bh ◦ cr,bt)
2, 267

where the elements of cr are constrained to be on 268

the unit circle in C. 269

4 Our Approach 270

Our proposed model aims to enhance the repre- 271

sentation of entities and relations by incorporating 272

various relation patterns, with a particular focus on 273

non-commutative composition, multiplicity, and 274

hierarchy. To achieve this, we leverage techniques 275

such as translation, 3D rotation, and hyperbolic 276

embedding, allowing for a more expressive and 277

comprehensive representation. 278

4.1 Component models 279

To maintain a concise representation of the compo- 280

nent models for translation and rotation, we have 281

adopted a straightforward naming convention us- 282

ing two letters. The first letter indicates the type of 283

operation: T for translation, 2 for 2D rotation, and 284

3 for 3D rotation. The second letter indicates the 285

space: E for Euclidean space and H for hyperbolic 286

space. For example, TE represents translation (T) 287

in Euclidean space (E). In total, there are 3×2 = 6 288

possible combinations of component models that 289

serve as building blocks for creating composite 290

models. The pipeline of any composite model is 291

created by concatenating the component models. 292

Further details regarding various component mod- 293

els and composite models can be found in Table 2. 294
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In the preceding sections, we have introduced295

TransE (TE), RotatE (2E), QuatE (3E), MuRP296

(TH), and RotH (2H). Another model not yet pro-297

posed is 3H, which does 3D rotation in hyper-298

bolic space. In this study, we propose a new ro-299

tation model 3H as follows. Given triple vectors300

bh ∈ Bk,qr ∈ Q
k
4 ,bt ∈ Bk, the scoring function301

of 3H is302

s = −dξr (bh ⊗ q▷
r ,bt)

2.303

4.2 3H-TH model304

When examining Table 1, we can observe that 3D305

rotation is essential for capturing non-commutative306

properties, while hyperbolic space is crucial for307

representing hierarchy. Additionally, combining308

2d rotation and translation plays an important role309

in capturing multiplicity; we can expect that the310

new extension of 3H-TH (3D rotation and transla-311

tion) possesses similar properties. Taking all these312

factors into consideration, we will investigate the313

3H-TH model that combines these essential ele-314

ments.315

Given head entity eh ∈ Rk and tail entity316

et ∈ Rk, as well as the relation that is split into317

a 3D rotation part qr ∈ Q
k
4 and a translation part318

er ∈ Rk, we map entities eh, et and the translation319

relation er from Euclidean space (eh, et, er ∈ Rk)320

to hyperbolic space (bh,bt,br ∈ Bk) using the321

exponential transformation:322

bδ = expξr0 (eδ) ∈ Bk, δ = h, r, t. (2)323

as detailed in Equation 9.324

The utilization of hyperbolic space in KG mod-325

els enables the acquisition of hierarchical proper-326

ties. It is important to note that each relation r in327

the KG has a unique curvature ξr (Chami et al.,328

2020). Unlike MuRP, where all relations have the329

same curvature, we train different values of curva-330

ture ξr for relation r to represent varying degrees of331

curvature in the hyperbolic space. A higher value332

of ξr for a specific relation signifies a greater de-333

gree of hierarchy, resembling a tree-like structure.334

Conversely, a flatter space represents less hierarchy335

in the corresponding relation.336

The non-commutative property of 3D rotation337

enables the KG model to perform non-commutative338

composition, making it more expressive compared339

to 2D rotation. Therefore, we apply the 3D ro-340

tation operation (3H) to the mapped head entity341

in hyperbolic space. Additionally, using rotation342

and translation operations alone does not allow the 343

model to acquire the multiplicity property. How- 344

ever, combining rotation and translation enables the 345

KG model to exhibit multiplicity. Thus, we utilize 346

Möbius addition (x⊕ξr y) as Euclidean translation 347

in hyperbolic space (TH). The final operation of 348

3H-TH model is represented as follows: 349

b(eh,er,qr) = (bh ⊗ q▷
r)⊕ξr br. (3) 350

Here, ⊗ and q▷
r represent the Hamilton product and 351

normalization, respectively. 352

4.3 Scoring function and loss 353

We utilize the hyperbolic distance between the final 354

transformed head entity b(eh,er,qr) and the mapped 355

tail entity bt as the scoring function: 356

s(h, r, t) = −dξr
(
b(eh,er,qr),bt

)2
+bh+bt. (4) 357

Here, dξr(.) is the hyperbolic distance introduced 358

in Equation 1 with the curvature ξr, and bv(v ∈ V) 359

represents the entity bias added as a margin in 360

the scoring function (Tifrea et al., 2018; Balaze- 361

vic et al., 2019). The comparison of various scor- 362

ing functions, encompassing hyperbolic distance- 363

based, Euclidean distance-based, and dot product- 364

based methods, is detailed in Appendix A.4.1. 365

Moreover, instead of using other negative sampling 366

methods, we uniformly select negative instances 367

for a given triple (h, r, t) by perturbing the tail en- 368

tity. The model is trained by minimizing the full 369

cross-entropy loss, defined as follows: 370

L =
∑
t′

log
(
1 + exp

(
yt′ · s

(
h, r, t′

)))
(5) 371

yt′ =

{
−1, if t′ = t
1, otherwise

372

4.4 Other composite models 373

We have introduced a novel component model 374

called 3H, which involves 3D rotation in hyper- 375

bolic space. We have also developed a composite 376

model called 3H-TH, which combines 3D rotation 377

and translation in hyperbolic space, as discussed 378

earlier. Furthermore, we have created several other 379

composite models (as shown in Table 2), includ- 380

ing 2E-TE (2D Rotation and Translation in Eu- 381

clidean space), 3E-TE (3D Rotation and Transla- 382

tion in Euclidean space), 2E-TE-2H-TH (2D Ro- 383

tation and Translation in both Euclidean and Hy- 384

perbolic space), and 3E-TE-3H-TH (3D Rotation 385
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Dataset Entities Relations Train Validation Test
WN18RR 40,943 11 86,835 3,034 3,134
FB15k-237 14,541 237 272,115 17,535 20,466
FB15K 14,951 1,345 483,142 50,000 59,071

Table 3: Details of the three datasets.

and Translation in both Euclidean and Hyperbolic386

space).387

To examine the effects of integrating translation388

and rotation, we compare 2E-TE and 3E-TE with389

their respective counterparts, 2E and 3E. Addition-390

ally, we compare 2E-TE-2H-TH and 3E-TE-3H-391

TH with RotH and 3H-TH to investigate the effects392

of operations in different spaces. These compar-393

isons allow us to analyze the contributions and im-394

plications of different components in the models.395

We provide a detailed explanation of 3E-TE-3H-396

TH because the other models are interpreted as397

a part of this most complex model. Embeddings398

of head and tail entities are eh, et ∈ Rk, and em-399

beddings of relation r are q(r,E) ∈ Q
k
4 , e(r,E) ∈400

Rk,q(r,H) ∈ Q
k
4 , e(r,H) ∈ Rk, where e(r,α) and401

q(r,α) are translation and 3D rotation relations, re-402

spectively, for space α ∈ {E,H}.403

We first perform 3D rotation and translation on404

the head entity in Euclidean space (3E-TE) using405

the following transformation:406

e(eh,e(r,E),q(r,E)) =
(
eh ⊗ q▷

(r,E)

)
+ e(r,E) (6)407

Then we apply the same process as for 3H-TH408

(Equation 3) to e(eh,e(r,E),q(r,E)), and we use the409

hyperbolic distance as the scoring function410

s(h, r, t) =

− dξr
((

bλ ⊗ q▷
(r,H)

)
⊕ξr br,bt

)2
+bh+bt.

(7)

411

Finally, the loss function is defined by Equation 5412

in Section 4.3. We provide more details on several413

composite models in Table 2.414

5 Experiments415

We expect that the composite model 3H-TH, which416

performs both 3D rotation and translation in hyper-417

bolic space, can effectively capture all relation pat-418

terns. We aim to validate this expectation through419

experimentation.420

5.1 Experimental setup421

Dataset. We evaluate our proposed method on422

three KG datasets, including WN18RR (Dettmers423

et al., 2018), FB15K-237 (Toutanova and Chen, 424

2015), and FB15K (Bordes et al., 2013) with li- 425

cence CC-BY 2.5. The details of these datasets 426

are shown in Table 3. WN18RR is a subset of 427

WN18 (Dettmers et al., 2018) which is contained 428

in WordNet (Miller, 1995). FK15K is a subset 429

of Freebase (Bollacker et al., 2008), a comprehen- 430

sive KG including data about common knowledge 431

and FB15K-237 is a subset of FB15K. All three 432

datasets were designed for KGE, and we employ 433

them for KGE tasks, and all three datasets have no 434

individual people or offensive content. 435

Evaluation metrics. Given a head entity and a re- 436

lation, we predict the tail entity and rank the correct 437

tail entity against all candidate entities. We use two 438

popular ranking-based metrics: (1) mean reciprocal 439

rank (MRR), which measures the average inverse 440

rank for correct entities: 1
n

∑n
i=1

1
Rank i

. (2) hits on 441

K (H@K,K ∈ {1, 3, 10}), which measures the 442

proportion of correct entities appeared in the top 443

K entities. 444

Baselines. We compare our new model with state- 445

of-the-art (SOTA) methods, namely TransE (Bor- 446

des et al., 2013), RotatE (Sun et al., 2019), QuatE 447

(Zhang et al., 2019), MuRP (Balazevic et al., 2019), 448

RotH (Chami et al., 2020), and BiQUE(Guo and 449

Kok, 2021). Alongside these five models and 450

3H-TH, our comparative models include 3H, 3E- 451

TE, 2E-TE-3H-TH, and 3E-TE-3H-TH. It is worth 452

noting that these comparative models have all 453

been newly developed by us. Significantly, while 454

hyperbolic-based methods indeed require longer 455

training times compared to their Euclidean-based 456

counterparts, it’s worth noting that the space and 457

time complexities of all these models remain equiv- 458

alent. More details of state of the art baselines and 459

discussion refer to Appendix A.7. 460

Implementation. The key hyperparameters in 461

our implementation include the learning rate, op- 462

timizer, negative sample size, and batch size. To 463

determine the optimal hyperparameters, we per- 464

formed a grid search using the validation data. 465

The optimizer options we considered are Adam 466

(Kingma and Ba, 2014) and Adagrad (Duchi et al., 467

2011). Finally, we obtain results by selecting the 468

maximum values from three random seeds. 469

Moreover, to ensure a fair comparison, we in- 470

corporated entity bias (bv, v ∈ V) into the scoring 471

function for all models (see Table 2). Addition- 472

ally, we used uniform negative sampling across all 473

6



WN18RR FB15k-237 FB15K
Model MRR H@1 H@3 H@10 MRR H@1 H@3 H@10 MRR H@1 H@3 H@10
TransE(TE) .244 .099 .350 .506 .277 .194 .303 .444 .463 .336 .538 .697
RotatE(2E) .387 .330 .417 .491 .290 .208 .316 .458 .469 .355 .527 .691
QuatE(3E) .445 .407 .463 .515 .266 .186 .290 .426 .484 .360 .556 .715
MuRP(TH) .269 .106 .402 .532 .279 .196 .306 .445 .486 .358 .565 .718
RotH(2H) .466 .422 .484 .548 .312 .222 .343 .493 .498 .373 .577 .728
BiQUE .298 .231 .328 .425 .309 .223 .339 .479 - - - -
3H .467 .429 .486 .541 .277 .195 .302 .444 .500 .375 .576 .726
2E-TE .448 .421 .474 .522 .262 .184 .283 .419 .494 .373 .568 .725
3E-TE .456 .408 .467 .518 .261 .184 .282 .414 .496 .376 .572 .725
2E-TE-2H-TH .469 .428 .487 .552 .315 .225 .347 .497 .494 .370 .572 .722
3H-TH .473 .432 .490 .552 .320 .229 .351 .501 .506 .383 .581 .731
3E-TE-3H-TH .469 .424 .481 .546 .316 .227 .346 .499 .504 .379 .580 .733

Table 4: Link prediction accuracy results of three datasets in low-dimensional space (k = 32). The best score is
highlighted in bold, and the second-best score is underlined. The 3H-TH model outperforms other state-of-the-art
methods significantly on WN18RR, FB15k-237, and FB15K. Results are statistically significant under paired
student’s t-test with p-value 0.05 except 2E-TE-2H-TH, more details refer to Appendix A.5

hierarchy measure
Relation Khsr −ξr TE 2E 2H BiQUE 2E-TE-2H-TH 3H-TH 3E-TE-3H-TH
member meronym 1 -2.9 .407 .304 .390 .245 .407 .412 .391
hypernym 1 -2.46 .192 .235 .251 .164 .271 .247 .249
has part 1 -1.43 .311 .256 .323 .215 .317 .291 .337
instance hypernym 1 -0.82 .492 .488 .488 .529 .488 .503 .500
member of domain region 1 -0.78 .442 .442 .462 .423 .423 .465 .423
member of domain usage 1 -0.74 .417 .438 .438 .500 .438 .441 .417
synset domain topic of 0.99 -0.69 .428 .399 .430 .386 .434 .411 .425
also see 0.36 -2.09 .732 .625 .652 .598 .652 .637 .634
derivationally related form 0.07 -3.84 .959 .960 .961 .784 .966 .960 .960
similar to 0.07 -1 1 1 1 .667 1 1 1
verb group 0.07 -0.5 .962 .974 .974 .654 .974 .974 .962

Table 5: Link prediction accuracy results for specific relations sorted by Khsr. Higher Khsr or lower −ξr indicates a
greater degree of hierarchy (Krackhardt, 2014). Accuracy is measured by H@10 in low-dimensional space (k = 32)
for all 11 relations in WN18RR. The best score is highlighted in bold, and the second-best score is underlined. We
can observe that the 3H-TH model tends to perform well on relations with larger Khsr values, indicating its ability
to capture hierarchical patterns.

models. We give more details of implementation474

in Appendix A.3475

Finally, we conduct additional experiments to476

examine the outcomes when we establish equal477

total parameters (see Appendix A.6).478

5.2 Results in low dimensions479

Table 4 provides an overview of the overall accu-480

racy in low-dimensional space (k = 32). Tables481

5 and 6 present detailed results on hierarchy and482

relation patterns, respectively.483

Overall accuracy. Table 4 provides the link pre-484

diction accuracy results of WN18RR, FB15K-237,485

and FB15K in low-dimensional space (k = 32).486

The 3H-TH model outperforms all state-of-the-art487

models, particularly on the largest dataset FB15K,488

showcasing the powerful representation capacity489

achieved by combining 3D rotation and transla- 490

tion in hyperbolic space. Additionally, compared 491

to RotH(2H), the 3H-TH model achieves compet- 492

itive results across all evaluation metrics, indicat- 493

ing that 3D rotation in hyperbolic space enhances 494

the model’s expressiveness. Moreover, the 3H- 495

TH model improves upon previous state-of-the-art 496

Euclidean methods (RotatE and QuatE) by 6.1%, 497

10.3%, and 10.2% in MRR on WN18RR, FB15K- 498

237, and FB15K, respectively. This comparison 499

highlights the superiority of hyperbolic geometry 500

over Euclidean geometry in low-dimensional KG 501

representation. 502

Hierarchy. The hierarchy analysis aimed to ex- 503

amine the benefits of using hyperbolic geometry 504

for capturing hierarchy properties. Table 5 presents 505

the H@10 accuracy results for all relations in 506
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Model Symmetry Antisymmetry Composition Inversion multiplicity
TransE(TE) .321 .335 .362 .511 .643
RotatE(2E) .454 .497 .338 .512 .663
QuatE(3E) .324 .388 .357 .541 .683
MuRP(TH) .335 .359 .361 .542 .666
RotH(2H) .360 .441 .366 .558 .686
3H .357 .458 .363 .559 .685
2E-TE .362 .466 .365 .552 .681
3E-TE .361 .465 .366 .557 .689
2E-TE-2H-TH .365 .440 .361 .552 .687
3H-TH .386 .450 .369 .566 .704
3E-TE-3H-TH .361 .444 .377 .564 .691

Table 6: Link prediction accuracy for specific relation patterns. Accuracy is measured by MRR for FB15K in
low-dimensional space (k = 32). Bold indicates the best score, and underline represents the second-best score.
The 3H-TH model achieves the best or second-best performance on the symmetry, composition, inversion, and
multiplicity properties.

WN18RR, sorted by Khsr, the Krackhardt hier-507

archy score (Krackhardt, 2014) and ξr, estimated508

graph curvature (Chami et al., 2020). A higher509

Khsr or lower −ξr indicates a higher degree of hi-510

erarchy in the relations. The table confirms that the511

first 7 relations exhibit hierarchy, while the remain-512

ing relations do not. From the results, we observe513

that although Euclidean embeddings (TransE, Ro-514

tatE) and hyperbolic embeddings (RotH, 3H-TH)515

perform similarly on non-hierarchical relations like516

verb group and similar to, hyperbolic embeddings517

outperform significantly on top 7 hierarchical re-518

lations. More discussion of this part refers to Ap-519

pendix A.4.2520

Relation Patterns. The relation patterns anal-521

ysis aimed to assess the performance of differ-522

ent models on specific relation patterns. Table523

6 presents the MRR accuracy results for relation524

patterns in FB15K, measured in low-dimensional525

space (k = 32). We can observe that the 3H-TH526

model outperforms on relation patterns such as527

symmetry, composition, inversion, and multiplic-528

ity, either achieving the best score or the second-529

best score. Additionally, the accuracy of 3H-TH530

on antisymmetry is also very high. (For a more531

comprehensive analysis of the results for various532

composite models and the frequency distribution of533

various relation patterns within the datasets, please534

consult the Appendix A.4.3 and A.4.4 respectively)535

5.3 Results in high dimensions536

Table 7 displays the link prediction accuracy results537

for WN18RR in high-dimensional space (k = 200).538

As anticipated, the 3H-TH model and some other539

composite models (2E-TE-2H-TH, 3E-TE-3H-TH)540

Model MRR H@1 H@3 H@10
TransE(TE) .263 .107 .380 .532
RotatE(2E) .396 .384 .399 .419
QuatE(3E) .487 .442 .503 .573
MuRP(TH) .265 .105 .392 .531
RotH(2H) .490 .444 .507 .578
BiQUE .491 .451 .508 .566
3H .484 .440 .500 .571
2E-TE .393 .382 .396 .415
3E-TE .490 .445 .506 .578
2E-TE-2H-TH .493 .446 .509 .585
3H-TH .493 .447 .509 .587
3E-TE-3H-TH .493 .448 .510 .579

Table 7: Link prediction accuracy results for WN18RR
in high-dimensional space (k = 200).

achieve new state-of-the-art (SOTA) results. How- 541

ever, the accuracy is comparable to that of RotH 542

and Euclidean space methods. This indicates that 543

Euclidean and hyperbolic embeddings perform sim- 544

ilarly when the embedding dimension is large. For 545

additional experiments and results in higher dimen- 546

sions, refer to Appendix A.4.5. 547

6 Conclusion 548

In this study, we propose the 3H-TH model for 549

KGE to address multiple relation patterns, includ- 550

ing symmetry, antisymmetry, inversion, commuta- 551

tive composition, non-commutative composition, 552

hierarchy, and multiplicity. By combining 3D rota- 553

tion and translation in hyperbolic space, the model 554

effectively represents entities and relations. Experi- 555

mental results demonstrate that the 3H-TH model 556

achieves excellent performance in low-dimensional 557

space. Moreover, the performance difference be- 558

comes smaller in high-dimensional space, although 559

the model still performs well. 560
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Limitations561

Limited improvements in high dimensions562

While our approach 3H-TH shows substantial563

improvement over baseline models in a low-564

dimensional (k = 32) KGE setting, we observe565

that as we move towards higher dimensions (k =566

200, 300, 500), our techniques tend to converge and567

exhibit similar results to Euclidean base models.568

As an illustration, the link prediction accuracy of569

the 3H-TH model is similar to the Euclidean space570

methods, as evidenced in Table 7 and some results571

provided in Appendix A.4. The difference in rep-572

resentational capacity between geometric spaces573

(Euclidean and hyperbolic space) becomes quite574

pronounced in lower dimensions. However, this575

gap may lessen or even disappear as the dimension576

is increased.577

Rotation in hyperbolic space Examining strictly578

from mathematical and geometric perspectives, it is579

correct to perform translations in hyperbolic space.580

However, conducting rotational operations (2D and581

3D rotation) in hyperbolic space akin to those in582

Euclidean space lacks a certain level of rigor.583
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A Appendix738

A.1 Hamilton’s quaternions739

A quaternion q is composed of one real number740

component and three imaginary number compo-741

nents. It can be represented as q = a+bi+cj+dk,742

where a, b, c, and d are real numbers, and i, j, and k743

are imaginary numbers. The real part is represented744

by a, while the imaginary parts are represented by745

bi, cj, and dk.746

Hamilton’s rules govern quaternion algebra and747

include the following: (1). i2 = j2 = k2 = ijk =748

−1, (2). ij = k, ji = −k, jk = i, kj = −i, ki =749

j, ik = −j750

In addition to these rules, various mathematical751

operations can be performed with quaternions:752

Normalization. When real elements of quater-753

nion are numbers, q▷ = q
|q| =

a+bi+cj+dk√
a2+b2+c2+d2

. On754

the other hand, when the real elements of a quater-755

nion, denoted as qr, are represented by vectors, the756

normalization formula needs to be modified. In this757

case, the quaternion normalization q▷
r is given by:758

q▷
r =

qr

|qr|
=

a+ bi + cj + dk√
aTa+ bTb+ cTc+ dTd

759

Here, a, b, c, and d represent vector representa-760

tions of the real components, and aT, bT, cT, and761

dT denote the transpose of the respective vectors.762

The numerator consists of the vector components,763

and the denominator involves the Euclidean norm764

of the vector elements.765

Dot product. Given q1 = a1 + b1i + c1j + d1k766

and q2 = a2 + b2i + c2j + d2k, we can obtain the767

dot product of q1 and q2:768

q1 · q2 = a1a2 + b1b2 + c1c2 + d1d2.769

Hamilton product. The multiplication of two770

quaternions follows from the basic Hamilton’s rule.771

Given q1 and q2, the multiplication is:772

q1 ⊗ q2 = (a1a2 − b1b2 − c1c2 − d1d2)

+ (a1b2 + b1a2 + c1d2 − d1c2)i

+ (a1c2 − b1d2 + c1a2 + d1b2)j

+ (a1d2 + b1c2 − c1b2 + d1a2)k

(8)773

Equation (8) presents Hamilton’s product as non-774

commutative, which shows that 3D rotation can775

enable the model to perform non-commutative.776

Figure 2: The logarithmic transformation logξr0 (v)

(Bk
ξr

→ T ξr
0 Bk

ξr
) and the exponential transformation

expξr0 (v) (T ξr
0 Bk

ξr
→ Bk

ξr
)

A.2 Hyperbolic geometry 777

Hyperbolic geometry, characterized by continuous 778

negative curvature, is a non-Euclidean geometry. 779

One way to represent hyperbolic space is through 780

the k-dimensional Poincaré ball model with neg- 781

ative curvature −ξr (ξr > 0). In this model, hy- 782

perbolic space is expressed as Bk
ξr

= {x ∈ Rk : 783

∥x∥2 < 1
ξr
}, where ∥ · ∥ denotes the L2 norm. The 784

Poincaré ball model provides a geometric frame- 785

work to understand and study hyperbolic geometry. 786

In the Poincaré ball model, for any point x ∈ 787

Bk
ξr

, all possible directions of paths are con- 788

tained within the tangent space T ξr
x , which is a 789

k-dimensional vector space. The tangent space 790

connects Euclidean and hyperbolic space, mean- 791

ing that T ξr
x Bk

ξr
= Rk. Since the tangent space 792

exhibits Euclidean geometric properties, vector ad- 793

dition and multiplication can be performed in this 794

space just like in Euclidean space. 795

Moreover, the logarithmic transformation 796

logξr0 (v) maps a point in the Poincaré ball Bk
ξr

to 797

the tangent space T ξr
0 Bk

ξr
. Specifically, it maps 798

a point from the origin in the direction of a vec- 799

tor v. Conversely, the exponential transformation 800

expξr0 (y) performs the reverse mapping. It maps 801

a point from the tangent space T ξr
0 Bk

ξr
back to the 802

Poincaré ball, originating from the origin in the 803

direction of a vector y (see Fig. 2). These trans- 804

formations facilitate the conversion between the 805

Poincaré ball and its associated tangent space, en- 806

abling geometric operations in both spaces (Chami 807

et al., 2020). 808
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expξr0 (v) = tanh(
√

ξr||v||)
v√

ξr||v||
, (9)809

logξr0 (y) = tanh−1(
√

ξr||y||)
y√

ξr||y||
. (10)810

We introduce the logarithmic transformation811

logξr0 (v) (Bk
ξr

→ T ξr
0 Bk

ξr
) and exponential trans-812

formation expξr0 (y) (T ξr
0 Bk

ξr
→ Bk

ξr
) from the813

origin in the direction of a vector. Generally,814

the logarithmic transformation logξrx (v) (Bk
ξr

→815

T ξr
x Bk

ξr
) and exponential transformation expξrx (y)816

(T ξr
x Bk

ξr
→ Bk

ξr
) from x in the direction of a vector817

y,v respectively (Balazevic et al., 2019) are:818

logξrx (y) =

2
√
ξrλ

ξr
x

tanh−1
(√

ξr

∥∥∥−x⊕ξr y
∥∥∥) −x⊕ξr y

∥−x⊕ξr y∥
,

819

expξrx (v) =

x⊕ξr

(
tanh

(√
ξr
λξr
x ∥v∥
2

)
v√

ξr∥v∥

)
.

820

Besides, we apply Möbius addition (x ⊕ξr y)821

(Ganea et al., 2018) to replace Euclidean transla-822

tion in hyperbolic space, considering that the hyper-823

bolic space can be regarded as a roughly vectorial824

structure (Ungar, 2008):825

x⊕ξr y =

(1 + 2ξrx
Ty + ξr∥y∥2)x+ (1− ξr∥x∥2)y

1 + 2ξrxTy + ξr
2∥x∥2∥y∥2

(11)

826

A.3 More details about Implementation827

In previous work, MuRP employed Riemannian828

Stochastic Gradient Descent (RSGD) (Bonnabel,829

2013), which is typically required for optimiza-830

tion in hyperbolic space. However, RSGD is dif-831

ficult to use in real applications. Since it has832

been demonstrated that tangent space optimiza-833

tion is effective (Chami et al., 2019), we first834

define all the 3H-TH parameters in the tangent835

space at the origin and apply conventional Eu-836

clidean methods to optimize the embeddings. Af-837

terward, we use exponential transformation to map838

the parameters from Euclidean space to hyperbolic839

space. Therefore, all the 3H-TH model parameters 840{
(er,qr, ξr)r∈R , (ev, bv)v∈V

}
are now Euclidean 841

parameters that can be learned using conventional 842

Euclidean optimization methods such as Adam or 843

Adagrad. 844

Furthermore, models are trained on a single 845

RTX8000 (48GB) GPU. For 3H-TH and related 846

composite models, training times are approxi- 847

mately 1 hour for WN18RR, 4 hours for FB15K- 848

237, and 10 hours for FB15K. We use PyTorch 849

and Numpy as the additional tools to conduct our 850

experiment. We use ChatGPT in our paper writing. 851

A.4 Additional experiments and results 852

We have included supplementary experiments in 853

the appendix to validate our methods. A.4.1 fo- 854

cuses on comparing various scoring functions, 855

providing additional experiments and results that 856

demonstrate the superiority of hyperbolic-distance- 857

based scoring functions over others. A.4.2 utilizes 858

statistical analyses of each relation to elucidate why 859

TransE excels in specific hierarchy relations. In 860

the A.4.3, we provide additional explanations and 861

results related to relation patterns, offering an anal- 862

ysis of the roles and effects of various composite 863

models. A.4.4 presents the frequency distribution 864

of various relation patterns, shedding light on the 865

importance of each pattern. Lastly, A.4.5 presents 866

additional results in high-dimensional space, en- 867

compassing accuracy and hierarchy results. 868

A.4.1 Comparison of various scoring function 869

In our 3H-TH model, we employed a distance- 870

based scoring function (hyperbolic distance) to re- 871

place the inner-product to better utilize the advan- 872

tages of the hyperbolic space, particularly its abil- 873

ity to better capture hierarchical properties. How- 874

ever, distance-based scoring function may lose the 875

Complex Relation properties (1-1, 1-n, n-1, n-n) 876

compared with dot product scoring function which 877

utilized by QuatE(Zhang et al., 2019). Therefore, 878

we conduct supplementary experiments to verify 879

which scoring function is best. 880

We introduce three additional models for com- 881

parison alongside the 3H-TH model. The first 882

model, denoted as 3H-TH (Project & Inner prod- 883

uct), entails transforming the head entity from hy- 884

perbolic space to Euclidean space within the 3H- 885

TH model, utilizing the inner product as its scor- 886

ing function. The second model, referred to as 887

QuatE (Inner product), corresponds to the original 888

QuatE model employing the dot product as its scor- 889

12

https://pytorch.org
https://numpy.org
https://chat.openai.com/


Model MRR H@1 H@3 H@10 1-1 (1.34%) 1-n (15.16%) n-1 (47.45%) n-n (36.06%)
3H-TH (Hyperbolic distance) .473 .435 .485 .547 .911 .226 .190 .931
3H-TH (Project & Inner product) .356 .342 .362 .380 .703 .057 .029 .900
QuatE (Inner product) .358 .264 .413 .529 .921 .085 .054 .902
QuatE (Euclidean distance) .445 .407 .463 .515 .889 .176 .164 .899

Table 8: The accuracy results (MRR, H@1,3,10) and complex relation MRR results (1-1, 1-n, n-1, n-n) of various
scoring function methods in WN18RR.

Model MRR H@1 H@3 H@10 1-1 (1.34%) 1-n (15.16%) n-1 (47.45%) n-n (36.06%)
3H-TH (Hyperbolic distance) .507 .387 .577 .728 .601 .524 .528 .494
3H-TH (Project & Inner product) .500 .385 .564 .721 .535 .497 .516 .497
QuatE (Inner product) .457 .345 .514 .675 .400 .450 .485 .454
QuatE (Euclidean distance) .484 .360 .556 .715 .578 .504 .515 .480

Table 9: The accuracy results ((MRR, H@1,3,10) ) and complex relation MRR results (1-1, 1-n, n-1, n-n) of various
scoring function methods in FB15K.

Relation Num-relations(Percentage)
member meronym 253 (0.87%)
hypernym 1251 (39.92%)
has part 172 (5.49%)
instance hypernym 122 (3.89%)
member of domain region 26 (0.83%)
member of domain usage 24 (0.77%)
synset domain topic of 114 (3.64%)
also see 56 (1.79%)
derivationally related form 1074 (34.27%)
similar to 3 (0.09%)
verb group 39 (1.24%)

Table 10: Frequency distribution of different relations
in WN18RR.

ing function. The final model, QuatE (Euclidean890

distance), employs Euclidean distance as the scor-891

ing function within the QuatE model. In Table 8892

and 9, we present the overall mean reciprocal rank893

(MRR), overall accuracies (H@1,3,10), and MRR894

specifically for complex relation patterns (1-1, 1-895

n, n-1, n-n) in the WN18RR and FB15K datasets,896

respectively. The values in parentheses denote the897

percentages of triple instances. These experiments898

were conducted in a low-dimensional space (dim =899

32).900

Across both datasets, the 3H-TH model using901

hyperbolic distance consistently offers better per-902

formance than other models. Which suggesting903

that a hyperbolic distance-based scoring function904

can better utilize the strengths of hyperbolic space.905

Besides, when contrasting 3H-TH (Hyperbolic dis-906

tance) and 3H-TH (Project & Inner product) across907

both datasets, the former consistently shows better908

results in terms of accuracy and complex relation909

metrics. Finally, the performance of QuatE (Eu-910

clidean distance) surpasses QuatE (Inner product)911

in both datasets in low-dimensional space. This im-912

plies that, particularly in low-dimensional spaces, 913

distance-based methods can provide a more pre- 914

cise measure of the differences between two vec- 915

tors than inner-product based methods. In conclu- 916

sion, the distance-based scoring function performs 917

BETTER than the inner-product one in QuatE, es- 918

pecially in low dimensions, while they perform 919

similarly in high dimensions. Our proposed 3H- 920

TH uses distance in hyperbolic space and performs 921

even better than QuatE. 922

A.4.2 Explanation of TransE performs well on 923

certain hierarchy relations 924

Phenomena have been observed where TransE (TE) 925

exhibits noteworthy performance on specific hier- 926

archy relations, as exemplified in Table 5. Notably, 927

the results of relations such as member meronym, 928

member of domain region, and member of domain 929

usage indicate that TransE can achieve high ac- 930

curacy, even though they cannot perform better 931

than 3H-TH. This phenomenon can be attributed to 932

the unbalanced distribution of individual relations 933

within the WN18RR dataset, as demonstrated in 934

Table 10. 935

As can be seen from the table, TransE meth- 936

ods, which perform well, such as member meronym 937

(8.07%), member of domain region (0.83%), and 938

member of domain uasage (0.77%), have a rela- 939

tively low proportion in the overall test set. This 940

can introduce an element of randomness to the 941

results. However, in relation with a higher pro- 942

portion like hypernym (39.92%), the performance 943

of TransE is considerably inferior to hyperbolic 944

methods (3H-TH, etc.). 945
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A.4.3 Additional relation pattern results946

explanation947

To the best of our knowledge, no previous work in948

the KGE domain presents detailed results for these949

relation patterns, although several methods provide950

visualization results like (Sun et al., 2019) or theo-951

retical explanations for multiple patterns like (Cao952

et al., 2021). We obtain the FB15K test data for953

symmetry, antisymmetry, inversion, and composi-954

tion from (Sadeghi et al., 2021), meanwhile, we use955

multiple pattern properties to classify them from956

the FB15K test data. The MRR results of relation957

patterns on FB15K in low-dimensional space (dim958

= 32), including symmetry, antisymmetry, inver-959

sion, composition, and multiple, are summarized in960

Table 6.961

In addition to the MRR accuracy outcomes de-962

tailed in the primary document, we also have sup-963

plementary findings and results to demonstrate. Ro-964

tatE performs better on Symmetry and Antisym-965

metry because this model is simple and targeted to966

these two properties. Moreover, 3D rotation-based967

methods (3H-TH, 3E-TE-3H-TH) tend to perform968

better than 2D rotation-based methods (RotH, 2E-969

TE-2H-TH) on composition patterns in Hyperbolic970

space, which may indicate that 3D rotation can help971

the model to acquire non-commutative property972

on the composition pattern, although we did not973

classify the test data to test this. Finally, for eval-974

uating multiple patterns, we obverse that 3H-TH975

can achieve the best results and combination-based976

methods (combine translation and rotation)(2E-TE,977

3E-TE) perform better than the single-based meth-978

ods (TransE, RotatE, QuatE) on the multiple pat-979

terns, which shows that combination-based meth-980

ods enable model powerful representation capabil-981

ity of multiple patterns.982

A.4.4 Frequency distribution of various983

relation patterns984

A pivotal aspect of our research focuses on con-985

currently solving various relation patterns. Con-986

sequently, it becomes imperative to delve into the987

statistical analysis of the frequency distribution as-988

sociated with these various relation patterns within989

the datasets, as well as engage in a comprehensive990

discourse on the significance attributed to these991

relation patterns. In this context, we present an992

overview of the available data and employ spe-993

cialized algorithms to calculate the frequencies994

of specific relation patterns embedded within the995

WN18RR, FB15K-237, and FB15K datasets.996

Triple Symmetry Antisymmetry Inversion
Train(483142) 20333(4.2%) 63949(13.2%) 66385(13.7%)
Valid(50000) 3392(6.78%) 25396(50.79%) 8798(17.60%)
Test(59071) 3375(5.71%) 26020(44.05%) 8798(14.89%)

Table 11: Frequency and proportion of (anti)symmetry
and inversion in FB15K.

(Anti)symmetry, Inversion, Composition Only 997

(Anti)symmetry, Inversion, Composition were dis- 998

covered and studied before RotatE (Sun et al., 999

2019), which provided some dataset details in their 1000

paper. In their seminal work, they elucidated that 1001

the WN18RR and FB15K237 datasets primarily en- 1002

compass the symmetry, antisymmetry, and compo- 1003

sition relation patterns, whereas the FB15K dataset 1004

predominantly comprises the symmetry, antisym- 1005

metry, and inversion relation patterns. Furthermore, 1006

Sadeghi et al. (Sadeghi et al., 2021) have conducted 1007

a detailed analysis of the frequency distribution 1008

of (anti)symmetry and inversion relation patterns 1009

within the FB15K dataset, which is presented in 1010

Table 11. 1011

From the aforementioned literature and data, it 1012

is evident that the proportion of the four relation 1013

patterns: Symmetry, Antisymmetry, Inversion, and 1014

Composition, is substantial. This underscores their 1015

research significance and value. 1016

Hierarchy Given that the hierarchy is a tree-like 1017

structure, it’s challenging to provide a quantitative 1018

statistical result. Therefore, we select and compare 1019

the quantity and percentage of the top 7 more hi- 1020

erarchical relations in Table 5 from the WN18RR 1021

dataset, the training set has 86,835 triples, with 1022

62.9% (54,603) being hierarchy relations. The test 1023

set contains 3,134 triples, 62.6% (1,962) of which 1024

are hierarchy relations, while the validation set in- 1025

cludes 3,034 triples, 61.6% (1,869) of them being 1026

hierarchy relations. Based on the statistical results 1027

from WN18RR, the proportion of hierarchy rela- 1028

tions remains substantial. 1029

Multiplicity The extraction of this relation pat- 1030

tern is based on the properties of multiplicity, and 1031

we derived it from the dataset using the corre- 1032

sponding algorithm. Subsequently, we carried out 1033

statistics related to multiplicity on various datasets 1034

which has been shown in Table 14. 1035

From the statistical results in the Table 14, it can 1036

be observed that on smaller datasets like WN18RR, 1037

where the number of relations is limited (number 1038

= 11), the proportion of Multiplicity relations is 1039

relatively low. However, its proportion is still sig- 1040
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Model MRR H@1 H@3 H@10
TransE(TE) .262 .108 .379 .531
RotatE(2E) .387 .377 .390 .406
QuatE(3E) .490 .444 .506 .580
MuRP(TH) .263 .102 .388 .529
RotH(2H) .488 .443 .506 .575
3H .491 .447 .507 .576
2E-TE .390 .379 .395 .411
3E-TE .492 .444 .511 .581
2E-TE-2H-TH .490 .446 .505 .578
3H-TH .491 .443 .511 .581
3E-TE-3H-TH .492 .446 .508 .582

Table 12: The link prediction accuracy results of
WN18RR in high-dimensional space (k = 300).

Model MRR H@1 H@3 H@10
TransE(TE) .260 .104 .378 .532
RotatE(2E) .380 .372 .383 .395
QuatE(3E) .490 .443 .507 .580
MuRP(TH) .260 .102 .380 .529
RotH(2H) .489 .443 .508 .579
3H .487 .441 .503 .575
2E-TE .383 .372 .388 .400
3E-TE .492 .445 .509 .585
2E-TE-2H-TH .489 .442 .507 .579
3H-TH .491 .445 .510 .580
3E-TE-3H-TH .487 .443 .502 .578

Table 13: The link prediction accuracy results of
WN18RR in high-dimensional space (k = 500).

nificant in larger datasets like FB15K and FB15K-1041

237, especially in the larger training sets. Thus, the1042

Multiplicity relation patterns are also crucial and1043

hold research significance.1044

A.4.5 Additional high-dimensional results1045

Table 12 and Table 13 display the link prediction1046

accuracy results of WN18RR in high-dimensional1047

space with dimensions k = 300 and k = 5001048

respectively. These tables demonstrate that the1049

3H-TH model, as well as other composite mod-1050

els, achieve state-of-the-art (SOTA) performance,1051

comparable to RotH and Euclidean space methods.1052

This suggests that in large embedding dimensions,1053

both Euclidean and hyperbolic embeddings exhibit1054

similar performance.1055

Furthermore, Table 15 presents the H@10 re-1056

sults for each relation in WN18RR using high-1057

dimensional embeddings. In comparison to Eu-1058

clidean embedding methods (TransE, RotatE), hy-1059

perbolic embedding methods (RotH, 3H-TH, 3E-1060

TE-3H-TH) perform better on hierarchical relations1061

Dataset Num-triples Multiplicity
WN18RR(Train) 86835 218(0.25%)
WN18RR(Valid) 3034 0(0.00%)
WN18RR(Test) 3134 0(0.00%)
FB15K-237(Train) 272113 49214(18.09%)
FB15K-237(Valid) 17535 160(0.91%)
FB15K-237(Test) 20466 224(1.09%)
FB15K(Train) 483142 152194(31.50%)
FB15K(Valid) 50000 2461(4.92%)
FB15K(Test) 59071 3341(5.66%)

Table 14: Frequency and proportion of Multiplicity in
WN18RR, FB15K-237, and FB15K.

such as member meronym, hypernym, and has part. 1062

This indicates that hyperbolic embeddings can ef- 1063

fectively capture and model hierarchy even in high- 1064

dimensional spaces. 1065

A.5 Statistical significance test 1066

We use the WN18RR dataset for experimentation 1067

in low-dimensional space (dim = 32), the details of 1068

which can be found in Table 4 of the paper. And 1069

we use the MRR of each triple in 3H-TH as x, 1070

and the MRR of each triple in the other models 1071

(RotH, 3H, 2E-TE, 3E-TE, 2E-TE-2H-TH, 3E-TE- 1072

3H-TH) as y. Then, we calculated the standard 1073

deviation (Std(x-y)), variance (Var(x-y)), standard 1074

error (Se(x-y)) of the differences (x-y), and paired 1075

student’s t-test (P-value2) (The test Samples are 1076

3134, the degree of freedom is 3133, which guar- 1077

antees that appropriateness of using t-test). The 1078

detailed experimental results are shown in the Ta- 1079

ble 16. 1080

From the paired student’s t-test results, the nor- 1081

mal approximation (dpvalue1) is almost identical 1082

since the test sample (3134) is large. When compar- 1083

ing MRR and its p-value2, all the model are worse 1084

than 3H-TH. The difference are significant (p < 1085

0.05) except for 2E-TE-2H-TH (p = 0.075). For 1086

the past model RotH (p = 0.0024 < 0.01), we can 1087

claim that RotH is significantly worse than 3H-TH. 1088

As for 2E-TE-2H-TH (p > 0.05), this model repre- 1089

sents a novel approach that has not been proposed 1090

previously. Based on the p-value, we can assert the 1091

significant value of this model. 1092

A.6 Additional composite model experiments 1093

The TE model has a single relation representation, 1094

denoted as er. On the other hand, the 3E-TE-3H- 1095

TH model has four relation embeddings, namely 1096

q(r,E), er,q(r,H),br. Consequently, the total pa- 1097

rameters for each model differ when we set the en- 1098
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hierarchy measure
Relation Khsr −ξr TE 2E 2H BiQUE 3H-TH 3E-TE-3H-TH
member meronym 1 -2.9 .413 .393 .431 .378 .421 .427
hypernym 1 -2.46 .210 .309 .310 .289 .304 .303
has part 1 -1.43 .320 .323 .355 .351 .384 .346
instance hypernym 1 -0.82 .500 .533 .537 .586 .533 .504
member of domain region 1 -0.78 .423 .423 .481 .481 .464 .500
member of domain usage 1 -0.74 .438 .458 .458 .479 .458 .458
synset domain topic of 0.99 -0.69 .461 .513 .509 .540 .522 .522
also see 0.36 -2.09 .741 .652 .661 .723 .679 .679
derivationally related form 0.07 -3.84 .956 .969 .969 .966 .966 .966
similar to 0.07 -1 1 1 1 1 1 1
verb group 0.07 -0.5 .936 .974 .974 .974 .974 .974

Table 15: Comparison of H@10 for WN18RR relations in high-dimensional space (k = 200). Bold indicates the
best score, and underline represents the second-best score.

Model MRR Std(x-y) Var(x-y) Se(x-y) P-value2
3H-TH .473 - - - -
RotH(2H) .466 .122 .015 .002 2.36e-03
3H .467 .128 .017 .002 1.18e-05
2E-TE .448 .135 .018 .002 1.14e-24
3E-TE .456 .123 .015 .002 4.44e-15
2E-TE-2H-TH .469 .122 .015 .002 7.54e-02
3E-TE-3H-TH .469 .125 .016 .002 4.21e-02

Table 16: Statistical significance test for 3H-TH and other baseline models in WN18RR dataset.

tity dimensions k to the same value. Alternatively,1099

we conduct additional experiments to examine the1100

outcomes when we establish equal total parameters,1101

encompassing both entity and relation parameters.1102

This comparison takes into account the degrees of1103

freedom associated with each relation type. Specif-1104

ically, the translation relation er has k parameters1105

in each relation, the 2D rotation relation cr has1106
1
2k parameters in each relation with the constraint1107

|(cr)i| = 1, and the 3D rotation relation qr has 3
4k1108

parameters in each relation with the normalization1109

constraint q▷
r). For more specific information re-1110

garding the parameter counts of various models in1111

the FB15K-237 and FB15K datasets, please refer1112

to Table 17.1113

We utilize the 3H-TH model as a reference and1114

set the entity dimensions of 3H-TH to 32. The cal-1115

culation of entity dimension results, denoted as k∗,1116

for various models in the FB15K-237 and FB15K1117

datasets, along with the link prediction accuracy re-1118

sults of FB15K at different entity dimensions, can1119

be found in Table 18. This ensures that the over-1120

all parameters remain the same across the models.1121

The reason for conducting experiments exclusively1122

on FB15K, rather than FB15K-237, is that the cal-1123

culation entity dimension results for FB15K-237 1124

closely align with 32, as indicated in Table 18. Fur- 1125

thermore, WN18RR exhibits fewer relations (11) 1126

and a larger number of entities (40943) compared 1127

to FB15K-237. As a result, the calculation entity 1128

dimension results for WN18RR are also similar 1129

to 32, rendering additional experiments unneces- 1130

sary. Moreover, we carefully select the appropriate 1131

dimensions for each model to ensure the proper 1132

functioning of the experiments. For instance, the 1133

dimension for 3D rotation must be a multiple of 4, 1134

while the dimension for 2D rotation is 2. 1135

Based on the link prediction accuracy results pre- 1136

sented in Table 18, it is evident that the 3H model 1137

with an entity dimension of k = 36 surpasses all 1138

other models, including the 3H-TH model. This 1139

observation highlights the effectiveness and appli- 1140

cability of the 3H model in KGE tasks. 1141

A.7 State of the art methods in KGE 1142

There are several noteworthy performance meth- 1143

ods appeared recently, and we make the follow- 1144

ing summary for WN18RR in Table 19. Among 1145

them, the methods of MoCoSA(He et al., 2023), 1146

SimKGC(Wang et al., 2022a), C-LMKE(Wang 1147
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Model Relation embeddings Num-params Num-params(FB15K-237) Num-params(FB15K)
TE er nek + nrk 14541k + 237k, (14778k) 14951k + 1345k, (16296k)

TH br nek + nrk 14541k + 237k, (14778k) 14951k + 1345k, (16296k)

2H or 2E cr nek + nr
1
2k 14541k + 237

2 k, (14660k) 14951k + 1345
2 k, (15624k)

3H or 3E qr nek + nr
3
4k 14541k + 237∗3

4 k, (14719k) 14951k + 1345∗3
4 k, (15960k)

2E-TE cr, er nek + nr
3
2k 14541k + 237∗3

2 k, (14897k) 14951k + 1345∗3
2 k, (16969k)

3E-TE qr, er nek + nr
7
4k 14541k + 237∗7

4 k, (14956k) 14951k + 1345∗7
4 k, (17305k)

3H-TH qr,br nek + nr
7
4k 14541k + 237∗7

4 k, (14956k) 14951k + 1345∗7
4 k, (17305k)

2E-TE-2H-TH c(r,E), er, c(r,H),br nek + nr3k 14541k + 237 ∗ 3k, (15252k) 14951k + 1345 ∗ 3k, (18986k)
3E-TE-3H-TH q(r,E), er,q(r,H),br nek + nr

7
2k 14541k + 237∗7

2 k, (15371k) 14951k + 1345∗7
2 k, (19659k)

Table 17: The total number of parameters for several models in the FB15K-237 and FB15K datasets. k denotes
entity dimensions, ne, nr denotes number of entities and relations.

Model k∗(FB15K-237) k∗(FB15K) experiment-dim (FB15K) MRR H@1 H@3 H@10
TransE(TE) 32.4 34 34 .473 .345 .550 .700
RotatE(2E) 32.6 35.4 36 .474 .354 .540 .706
QuatE(3E) 32.5 34.7 36 .494 .370 .569 .721
MuRP(TH) 32.4 34 34 .490 .361 .561 .721
RotH(2H) 32.6 35.4 36 .505 .380 .585 .729
3H 32.5 34.7 36 .520 .395 .598 .745
2E-TE 32.1 32.6 32 .494 .373 .568 .725
3E-TE 32 32 32 .496 .376 .572 .725
3H-TH 32 32 32 .506 .383 .581 .731
2E-TE-2H-TH 31.4 29.2 30 .488 .364 .560 .715
3E-TE-3H-TH 31.1 28.2 28 .477 .355 .548 .704

Table 18: The link prediction accuracy results of FB15K in different entity dimensions. Bold indicates the best
score, and underline represents the second-best score. k∗(FB15K-237) and k∗(FB15K) are the entity dimensions for
several models under the same number of Parameters when we set that of the 3H-TH model as 32, experiment-dim
denotes the dimensions that we actually use in experiments for proper experimentation.

et al., 2022b), KNN-KGE(Zhang et al., 2022),1148

and HittER(Chen et al., 2020) are mainly based1149

on Large Language Models to complete the1150

dataset information, thereby achieving better re-1151

sults. LERP(Han et al., 2023) did not use LLMs,1152

but they used some additional contextual informa-1153

tion (Logic Rules) beyond the dataset to complete1154

some information missing in the entities and rela-1155

tions. Compared to other methods that rely on the1156

dataset itself, for instance, TransE(Bordes et al.,1157

2013), RotatE(Sun et al., 2019), and the method1158

3H-TH in this paper, they only used the data and1159

information of the KGE dataset itself, and based1160

on certain mathematical rules and algorithms to get1161

the final result, without using any additional infor-1162

mation, and are not similar to LLMs’ black box1163

methods. Hence, these dataset-dependent meth-1164

ods continue to hold significant value for KGE1165

research.1166

A.8 Relation pattern examples 1167

In knowledge graphs (KGs), various relation pat- 1168

terns can be observed, including symmetry, anti- 1169

symmetry, inversion, composition (both commuta- 1170

tive and non-commutative), hierarchy, and multi- 1171

plicity. These patterns are illustrated in Fig. 3. 1172

Some relations exhibit symmetry, meaning 1173

that if a relation holds between entity x and y 1174

((r1(x, y) ⇒ r1(y, x)))(e.g., is married to), it also 1175

holds in the reverse direction (i.e., between y and 1176

x). On the other hand, some relations are antisym- 1177

metric ((r1(x, y) ⇒ ¬r1(y, x))), where if a rela- 1178

tion holds between x and y (e.g., is father of ), it 1179

does not hold in the reverse direction (i.e., between 1180

y and x). 1181

Inversion ((r1(x, y) ⇔ r2(y, x))) of relations is 1182

also possible, where one relation can be trans- 1183

formed into another by reversing the direction of 1184

the relation (e.g., is child of and is parent of ). 1185

Composition ((r1(x, y) ∩ r2(y, z) ⇒ r3(x, z))) 1186

of relations is another important pattern, where 1187
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Model Description MRR Accuracy
MoCoSA(He et al., 2023) Language Models .696
SimKGC(Wang et al., 2022a) Language Models .671
LERP(Han et al., 2023) Additional Contextual Information (Logic Rules) .622
C-LMKE(Wang et al., 2022b) Language Models .598
KNN-KGE(Zhang et al., 2022) Language Models .579
HittER(Chen et al., 2020) Language Models .503
3H-TH - .493

Table 19: State of the art baseline models in WN18RR dataset.

the combination of two or more relations leads to1188

the inference of a new relation. This composition1189

can be commutative (order-independent) or non-1190

commutative (order-dependent). Non-commutative1191

composition ((r1(x, y) ∩ r2(y, z) ̸=( r2(x, y) ∩1192

r1(y, z)) is necessary when the order of relations1193

matters, such as in the example of the mother of1194

A’s father (B) being C and the father of A’s mother1195

(D) being E. In a commutative composition, C and1196

E would be equal, but in a non-commutative com-1197

position, they are not.1198

Hierarchical relations exist in KGs, where dif-1199

ferent entities have different levels or hierarchies.1200

This hierarchical structure is depicted in the tree-1201

like structure shown in Fig. 3.1202

Finally, multiplicity refers to the existence of1203

different relations between the same entities. For1204

example, an entity can have multiple relations such1205

as award-winner and director associated with it.1206

These various relation patterns capture the com-1207

plexity and diversity of knowledge in KGs, high-1208

lighting the challenges and opportunities in model-1209

ing and reasoning over such data.1210

A.9 Hyperparameter1211

All the hyperparameter settings have been shown1212

in Table 20.1213
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Figure 3: Toy examples for several relation patterns.
Our approach can perform well on all these relation
patterns.
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Dataset embedding dimension model learning rate optimizer batch size negative samples

WN18RR

32

TransE(TE) 0.001 Adam 500 50
RotatE(2E) 0.1 Adagrad 500 50
QuatE(3E) 0.2 Adagrad 500 50
MuRP(TH) 0.0005 Adam 500 100
RotH(2H) 0.0005 Adam 500 50
3H 0.001 Adam 500 100
2E-TE 0.1 Adagrad 500 50
3E-TE 0.2 Adagrad 500 100
2E-TE-2H-TH 0.001 Adam 500 100
3H-TH 0.001 Adam 500 100
3E-TE-3H-TH 0.001 Adam 500 100

200

TransE(TE) 0.001 Adam 500 100
RotatE(2E) 0.1 Adagrad 500 100
QuatE(3E) 0.2 Adagrad 500 100
MuRP(TH) 0.001 Adam 500 100
RotH(2H) 0.001 Adam 500 50
3H 0.001 Adam 500 100
2E-TE 0.1 Adagrad 500 50
3E-TE 0.2 Adagrad 500 100
2E-TE-2H-TH 0.001 Adam 500 100
3H-TH 0.001 Adam 500 100
3E-TE-3H-TH 0.001 Adam 500 100

300, 500

TransE(TE) 0.001 Adam 500 100
RotatE(2E) 0.1 Adagrad 500 100
QuatE(3E) 0.2 Adagrad 500 100
MuRP(TH) 0.001 Adam 500 100
RotH(2H) 0.001 Adam 500 50
3H 0.001 Adam 500 100
2E-TE 0.1 Adagrad 500 50
3E-TE 0.2 Adagrad 500 100
2E-TE-2H-TH 0.001 Adam 500 100
3H-TH 0.001 Adam 500 100
3E-TE-3H-TH 0.001 Adam 500 100

FB15k-237 32

TransE(TE) 0.05 Adam 1000 50
RotatE(2E) 0.05 Adagrad 1000 50
QuatE(3E) 0.05 Adagrad 1000 50
MuRP(TH) 0.05 Adagrad 1000 50
RotH(2H) 0.1 Adagrad 1000 50
3H 0.05 Adagrad 1000 50
2E-TE 0.05 Adagrad 1000 50
3E-TE 0.05 Adagrad 1000 50
2E-TE-2H-TH 0.05 Adagrad 1000 50
3H-TH 0.05 Adagrad 1000 50
3E-TE-3H-TH 0.05 Adagrad 1000 50

FB15K 32

TransE(TE) 0.05 Adagrad 1000 200
RotatE(2E) 0.4 Adagrad 1000 200
QuatE(3E) 0.2 Adagrad 1000 200
MuRP(TH) 0.1 Adagrad 1000 200
RotH(2H) 0.1 Adagrad 1000 200
3H 0.2 Adagrad 1000 200
2E-TE 0.4 Adagrad 1000 200
3E-TE 0.2 Adagrad 1000 200
2E-TE-2H-TH 0.2 Adagrad 1000 200
3H-TH 0.2 Adagrad 1000 200
3E-TE-3H-TH 0.2 Adagrad 1000 200

Table 20: Best hyperparameters in low- and high-dimensional settings for our approach and several composite
models.
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