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Abstract
We study the highly practical but comparatively
under-studied problem of latent-domain adapta-
tion, where a source model should be adapted
to a target dataset that contains a mixture of un-
labelled domain-relevant and domain-irrelevant
examples. Motivated by the requirements for data
privacy and the need for embedded and resource-
constrained devices of all kinds to adapt to local
data distributions, we further focus on the setting
of feed-forward source-free domain adaptation,
where adaptation should not require access to the
source dataset, and also be back propagation-free.
Our solution is to meta-learn a network capable
of embedding the mixed-relevance target dataset
and dynamically adapting inference for target ex-
amples using cross-attention. The resulting frame-
work leads to consistent strong improvements.

1. Introduction
Domain shift presents a real-world challenge for applying
pre-trained models because performance degrades when
deployment data are not from the training data distribution.
For example, a model that has been only trained on day-time
images will perform poorly when presented with night-time
images. This issue is ubiquitious as it is often impossible
or prohibitively costly to pre-collect and annotate training
data that is sufficiently representative of test data statistics.
The field of domain adaptation (DA) (Kouw & Loog, 2021;
Csurka et al., 2022) has therefore attracted a lot of attention
with the promise of adapting models during deployment to
perform well using only unlabeled deployment data.

We make two main contributions: A conceptual contribution,
framing domain adaptation in a new highly practical way;
and an algorithm for effective domain adaptation in these
conditions.
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Latent domain adaptation While domain adaptation
is now very well studied (Kouw & Loog, 2021; Csurka
et al., 2022), the vast majority of work assumes that suitable
meta-data is available in order to correctly group instances
into one or more subsets (domains) that differ statistically
across groups, while being similar within groups. We join a
growing minority (Mancini et al., 2021; Deecke et al., 2022;
Hoffman et al., 2014; Wang et al., 2022) in arguing that this
is an overly restrictive assumption that does not hold in most
real applications of interest. On one hand some datasets or
collection processes may not provide meta-data suitable for
defining domain groupings. Alternatively, for other data
sources that occur with rich meta-data there may be no obvi-
ously correct grouping and existing domain definitions may
be sub-optimal (Deecke et al., 2022). Consider the popu-
lar iWildCam (Beery et al., 2020) benchmark for animal
detection within the WILDS (Koh et al., 2021) suite. The
default setup within WILDS defines domains by camera ID.
But given that images span different weather conditions and
day/night cycles, such domains may neither be internally ho-
mogenous, nor similarly distinct. For example there may be
more transferability between images from nearby cameras
at similar times of day than between images from the same
camera taken on a sunny day vs a snowy night. As remarked
by some (Hoffman et al., 2014; Wang et al., 2022), domains
may more naturally define a continuum, rather than discrete
groups. And that continuum may even be multi-dimensional
– such as timestamp of image and spatial proximity of cam-
eras. In this paper, we propose a flexible formulation of the
domain adaptation problem that can span all these situations
where domains are hard to define, while aligning with the
requirements of real use cases.

Feed-forward and source-free conditions Unsuper-
vised domain adaptation aims to adapt models from source
datasets (e.g. ImageNet) to the peculiarities of specific
data distributions in the wild. The mainstream line of work
here uses labelled source domain data alongside unlabelled
target domain data and updates the model so it performs
well on the target domain using back-propagation (Kouw
& Loog, 2021; Csurka et al., 2022). However, the key use
cases motivating domain adaptation are edge devices such
as autonomous vehicles, smartphones and hospital scanners.
Storing and processing large source datasets on such de-
vices is usually infeasible. This has led a growing number
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of studies to investigate the source-free condition (Liang
et al., 2020), where a pre-trained model is distributed and
adapted using solely unlabeled target data.

In this paper, we go further in considering the practical
requirements of an edge device, namely that most edge
devices are not designed in either hardware or software stack
to support back-propagation. This leads us to focus on the
feed-forward condition where adaptation algorithms should
proceed using only feed-forward operations. For example,
simply updating batch normalisation statistics, which can be
done without back-propagation, provides a strong baseline
for adaptation (Schneider et al., 2020; Zhang et al., 2021).

Feed-forward source-free latent domain adaptation
Bringing these ideas together, we envisage a setup where
edge devices maintain an unlabeled target dataset that need
not be a cleanly meta-data induced domain in the conven-
tional sense, but which may contain examples relevant to
the inference of test instances. Instances in the target set
may be of varied relevance to a given test instance. For ex-
ample, if true instance relevance is a function of timestamp
similarity. These target examples should then drive model
adaptation on the fly, leveraging neither source data, nor
back-propagation.

To solve the challenge posed above, we propose a feed-
forward adaptation framework based on cross-attention be-
tween test instances and the target set. The cross-attention
module is meta-learned based on a set of training domains,
inspired by Zhang et al. (2021). During deployment it flex-
ibly enables each inference operation to draw upon any
part of the target set, exploiting each target instance to a
continuous degree. For example, this could potentially ex-
clude transfer from target instances that would be conven-
tionally in-domain (e.g., same camera/opposite time of day
example earlier), include transfer from target instances that
would conventionally be out-of-domain (e.g., similar im-
ages/different camera example earlier), and continuously
weight similarity to each target image (e.g., temporal dis-
tance of images taken in sequence). Our experiments show
that our cross-attention approach provides useful adaptation
in this highly practical setting across a variety of synthetic
and real benchmarks.

2. Methods
2.1. Set-up

Preliminaries During deployment the high-level assump-
tion made by many source-free domain adaptation frame-
works is that we are provided with a predictive model fψ
and an unlabeled target dataset xs whose label-space is the
same as that of the pre-trained model (Liang et al., 2020).
Given these, source-free DA approaches define some algo-
rithm A that ultimately leads to classifying a test instance xq

as yq ≈ ŷq = A(xq,xs, ψ). There are numerous existing
algorithms for this. For example, pseudo-label strategies
(Liang et al., 2020; Li et al., 2020; Yang et al., 2021) proceed
by estimating labels ŷs for the target set xs, treating these
as ground-truth, back-propagating to update the model ψ′

such that it predicts ŷs, and then classifying the test point
as fψ′(xq). We address the feed-forward setting where al-
gorithm A should not use back-propagation. For example,
BN-based approaches (Schneider et al., 2020; Zhang et al.,
2021) use the target set xs to update the BN statistics in ψ
as ψ′ and then classify the test point as fψ′(xq).

While the conventional domain adaptation setting assumes
that xq and xs are all drawn from a common distribution,
the latent domain assumption has no such requirement. For
example, xs may be drawn from a mixture distribution and
xq may be drawn from only one component of that mixture.
In this case only a subset of elements in xs may be relevant
to adapting the inference for xq .

Deployment phase Rather than explicitly updating model
parameters, we aim to define a flexible inference routine
fψ that processes both xq and xs to produce ŷq in a feed-
forward manner, i.e., ŷq = A(xq,xs, ψ) = fψ(xq,xs). In
this regard our inference procedure follows a similar flow
to variants of Adaptive Risk Minimization (ARM) (Zhang
et al., 2021), with the following key differences: (1) ARM
is transductive: it processes a batch of instances at once
without distinguishing test instances and target adaptation
set, so elements xq are members of xs. (2) ARM makes
the conventional domain-observed assumption that domains
have been defined by an external process that ensures all xq
and xs are drawn from the same distribution. We do not
make this assumption and require robustness to irrelevant
elements in xs.

Training phase To train a model than can be used
as described above, we follow an episodic meta-learning
paradigm (Zhang et al., 2021; Hospedales et al., 2021). This
refers to training fψ using a set of simulated domain adap-
tation tasks. At each iteration, we generate a task with a
unique pair of query and support instances (xs, (yq, xq))
keeping label space the same across all tasks. We simulate
training episodes where xs contains instances with varying
relevance to xq. The goal is for fψ to learn how to select
and exploit instances from xs in order to adapt inference
for xq to better predict yq .

In particular, our task sampler defines each task as having
support examples uniformly sampled across a random set
of ND domains, with the query example being from one
of these domains. More formally, each task can be defined
as T = {{xs,1, xs,2, . . . xs,Ns} , xq, yq} for Ns unlabelled
support examples xs,. and query example xq with label yq.
We give an example of a task in Figure 1 forK = 3 domains
with Ns = 3 support examples and Nq = 1 query example.
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Figure 1. Illustration of how the latent domain adaptation tasks are
structured. Support images come from a variety of domains and
do not have any class or domain labels.

Figure 2. Illustration of the overall architecture.

2.2. Architecture

The key to solving the proposed problem is defining an
architecture fψ that can identify and exploit relevant support
instances within xs. Our solution relies on cross-attention
between query and support images, as illustrated in Figure 2.
We first embed the support and query examples using the
same feature extractor, after which we pass the embeddings
through the cross-attention module. The cross-attention
module gives us transformed query examples that are then
added to the embeddings of the query examples as a residual
connection, after which the classifier makes predictions.

Cross-attention module Given a set of support examples
xs and query examples xq, we use the feature extractor fθ
to extract features fθ(xs), fθ(xq). Cross-attention mod-
ule CAω(fθ(xs); fθ(xq)) parameterized by ω then trans-
forms query embeddings fθ(xq), using support embeddings
fθ(xs) as keys. The output of the cross-attention module is
added to the query example features as a residual connection,
which is then used by the classifier fϕ to predict labels of the
query examples ŷq = fϕ(fθ(xq)+CAω(fθ(xs); fθ(xq))).
In our notation ψ = {θ,ϕ,ω}.

The cross-attention module performs image-to-image cross-
attention, rather than patch-to-patch. After extracting the
features we flatten all spatial dimensions and channels into
one vector, which represents the whole image. Image-to-
image attention is more suitable for domain adaptation than
patch-based option because the overall representation should
better capture the nature of the domain rather than a patch.
Another benefit of image-to-image attention is efficiency –

Algorithm 1 Episodic meta-learning for source-free latent
domain adaptation with CXDA
// Meta-training

Require: # training steps T , # latent domains in a task ND , #
support examples Ns, # query examples Nq , learning rate η

1: Initialize: θ,ϕ,ω
2: for t = 1, . . . , T do
3: Sample ND support domains {Ds}ND

1

4: Sample query domain Dq from support domains {Ds}ND
1

5: Sample Ns unlabelled support images xs uniformly from
the selected support domains {Ds}ND

1

6: Sample Nq labelled query images xq,yq from domain Dq

7: Predict ŷq = fϕ(fθ(xq) + CAω(fθ(xs); fθ(xq)))

8: (θ,ϕ,ω)← (θ,ϕ,ω)− η∇(θ,ϕ,ω)

∑Nq

k=1 ℓ(ŷq,k, yq,k)

9: end for

// Inference on a new task

Require: θ,ϕ,ω, support xs and query xq examples
10: ŷq = fϕ(fθ(xq) + CAω(fθ(xs); fθ(xq)))

we attend to the whole image rather than patches, making the
overall computations manageable even with more images.

Our cross-attention module is parameterized by a set
of learnable projection matrices Wq,Wk,Wv (all of
size RC×(C/R)) with additional projection matrix W ∈
R(C/R)×C to transform the queried outputs (we refer to all
of these parameters collectively as ω). The output of the
feature extractor fθ is flattened into one vector, giving C
channels, so fθ(xq) ∈ RNq×C , fθ(xs) ∈ RNs×C . We also
specify ratio R that leads to rectangular projection matrices
with fewer parameters, improving efficiency and providing
regularization. Formally we express CAω as:

q = fθ(xq)Wq, k = fθ(xs)Wk, v = fθ(xs)Wv,

A = softmax
(
qkT /

√
C/h

)
, CAω(fθ(xs)) = Av.

Similarly as CrossViT (Chen et al., 2021) and self-attention
more broadly, we use multiple heads h and layer norm.

2.3. Meta-Learning

We train the model by meta-learning across many tasks.
Meta-learning is first-order as the inner loop does not in-
clude back-propagation based optimization – the adaptation
to the support examples is done purely feed-forward. Both
meta-training and inference are summarized in Algorithm 1.

3. Experiments
3.1. Benchmarks

We evaluate our approach on a variety of synthetic and
real-world benchmarks, namely FEMNIST (Caldas et al.,
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Table 1. Main results on synthetic and real-world benchmarks: average and worst-case (worst 10% tasks) test performance, with standard
error of the mean across 3 random seeds. Accuracy is reported for all except iWildCam, where F1 score is used (%).

FEMNIST CIFAR-10-C TINYIMAGENET-C IWILDCAM

APPROACH W10% AVG W10% AVG W10% AVG W10% AVG

ERM 52.7 ± 1.4 77.2 ± 0.9 44.3 ± 0.5 68.6 ± 0.3 4.8 ± 0.2 26.4 ± 0.4 0.0 ± 0.0 38.7 ± 0.8
BN 52.2 ± 1.5 78.0 ± 0.7 45.4 ± 0.7 69.3 ± 0.4 5.9 ± 0.2 27.7 ± 0.3 1.9 ± 1.1 42.5 ± 0.8
CML 50.4 ± 1.3 76.0 ± 0.9 44.8 ± 0.5 69.5 ± 0.5 4.8 ± 0.5 25.7 ± 0.6 0.0 ± 0.0 38.7 ± 1.1
OUR CXDA 53.3 ± 0.6 78.3 ± 0.0 49.4 ± 0.6 72.0 ± 0.3 6.5 ± 0.2 28.6 ± 0.3 3.6 ± 1.5 43.5 ± 1.5

2018), CIFAR-10-C (Hendrycks & Dietterich, 2019),
TinyImageNet-C (Hendrycks & Dietterich, 2019) and iWild-
Cam (Beery et al., 2020). We follow the splits into meta-
training, meta-validation and meta-testing sets as selected
by Zhang et al. (2021) and Koh et al. (2021).

3.2. Baselines

We consider three baselines: 1) Empirical risk minimization
(ERM) that trains on all training domains and performs no
domain adaptation. 2) Batch normalization (BN) statistics
update that uses support examples to update the statistics.
3) Contextual meta-learning (CML) (Zhang et al., 2021)
that extracts information from the support examples using a
context network and uses it as additional channels for adap-
tation. BN and CML assume examples from one domain,
rather than mixture of both relevant and irrelevant domains,
so it is unclear how successful they will be in LDA.

3.3. Implementation Details

Our solution - CXDA In line with existing literature
(Vaswani et al., 2017; Chen et al., 2021) we use 8 heads and
layer normalization on the flattened features of support and
query images. The use of layer normalisation means our
approach does not rely on a minibatch of query examples
i.e. it natively supports streaming mode and does not need
mutiple query examples to obtain strong results, unlike ex-
isting test-time domain adaptation approaches (Zhang et al.,
2021; Wang et al., 2021).

Support images are projected into keys and values, while
query images act as queries for cross-attention after trans-
formation by a projection matrix. After calculating the
attention map and applying it to the values, we multiply
the output by a further projection matrix. We use only one
cross-attention layer and our projection matrices have rect-
angular shape of C ×C/2 where C is the dimensionality of
the flattened features. No dropout is used.

Data augmentation We use weak data augmentation
during meta-training – cropping, horizontal flipping, small
rotations (up to 30 degrees). These are different from the
corruptions tested in some of the benchmarks and are ap-
plied independently with probability 0.5.

Task sampling Our tasks have 5 support domains, with

20 examples in each, overall 100 support examples. Query
examples come from one randomly selected support set
domain and there are 20 of them. The method fully sup-
ports streaming mode, so no statistics are calculated across
the minibatch and it works independently for each. There
are 420, 11000, 11000 and 2125 test tasks for FEMNIST,
CIFAR-10-C, TinyImageNet-C and iWildCam respectively.

Training We follow the hyperparameters used by Zhang
et al. (2021) for FEMNIST, CIFAR-10-C and TinyImageNet-
C, and we also train the cross-attention parameters with the
same optimizer. For FEMNIST and CIFAR-10-C a small
CNN model is used, while for TinyImageNet-C a pre-trained
ResNet-50 (He et al., 2015) is fine-tuned. For iWildCam we
follow the hyperparameters selected by Koh et al. (2021),
but with images resized to 112×112, training for 50 epochs
and with mini-batch size resulting from our task design (100
support and 20 query examples). All our experiments are
repeated across three random seeds.

3.4. Results

We report our results in Table 1 and include both average
performance as well as reliability via the worst case perfor-
mance on the most challenging 10% tasks. From the results
we can see our cross-attention approach results in consis-
tent improvements over the strong ERM baseline across all
benchmarks, as well as the CML and BN baselines. Over-
all we see CML and BN strategies that naively combine
information from all support examples have limited success
when the support set has both domain relevant and domain
irrelevant examples. The results confirm our proposed mech-
anism based on cross-attention can successfully select useful
information from the set of examples with both relevant and
irrelevant examples and achieve superior performance.

4. Conclusion
We have introduced a new highly practical setting where we
adapt a model using examples that come from a mixture of
domains and are without domain or class labels. To answer
this new highly challenging adaptation problem, we have
developed a novel solution based on cross-attention that is
able to automatically select relevant examples and use them
for adaptation on the fly.
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