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Abstract

Faithful yet compact explanations for vision models
remain a challenge, as commonly used dense pertur-
bation masks are often fragmented and overfitted,
needing careful post-processing. Here, we present a
training-free explanation method that replaces dense
masks with smooth tunable contours. A star-convex
region is parameterized by a truncated Fourier series
and optimized under an extremal preserve/delete ob-
jective using the classifier gradients. The approach
guarantees a single, simply connected mask, cuts
the number of free parameters by orders of magni-
tude, and yields stable boundary updates without
cleanup. Restricting solutions to low-dimensional,
smooth contours makes the method robust to adver-
sarial masking artifacts. On ImageNet classifiers, it
matches the extremal fidelity of dense masks while
producing compact, interpretable regions with im-
proved run-to-run consistency. Explicit area control
also enables importance contour maps, yielding a
transparent fidelity—area profiles. Finally, we extend
the approach to multi-contour and show how it can
localize multiple objects within the same framework.
Across benchmarks, the method achieves higher rele-
vance mass and lower complexity than gradient and
perturbation based baselines, with especially strong
gains on self-supervised DINO models where it im-
proves relevance mass by over 15% and maintains
positive faithfulness correlations.

1 Introduction

In the last decade, deep neural networks have con-
sistently represented the state-of-the-art in the com-
puter vision field, achieving strong performance in
classification, detection, and segmentation tasks [1—
4]. As these models are increasingly deployed in
sensitive domains such as medical imaging [5, 6] and
autonomous driving [7], among others, interpretabil-
ity is needed to establish trust, diagnose errors, and
ensure reliability [8, 9].

A family of explanation techniques are saliency
maps, which attribute importance scores to indi-
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vidual input pixels or regions [10-12]. Gradient-
based methods, such as saliency backpropagation
and integrated gradients [13], visualize local sensi-
tivities of the prediction with respect to the input.
While computationally efficient, these approaches
often highlight many, diffuse regions, are sensitive
to noise, and may fail sanity checks that test for
faithfulness [14].

An alternative line of work uses perturbation-
based explanations, which measure how predictions
change when parts of the input are masked or altered.
By optimizing perturbations, methods such as Mean-
ingful Perturbations [15] and Extremal Perturba-
tions [16] identify regions that are most responsible
for the output of a model. Perturbation approaches
are more closely tied to causal influence [17], but
typically rely on dense masks obtained through the
gradients [16] or by training an auxiliary network [9].
A natural requirement for explanations is the abil-
ity to highlight compact, coherent regions that are
sufficient to preserve or suppress a model predic-
tion [18]. Such regions are easier to interpret, com-
pare across inputs, and analyze quantitatively, but
because of their lack of topological guarantees, mask-
ing methods are susceptible to noisy, fragmented, or
multi-component outputs and require strong regu-
larization [16, 19, 20]. Recent work has attempted
to impose continuity and structural constraints on
explanation masks, for example by learning implicit
neural representations that generate smooth, area-
conditioned masks [21]. While such formulations
improve continuity, they still lack explicit geometric
control and topological guarantees.

This work addresses these limitations by propos-
ing a structured representation for perturbation
masks based on gradient-driven contours. Instead of
optimizing every pixel of the mask, we parameterize
a closed star-convex region using a truncated Fourier
series that defines the radial extent of the mask rel-
ative to a learnable center. Such geometry-aware
parameterizations echo ideas from computational
geometry, where analytic formulations like surface-
patch Voronoi diagrams ensure smooth and topo-
logically consistent boundaries [22]. This compact
representation guarantees smooth, simply connected
masks by construction and can be optimized end-to-
end through any differentiable criterion, similar to
how differentiable rendering is used to refine detec-
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tions [23].

Compared to existing extremal methods [16], our
approach reduces the dimensionality of learnable pa-
rameters by one to two orders of magnitude and con-
verges reliably without dataset-level optimization.
The result is a concise, topology-preserving expla-
nation that retains the faithfulness of perturbation-
based approaches while avoiding the instability and
complexity of learnable pixel masks.

2 Method

We represent explanations as smooth star-convex
masks optimized under a perturbation objective.
Each region is parameterized relative to a learn-
able center location ¢ € R? by a truncated Fourier
expansion,

K
7(0) =79 + §R+<Z wkeik‘9> ,

k=1

(1)

with complex coefficients wy, € C, yielding closed,
smooth contours from only 2K +3 free parameters.
The operator R takes the real part normalized to
the positive range.

For a pixel p = (x,y) in polar coordinates relative
to ¢, with angle 6, and radius p,, we define its mask
value as

m(p) !

- L+ eXp(T [P(0p) — pp]) ’

where 7 controls boundary sharpness.

Perturbations follow the extremal principle [15,
16]. A blurred background z is produced by Gaus-
sian smoothing of the input z, and the mask defines
preserved and deleted variants,

(2)

=mozx+(1-m)Oz, (3)
(1-m)Oz+moz. (4)
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The loss we minimize is the sum of three term:
(1) the extremal loss, (2) a term that prefers smaller
areas, and (3) a shape regularizer,

L = Leoxtremal + Ag0tr + /\'r‘cspec- (5)

Similar to Mgller et al. [20], we construct the loss
to encourage preserved regions to retain the model
feature embedding, while deletion suppresses it:

(6)

Here, e,, e, €q are the embeddings of the classifier
backbone of the original image, the preserved and
the deleted variants.

Since Eq. (6) benefits from large masked areas, we
regularize the solution contour by its area fraction

gi\/en by
/2 A( ) dé
2 N S 0 " ’

Lextremal = — COS(GI” 60) + COS(Gd, 60).

(7)

normalized to the [—1, 1]? image domain (S=4). The
hyperparameter A, controls how much a decrease
is loss is valued compared to an increase in area
as Oy Lextremal = —A, at the minimum. This is a
user preference. In our experiments, we found that
tuning it dynamically by

1

Ao = min(5, —
min( 1 — cos(ey, €p)

(8)

gives good results across image types. This sched-
ule increases when the preserved embedding di-
verges from the original, ensuring that compact-
ness is only enforced once fidelity is maintained. At
cos(e,, €p) = 0, the method is forced to identify a
loss for which Oy Lextremal = —1, which is guaran-
teed possible by the mean value theorem. We do
not propagate gradients through Eq. (8), which only
serves to balance the contribution of the two loss
terms.

Finally, since we typically prefer rounded,
smoother shapes, high-frequency oscillations are dis-
couraged by penalizing Fourier energy,

K
Espec = Z k2‘wk|2v (9)
k=1

which suppresses unstable boundaries.

Optimization uses adaptive gradient steps [27]
and 7 annealing for improved convergence (see Ap-
pendix A and Algorithm 1 for more practical de-
tails).

3 Results

We evaluate our extremal contour masks using two
pretrained classifiers: a supervised ResNet-50 [2]
and a self-supervised DINO ViT-B/16 [24]. Our
evaluation considers three complementary perspec-
tives: the qualitative appearance of the explanations,
their quantitative explainability, and the robustness
of the optimization process. Finally, we explore the
ability of the method to extend to images containing
multiple objects.

3.1 Experimental Setup

Experiments were performed on two subsets: 100
ImageNet [1] validation images containing single ob-
jects and 100 COCO [28] images. For both datasets,
images were paired with their bounding boxes or
segmentation masks, and the subsets were fixed
across all methods to ensure comparability. Follow-
ing prior work [29], multiple annotations per image
were merged into a single mask or bounding box to
allow consistent metric computation.

To evaluate our method, we used established XAI
metrics [30] grouped into three categories. The first
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Figure 1. Comparison of explanation methods on ImageNet validation images for the DINO [24] model. While
gradient-based maps (e.g., Gradient SHAP [25], Integrated Gradients [13], Grad-CAM++ [12, 26]) and dense
perturbation masks (Smooth Mask [16]) typically produce diffuse or sometimes fragmented attributions, our
parameterization yields a single smooth, simply connected contour (Extremal Contour) that encloses the object of

Smooth Mask Extremal Contours (Ours)

interest, highlighting a different representational paradigm for explainability.

Algorithm 1 Extremal Contours Optimization

1: Input: image z, pretrained model f, mask parameters © = (¢, rg, w1, ..

'awK)

2: Initialize parameters © and the AdamW optimizer [27].

3. for each iterationt =1...7 do

4:  Generate mask m from Fourier radius (Eq. 1-2) with 7(¢) annealing,.

Construct perturbed inputs zp, zq (Eq. 3-4).

Extract embeddings e, ep, eq < f(2), f(zp), f(xa).

Compute area penalty «, with adaptive weight A\, (Eq. 8) and spectral penalty Lqpec (Eq. 9).
Update O using AdamW on the total loss £ (Eq. 5).
10:  if the loss £ has not decreased for P consecutive iterations then

5
6:
7. Compute extremal loss Lextremal (Eq. 6).
8
9

11: break {early stopping}
12:  end if
13: end for

14: Output: Optimized contour parameters O.

is locality, which measures spatial agreement be-
tween an explanation and ground-truth annotations.
We report relevance rank accuracy (RKA), the frac-
tion of top-k important pixels (with k equal to the
mask size) lying inside the annotation, and relevance
mass accuracy (RMA), the ratio of positive attribu-
tion within the annotation to the total attribution
mass. Higher values indicate stronger alignment
with human labels [29, 31, 32].

The second category is complexity, which quan-
tifies interpretability by sparsity. We use (i) com-
plexity, defined as the entropy of the attribution
distribution, and (ii) sparseness, measured as the
Gini index of absolute attributions. Low entropy or
high Gini indicate focused explanations [33, 34].

Finally, faithfulness assesses whether explanations
truly reflect model reasoning. It is measured by
perturbing or removing highly attributed regions

and observing the prediction drop; greater decreases
imply more faithful explanations [32, 35].

3.2 Qualitative Results

Figure 1 presents a comparison of explanation meth-
ods on ImageNet validation images for the DINO
model. Gradient SHAP [25], Integrated Gradi-
ents [13], Grad-CAM++ [12, 26], and Smooth
Mask [16] often produce diffuse, fragmented, or irreg-
ular attributions. In contrast, our extremal contour
parameterization generates smooth and compact
boundaries that consistently enclose the object of
interest. This shift from pixel-level heatmaps to
contour-based explanations provides a more struc-
tured and interpretable representation of model rea-
soning.

To illustrate the underlying perturbation objec-
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Figure 2.

Qualitative results on ImageNet images.
Each column: input image, our optimized mask (red: ini-
tial contour, blue: optimized contour), preserve variant,
and deletion variant. Our method highlights compact
star-convex regions that preserve predictions while their
deletion strongly suppresses them.

tive, Figure 2 presents qualitative examples showing
the input, the optimized mask, and the resulting
preserved and deleted variants. These demonstrate
that the selected region is sufficient to maintain the
prediction, while its removal attempts to suppress
it, confirming that the learned contours faithfully
capture the features driving the model output.

3.3 Quantitative Results

Across both COCO and ImageNet benchmarks, the
proposed extremal contour approach achieves com-
petitive or superior performance compared to stan-
dard attribution methods. On COCO (Table 1),
our method consistently attains the best relevance
rank and mass, indicating stronger alignment with
ground-truth object regions, while maintaining low
complexity and high sparseness. On ImageNet (Ta-
ble 2), Smooth Mask achieves the highest over-
all scores in most supervised settings, particularly
in relevance-based metrics, but our method pro-
vides a favorable balance between localization fi-
delity and explanation compactness. Importantly,
extremal contours show improved robustness in the
self-supervised DINO model, outperforming other
methods in relevance mass and complexity, while
delivering positive faithfulness correlations where
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Figure 3. Robustness of the method. (Top) Red circles
denote different initial positions ¢ of the contour, while
the blue contour is the final optimized masks, overlapped.
(Bottom) Effect of the spectral regularizer on contour
complexity (color coded). Large A, enforces smooth,
near-circular masks, while lower values permit higher-
frequency modes, yet result in the same location. Each
trajectory is optimized independently, though we show
them simultaneously for visualization.

most baselines fail. These results highlight that
contour-based explanations not only capture object
boundaries more reliably but also provide more sta-
ble and interpretable attributions across supervised
and self-supervised models.

3.4 Robustness

Our formulation has only two major free choices: the
initial contour center ¢ and the spectral regulariza-
tion weight \,.. To test sensitivity to ¢, we initialize
contours from nine different starting points spread
across the image (Fig. 3). In all cases, optimization
converges to the same object with only minor varia-
tion in boundary shape, indicating that the method
is stable and not reliant on initialization. We note,
however, that the closer the initial contour is to the
primary evidence region, the faster the convergence
and the less prone it is to local optima, particularly
when the object has irregular shapes.

The second parameter, A, controls the degree of
allowable high-frequency oscillations. In practice,
we also limit the number of Fourier coefficients K
for computational efficiency. Figure 3 shows how
large A, yields smooth, near-circular contours, while
smaller values allow more irregular boundaries. De-
spite these differences in presentation, all runs in-
dependently recover the same target object, demon-
strating robustness to this regularization setting.



Table 1. Quantitative comparison of attribution methods on COCO validation images for a supervised ResNet-50
and a self-supervised DINO ViT-B/16. Extremal contours (ours) achieve strong localization performance while
maintaining compact and concentrated explanations. Values are reported as mean (95% CI).

Model Method Relevance Rank Relevance Mass Complexity Sparseness
T T 1 T

Gradient SHAP [25] 0.430 (0.373, 0.487)  0.418 (0.361, 0.476)  10.145 (10.107, 10.184)  0.594 (0.582, 0.607)
Integrated Grads [13] 0.432 (0.375, 0.488)  0.423 (0.365, 0.481)  10.165 (10.118, 10.212)  0.584 (0.570, 0.599)

Supervised  Smooth Mask [16] 0.462 (0.406, 0.518)  0.514 (0.443, 0.585) 8.655 (8.630, 8.679) 0.910 (0.908, 0.912)
Grad-CAM++ [12, 26]  0.460 (0.401, 0.519)  0.465 (0.393, 0.537) 9.518 (9.385, 9.651) 0.708 (0.664, 0.751)
Extremal Contour 0.478 (0.427,0.530) 0.602 (0.537, 0.666) 8.990 (8.929, 9.051) 0.843 (0.834, 0.852)
Gradient SHAP [25] 0.492 (0.438, 0.545)  0.485 (0.428, 0.542)  10.202 (10.164, 10.240)  0.573 (0.560, 0.586)
Integrated Grads [13] 0.492 (0.438, 0.545)  0.484 (0.428, 0.541)  10.239 (10.210, 10.267)  0.561 (0.550, 0.572)

DINO Smooth Mask [16] 0.454 (0.398, 0.510)  0.538 (0.469, 0.608) 8.658 (8.630, 8.685) 0.910 (0.908, 0.912)

Grad-CAM++ [12, 26]
Extremal Contour

0.434 (0.375, 0.493)
0.481 (0.429, 0.533)

0.432 (0.371, 0.494)
0.652 (0.586, 0.718)

9.993 (9.932, 10.054)
8.665 (8.616, 8.715)

0.651 (0.632, 0.670)
0.889 (0.884, 0.895)

Table 2. Quantitative comparison of attribution methods on ImageNet validation images for a supervised
ResNet-50 and a self-supervised DINO ViT-B/16. Extremal contours (ours) deliver competitive localization and
simplicity while improving robustness and consistency relative to gradient- and perturbation-based methods.

Values are reported as mean (95% CI).

Relevance

Model Rank 1

Method

Relevance
Mass 1

Faithfulness

+

Complexity
1

Sparseness

+

Gradient SHAP [25]
Integrated Grads [13]
Smooth Mask [16]
Grad-CAM++ [12, 20]
Extremal Contour

0.606 (0.546, 0.666)
0.614 (0.555, 0.673)
0.638 (0.580, 0.696)
0.588 (0.524, 0.652)
0.596 (0.536, 0.655)

Supervised

0.628 (0.563, 0.692)
0.632 (0.568, 0.696)
0.806 (0.738, 0.874)
0.626 (0.552, 0.701)
0.779 (0.706, 0.852)

10.115 (10.066, 10.165)
10.163 (10.123, 10.202)
8.686 (8.659, 8.712)
9.737 (9.597, 9.877)
8.878 (8.795, 8.961)

0.604 (0.588, 0.619)
0.589 (0.575, 0.603)
0.907 (0.905, 0.910)
0.658 (0.614, 0.701)
0.855 (0.843, 0.866)

0.036 (-0.027, 0.099)
0.070 (0.004, 0.137)
0.091 (0.029, 0.153)
0.090 (0.018, 0.161)
0.050 (-0.022, 0.122)

Gradient SHAP [25]
Integrated Grads [13]
Smooth Mask [16]
Grad-CAM++ [12, 26]
Extremal Contour

0.610 (0.549, 0.670)
0.610 (0.550, 0.669)
0.616 (0.555, 0.676)
0.551 (0.486, 0.617)
0.601 (0.544, 0.659)

DINO

0.633 (0.568, 0.699)
0.637 (0.573, 0.701)
0.758 (0.683, 0.833)
0.584 (0.513, 0.654)
0.814 (0.745, 0.883)

10.152 (10.096, 10.207)
10.210 (10.174, 10.246)
8.659 (8.636, 8.682)
10.022 (9.959, 10.086)
8.562 (8.504, 8.621)

0.589 (0.573, 0.604)
0.571 (0.558, 0.584)
0.910 (0.908, 0.912)
0.636 (0.613, 0.659)
0.899 (0.894, 0.905)

-0.050 (-0.143, 0.042)
-0.000 (-0.096, 0.095)
0.010 (-0.060, 0.081)
-0.041 (-0.124, 0.042)
-0.033 (-0.118, 0.051)

In contrast, methods that learn dense masks di-
rectly can lead to adversarial solutions. The opti-
mizer can exploit unconstrained degrees of freedom
to satisfy the extremal loss (Eq. 6) without produc-
ing meaningful explanations. For instance, to mi-
grate this, Fong et al. [16] and Mgller et al. [20] rely
on gaussian smoothing of lower dimensional masks,
at the cost of fidelity. Our contour parameterization
avoids this issue by construction. Our method is
limited to select a compact, connected region, ensur-
ing that explanations remain interpretable without
post-hoc corrections.

3.5 Fixed-area explanations

Perturbation-based explanations often involve a
trade-off between attribution area and faithfulness.
In our formulation, area is controlled by the adaptive
weight A, described in Eq. (8), which automatically
scales to enforce the smallest region that still pre-
serves the embedding. This yields compact masks
without requiring manual tuning.

Dense explanation methods often constrain to a
fixed area size [16]. To explore this for our approach,

we can replace the adaptive area term with an ob-
jective that has a target fraction a*:

L = Lextremal + >\a|ar - Ol*| + Akﬁspec- (10)
By varying o, we can probe how mask extent influ-
ences embedding preservation. As shown in Fig. 4,
tuning o™ produces contours of different sizes that
remain optimized for attribution. The resulting col-
lection of contours resemblance a contour-map of
faithfulness, where successive closed curves high-
light regions sufficient for the model prediction. As
expected, the embedding preservation (deletion) is
maximized (minimized) at large mask areas, whereas
aiming for the smaller evidence results in a cost in
performance.

The single-contour construction naturally suits
images with one dominant object. Extending it
to multi-object settings would require additional
constraints to separate regions (see Sec. 3.6).

Finally, sweeping a* recovers the characteristic
area—faithfulness trade-off curve (Fig. 4), serving as
a sanity check that the learned masks are placed in
meaningful locations.
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Figure 4. Area-fidelity trade-off. (Left) Single closed
contours at target areas o € {0.1,...,0.7} (small to
large). The combined contours resemble a contour map
of the faithfulness based on the available region of the
image. (Right) Target class probability as a function of
the targeted area a. Solid lines shows the preserved
variants whereas dashed lines show the deletion. Dotted
lines show the average embedding preservation of ran-
domly sampled circular masks.

3.6 Multiple Contours

While we have presented the method for single star-
convex regions, many images contain multiple ob-
jects that prediction networks focus on. Therefore,
we extend our formulation to allow several indepen-
dent contours to be optimized simultaneously. Each
contour mask m; is computed using Eq. (2), and
the final composed mask is trivially obtained by the
pixel-wise maximum:

(11)

max_m;(p).

m(p) - i=1...N

This preserves differentiability while ensuring that
the overall mask works as expected by the method.

The loss is extended by summing the relative ares
ag) and spectral penalties of each contour. Note
that since areas are computed directly on the shape,
the method encourages the contours to remain com-
pact and discourages from overlapping, as opposed
to the classical approach of counting mask pixels.
In practice, the only initialization constraint we ob-
serve is due to complete overlap of the contours,
where the gradient information is the same.

Figure 5 shows examples with N=2 and N=4
contours applied to multiple images with more than
one element leading the prediction. This also shows
the robustness of the method to consistently land
on the objects that lead the decision making of the
classifier. This demonstrates that our presented
gradient-driven contour method can be extended
to multi-object without sacrificing stability or in-
terpretability. Nevertheless, a limitation of the pre-
sented formulation is its isotropic bias, which favors

Figure 5. Examples of multiple contour optimization
with N=2 (top, left/right; bottom left) and N=4 (bot-
tom right). Optimized contours (blue) adapt to distinct
salient objects within the image from the initial contours
(red). The method encircles the regions that lead the
classification. (bottom right) shows a failure case where
the contours are not able to cover the salient objects in
the image.

rounded, compact shapes. This results in elongated
objects not being well captured even when multiple
contours are optimized jointly.

4 Discussion

We proposed a Fourier parameterization for pertur-
bation masks that produces smooth, simply con-
nected regions and converges reliably under gradient
descent. Compared to dense extremal masks [16,
36], our approach achieves similar fidelity while guar-
anteeing compact, interpretable shapes. This makes
it useful in settings where stability and topologi-
cal consistency result in higher explainability than
direct pixel attribution [14].

The main advantage of our method is simplicity.
With only a small set of parameters, optimization
is direct and reproducible, avoiding the instability
seen in less constrained methods [16, 19]. Similarly,
the Fourier basis also allows explicit control over
smoothness and contour complexity through a single
regularization term.

Nevertheless, the method has a few limitations.
The star-convex constraint ensures that every point
in the mask is directly visible from its center, which
guarantees smooth, single-component regions but
prevents capturing objects with strong concavities or
holes. Because the masks enclose contiguous areas,
they may also include non-informative pixels, which



lowers sparsity and complexity compared to saliency
maps [12, 13, 37]. In addition, unlike methods that
produce attribution maps, our approach results in
a binary mask, which can reduce the granularity of
explanations. For fine-grained classes, the reduced
flexibility under performs dense masks. Finally, op-
timization requires iterative updates of the contour
rather than a single backward pass, so runtime is
higher and efficiency remains an open direction.

We also showed that the formulation extends nat-
urally to multiple contours, allowing disjoint regions
of evidence. Beyond ImageNet classifiers, a natural
next step is to deploy contour-based explanations
in domains where compact, clinician-friendly attri-
butions matter, most notably medical imaging (CT,
MRI, pathology slides) settings [5, 6, 38]. In these
settings, learned contours can serve as editable sug-
gestion masks that radiologists refine with minimal
effort, thereby reducing the annotation burden com-
pared to dense pixel-wise labeling while maintaining
faithfulness. More broadly, such compact and didac-
tic explanations can support training and assessment
workflows, improve reader consistency and evalua-
tion quality, and naturally avoid fragmented voxel
islands within a single object segmentation [39].

The proposed method is inherently model-agnostic
and can be readily extended to other vision tasks.
For object detection, the backbone continues to pro-
duce embeddings and target scores, enabling contour
optimization with respect to a chosen box or query
score using unaltered gradients. For segmentation,
the extension is more intricate and warrants investi-
gation into which loss formulations yield the most
informative and faithful attributions. Owing to its
simplicity, the framework allows users to flexibly se-
lect losses that align with their analytical objectives.

These directions warrant systematic exploration
in future studies, including the development of richer
contour parameterizations that balance expressiv-
ity with topological guarantees, enabling multi-
component or hierarchical masks while preserving
the efficiency and stability of the Fourier formula-
tion.
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A Implementation Details

The optimization process involves a few practical
considerations that make the method stable and
reproducible.

Initialization. The contour center ¢ is placed at
the image center for simplicity (any location is ac-
ceptable as shown in Sec. 3.4). Fourier coefficients
initialized to zero (wr = 0,Vk € (0,K)) and 7=1,
the contour reduces to a circle of radius r¢=0.5 in
the normalized [—1,1]? domain. This initial mask
alongside its smooth boundary cover (gradient range)
most of the image, ensuring that gradients are avail-
able everywhere so the optimizer can relocate c if
needed.

Radius and Mask. Each region is parameterized
relative to ¢ by a truncated Fourier expansion with
bounded radial deviations:

K
7#(0) = ro + Stanh (Re ZWkeiw) ) (12)

k=1

where 5 is a scaling factor given by § = min(rg —
Rmi’m Rmaw - ’r‘o) with Rmm:O.l and Rmazzl.o.

Frequency budget and regularization. In the
experiments shown here, we set K=5, which already
yields expressive and rounded masks while keeping
the parameterization compact. Larger K values
are supported, but the spectral regularizer Lqpec
naturally suppresses high-frequency coefficients so
that unused harmonics decay during optimization.
In Sec. 3.4 we show results with K=20 and varying
Ak, illustrating how the choice of frequency budget
and regularization strength affects the mask shape.
The original embedding e, = f(x) and the blurred
background image T are both computed once be-
fore the optimization loop, since they remain fixed
throughout. Cosine similarity is evaluated as

.
cos(A, B) = A B

= A3 (13)

without separately normalizing the embeddings.

The blurred background Z is obtained using Gaus-
sian smoothing with kernel size 21 and 0=20. We
observed that the method is robust to moderate
changes of these parameters (e.g. o € [10,30]). Un-
like the “soft mask” variant of extremal perturba-
tions [15, 16], we keep the blur scale fixed, which
simplifies optimization and avoids introducing mask-
dependent artifacts.

Sharpness annealing During optimization, the
sharpness parameter 7 is annealed according to a
cosine schedule:

—79) [1 —cos(mk)],  (14)
with 79=1, 75,=100, and T the total number of it-
erations. This schedule yields smooth gradients in
early iterations and nearly binary masks at conver-
gence. This is a trick to deal with the information
range during the gradient calculations. Note also
that solutions tends to converge before reaching T,
hence we also add a convergences early stopping for
efficiency.

T(t) =70+ 3 (T

Area schedule The adaptive area weight )\, is
clipped to an upper bound of 5.0 to balance the loss
terms, since Lextremal is bounded within [—2,2]. Gra-
dients are stopped before computing A, to prevent
it from interfering with the parameter updates.
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Figure B.1. Convergence behavior of the Extremal
Contour method across 10 images. The runtime stabi-
lizes around 1000 iterations, indicating that the stopping
criteria effectively ensure contour stability. The dots
indicate the iteration our methods assumes converges,
around 8 seconds.

Optimization All parameters (¢, 7o, w1, ..., Wk)
are optimized with AdamW [27], using a learning rate
of 7 = 0.003 and standard (8 values. This combina-
tion provides stable convergence without the need
for additional post-processing, and reliably produces
smooth, star-convex masks across images.

B Runtime Analysis

To assess and compare the computational efficiency
of different attribution methods, we measured their
runtime on a set of 10 images and report the av-
erage and standard deviation (STD) values in Ta-
ble B.1. All experiments were conducted on an
NVIDIA GeForce RTX 3090 GPU. Owing to the
iterative nature of the Extremal Contour algorithm,
we further performed a convergence analysis over 10
independent images to examine its stability across
iterations. As illustrated in Figure B.1, the optimiza-
tion stabilizes after approximately 1000 iterations,
indicating convergence to a consistent loss plateau.
For completeness, we display the full convergence
curves up to 5000 iterations, where the stopping
points (marked as dots) demonstrate that all runs
automatically terminated upon reaching the plateau
according to the defined stopping criteria.

Table B.1. Average runtime (in seconds, mean =+ std)
for processing 10 images on NVIDIA GeForce RTX 3090.

Method

Runtime (s)

Gradient SHAP
Integrated Gradients
Smooth Mask
Grad-CAM++
Extremal Contour (ours)

0.032 £ 0.003
0.099 £ 0.005
6.08 + 0.04
0.020 £ 0.003
8.6 £2.5
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