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Abstract

Current deep learning methods are based on the repeated, expensive application of convo-
lutions with parameter-intensive weight matrices. In this work, we present a novel concept
that enables the application of differentiable random ferns in end-to-end networks. It can
then be used as multiplication-free convolutional layer alternative in deep network archi-
tectures. Our experiments on the binary classification task of the TUPAC’16 challenge
demonstrate improved results over the state-of-the-art binary XNOR net and only slightly
worse performance than its 2x more parameter intensive floating point CNN counterpart.
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1. Introduction

Nearly all current deep learning methods rely on a vast amount of floating point oper-
ations and rather simplistic combinations of trainable convolution filters and rectifying
non-linearities. Another direction of machine learning that is based on non-linear multi-
dimensional mapping through ensembles of binary decision trees (Criminisi et al., 2012)
or random ferns (Ozuysal et al., 2009) has become less relevant due to the difficulty or
inability to embed these approaches into end-to-end trainable networks. However, random
ferns prove to serve as fast and efficient feature extractors in connection with separately
trainable layers (Kim et al., 2019). Designing differentiable decision boundaries in deeper
binary trees is considered a very challenging task therefore previous work has focused on
combining CNNs with differentiable (neural) forests (Kontschieder et al., 2015). In parallel,
much research work has recently been devoted to binary networks (Rastegari et al., 2016)
that avoid memory- and computation-intensive floating point matrix multiplications. We
propose a method to efficiently use random ferns within an end-to-end trainable architecture
to replace convolutions without using floating point multiplications.

2. Method

To explain the proposed method, first, we will revisit the concept of a random ferns ensemble
without optimisation. Next, our proposed differentiable binary embedding with weighted
sums is described and extended to multi-layer and convolutional architectures.

For the most part, the procedure during a standard convolution is identical to our
method (unfold

.
= im2col (Chetlur et al., 2014), matrix-multiplication, fold), since only
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Figure 1: Convolution Drop-in Replacement: The unfolded-tensor-matrix · weight-matrix
multiplication is replaced by a fern ensemble using an EmbeddingBag-layer as
LUT. Measuring the proximity of continuous valued feature vectors to binary
strings to compute a weighted sum of LUT entries allows differentiability.

the matrix-multiplication part is replaced by the differentiable random fern implementation.
Therefore, our method is a potential drop-in replacement for convolutions using a Look-
Up-Table (LUT) instead of multiplications.

To generate a classical random fern ensemble classifier, as a first step, for every fern k,
corresponding to the depth m, two sets will be randomly drawn. The first set consists of
a random subset of the input feature dimensions (dk1, ..., d

k
m) and the second set contains

a number of thresholds (tk1, ..., t
k
m). In contrast to optimized decision trees, where different

dimensions of a feature vector will be examined along its path to a leaf-node, traversing a
fern yields always the same feature dimension sequence whose contents will be compared
with the fixed thresholds (see orange and green lines in Figure 1 at the unfolded feature
matrix (UFM) as fixed dimensions of interest for the Ferns p and q). Every comparison
results in a binary output and encodes as binary string an index to access the class specific
histograms of each fern.

In contrast to previous work, the output of each fern is in our case not a data driven (nor-
malised) histogram but directly learned as a feature vector. Inspired by Natural Language
Processing (Mikolov et al., 2013), we use the EmbeddingBag-layer to map a dictionary (here
of size #ferns · 2m) into a different-dimensional output space - effectively implementing all
different class histograms of a fern ensemble into a single large LUT. Inside the red-dotted
box in Figure 1, we follow the original fern algorithm by feeding rows of the UFM (generated
with the im2col operator) through the random fern ensemble - except for the minor devi-
ation of applying a tanh function after the threshold substraction, resulting in a vector cku
per fern k and row u. Taking the sign of cku, converting it to its decimal representation and
adding an appropriate offset sk per fern gives access to the according LUT index position
idxku and its embedding weights.
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The key observation to gain differentiability for these discretely addressed LUT embed-
dings is the fact that while the feature indices idxku based on the UFM provide no gradient to
train networks, a scalar instance weight wk

u that measures the proximity of continuous val-
ued feature vectors to binary strings is very suitable to enable end-to-end training. Here it is
obtained by computing the mean distance of absolute cku entries to 1: wk

u = ‖abs(cku)− 1‖2.
The weighted sums of these LUT entries form the unfolded output feature matrix containing
featoutu , before a final col2im operation reshapes the data.

Table 1: Classification results for the Tumor Proliferation Assessment Challenge (TUPAC)

Input Patches Architecture # Params Energy consumption Accuracy

XNOR net ≈ 80k 2.45 µJ 82.66%
Vanilla net ≈ 80k 65.5 µJ 84.23%
Fern net (ours) ≈ 40k 1.01 µJ 83.97%

3. Experiments & Results

We perform our experimental validation on the binary classification task of the Tumor
Proliferation Assessment Challenge 2016 and show that relatively shallow ferns as networks
with very few trainable weights can be learned that enable high classification accuracy. As
baseline comparisons, we use a Vanilla CNN architecture and its conversion as XNOR net
(Rastegari et al., 2016).

In all 3 experiments, we use the same network architecture: a 5-layer network defined
by the following encoding scheme (cin, cout, kernelsize, stride, norm): 1) (3, 64, 5, 2, BN), 2)
(64, 64, 3, 2, BN), 3) (64, 64, 3, 2, BN), 4) AdaptiveAvgPool, 5) (64, 2, 1, 1,−). The Vanilla
net uses ReLU activation functions after the first 3 layers, whereas the XNOR counterpart
achieves non-linearity already by its input binarization. While we change the backbone using
our Fern-Ensemble layers, the spatial operations (unfolding & folding) remain untouched for
the Fern net. In every layer, we use 24 ferns with a depth of only 3. Here, index-binarization
provides the non-linearity. With only half the parameters, our approach falls just short of
the Vanilla CNN implementation (Table 1) and outperforms the XNOR net. Regarding the
energy comsumption of processing a single input image according to (Hubara et al., 2016),
our Fern net is by far the most efficient approach.

4. Conclusion

We presented a novel approach that enables the use of random ferns within an end-to-
end trainable convolutional architecture and demonstrates impressive classification results
that are on-par with state-of-the-art binary XNOR nets and without using floating point
multiplications. Spatial convolutions can be easily integrated into fern-like architectures
by employing the im2col operator. In contrast to conventional ferns that build class
histograms purely data-driven, we learn the embedding directly - following the end-to-end
trainable paradigm of learning task specific feature extractors and classifiers simultaneously.
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