
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

GATHERING AND EXPLOITING HIGHER-ORDER INFOR-
MATION WHEN TRAINING LARGE STRUCTURED MOD-
ELS

Anonymous authors
Paper under double-blind review

ABSTRACT

When training large models, such as neural networks, the full derivatives of order 2
and beyond are usually inaccessible, due to their computational cost. This is why,
among the second-order optimization methods, it is very common to bypass the
computation of the Hessian by using first-order information, such as the gradient
of the parameters (e.g., quasi-Newton methods) or the activations (e.g., K-FAC).
In this paper, we focus on the exact and explicit computation of projections of
the Hessian and higher-order derivatives on well-chosen subspaces, which are
relevant for optimization. Namely, for a given partition of the set of parameters,
it is possible to compute tensors which can be seen as “higher-order derivatives
according to the partition”, at a reasonable cost as long as the number of subsets of
the partition remains small.
Then, we propose an optimization method exploiting these tensors at order 2 and 3
with several interesting properties, including: it outputs a learning rate per subset
of parameters, which can be used for hyperparameter tuning; it takes into account
long-range interactions between the layers of the trained neural network, which
is usually not the case in similar methods (e.g., K-FAC); the trajectory of the
optimization is invariant under affine layer-wise reparameterization.

1 INTRODUCTION

The appealing theoretical properties of Newton’s method have led to numerous attempts to adapt
it to neural network optimization. Therefore, the study of the Hessian of a loss according to many
parameters has become a research area in itself, leading to a large number of methods to approximate
it accurately with low computational cost.

Newton’s method applied to neural network optimization. When it comes to neural networks,
Newton’s method suffers from several problems. Some are technical, such as building an accurate
and computationally efficient method for estimating the Hessian. But some of them are essential, in
the sense that they cannot be solved by a perfect knowledge of the full Hessian alone. For instance,
several works (Sagun et al., 2018) have shown that many eigenvalues of the Hessian are close to zero
when training neural networks, making it impossible to use Newton’s method in practice, even if the
Hessian is perfectly known.

Therefore, in this work, we do not aim to build a technique to estimate the Hessian accurately and
efficiently. Instead, we propose to take a step aside and focus on two related goals. First, we aim
to efficiently access higher-order information in order to use it for optimization. To do this, we
leverage the available computational tools, that is, automatic differentiation and partition of the set
of parameters into tensors stored on a GPU. Second, we aim to build a second-order optimization
method with properties similar to those of Newton’s method (but inevitably weaker). In particular,
we want a method that is invariant by layer-wise affine reparameterizations of the model, and that
provides a Hessian-inspired matrix showing the interactions between each pair of tensors, along with
layer-wise step sizes. Naturally, the computational cost should remain reasonable, and the problem of
close-to-zero eigenvalues of the Hessian has to solved.

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

First contribution: extracting higher-order information. Formally, we study a lossL to minimize
according to a vector of parameters θ ∈ RP , which can be represented as a tuple of tensors
(T1, · · · ,TS). In a multilayer perceptron with L layers, the S = 2L tensors (Ts)1≤s≤2L are the
tensors of weights and the vectors of biases of each layer. In that case, S ≪ P . Within this framework,
we propose a technique summarizing the order-d derivative of the loss, which is a tensor belonging to
RPd

, into a tensor belonging to RSd

, which is significantly smaller and easier to compute.

Second contribution: second-order optimization method. Then, we make use of the preceding
technique at orders 2 and 3 to build a second-order optimization method. Formally, the method
presented here and Newton’s method look alike: in both cases, a linear system H0x = g0 has
to be solved (according to x), where g0 and H0 contain respectively first-order and second-order
information about L. Despite this formal resemblance, the difference is enormous: with Newton’s
method, H0 is equal to the Hessian H of L of size P × P , while with ours, H0 is equal to a matrix
H̄ of size S × S. Thus, H̄ is undoubtedly smaller and easier to compute than H when S ≪ P .
Nevertheless, since H̄ is a dense matrix, it still contains information about the interactions between
the tensors Ts when they are used in L. This point is crucial because most second-order optimization
methods applied to neural networks use a simplified version of the Hessian (or its inverse), usually a
diagonal or block-diagonal approximation, which ignores the interactions between layers. Finally, we
propose an anisotropic version of Nesterov’s cubic regularization (Nesterov & Polyak, 2006), which
uses order-3 information to regularize H̄ and avoid instabilities when computing H̄−1ḡ.

A proof-of-concept of this method is given in Section 5. Apart from that, this method provides a way
to evaluate the interactions between layers from a training perspective, it outputs by-layer learning
rates (which makes it applicable in hyperparameter tuning), and its training trajectory is invariant
by layer-wise affine reparameterizations (so it preserves some interesting theoretical properties of
Newton’s method).

Structure of the paper. First, we show the context and motivation of our work in Section 2.
Then, we provide in Sections 3 and 4 standalone presentations of the contributions, respectively the
higher-order information extraction technique and the second-order optimization method. In Section
5, we present experimental results showing that the developed methods are usable in practice. Finally,
we discuss the results in Section 6.

2 CONTEXT AND MOTIVATION

2.1 HIGHER-ORDER INFORMATION

It is not a novel idea to extract higher-order information about a loss at a minimal computational
cost to improve optimization. This is typically what is done by Dangel (2023), although it does
not go beyond the second-order derivative. In this line of research, the Hessian-vector product
(Pearlmutter, 1994) is a decisive tool, that allows to compute the projection of higher-order derivatives
in given directions at low cost (see App. A). For derivatives of order 3 and beyond, Nesterov’s cubic
regularization of Newton’s method (Nesterov & Polyak, 2006) uses information of order 3 to avoid
too large training steps. Incidentally, we develop an anisotropic variant of this in Section 4.2.

2.2 SECOND-ORDER METHODS

The Hessian H of the loss L according to the vector of parameters θ is known to contain useful
information about L. Above all, the Hessian is used to develop second-order optimization algorithms.
Let us denote by θt the value of θ at time step t, gt ∈ RP the gradient of L at step t and Ht its
Hessian at step t. One of the most widely known second-order optimization method is Newton’s
method, whose step is (Nocedal & Wright, 1999, Chap. 3.3):

θt+1 := θt −H−1
t gt. (1)

Under certain conditions, including strong convexity of L, the convergence rate of Newton’s method
is quadratic (Nocedal & Wright, 1999, Th. 3.7), which makes it very appealing. Besides, other
methods use second-order information without requiring the full computation of the Hessian. For

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

instance, Cauchy’s steepest descent (Cauchy, 1847) is a variation of the usual gradient descent, where
the step size is tuned by extracting very little information from the Hessian:

θt+1 := θt − η∗t gt, where η∗t :=
gT
t gt

gT
t Htgt

, (2)

where the value of gT
t Htgt can be obtained with little computational cost (see Appendix A). However,

when optimizing a quadratic function f with Cauchy’s steepest descent, f(θt) is known to decrease at
a rate (λmax−λmin

λmax+λmin
)2, where λmax and λmin are respectively the largest and the smallest eigenvalues

of the Hessian of f (Luenberger & Ye, 2008, Chap. 8.2, Th. 2). If the Hessian of f is strongly
anisotropic, then this rate is close to one and optimization is slow. For a comparison of the two
methods, see (Gill et al., 1981; Luenberger & Ye, 2008; Nocedal & Wright, 1999).

Finally, there should be some space between Newton’s method, which requires the full Hessian H,
and Cauchy’s steepest descent, which requires minimal and computationally cheap information about
H. The optimization method presented in Section 4 explores this in-between space.

Quasi-Newton methods. When the parameter space is high-dimensional, computation of the
Hessian Ht and inversion of the linear system gt = Htx are computationally intensive. Quasi-
Newton methods are designed to avoid any direct computation of the Hessian, and make extensive
use of gradients and finite difference methods to approximate the direction of H−1

t gt. For a list of
quasi-Newton methods, see (Nocedal & Wright, 1999, Chap. 8). However, Nocedal & Wright (1999)
argue that, since it is easy to compute the Hessian by using Automatic Differentiation (AutoDiff),
quasi-Newton methods tend to lose their interest. Nevertheless, they should remain useful when such
computation is too difficult.

Applications to deep learning. Many methods overcome the curse of the number of parameters by
exploiting the structure of the neural networks. It is then common to neglect interactions between
layers, leading to a (block)-diagonal approximation of the Hessian. A first attempt has been made by
Wang & Lin (1998): they divide the Hessian into blocks, following the division of the network into
layers, and its off-diagonal blocks are removed. From another perspective, Ollivier (2015) keeps this
block-diagonal structure, but performs an additional approximation on the remaining blocks.

More recently, K-BFGS has been proposed (Goldfarb et al., 2020), which is a variation of the
quasi-Newton method BFGS with block-diagonal approximation and an approximate representation
of these blocks. In a similar spirit, the Natural Gradient method TNT (Ren & Goldfarb, 2021) also
exploits the structure of neural networks by performing a block-diagonal approximation. Finally,
AdaHessian (Yao et al., 2021) efficiently implements a second-order method by approximating the
Hessian by its diagonal.

Kronecker-Factored Approximate Curvature (K-FAC). This approximation of the Hessian was
proposed in (Martens & Grosse, 2015) in the context of neural network training. K-FAC exploits the
specific architecture of neural networks to output a cheap approximation of the true Hessian. Despite
its scalability, K-FAC suffers from several problems. First, the main approximation is quite rough,
since “[it assumes] statistical independence between products [...] of unit activities and products [...]
of unit input derivatives” (Martens & Grosse, 2015, Sec. 3.1). Second, even with an approximation
of the Hessian, one has to invert it, which is computationally intensive even for small networks. To
overcome this difficulty, a block-(tri)diagonal approximation of the inverse of the Hessian is made,
which eliminates many of the interactions between the layers.

Summarizing the Hessian. Also, (Lu et al., 2018) proposes to approximate the Hessian with
a matrix composed of blocks in which all coefficients are identical. Thus, the Hessian can be
compressed into a smaller matrix that looks like the summary of Hessian matrix H̄ used in Section 4.
In a completely different setup, Yuan et al. (2022) proposes a “Sketched Newton-Raphson”, which is
driven by the same spirit as the method presented in Section 4: instead of dealing with a complicated
large matrix, one should “project” it onto spaces of lower dimension.

Invariance by affine reparameterization. Several optimization methods, such as Newton’s, have
an optimization step invariant by affine reparameterization of θ (Amari, 1998) (Nesterov, 2003, Chap.

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

4.1.2). Specifically, when using Newton’s method, it is equivalent to optimize L according to θ and
according to θ̃ = Aθ +B (A ∈ RP×P invertible, B ∈ RP). This affine-invariance property holds
even if the function L to minimize is a negative log-likelihood, and one chooses to minimize θ by the
natural gradient method (Amari, 1998). This method also requires computing the Hessian of L at
some point.

Methods based on the moments of the gradients. Finally, many methods acquire information
about the curvature of the loss surface by using only the gradients. For instance, Shampoo (Gupta
et al., 2018) uses second-moment information of the accumulated gradients.

2.3 MOTIVATION

What are we really looking for? The methods that aim to estimate the Hessian matrix H or its
inverse H−1 in order to imitate Newton’s method implicitly assume that Newton’s method is adapted
to the current problem. This assumption is certainly correct when the loss to optimize is strongly
convex. But, when the loss is not convex and very complicated, e.g. when training a neural network,
this assumption is not justified. Worse, it has been shown empirically that, at the end of the training
of a neural network, the eigenvalues of the Hessian are concentrated around zero (Sagun et al., 2018),
with only a few large positive eigenvalues. Therefore, Newton’s method itself does not seem to be
recommended for neural network training, so we may not need to compute the full Hessian at all,
which would relieve us of a tedious, if not impossible, task.

To avoid such problems, it is very common to regularize the Hessian by adding a small, constant term
λI to it (Nocedal & Wright, 1999, Chap. 6.3). Also, trust-region Newton methods are designed to
handle non-positive-definite Hessian matrices (Nocedal & Wright, 1999, Chap. 6.4) (Nash, 1984).

Importance of the interactions between layers. Also, some empirical works have shown that the
role and the behavior of each layer must be considered along its interactions with the other layers,
which emphasize the importance of off-diagonal blocks in the Hessian or its inverse. We give two
examples. First, Zhang et al. (2022) has shown that, at the end of their training, many networks
exhibit a strange feature: some (but not all) layers can be reinitialized to their initial value with little
loss of the performance. Second, Kornblith et al. (2019) has compared the similarity between the
representations of the data after each layer: changing the number of layers can qualitatively change
the similarity matrix of the layers (Kornblith et al., 2019, Fig. 3). Among all, these results motivate
our search for mathematical objects that show how layers interact.

Per-layer scaling of the learning rates. A whole line of research is concerned with building a
well-founded method for finding a good scaling for the initialization distribution of the parameters,
and for the learning rates, which can be chosen layer-wise. For instance, a layer-wise scaling for
the weights was proposed and theoretically justified in the paper introducing the Neural Tangent
Kernels (Jacot et al., 2018). Also, in the “feature learning” line of work, (Yang & Hu, 2021) proposes
a relationship between different scalings related to weight initialization and training. Therefore, there
is an interest in finding a scalable and theoretically grounded method to build per-layer learning rates.

Unleashing the power of AutoDiff. Nowadays, several libraries provide easy-to-use automatic
differentiation packages that allow the user to compute numerically the gradient of a function, and
even higher-order derivatives.1 Ignoring the computational cost, the full Hessian could theoretically
be computed numerically without any approximation. To make this computation feasible, one should
aim for an simpler goal: instead of computing the Hessian, one can consider a smaller matrix,
consisting of projections of the Hessian.

Moreover, one might hope that such projections would “squeeze” the close-to-zero eigenvalues of the
Hessian, so that the eigenvalues of the projected matrix would not be too close to zero.

3 SUMMARIZING HIGHER-ORDER INFORMATION

Let us consider the minimization of a loss function L : RP → R according to a variable θ ∈ RP .
1With PyTorch: torch.autograd.grad.

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

Full computation of the derivatives. The order-d derivative of L at a point θ, that we denote by
ddL
dθd (θ), can be viewed as either a d-linear form (see Dieudonné (1960) and Appendix L) or as an
order-d tensor belonging to RPd

. For convenience, we will use the latter: the coefficients of the
tensor A = ddL

dθd (θ) ∈ RPd

are Ai1,··· ,id = ∂dL
∂θi1 ···∂θid

(θ), where (i1, · · · , id) ∈ {1, · · · , P}d is a

multi-index. For a tensor A ∈ RPd

, we will use the following notation for tensor contraction:

∀(u1, · · · ,ud) ∈ RP × · · · × RP , A[u1, · · · ,ud] :=

P∑
i1=1

· · ·
P∑

id=1

Ai1,··· ,idu
1
i1 · · ·u

d
id
. (3)

The order-d derivative ddL
dθd (θ) ∈ RPd

contains P d scalars. But, even when considering its symme-
tries, it is computationally too expensive to compute it exactly for d ≥ 2 in most cases. For instance,
it is not even possible to compute numerically the full Hessian of L according to the parameters of a
small neural network, i.e., with P = 105 and d = 2, the Hessian contains P d = 1010 scalars.

Terms of the Taylor expansion. At the opposite, one can obtain cheap higher-order information
about L at θ by considering a specific direction u ∈ RP . The Taylor expansion of L(θ + u) gives:

L(θ + u) = L(θ) +
D∑

d=1

1

d!

ddL
dθd

(θ)[u, · · · ,u] + o(∥u∥D). (4)

The terms of the Taylor expansion contain higher-order information about L in the direction u. In
particular, they can be used to predict how L(θ) would change if θ was translated in the direction of
u. Additionally, computing the first D terms has a complexity of order D × P , which is manageable
even for large models. The trick that allows for such a low complexity, the Hessian-vector product,
was proposed by Pearlmutter (1994) and is recalled in Appendix A.

An intermediate solution. Now, let us assume that, in the practical implementation of a gradient-
based method of optimization of L(θ), θ is represented by a tuple of tensors (T1, · · · ,TS). So, each
Taylor term can be expressed as:

ddL
dθd

(θ)[u, · ·,u] =
S∑

s1=1

· · ·
S∑

sd=1

∂dL
∂Ts1 · · · ∂Tsd

(θ)[Us1 , · · · ,Usd] = Dd
θ(u)[1S , · · · ,1S], (5)

where 1S ∈ RS is a vector full of ones, the tuple of tensors (U1, · · · ,US) represents u,2 and
Dd

θ(u) ∈ RSd

is a tensor of order d with size S in every dimension with values:

(Dd
θ(u))s1,··· ,sd =

∂dL
∂Ts1 · · · ∂Tsd

(θ)[Us1 , · · · ,Usd] (6)

=

Ps1∑
i1=1

· · ·
Psd∑
i1=1

∂dL
∂T s1

i1
· · · ∂T sd

id

(θ)Us1
i1
· · ·Usd

id
, (7)

where Ps is the number of coefficients of the tensor Ts. Thus, Dd
θ(u) is a tensor of order d and size

S in every dimension resulting from a partial contraction of the full derivative ddL
dθd (θ). Moreover,

the trick of Pearlmutter (1994) also applies to the computation of Dd
θ(u), which is then much less

expensive to compute than the full derivative (see Appendix A).

Properties of Dd
θ(u). We show a comparison between the three techniques in Table 1. If S is small

enough, computing Dd
θ(u) becomes feasible for d ≥ 2. For usual multilayer perceptrons with L

layers, there is one tensor of weights and one vector of biases per layer, so S = 2L. This allows to
compute Dd

θ(u) in practice for d = 2 even when L ≈ 20.

According to Eqn. 5, the Taylor term can be obtained by full contraction of Dd
θ(u). However, Dd

θ(u),
is a tensor of size Sd, and cannot be obtained from the Taylor term, which is only a scalar. Thus,
the tensors Dd

θ(u) extract more information than the Taylor terms, while keeping a reasonable
computational cost. Moreover, their off-diagonal elements give access to information about one-to-
one interactions between tensors (T1, · · · ,TS) when they are processed in the function L.

2(U1, · · · ,US) is to u as (T1, · · · ,TS) is to θ.

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

Table 1: Comparison between three techniques extracting higher-order information about L: size of
the result and complexity of the computation.

Technique Size Complexity

Full derivative ddL
dθd (θ) P d P d

Taylor term Dd
θ(u)[1S , · · · ,1S] 1 d× P

Tensor Dd
θ(u) Sd Sd−1 × P

4 A SCALABLE SECOND-ORDER OPTIMIZATION METHOD

4.1 PRESENTATION OF THE METHOD

The method presented here consists in partitioning the set of indices of parameters {1, · · · , P} into S
subsets (Is)1≤s≤S , assigning for all 1 ≤ s ≤ S the same learning rate ηs to the parameters (θp)p∈Is

,
and finding the vector of learning rates η = (η1, · · · , ηS) optimizing the decrease of the loss L for
the current training step t, by using its order-2 Taylor approximation.3 Formally, given a direction
ut ∈ RP in the parameter space (typically, ut = gt, the gradient) and Ut := Diag(ut) ∈ RP×P ,
we consider the training step: θt+1 := θt −UtIP :Sηt, that is a training step in a direction based on
ut, distorted by a subset-wise step size ηt.

Then, we minimize the order-2 Taylor approximation of L(θt+1) − L(θt): ∆2(ηt) :=
−gT

t UtIP :Sηt +
1
2η

T
t IS:PUtHtUtIP :Sηt, which gives:

θt+1 = θt −UtIP :Sη
∗
t , η∗

t := (IS:PUtHtUtIP :S)
−1IS:PUtgt, (8)

where IS:P ∈ RS×P is the partition matrix, verifying (IS:P)sp = 1 if p ∈ Is and 0 otherwise, and
IP :S := ITS:P . Alternatively, η∗

t can be written (details are provided in Appendix B):

η∗
t = H̄−1

t ḡt, where: H̄t := IS:PUtHtUtIP :S ∈ RS×S , ḡt := IS:PUtgt ∈ RS . (9)

With the notation of Section 3, H̄t = D
(2)
θt

(ut) and ḡt = D
(1)
θt

(ut). Incidentally, computing H̄ is of
complexity SP , and solving the system H̄x = ḡ is of complexity S2.

4.2 REGULARIZING H̄ BY USING ORDER-3 INFORMATION

The method proposed in Section 4.1 requires to compute η∗ = H̄−1ḡ. Usually, inverting such a
linear system at every step is considered as hazardous and unstable. Therefore, when using Newton’s
method, instead of computing descent direction u := H−1g, it is very common to add a regularization
term: uλ := (H+ λI)

−1
g (Nocedal & Wright, 1999, Chap. 6.3).

However, the theoretical ground of such a regularization technique is not fully satisfactory. Basically,
the main problem is not having a matrix H̄ with close-to-zero eigenvalues: after all, if the loss
landscape is very flat in a specific direction, it is better to make a large training step. The problem
lies in the order-2 approximation of the loss made in the training step 8, as well as in Newton’s
method: instead of optimizing the true decrease of the loss, we optimize the decrease of its order-2
approximation. Thus, the practical question is: does this approximation faithfully model the loss at
the current point θt, in a region that also includes the next point θt+1?

To answer this question, one has to take into account order-3 information, and regularize H̄ in such
a way that the resulting update remains in a region around θt where the cubic term of the Taylor
approximation is negligible. In practice, we propose an anisotropic version of Nesterov’s cubic
regularization (Nesterov & Polyak, 2006).

3With the notation of Section 3, Is is the set of indices p of the parameters θp belonging to the tensor Ts, so
the scalars (θp)p∈Is correspond to the scalars belonging to Ts. So, everything is as if a specific learning rate ηs
is assigned to each Ts.

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

Anisotropic Nesterov cubic regularization. By using the technique presented in Section 3, the
diagonal coefficients (D1, · · · , DS) of D(3)

θ (u) ∈ RS×S×S are available with little computational
cost. Let: D := Diag(|D1|1/3, · · · , |DS |1/3) ∈ RS .

We modify the method of Nesterov & Polyak (2006) by integrating an anisotropic factor D into the
cubic term. Thus, our goal is to minimize according to η the function T : T (η) := −ηT ḡ+ 1

2ηH̄η+
λint

6 ∥Dη∥3, where λint is the internal damping coefficient, which can be used to tune the strength
of the cubic regularization. Under conditions detailed in Appendix D, this minimization problem is
equivalent to finding a solution η∗ such that:

η∗ =

(
H̄+

λint

2
∥Dη∗∥D2

)−1

ḡ, (10)

which is no more than a regularized version of 8. Finally, this multi-dimensional minimization
problem boils down to a scalar root finding problem (see Appendix D).

4.3 PROPERTIES

The final method is a combination of the training step 8 with regularization 10:

Method 1. Training step θt+1 = θt −UtIP :Sη
∗
t , where η∗

t is the solution with the largest norm
∥Dtη∥ of the equation: η =

(
H̄t +

λint

2 ∥Dtη∥D2
t

)−1
ḡt.

Encompassing Newton’s method and Cauchy’s steepest descent. Without the cubic regulariza-
tion (λint = 0), Newton’s method is recovered when using the discrete partition, that is, S = P with
Is = {s} for all s, and Cauchy’s steepest descent is recovered when using the trivial partition, that
is, S = 1 with I1 = {1, · · · , P}. See Appendix C for more details.

No need to compute or approximate the full Hessian. The full computation of the Hessian Ht ∈
RP×P is not required. Instead, one only needs to compute the S×S matrix H̄t := IS:PUtHtUtIP :S ,
which can be done efficiently by computing uTHtv for a number S × S of pairs of well-chosen
directions (u,v) ∈ RP × RP . This property is especially useful when S ≪ P . When optimizing a
neural network with L = 10 layers and P = 106 parameters, one can naturally partition the set of
parameters into S = 2L subsets, each one containing either all the weights or all the biases of each
of the L layers. In this situation, one has to solve a linear system of size 2L = 20 at each step, which
is much more reasonable than solving a linear system of P = 106 equations. We call this natural
partition of the parameters of a neural network the canonical partition.

No need to solve a large linear system. Using Equations 8 or 10 requires solving only a linear
system of S equations, instead of P in Newton’s method. With the cubic regularization, only a
constant term is added to the complexity, since it is a matter of scalar root finding.

The interactions between different tensors are not neglected. The matrix H̄t, which simulates
the Hessian Ht, is basically dense: it does not exhibit a (block-)diagonal structure. So, the interactions
between subsets of parameters are taken into account when performing optimization steps. In the
context of neural networks with the canonical partition, this means that interactions between layers
are taken into account during optimization, even if the layers are far from each other. This is a major
advantage over many existing approximations of the Hessian or its inverse, which are diagonal or
block-diagonal.

Invariance by subset-wise affine reparameterization. As showed in Appendix E, under a condi-
tion on the directions ut,4 the trajectory of optimization of a model trained by Method 1 is invariant
by affine reparameterization of the sub-vectors of parameters θIs

:= vec({θp : p ∈ Is}). Let
(αs)1≤s≤S and (βs)1≤s≤S be a sequence of nonzero scalings and a sequence of offsets, and θ̃ such
that, for all 1 ≤ s ≤ S, θ̃Is

= αsθIs
+ βs. Then, the training trajectory of the model is the same

with both parameterizations θ and θ̃. This property is desirable in the case of neural networks, where

4This holds typically if ut is the gradient or a moving average of the gradients (momentum).

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

one can use either the usual or the NTK parameterization, which consists of a layer-wise scaling of
the parameters. The relevance of this property is discussed in Appendix E.1.

Compared to the standard regularization H̄+ λI and Nesterov’s cubic regularization, the anisotropic
Nesterov regularization does not break the property of invariance by subset-wise scaling of the
parameters of 8. This is mainly due to our choice to keep only the diagonal coefficients of D(3)

θ (u)
while discarding the others. In particular, the off-diagonal coefficients contain cross-derivatives that
would be difficult to include in an invariant training step.

5 EXPERIMENTS

5.1 EMPIRICAL COMPUTATION OF H̄ AND η

As recalled in Section 2, many works perform a diagonal, block-diagonal or block-tridiagional
(Martens & Grosse, 2015) approximation of the Hessian or its inverse. Since a summary H̄ of the
Hessian and its inverse H̄−1 are available and all their off-diagonal coefficients have been computed
and kept, one can to check if these coefficients are indeed negligible.

Setup. We have trained LeNet-5 and VGG-11’5 on CIFAR-10 using SGD with momentum. Before
each epoch, we compute the full-batch gradient, denoted by u, which we use as a direction to compute
H̄, again in full-batch. We report submatrices of H̄ and H̄−1 at initialization and at the epoch where
the validation loss is the best in Figure 1a (LeNet) and Figure 1b (VGG-11’).

For the sake of readability, H̄ has been divided into blocks: a weight-weight block H̄WW, a bias-bias
block H̄BB, and a weight-bias block H̄WB. They represent the interactions between the layers: for
instance, (H̄WB)l1l2 represents the interaction between the tensor of weights of layer l1 and the vector
of biases of layer l2.

Results on H̄. First, the block-diagonal approximation of the Hessian is indeed very rough, while
the block-diagonal approximation of the inverse Hessian seems to be more reasonable (at least in
these setups), which has already been shown by Martens & Grosse (2015). Second, there seem to be
long-range interactions between layers, both at initialization and after several epochs. For LeNet, all
the layers (except the first one) seem to interact together at initialization (Fig. 1a). In the matrix H̄−1

computed on VGG, the last 3 layers interact strongly and the last 6 layers also interact, but a bit less.

According to these observations, a neural network should also be considered as a whole, in which
layers can hardly be studied independently from each other. To our knowledge, this result is the first
scalable representation of interactions between distant layers, based on second-order information.

0 1 2 3 4
0
1
2
3
4

0 1 2 3 4 0 1 2 3 4 0 1 2 3 4

0
1
2
3
4

Ep. 0, W-W Ep. 73, W-W Ep. 73, W-B Ep. 73, B-B

(a) LeNet + CIFAR10.

0 1 2 3 4 5 6 7 8
0
1
2
3
4
5
6
7
8

0 1 2 3 4 5 6 7 8 0 1 2 3 4 5 6 7 8 0 1 2 3 4 5 6 7 8

0
1
2
3
4
5
6
7
8

Ep. 0, W-W Ep. 4, W-W Ep. 4, W-B Ep. 4, B-B

(b) VGG-11’ + CIFAR10.

Figure 1: Setup: models trained by SGD on CIFAR-10. Submatrices of H̄ (first row) and H̄−1

(second row), where focus is on interactions: weight-weight, weight-bias, bias-bias of the different
layers, at initialization and before best validation loss epoch.

5VGG-11’ is a variant of VGG-11 with only one fully-connected layer at the end, instead of 3.

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

Results on η∗. The evolution of the learning rates η∗ computed according to 10 in LeNet and VGG
is shown in Figure 2b. First, the learning rates computed for the biases are larger than those computed
for the weights. Second, even if only the weights are considered, the computed η∗ can differ by
several orders of magnitude. Finally, the first two layers of LeNet (which are convolutional) have
smaller η∗ than the last three layers (which are fully-connected). Conversely, in VGG, the weights of
the last (convolutional) layers have a smaller η∗ than those of the first layers.

5.2 TRAINING EXPERIMENTS

In this section, we show a proof-of-concept of the optimization method 1 (summarized in Algorithm
1), on simple vision tasks and with medium-sized neural networks. All the implementation details are
available in Appendix G. In particular, we have introduced a step size λ1 that leads to the following
modification of the training step 8: θt+1 = θt − λ1UtIP :Sη

∗
t .

Algorithm 1 Informal implementation of the second-order method described in Section 4.
Let ut(·) be a function computing a direction of descent ut from a gradient gt and Ut = Diag(ut).

Hyperparameters: λ, λint

Dg,Dnewt : independent samplers of minibatches
for t ∈ [1, T] do

Zt ∼ Dg, Z̃t ∼ Dnewt (sample minibatches)
gt ← dL

dθ (θt, Zt) (backward pass)
ut ← ut(gt) (custom direction of descent)
ḡt ← D

(1)
θt

(ut) = IS:PUt
dL
dθ (θt, Z̃t)

H̄t ← D
(2)
θt

(ut) = IS:PUt
d2L
dθ2 (θt, Z̃t)UtIP :S

Dt ← Diag(|D(3)
θt

(ut)|1/3iii : i ∈ {1, · · · , S}) ∈ RS2

ηt ← solution of η =
(
H̄t +

λint

2 ∥Dtη∥D2
t

)−1
ḡt with max. norm ∥Dtη∥ (Method 1)

θt+1 ← θt − λUtIP :Sηt (training step)
end for

Setup. We consider 4 image classification setups:

• MLP: multilayer perceptron trained on MNIST with layers of sizes 1024, 200, 100, 10, and
tanh activation;

• LeNet: LeNet-5 (LeCun et al., 1998) model trained on CIFAR-10 with 2 convolutional
layers of sizes 6, 16, and 3 fully connected layers of sizes 120, 84, 10;

• VGG: VGG-11’ trained on CIFAR-10. VGG-11’ is a variant of VGG-11 (Simonyan &
Zisserman, 2014) with only one fully-connected layer at the end, instead of 3, with ELU
activation function (Clevert et al., 2015), without batch-norm;

• BigMLP: multilayer perceptron trained on CIFAR-10, with 20 layers of size 1024 and one
classification layer of size 10, with ELU activation function.

And we have tested 3 optimization methods:

• Adam: the best learning rate has been selected by grid-search;

• K-FAC: the best learning rate and damping have been selected by grid-search;

• NewtonSummary (ours): the best λ1 and λint have been selected by grid search.

Results. The evolution of the training loss is plotted in Figure 2a for each of the 3 optimization
methods, for 5 different seeds. In each set of experiments, the training is successful, but slow or un-
stable at some points. Anyway, the minimum training loss achieved by Method 1 (NewtonSummary)
is comparable to the minimum training loss achieved by K-KAC or Adam in all the series except for
BigMLP, whose training is extremely slow. We provide the results on the test set in Appendix I and a
comparison of the training times in Appendix M.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

Some runs have encountered instabilities due to very large step sizes η∗. In fact, we did not use
any safeguards, such as a regularization term λI added to H̄, or clipping the learning rates to avoid
increasing the number of hyperparameters.

0 50 100 150 200

10 8

10 6

10 4

10 2

100

MLP (L=4) + MNIST
0 25 50 75 100

10 5

10 3

10 1

VGG-11' (L=9) + CIFAR10

0 25 50 75 100

10 6

10 4

10 2

100

BigMLP (L=20) + CIFAR10
0 50 100 150 200

10 3

10 2

10 1

100

LeNet (L=5) + CIFAR10

Adam
KFAC
NewtonSummary

(a) Training curves in different setups. The reported
loss is the negative log-likelihood computed on the
training set.

0 1 2 3 4
layer indices (LeNet)

10 3

10 1

101

le
ar

ni
ng

 ra
te

Ep. 10 Ep. 30 Ep. 50 Ep. 70 Ep. 90

0 1 2 3 4 5 6 7 8
layer indices (VGG)

10 2

101

104
Weight
Bias

By-tensor learning rates at different epochs

(b) Setup: LeNet, VGG-11’ trained by SGD on
CIFAR-10. Learning rates η∗ computed according
to 10, specific to each tensor of weights and ten-
sor of biases of each layer. For each epoch k ∈
{10, 30, 50, 70, 90}, the reported value has been av-
eraged over the epochs [k − 10, k + 9] to remove the
noise.

Figure 2: Training curves: Method 1 (solid lines) versus its diagonal approximation (dotted lines)
with various hyperparameters.

Extension to very large models. Since the matrix H̄ can be computed numerically as long as
S remains relatively small, this method may become unpractical for very large models. However,
Method 1 is flexible enough to be adapted to such models: one can regroup tensors “of the same
kind” to build a coarser partition of the parameters, and thus obtain a small S, which is exactly what
is needed to compute H̄ and invert it. The difficulty would then be to find a good partition of the
parameters, by grouping all the tensors that “look alike”. We provide an example in Appendix H with
a very deep multilayer perceptron.

Choice of the partition. We propose in Appendix J an empirical study and a discussion about the
choice of the partition of the parameters. We show how it affects the training time and the final loss.

Importance of the interactions between layers. We show in Appendix K that the interactions
between layers cannot be neglected when using our method: Method 1 outperforms its diagonal
approximation on LeNet and VGG11’, showing the importance of off-diagonal coefficients of H̄.

6 DISCUSSION

Convergence rate. Method 1 does not come with a precise convergence rate. The rate proposed in
Appendix F (Theorem 1) gives only a heuristic. Given the convergence rates of Newton’s method and
Cauchy’s steepest descent, we can expect to find some in-between convergence rates. Since Cauchy’s
steepest method is vulnerable to a highly anisotropic Hessian, it would be valuable to know how
much this weakness is overcome by our method.

Practicality. Despite the interesting properties of Method 1 (scalability, invariance by reparameteri-
zation, evaluation of long-range interactions between layers), we have proposed nothing more than a
proof-of-concept. This method remains subject to instabilities during training, which is expected for
a second-order method, but not acceptable for the end user. Therefore, some additional tricks should
be added to improve the stability of the training, which is a common practice, but usually comes with
additional hyperparameters to tune. Also, improvements are needed to reduce the duration of each
epoch, which is longer than with K-FAC.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

REFERENCES

Shun-ichi Amari. Natural gradient works efficiently in learning. Neural Computation, 10(2):251–276,
1998.

Sanjeev Arora, Simon Du, Wei Hu, Zhiyuan Li, and Ruosong Wang. Fine-grained analysis of
optimization and generalization for overparameterized two-layer neural networks. In International
Conference on Machine Learning, pp. 322–332. PMLR, 2019.

Augustin-Louis Cauchy. Méthode générale pour la résolution des systèmes d’équations simultanées.
Comptes rendus hebdomadaires des séances de l’Académie des sciences, Paris, 25:536–538, 1847.

Djork-Arné Clevert, Thomas Unterthiner, and Sepp Hochreiter. Fast and accurate deep network
learning by exponential linear units (elus). arXiv preprint arXiv:1511.07289, 2015.

Felix Julius Dangel. Backpropagation beyond the gradient. PhD thesis, Universität Tübingen, 2023.

Jean Dieudonné. Foundations of Modern Analysis. Number 10 in Pure and Applied Mathematics.
Academic press, 1960.

Simon Du, Jason Lee, Haochuan Li, Liwei Wang, and Xiyu Zhai. Gradient descent finds global
minima of deep neural networks. In International Conference on Machine Learning, pp. 1675–1685.
PMLR, 2019.

Philip E Gill, Walter Murray, and Margaret H Wright. Practical optimization. Academic Press, San
Diego, 1981.

Donald Goldfarb, Yi Ren, and Achraf Bahamou. Practical quasi-newton methods for training
deep neural networks. In Advances in Neural Information Processing Systems, volume 33, pp.
2386–2396, 2020.

Vineet Gupta, Tomer Koren, and Yoram Singer. Shampoo: Preconditioned stochastic tensor optimiza-
tion. In International Conference on Machine Learning, pp. 1842–1850. PMLR, 2018.

Arthur Jacot, Franck Gabriel, and Clement Hongler. Neural tangent kernel: Convergence and gener-
alization in neural networks. In Advances in Neural Information Processing Systems, volume 31,
2018.

Simon Kornblith, Mohammad Norouzi, Honglak Lee, and Geoffrey Hinton. Similarity of neural
network representations revisited. In International conference on machine learning, pp. 3519–3529.
PMLR, 2019.

Yann LeCun, Léon Bottou, Yoshua Bengio, and Patrick Haffner. Gradient-based learning applied to
document recognition. Proceedings of the IEEE, 86(11):2278–2324, 1998.

Jaehoon Lee, Lechao Xiao, Samuel Schoenholz, Yasaman Bahri, Roman Novak, Jascha Sohl-
Dickstein, and Jeffrey Pennington. Wide neural networks of any depth evolve as linear models
under gradient descent. In Advances in Neural Information Processing Systems, volume 32, 2019.

Yao Lu, Mehrtash Harandi, Richard Hartley, and Razvan Pascanu. Block mean approximation for
efficient second order optimization. arXiv preprint arXiv:1804.05484, 2018.

David G Luenberger and Yinyu Ye. Linear and Nonlinear Programming. Springer, fourth edition,
2008.

James Martens and Roger Grosse. Optimizing neural networks with Kronecker-factored approximate
curvature. In International Conference on Machine Learning, pp. 2408–2417. PMLR, 2015.

Song Mei and Andrea Montanari. The generalization error of random features regression: Precise
asymptotics and the double descent curve. Communications on Pure and Applied Mathematics, 75
(4):667–766, 2022.

Stephen G Nash. Newton-type minimization via the lanczos method. SIAM Journal on Numerical
Analysis, 21(4):770–788, 1984.

11

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

Yurii Nesterov. Introductory lectures on convex optimization: A basic course, volume 87. Springer
Science & Business Media, 2003.

Yurii Nesterov and Boris T Polyak. Cubic regularization of Newton method and its global performance.
Mathematical Programming, 108(1):177–205, 2006.

Jorge Nocedal and Stephen J Wright. Numerical optimization. Springer, 1999.

Yann Ollivier. Riemannian metrics for neural networks i: feedforward networks. Information and
Inference: A Journal of the IMA, 4(2):108–153, 03 2015. ISSN 2049-8764. doi: 10.1093/imaiai/
iav006.

Barak A Pearlmutter. Fast exact multiplication by the Hessian. Neural computation, 6(1):147–160,
1994.

Yi Ren and Donald Goldfarb. Tensor normal training for deep learning models. In Advances in
Neural Information Processing Systems, volume 34, pp. 26040–26052, 2021.

Levent Sagun, Utku Evci, V. Ugur Guney, Yann Dauphin, and Leon Bottou. Empirical analysis
of the Hessian of over-parametrized neural networks. In International Conference on Learning
Representations, 2018.

Karen Simonyan and Andrew Zisserman. Very deep convolutional networks for large-scale image
recognition. arXiv preprint arXiv:1409.1556, 2014.

Yi-Jen Wang and Chin-Teng Lin. A second-order learning algorithm for multilayer networks based
on block Hessian matrix. Neural Networks, 11(9):1607–1622, 1998.

Greg Yang and Edward J Hu. Tensor programs iv: Feature learning in infinite-width neural networks.
In International Conference on Machine Learning, pp. 11727–11737. PMLR, 2021.

Zhewei Yao, Amir Gholami, Sheng Shen, Mustafa Mustafa, Kurt Keutzer, and Michael Mahoney.
ADAHESSIAN: An adaptive second order optimizer for machine learning. Proceedings of the
AAAI Conference on Artificial Intelligence, 35(12):10665–10673, May 2021. doi: 10.1609/aaai.
v35i12.17275.

Rui Yuan, Alessandro Lazaric, and Robert M Gower. Sketched Newton–Raphson. SIAM Journal on
Optimization, 32(3):1555–1583, 2022.

Chiyuan Zhang, Samy Bengio, and Yoram Singer. Are all layers created equal? Journal of Machine
Learning Research, 23(67):1–28, 2022.

12

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

A EXTENSIONS OF PEARLMUTTER’S TRICK

In this appendix, we show how to use the trick of Pearlmutter (1994) to compute the terms of the
Taylor expansion of L and the tensor Dd

θ(u) defined in Eqn. 6.

Fast computation of the terms of the Taylor expansion. We recall the Taylor expansion:

L(θ + u) = L(θ) +
D∑

d=1

1

d!

ddL
dθd

(θ)[u, · · · ,u] + o(∥u∥D). (11)

We want to compute:

D̃d
θ(u) :=

ddL
dθd

(θ)[u, · · · ,u] ∈ R. (12)

To do this, we will use:

D̃d−1
θ (u) =

dd−1L
dθd−1

(θ)[u, · · · ,u] ∈ R. (13)

We use the following recursion formula:

D̃d
θ(u) =

(
dD̃d−1

θ (u)

dθ

)T

u. (14)

Therefore, at each step d, we only have to compute the gradient of a scalar D̃d
θ(u) according to

θ ∈ RP , and compute a dot product in the space RP . So, computing D̃d
θ(u) has a complexity

proportional to d× P , and does not require the computation of the full tensor ddL
dθd (θ) ∈ RPd

.

Fast computation of Dd
θ(u). We assume that the parameter θ is represented by a sequence of

vectors (T1, · · · ,TS): each coordinate θi belongs to exactly one of the Ts. In the same way, given
a direction u ∈ RP in the space of the parameters, u can be represented by a sequence of vectors
(U1, · · · ,US).

We want to compute the tensor Dd
θ(u) ∈ RSd

, whose coefficients are:

(Dd
θ(u))s1,··· ,sd =

∂dL
∂Ts1 · · · ∂Tsd

(θ)[Us1 , · · · ,Usd], (15)

for each multi-index (s1, · · · , sd) ∈ {1, · · · , S}d.

Let us assume that Dd−1
θ (u) is available. We can compute the coefficients of Dd

θ(u) as follows:

(Dd
θ(u))s1,··· ,sd =

(
∂(Dd−1

θ (u))s1,··· ,sd−1

∂Tsd

)T

Usd (16)

That way, the tensor Dd
θ(u) can be computed without having to compute the full derivative ddL

dθd .
In fact, we do not need to store objects of size greater than Sd−1 × P : the last operation requires
storing Dd−1

θ (u), which is of size Sd−1, and the gradient of each of its elements with respect to
(T1, · · · ,TS), which is of size P .

Python implementation. We provide here an example of implementation of this extension of Pearl-
mutter’s trick. First, we define in Alg. 2 the function dercon, standing for “derivation+contraction”.
Second, we provide in Alg. 3 the function diff, which outputs a list of tensors (Dd

θ(u))d∈{0,···D}.

We recall that Dd
θ(u) ∈ RSd

, where s is the number of groups of tensors in θ, u ∈ RP is a direction
in the parameter space RP , that can be represented as a tuple of groups of tensors, with the exact
same structure as θ.

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

Also, to keep this implementation efficient for d ≥ 2, we reduce the computational and storage cost of
the tensors Dd

θ(u) by using the symmetry structure of Dd
θ(u). More specifically, for any permutation

σ : {1, · · · , d} → {1, · · · , d}:

∀(i1, · · · , id), (Dd
θ(u))i1,··· ,id = (Dd

θ(u))iσ(1),··· ,iσ(d)
. (17)

So, instead of computing and storing the full tensor Dd
θ(u) ∈∈ RSd

, we just have to store the
coefficients (Dd

θ(u))i1,··· ,id , with i1 ≤ · · · ≤ id. So, we compute and store only (S+d−1)!
d!(S−1)! coefficients

instead of Sd. For example, with S = 10 groups of parameters and d = 3, we store only 220
coefficients instead of Sd = 1000. We typically use this trick in Alg. 3.

Algorithm 2 Implementation of the dercon function, which performs a derivation+contraction
operation. This operation allows us to gather higher-order information without having to store large
tensors.

import torch
from . import select_params, dot

"""
Existing functions:
* select_params(x, s0):

returns the groups of params of x with indices s>=s0
* dot(x1, x2):

x1 and x2 are tuples of tuples of tensors with the same structure
a) compute the dot-product between each pair of tensors (t1, t2)
b) sum these inside ench group of tensors
c) return the result (which is a torch.tensor containing as
many coeffs as there are groups of params in x1 and x2

"""
def dercon(f, theta, u, s0):

Derivation + contraction

Derivation
theta_s0 = select_params(theta, s0)
deriv = torch.autograd.grad(f, theta_s0, create_graph = True)

Contraction
u_s0 = select_params(u, s0)
result = dot(deriv, u_s0)
return result

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

Algorithm 3 Implementation of the diff function, computing Dd iteratively at several orders. We
denote by L the loss function, and by (x, y) a data point.

import torch
from itertools import combinations_with_replacement
from . import dercon

def diff(L, x, y, order):
lstD = [None]*(order+1) # initialize the object to output

Forward pass
loss = L(x, y)
Store the loss (without keeping the computational graph)
lstD[0] = loss.detach()

Compute the derivative of the loss and contract it
in the directions given by the groups of params of u.
deriv = {tuple(): dercon(loss, u, 0)}
Store the result (without keeping the computational graph)
lstD[1] = {k: v.detach() for k, v in deriv.items()}

Computations with d >= 2
for d in range(2, order+1):

new_deriv = {}
We only compute the derivatives of certain coefficients
of the matrix D^{d-1}: thanks to symmetries of D^{d-1},
it is not necessary to compute all of them.

Create the list of indices of the relevant coefficients
lst_idx = [tuple(sorted(idx)) for idx in \

combinations_with_replacement(range(S), d-1)]

Compute these coefficients
for idx in lst_idx:

we derive the coeff of D^{d-1} with multi-index idx

init, last = idx[:-1], idx[-1]
imax = last if len(init)==0 else last-init[-1]

To access that coeff, we use deriv[init][imax]
new_deriv[idx] = dercon(deriv[init][imax], u, last)

Store the result (without keeping the comp. graph)
lstD[d] = {k: v.detach() for k, v in new_deriv.items()}
Prepare the next iteration
deriv = new_deriv

return lstD

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

B DERIVATION OF THE SECOND-ORDER METHOD

We consider an update of θ with one learning rate ηs for each subset Is of parameters. Let IS:P ∈
RS×P be the partition matrix, verifying (IS:P)sp = 1 if p ∈ Is and 0 otherwise, and IP :S := ITS:P .
We consider an update based on a given direction ut and we define Ut := Diag(ut):

θt+1 = θt −UtIP :Sη, (18)

where η = (η1, · · · , ηS) ∈ RS .

The second-order approximation of L gives:
L(θt+1) = L(θt −UtIP :Sη)

= L(θt)− ηT IS:PUt
dL
dθ

(θt)

+
1

2
ηT IS:PUt

d2L
dθ2

(θt)UtIP :Sη + o(∥η∥2)

= L(θt)− ηT IS:PUtgt

+
1

2
ηT IS:PUtHtUtIP :Sη + o(∥η∥2)

= L(θt)− ηT ḡt +
1

2
ηT H̄tη + o(∥η∥2),

where:
ḡt := IS:PUtgt ∈ RS , H̄t := IS:PUtHtUtIP :S ∈ RS×S . (19)

Now, we omit the o(∥η∥2) term and we want to minimize according to η the variation of the loss:

L(θt+1)− L(θt) ≈∆2(η) := L(θt)− ηT ḡt +
1

2
ηT H̄tη. (20)

We have: d∆2

dη = −ḡt + H̄tη, which is zero if, and only if: ḡt = H̄tη. If this linear system can be
inverted, one can choose:

η = η∗
t := H̄−1

t ḡt. (21)

Interpretation as multivariate optimization. This method can also be derived by taking the
point of view of multivariate optimization. Within our setup, θ is considered as a tuple of tensors
(T1, · · · ,TS). Thus, we want to minimize the loss L with respect to (T1, · · · ,TS). By abuse of
notation, we will write:

L(θ) = L(T1, · · · ,TS). (22)

Now, we assume that we dispose of a direction of descent −Us for each Ts. Thus, we can consider
the following training step:

∀s ∈ {1, · · ·S}, Ts ← Ts − ηsU
s, (23)

where (η1, · · · ηS) are learning rates. Thus, the loss change after the training step is:

f(η1, · · · , ηS) := L(T1 − η1U
1, · · · ,TS − ηSU

S)− L(T1, · · · ,TS). (24)
When we do a second-order approximation, the loss change becomes:

f(η1, · · · , ηS) ≈ −
S∑

s=1

ηs

(
∂L
∂Ts

)T

Us +
1

2

S∑
s1=1

S∑
s2=1

ηs1ηs2(U
s1)T

∂2L
∂Ts1∂Ts2

Us2 (25)

≈ −ηT ḡ +
1

2
ηT H̄η, (26)

where η = (η1, · · · , ηS) ∈ RS , ḡ ∈ RS is the gradient of f and H̄ ∈ RS×S is the Hessian of f :

ḡs =
∂f

∂ηs
=

(
∂L
∂Ts

)T

Us H̄s1s2 =
∂2f

∂ηs1∂ηs2
= (Us1)T

∂2L
∂Ts1∂Ts2

Us2 . (27)

Finally, one can minimize the order-2 approximation of f (Eqn. 26) with respect to η, with any
numerical or analytical technique. If done analytically, we roll back to Eqn. 21.

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2025

Interpretation as optimization constrained to a vector subspace. In addition, the training step
can be interpreted as an optimization of the descent direction within a vector subspace. We assume
that we dispose of a direction of descent −u ∈ RP . Let (u1, · · · ,uS) be a family of vectors of RP

defined by:

∀s, us = (0P1 , · · · , 0Ps−1 ,U
s, 0Ps+1 , · · · , 0PS

), (28)

where Pi is the size of the tensor Ui (or of Ti) and 0Pi
is the null tensor of size Pi.

We want to minimize the loss decrease after one training step with respect to the step of descent v,
which is assumed to be small:

g(v) = L(θ − v)− L(θ), (29)

under the condition v ∈ span(u1, · · · ,uS). An order-2 approximation of g gives:

g(v) ≈ g̃(v) := −vT dL
dθ

(θ) +
1

2
vT d2L

dθ2
(θ)v.

Now, we look for the vector v∗ such that:

v∗ = argmin
v∗∈span(u1,··· ,uS)

(
−vT dL

dθ
(θ) +

1

2
vT d2L

dθ2
(θ)v

)
. (30)

The solution is given by:

v∗ := UIP :SH̄
−1ḡ = UIP :Sη

∗, (31)

where U = Diag(u). So, we recover the method described in Section 4.1.

C LINK WITH CAUCHY’S STEEPEST DESCENT AND NEWTON’S METHOD

Cauchy’s steepest descent. Let us consider the trivial partition: S = 1, I1 = {1, · · · , P}. So,
IS:P = (1, · · · , 1) = 1T

S . Therefore, the training step is:

θt+1 := θt −Gt1S(1
T
SGtHtGt1S)

−11T
SGtgt = θt − gt

gT
t gt

gT
t Htgt

, (32)

since Gt1S = gt. We recover Cauchy’s steepest descent.

Newton’s method. Since we aim to recover Newton’s method, we assume that the Hessian Ht

is positive definite. Let us consider the discrete partition: S = P , Is = {s}. So, IS:P = IP , the
identity matrix of RP×P . Therefore, the training step is:

θt+1 := θt −Gt(GtHtGt)
−1Gtgt. (33)

To perform the training step, we have to find x ∈ RP such that: (GtHtGt)
−1Gtgt = x. That is,

solve the linear system GtHtGtx = Gtgt. In the case where all the coordinates of the gradient gt

are nonzero, we can write:

x = G−1
t H−1

t G−1
t Gtgt = G−1

t H−1
t gt, (34)

so the training step becomes:

θt+1 := θt −Gtx = θt −H−1
t gt, (35)

which corresponds to Newton’s method.

D ANISOTROPIC NESTEROV CUBIC REGULARIZATION

Let D be a diagonal matrix whose diagonal coefficients are all strictly positive: D =
Diag(d1, · · · , dS), with di > 0 for all i.

We want to minimize the function:

T (η) := −ηT ḡ +
1

2
ηH̄η +

λint

6
∥Dη∥3. (36)

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2025

The function T is strictly convex if, and only if, H̄ is positive definite. Moreover, T is differentiable
twice and has at least one global minimum η∗, so dT

dη (η∗) = 0. Therefore, we first look for the
solutions of the equation dT

dη (η) = 0.

We have:
dT

dη
(η) = −ḡ + H̄η +

λint

2
∥Dη∥D2η

= −ḡ +

(
H̄+

λint

2
∥Dη∥D2

)
η,

which is equal to zero if, and only if:

ḡ =

(
H̄+

λint

2
∥Dη∥D2

)
η. (37)

Let η′ := Dη. Eqn. 37 is then equivalent to:

ḡ =

(
H̄D−1 +

λint

2
∥η′∥D

)
η′.

=
λint

2
D

(
2

λint
D−1H̄D−1 + ∥η′∥I

)
η′

Let K := 2
λint

D−1H̄D−1. We want to solve:

ḡ =
λint

2
D (K+ ∥η′∥I)η′ (38)

Since K is positive definite if, and only if, H̄ is positive definite, we consider the following cases.

Case 1: H̄ is positive definite. In this case, Eqn. 38 is equivalent to:

η′ =
2

λint
(K+ ∥η′∥I)−1

D−1ḡ.

Now, let r = ∥η′∥. We want to solve:

r =
2

λint

∥∥∥(K+ rI)
−1

D−1ḡ
∥∥∥ . (39)

Trivially: η solution of 37⇒Dη solution of 38⇒ ∥Dη∥ solution of 39. Reciprocally: r solution of
39⇒ η′ := (H̄D−1 + λint

2 rD)−1ḡ solution of 38⇒D−1η′ solution of 37.

Therefore, in order to find the unique global minimum of T , it is sufficient to solve Eqn. 39. This is
doable numerically.

Case 2: H̄ is not positive definite. We follow the procedure proposed in (Nesterov & Polyak, 2006,
Section 5). Let λmin be the minimum eigenvalue of K. So, λmin ≤ 0. Following Nesterov & Polyak
(2006), we look for the unique η′ belonging to C := {η′ ∈ RS : ∥η′∥ > |λmin|}, which is also the
solution of maximum norm of Eqn. 38. Conditionally to η′ ∈ C, (K+ ∥η′∥I) is invertible. So we
only need to solve:

r > |λmin| : r =
2

λint

∥∥∥(K+ rI)
−1

D−1ḡ
∥∥∥ , (40)

which has exactly one solution r∗. Then, we compute η∗ := D−1(H̄D−1 + λint

2 r∗D)−1ḡ.

E INVARIANCE BY SUBSET-WISE AFFINE REPARAMETERIZATION

E.1 MOTIVATION

The choice of the best per-layer parameterization is still a debated question. On the theoretical
side, the standard parameterization cannot be used to train very wide networks, because it leads to a

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2025

diverging first gradient step Yang & Hu (2021). Besides, the NTK parameterization is widely used
in theoretical works in order to manage the infinite-width limit Jacot et al. (2018); Du et al. (2019);
Arora et al. (2019); Lee et al. (2019); Mei & Montanari (2022). On the practical side, the standard
parameterization is preferred over the NTK one because it leads to better results, both in terms of
training and generalization.

So, there is no consensus about the best layer-wise parameterization. Thus, ensuring that a method
is invariant by layer-wise affine reparameterization guarantees that its behavior remains the same
whatever the choice of the user (standard or NTK parameterization).

E.2 CLAIM

We consider a parameter θ̃ such that θ = φ(θ̃), where φ is an invertible map, affine on each subset
of parameters. Therefore, its Jacobian is: J = Diag(α1, · · · , αp), where, for all 1 ≤ s ≤ S and
1 ≤ p1, p2 ≤ P , we have:

p1, p2 ∈ Is ⇒ αp1 = αp2 =: as. (41)

Also, let J̄ = Diag(a1, · · · , aS).

We want to compare the training trajectory of L(θ) and L(φ(θ̃)) when using Method 1. For any
quantity x computed with the parameterization θ, we denote by x̃ its counterpart computed with the
parameterization θ̃.

We compute η̃∗. Equation 10 gives:

η̃∗ =

(
˜̄H+

λint

2
∥D̃η̃∗∥D̃2

)−1

˜̄g. (42)

Besides:
˜̄H := IS:P ŨH̃ŨIP :S , ˜̄g := IS:P Ũg̃.

To go further, we need to do an assumption about the direction u.

Assumption 1. We assume that Ut is computed in such a way that Ũt = JUt at every step.

This assumption holds typically when ut is the gradient at time step t. It holds also when ut is a
linear combination of the past gradients:

u1 := g1, ut+1 := µut + µ′gt+1,

which includes the momentum.

To summarize, we have:

Ũ = JU, H̃ = JHJ, g̃ = Jg,

So:
˜̄H = J̃2IS:PUHUIP :SJ̃

2 = J̃2H̄J̃2,

˜̄g = J̃2IS:PUg = J̃2ḡ,

since J and U are diagonal. And, since Dii = |(D(3)
θ (u))iii|1/3, then D̃ii = a2iDii, thus D̃ = J̃2D.

Thus, Eqn. 42 becomes:

η̃∗ =

(
J̃2H̄J̃2 +

λint

2
∥J̃2Dη̃∗∥J̃4D2

)−1

J̃2ḡ,

which can be rewritten (since J̃ is invertible):

J̃2η̃∗ =

(
H̄+

λint

2
∥DJ̃2η̃∗∥D2

)−1

ḡ.

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2025

Therefore, η̃∗ is a solution of Eqn. 10 in the parameterization θ̃ if, and only if, J̃2η̃∗ is a solution
in the parameterization θ. Moreover, ∥D̃η̃∗∥ = ∥DJ2η̃∗∥, so η̃∗ is the solution of maximum norm
∥D̃η̃∗∥ of 10 with parameterization θ̃ iff J̃2η̃∗ is a the solution of maximum norm ∥DJ2η̃∗∥ of 10
with parameterization θ.

Thus, η∗ = J̃2η̃∗, and the update step in parameterization θ̃ is:
θ̃t+1 = θ̃t − ŨtIP :Sη̃∗

= θ̃t − ŨtIP :SJ̃
−2η∗,

which can be rewritten:
J−1θt+1 = J−1θt −UJIP :SJ̃

−2η∗, (43)
since φ is an affine function with factor J. Finally, Eqn. 43 boils down to:

θt+1 = θt −UIP :Sη∗, (44)
which is exactly Method 1 in parameterization θ.

F CONVERGENCE RATE IN A SIMPLE CASE

We study the convergence of the method presented in Section 4.1 (without anisotropic Nesterov’s
cubic regularization):

θt+1 = θt −UtIP :Sηt, ηt := H̄−1
t ḡt, (45)

where:
H̄t := IS:PUtHtUtIP :S , ḡt := IS:PUtgt,

Ht :=
d2L
dθ2

(θt), gt :=
dL
dθ

(θt),

Ut := −Gt,

that is, the direction ut is given by the gradient gt.

We study this optimization method in the case where L is a positive quadratic form:

L(θ) := 1

2
θTHθ, (46)

where H is positive definite and block-diagonal: H = Diag(H1, · · · ,HS).

We consider a partition (Is)1≤s≤S of the parameter space consistent with the block-diagonal structure
of H. In other words, if the coefficient Hpp of H lies in the submatrix Hs, then p ∈ Is.
Theorem 1. The method has a linear rate of convergence. For any θt ̸= 0:

L(θt+1)

L(θt)
≤ max

s

(
(As − as)

2

(As + as)2

)
,

where as = min Sp(Hs) and As = maxSp(Hs). Moreover, this rate is optimal, since it is possible
to build θt such that:

L(θt+1)

L(θt)
= max

s

(
(As − as)

2

(As + as)2

)
.

Alternatively:
L(θt+1)

L(θt)
≤ max

s

(
(γs − 1)2

(γs + 1)2

)
,

where γs = As/as ≥ 1.
Remark 1. For a given H, better convergence rates can be achieved by reducing the (γs)s, that is,
choosing partitions (Is)s such that, for all s, the eigenvalues (hp)p∈Is

are not too spread out.

In other words, good partitions are partitions such that indices of eigenvalues close to each other
are grouped inside the same subset Is. On the contrary, grouping the parameters regardless of the
eigenspectrum of H may lead to poor convergence rates, since eigenvalues far from each other may
be grouped together, leading to a very large γs.
Remark 2. To achieve good convergence rates, one should have some access to the eigenspectrum of
the Hessian, in order to group together the indices of eigenvalues having the same order of magnitude.

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2025

F.1 PROOF OF THEOREM 1

Proof. We have:

L(θt+1) =
1

2
θT
t+1Hθt+1

=
1

2
(θt −GtIP :Sηt)

TH(θt −GtIP :Sηt)

= L(θt)− θT
t HGtIP :Sηt +

1

2
ηT
t IS:PGtHGtIP :Sηt

= L(θt)− θT
t HGtIP :Sηt +

1

2
ηT
t H̄tηt

= L(θt)− gT
t GtIP :SH̄

−1
t ḡt +

1

2
ḡtH̄

−1
t ḡt

= L(θt)−
1

2
ḡT
t H̄

−1
t ḡt.

Now, we study ∆ = − 1
2 ḡ

T H̄−1ḡ. We omit the time t for the sake of readability.

We can write g as a block vector: g = (g1, · · · ,gS), where gs ∈ R|Is| for all 1 ≤ s ≤ S. Thus,
since H is block-diagonal:

H̄ = Diag(gT
s Hsgs : s ∈ {1, · · · , S}),

H̄−1 = Diag((gT
s Hsgs)

−1 : s ∈ {1, · · · , S}).
Also, ḡs = gT

s gs, then:

∆ = −1

2

S∑
s=1

(gT
s gs)

2

gT
s Hsgs

= −1

2

S∑
s=1

(gT
s gs)

2(gT
s H

−1
s gs)

(gT
s Hsgs)(gT

s H
−1
s gs)

.

By Kantorovich’s inequality, we have:

∆ ≤ −1

2

S∑
s=1

gT
s H

−1
s gs

1
4 (

as

As
+ As

as
+ 2)

≤ −2
S∑

s=1

(gT
s H

−1
s gs)Asas

(As + as)2
.

Thus:

∆ ≤ −min

(
2Asas

(As + as)2

) S∑
s=1

gT
s H

−1
s gs

≤ −min

(
2Asas

(As + as)2

)
θTHθ.

Finally, when dividing by L(θt) = 1
2θ

THθ, we have:

L(θt+1)

L(θt)
− 1 ≤ −min

(
4Asas

(As + as)2

)
L(θt+1)

L(θt)
≤ max

(
(As − as)

2

(As + as)2

)
Besides, this rate is optimal, since it is possible to build θt such that:

L(θt+1)

L(θt)
= max

s

(
(As − as)

2

(As + as)2

)
.

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2025

To do so, let s0 ∈ argmaxs

(
(As−as)

2

(As+as)2

)
. Let gmin be an eigenvector of H associated to as0 and

gmax be an eigenvector of H associated to As0 , orthogonal with ∥gmin∥ = ∥gmax∥ = 1. Also, let
θt = H−1(gmin + gmax).

Thus:

L(θt+1)− L(θt) = −
1

2

(gT
s0gs0)

2

gT
s0Hs0gs0

= −1

2

2

As0 + as0

Finally:

L(θt+1)

L(θt)
= 1− 1

2

2

As0 + as0

1
1
2g

T
s0H

−1
s0 gs0

= 1− 2

As0 + as0

1

A−1
s0 + a−1

s0

= 1− 2As0as0
(As0 + as0)

2

=
(As0 − as0)

2

(As0 + as0)
2

G EXPERIMENTAL DETAILS

Practical implementation. To implement the method proposed in Section 4, we propose Algorithm
4. The key function is compute_lr(λint;L,θ, Z̃,u), which returns a solution η∗ of:

η∗ =

(
H̄+

λint

2
∥Dη∗∥D2

)−1

ḡ,

with: H̄ := IS:PDiag(u)
d2L
dθ2

(θ, Z̃)Diag(u)IP :S ,

ḡ := IS:PDiag(u)gt,

D := Diag

((∣∣∣D(3)
θ (u)

∣∣∣1/3
iii

)
1≤i≤S

)
.

“momentum(µ,x, x̃)” returns x if x̃ is undefined, else µx̃+(1−µ)x. “schedule(τsch, psch, fsch; · · ·)”
corresponds to torch.optim.lr_scheduler.ReduceLROnPlateau called every τsch with patience psch
and factor fsch, in order to reduce the step size λt when the loss attains a plateau.6 The samplers Dg

and Dnewt are respectively used to compute the gradients gt and (H̄, ḡ) used in “compute_lr”.

The hyperparameters are: the initial step size λ1, the momentum µg on the gradients gt, the minibatch
size B to sample the Z̃ (used to compute ḡ, H̄ and D), the number of steps τ between each call of
compute_lr, the momentum µη on the learning rates ηt, the internal damping λint, and the parameters
of the scheduler τsch, psch, fsch.

Explanation. The “momentum” functions are used to deal with the stochastic part of the training
process, since our method has not been designed to be robust against noise. The period τ is usually
strictly greater than 1, in order to avoid calling “compute_lr” at every step, which would be costly.
The minibatch size B should be large enough to reduce noise in the estimation of η∗. If we denote
by Bg the size of the minibatches in Dg , then we recommend the following setup: τ = B

Bg
= 1

1−µg
.

That way, we ensure that the training data are sampled from Dg and Dnewt at the same rate, and that
g̃t memorizes the preceding gradients gt for τ steps. Besides, we have to take the positive part (ηt)+
of ηt in order to avoid negative learning rates.

6See torch.optim.lr_scheduler.ReduceLROnPlateau.

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2025

Algorithm 4 Complete implementation of the second-order optimization method described in Sec. 4.
λ1 and λint are the only hyperparameter to be tuned across the experiments, the others are fixed.

Hyperparams: λ1, µg, Bg, B, τ, µη, λint, τsch, psch, fsch
Dg ← sampler of minibatches of size Bg

Dnewt ← sampler of minibatches of size B
for t ∈ [1, T] do

Zt := (Xt, Yt) ∼ Dg (sample minibatch)
Lt ← L(θt, Zt) (forward pass)
gt ← dL

dθ (θt, Zt) (backward pass)
g̃t ← momentum(µg;gt, g̃t−1)
if t% τ == 0 then

sample Z̃t ∼ Dnewt

ηt ← compute_lr(λint;L,θt, Z̃t, g̃t)
η̃t ← momentum(µη; (ηt)+, η̃t−1)

end if
θt+1 ← θt − λtDiag(g̃t)IP :Sη̃t (training step)
λt+1 ← schedule(τsch, psch, fsch; t,Lt, λt)

end for

Experimental setup. We provide in Table 2 the hyperparameters fixed for all the experiments. In
Table 3, we report the results of the grid-search for the hyperparameters of the 3 tested optimization
methods.

Table 2: Hyperparameters fixed in all the series of experiments. Ne is the number of training steps
per epoch.

µg Bg B τ µη τsch psch fsch

0.9 102 103 10 0.5 Ne 5 0.5

Table 3: Hyperparameters tuned for each series of experiments. η: learning rate, λ1: initial step size.

MLP LeNet VGG-11’ BigMLP

Adam η 3 · 10−4 3 · 10−4 10−5 10−5

KFAC η 10−4 10−4 3 · 10−4 10−5

λ 10−2 3 · 10−2 3 · 10−2 10−2

Ours λ1 10−1 3 · 10−1 3 · 10−1 10−1

λint 10 3 3 10

K-FAC update periods. In accordance with the K-FAC packages, we have chosen to increase the
update period of the pre-conditioner to reduce the training time. Specifically, we have chosen to
perform a covariance update every 10 steps, and the inversion of the Fisher matrix every 100 steps:

• with tensorflow/kfac: use PeriodicInvCovUpdateKfacOpt with: cov_update_every = 10 and
invert_every = 100;

• with alecwangcq/KFAC-Pytorch: use KFACOptimizer with: TCov = 10 and TInv = 100.

H VERY DEEP MULTILAYER PERCEPTRON

Grouping the layers. In addition to the neural networks considered in Section 5, we have also tested
“VBigMLP”, a very deep multilayer perceptron with 100 layers of size 1024 trained on CIFAR-10.

23

1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2025

Instead of considering S = 2L = 200 groups of parameters, we split the sequence of layers of
VBigMLP into 5 chunks. Then, each chunk is divided into 2 parts, one containing the weight tensors,
and the other the bias vectors. Finally, we have S = 10 subsets of parameters, grouped by role
(weight/bias) and by position inside the network.

Experimental results. We show in Figure 3a the matrices H̄ and H̄−1 at different stages of training.
At initialization, even if the neural network is very deep, we observe that all the chunks of the network
interact together, even the first one with the last one. However, after several training steps, the
long-range interactions seem to disappear. Incidentally, the matrices become tridiagonal, which ties
in with the block-tridiagonal approximation of the inverse of the Hessian done by Martens & Grosse
(2015).

0 1 2 3 4
0
1
2
3
4

0 1 2 3 4 0 1 2 3 4 0 1 2 3 4

0
1
2
3
4

Ep. 0, W-W Ep. 100, W-W Ep. 100, W-B Ep. 100, B-B

(a) Submatrices of H̄ (first row) and H̄−1 (second
row), at initialization and before the 100th epoch.

0 1 2 3 4
layer group indices (VBigMLP)

10 6

10 5

10 4

10 3

le
ar

ni
ng

 ra
te

 (w
ei

gh
ts

)

10 4

10 3

10 2

10 1

100

le
ar

ni
ng

 ra
te

 (b
ia

se
s)

By-tensor learning rates at different epochs

20
60
100

140
180

(b) Learning rates η∗ computed according to 10, spe-
cific to each subset of parameters.

Figure 3: Matrices H̄ and H̄−1 and per-subset-of-parameters learning rates obtained with VBigMLP.
Legend for the figure on the right: solid lines: weights; dotted lines: biases. For each epoch
k ∈ {20, 60, 100, 140, 180}, the reported value has been averaged over the epochs [k − 20, k + 19]
to remove the noise.

In Figure 3b, we observe the evolution of the learning rates η∗ computed according to 10. First, there
are all decreasing during training. Second, the biases in the last layers of the network seem to need
larger learning rates than biases in the first layers. Third, the learning rate computed for the weights
of the first chunk of layers is smaller than the others.

Finally, the training curves in Figure 4a indicate that our method can be used to train very deep
networks. In this setup, it is close to be competitive with Adam. Besides, we did not manage to tune
the learning rate and the damping of K-FAC to make it work in this setup.

We have also plotted the evolution of the test loss and test accuracy during training (see Figure 4b). It
is clear that Adam does not generalize at all, while our method attains a test accuracy around 35 % –
40 %.

24

1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2025

0 25 50 75 100 125 150 175 200

10 3

10 2

10 1

100

101

VBigMLP (L=100) + CIFAR10

Adam
NewtonSummary

(a) Training curves.

0 50 100 150 200

101

2 × 100

3 × 100

4 × 100

6 × 100

Test loss
0 50 100 150 200

0.1

0.2

0.3

0.4

Test accuracy

Adam
NewtonSummary

(b) Test loss and test accuracy during training.

Figure 4: VBigMLP + CIFAR-10.

I TEST LOSS AND TEST ACCURACY

0 50 100 150 200

10 1

100

MLP (L=4) + MNIST
0 25 50 75 100

100

2 × 100

3 × 100

VGG-11' (L=9) + CIFAR10

0 25 50 75 100

2 × 100

3 × 100
4 × 100

6 × 100

BigMLP (L=20) + CIFAR10
0 50 100 150 200

100

2 × 100

3 × 100
4 × 100

6 × 100

LeNet (L=5) + CIFAR10

Adam
KFAC
NewtonSummary

(a) Test negative log-likelihood in different setups.

0 50 100 150 200

0.85

0.90

0.95

MLP (L=4) + MNIST
0 25 50 75 100

0.5

0.6

0.7

0.8

VGG-11' (L=9) + CIFAR10

0 25 50 75 100

0.2

0.3

0.4

0.5

BigMLP (L=20) + CIFAR10
0 50 100 150 200

0.3

0.4

0.5

0.6

LeNet (L=5) + CIFAR10

Adam
KFAC
NewtonSummary

(b) Test accuracy in different setups.

Figure 5: Test metrics in various setups.

In Figure 5a and Figure 5b, we have reported the test negative log-likelihood and the test accuracy of
the same experiments as in Section 5.2 (Figure 2a).

Our method is competitive with Adam and K-FAC when comparing the test losses, except for the
MLP trained on MNIST. In several cases, we observe a discrepancy between the test loss and the
test accuracy: one method might be better than another according to the loss, but worse in terms
of accuracy. In particular, the test loss of our method can achieve smaller test losses than the other
methods, while its test accuracy remains slightly lower (BigMLP, VGG).

J CHOICE OF THE PARTITION

We have trained VGG-11’ on CIFAR-10 using our method with different partition choices. In Table
4, we report the final training losses, the training time (wall-time), and the maximum memory usage.

Not surprisingly, the finer the partition, the better the results. However, this comes at a cost: training
with finer partitions takes more time. We also observe that memory usage tends to decrease as the
partition becomes finer.

The partitions we have tested are:

• trivial, S = 1: all the tensors are grouped together;

25

1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

Under review as a conference paper at ICLR 2025

• weights-biases, S = 2: all the weights are grouped together, and all the biases too;
• blocks-k, S = 2k + 2: the sequence of convolutional layers is split into k consecutive

blocks, and each one is split in two (weights + biases); weights and biases of the final
fully-connected layer are considered separately (hence the “+2” in S);

• alternate-k, S = 2k + 2: the convolutional layer l is put in the s̃-block if l%k = s̃; then,
each block is split in two (weights + biases); weights and biases of the final fully-connected
layer are considered separately (hence the “+2” in S);

• canonical, S = #tensors: each tensor is considered separately.

Table 4: Influence of the choice of the partition when training VGG-11’ on CIFAR-10.

partition train NLL time (s) mem. (Go)

trivial 8.12 · 10−1 2 512 2.49

weights-biases 7.64 · 10−1 2 855 2.49

blocks-2 5.94 · 10−1 3 182 2.38
alternate-2 5.70 · 10−1 3 422 2.08

blocks-4 1.50 · 10−2 3 674 1.97
alternate-4 5.37 · 10−2 4 180 1.91

canonical 3.05 · 10−4 4 612 1.88

K MEASURING THE IMPORTANCE OF INTERACTIONS BETWEEN LAYERS

Diagonal approximation of Method 1. Throughout this paper, we have emphasized the importance
of considering the interactions between layers when training a neural network. In fact, Method 1
allows the user to keep track of them at a reasonable computational cost. But is it useful to take these
interactions into account?

If the computational cost is really an issue, one can compute only the diagonal coefficients of H̄ and
set the off-diagonal coefficients to zero. Let H̄0 be this diagonal approximation of H̄:

H̄0 := Diag((h̄ii)1≤i≤S),

where (h̄ii)1≤i≤S are the diagonal coefficients of H̄.

Then, we call the diagonal approximation of Method 1, Method 1 where H̄ has been replaced by H̄0.

Experiments. We have tested Method 1 with the hyperparameters we have used in Section 5.2
and its diagonal approximation with a grid of hyperparameters λ1 and λint. The results are shown in
Figure 6. Note that the configuration λ1 = 1 was tested with VGG11’, but resulted in instantaneous
divergence, so we have not plotted the corresponding training curves.

According to Figure 6, the diagonal approximation of Method 1 performs worse or is more unstable
than 1. Therefore, when training LeNet or VGG11’ with CIFAR10, it is better to keep the off-diagonal
coefficients of H̄.

In short, one should worry about the interactions between layers.

26

1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457

Under review as a conference paper at ICLR 2025

0 20 40 60 80 100 120 140

10 2

10 1

100

Testing diagonal approximation: LeNet + CIFAR10

diag: = 1.0, 1 = 10.0
diag: = 1.0, 1 = 3.0
diag: = 0.3, 1 = 10.0
diag: = 0.3, 1 = 3.0
diag: = 0.3, 1 = 1.0
diag: = 0.3, 1 = 0.3
diag: = 0.3, 1 = 0.1
diag: = 0.1, 1 = 10.0
diag: = 0.1, 1 = 3.0
diag: = 0.1, 1 = 1.0
full (5 runs with the same setup)

(a) LeNet + CIFAR10.

0 20 40 60 80 100

10 6

10 5

10 4

10 3

10 2

10 1

100

101

102

Testing diagonal approximation: VGG + CIFAR10

diag: = 0.3, 1 = 10.0
diag: = 0.3, 1 = 3.0
diag: = 0.3, 1 = 1.0
diag: = 0.1, 1 = 10.0
diag: = 0.1, 1 = 3.0
diag: = 0.1, 1 = 1.0
full (5 runs with the same setup)

(b) VGG11’ + CIFAR10.

Figure 6: Training curves: Method 1 (solid lines) versus its diagonal approximation (dotted lines)
with various hyperparameters.

L HIGHER-ORDER DERIVATIVES OF A MULTIVARIATE FUNCTION

In this section, we recall formally the definition of higher-order derivatives of a multivariate function,
following Dieudonné (1960).

L.1 DEFINITIONS

Let L(E,F) be the space of linear maps from E to F and Ld(E,F) be the space of d-linear maps
from E × · · · × E to F . For instance, the space of linear forms on Rd is denoted by L(RP ,R), and
the space of 3-linear forms on RP × RP × RP is denoted by L3(RP ,R).

Let f be a smooth multivariate function from RP to R:

f : RP → R. (47)

Differential of order 1. The differential of f at a point θ ∈ RP is the only linear form Tf (θ) ∈
L(RP ,R) such that:

lim
u→0

f(θ + u)− f(θ)− Tf (θ)(u)

∥u∥2
= 0. (48)

Since Tf (θ) is a linear form, there exists a vector g ∈ RP such that:

Tf (θ)(u) = gTu. (49)

The vector g is nothing other than the gradient of f at θ, and Tf (θ) is the differential of f at θ, that
we denote by df

dθ (θ) in the main text.

In addition, there is a relationship between the coordinates gi of the gradient g = (g1, · · · , gP) and
the differential df

dθ (θ):

∀i ∈ {1, · · · , P}, gi =
df

dθ
(θ)(ei), (50)

where ei = (0, · · · , 0, 1, 0, · · · , 0) ∈ RP is the i-th vector of the canonical basis (in other words, ei
is the one-hot representation of the integer i).

And, of course, the gi can be calculated by using the partial derivatives:

∀i ∈ {1, · · · , P}, gi =
∂f

∂θi
(θ). (51)

27

1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511

Under review as a conference paper at ICLR 2025

Differential of order d. We suppose that the differential of order d− 1 of f at θ is well-defined
and is a (d− 1)-linear form on RP . We denote it by:

dd−1f

dθd−1
(θ) ∈ Ld−1(RP ,R). (52)

Thus, one can apply dd−1f
dθd−1 (θ) to a sequence of vectors (u1, · · · ,ud−1). We can write:

dd−1f

dθd−1
(θ) : RP × · · · × RP → R

(u1, · · · ,ud−1) 7→ dd−1f

dθd−1
(θ)(u1, · · · ,ud−1). (53)

Now, given a sequence of vectors (u1, · · · ,ud−1), let us define g(·)[u1, · · · ,ud−1] : RP → R such
that:

g(θ)[u1, · · · ,ud−1] =
dd−1f

dθd−1
(θ)(u1, · · · ,ud−1). (54)

So, g(·)[u1, · · · ,ud−1] is a function from RP to R, and g(θ)[·] ∈ Ld−1(RP ,R).

As a smooth function from RP to R, one can compute the differential of g(·)[u1, · · · ,ud−1] at θ,
that is a linear form:

dg

dθ
(θ)[u1, · · · ,ud−1] : RP → R

ud 7→ h(θ)(ud) =
dg

dθ
(θ)[u1, · · · ,ud−1](ud). (55)

We change the notation slightly by setting:

dg

dθ
(θ)[u1, · · · ,ud−1,ud] :=

dg

dθ
(θ)[u1, · · · ,ud−1](ud). (56)

With this notation, it can be proven that dg
dθ (θ)[·] is a d-linear form (it belongs to Ld(RP ,R)). Finally,

by definition of g:

dg

dθ
(θ)[u1, · · · ,ud−1,ud] =

d

dθ

(
dd−1f

dθd−1
(θ)(u1, · · · ,ud−1)

)
(ud), (57)

that we denote by:

ddf

dθd
(θ)[u1, · · · ,ud−1,ud]. (58)

So, ddf
dθd (θ) ∈ Ld(RP ,R).

Like the order-1 differential, the order-d differential can be represented by a tensor. For instance, a
canonical representation of ddf

dθd (θ) is T ∈ RPd

with:

Ti1,··· ,id =
ddf

dθd
(θ)[ei1 , · · · , eid] ∈ R, (59)

where Ti1,··· ,id is the value located at index (i1, · · · , id) in T.

We can also define T with partial derivatives:

Ti1,··· ,id =
∂df

∂θi1 · · · ∂θid
(θ) ∈ R. (60)

Example with d = 2. With d = 2, the tensor T representing the order-2 differential is the Hessian
matrix. So, T ∈ RP 2

with:

Tij =
d2f

dθ2
(θ)[ei, ej] =

∂2f

∂θi∂θj
(θ). (61)

28

1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565

Under review as a conference paper at ICLR 2025

L.2 PARTIAL DERIVATIVES WITH RESPECT TO VECTORS

We also need to define formally the following notation, used in Section 3:

∂df

∂Ti1 · · · ∂Tid
(θ). (62)

Without loss of generality, we only consider the case where the Ti are vectors (and not higher-order
tensors).

Representation of θ as a sequence of vectors. We consider that the argument θ ∈ RP of the
function f can be represented as a sequence of S vectors. For instance:

θ = (θ1, · · · , θP) ∼= ((θ1, θ3, θ5, · · ·), (θ2, θ4, θ6, · · ·)), (63)
or θ = (θ1, · · · , θP) ∼= ((θ1, θ2, · · · , θP1), (θP1+1, · · · , θP1+P2),

(θP1+P2+1, · · · , θP1+P2+P3
), · · ·), (64)

etc.,

where P1, P2, · · · , PS are integers such that P1 + · · ·+PS = P , and “∼=” means “is represented by”.
It is essential that each θi appears exactly once in the right-hand side of the equations above.

Without loss of generality, θ can be represented by a sequence of S vectors with defined sizes
(P1, · · · , PS):

θ ∼= (T1,T2, · · · ,TS) ∈ RP1 × RP2 × · · · × RPS . (65)

Single partial derivative. Let u ∈ RP be a vector. Just as for θ, we represent u by a sequence of
vectors:

u ∼= (U1,U2, · · · ,US) ∈ RP1 × RP2 × · · · × RPS . (66)

To be more specific, if Ti contains (θ1, θ3, θ6), then Ui contains (u1, u3, u6).

Then, we can define ∂f
∂Ti (θ) as a linear form belonging to L(RPi ,R) with the following property:

∂f

∂Ti
(θ) : RPi → R (67)

Ui 7→ ∂f

∂Ti
(θ)[Ui] =

Pi∑
k=1

∂f

∂T i
k

(θ)U i
k, (68)

where T i
k is the k-th coordinate of Ti and U i

k is the k-th coordinate of Ui. To be more specific, if T i
k

represents θq , then ∂f
∂T i

k

(θ) = ∂f
∂θq

(θ).

Multiple partial derivatives. We can define ∂df
∂Ti1 ···∂Tid

(θ) as a d-linear form belonging to
L(RPi1 × · · · × RPid ,R) with the following property:

∂df

∂Ti1 · · · ∂Tid
(θ) : RPi1 × · · · × RPid → R

(Ui1 , · · · ,Uid) 7→ ∂df

∂Ti1 · · · ∂Tid
(θ)[Ui1 , · · · ,Uid]

=

P1∑
k1=1

· · ·
Pd∑

kd=1

∂f

∂T i1
k1
· · · ∂T id

kd

(θ)U i1
k1
· · ·U id

kd
. (69)

M COMPARISON OF TRAINING TIMES

In Table 5, we report the training times of 4 different neural networks with Adam, K-FAC and our
method. Each value is the training time (wall-time) of the configuration in seconds, averaged over 5

29

1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619

Under review as a conference paper at ICLR 2025

runs. Note that MLP and LeNet were trained over 200 epochs, while BigMLP and VGG were trained
over 100 epochs, which explains why the training times are larger for smaller networks.

For small networks (MLP, LeNet), the training times are very close with the different optimizers.
However, we observe significant differences with large networks (BigMLP, VGG): compared to
Adam, the training is 2 times longer with K-FAC and 3 times longer with our method.

Thus, the computational overhead of our method is either very small or not excessively large compared
to K-FAC.

Table 5: Comparison of training times (in seconds) of different optimization techniques for the 4
main setups.

Setup Adam K-FAC Ours

MLP 2848 2953 3315
LeNet 2944 3022 3369
BigMLP 1777 2989 4365
VGG 1696 3117 4613

30

	Introduction
	Context and motivation
	Higher-order information
	Second-order methods
	Motivation

	Summarizing higher-order information
	A scalable second-order optimization method
	Presentation of the method
	Regularizing H by using order-3 information
	Properties

	Experiments
	Empirical computation of H and eta
	Training experiments

	Discussion
	Extensions of Pearlmutter's trick
	Derivation of the second-order method
	Link with Cauchy's steepest descent and Newton's method
	Anisotropic Nesterov cubic regularization
	Invariance by subset-wise affine reparameterization
	Motivation
	Claim

	Convergence rate in a simple case
	Proof of Theorem 1

	Experimental details
	Very deep multilayer perceptron
	Test loss and test accuracy
	Choice of the partition
	Measuring the importance of interactions between layers
	Higher-order derivatives of a multivariate function
	Definitions
	Partial derivatives with respect to vectors

	Comparison of training times

