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Fig. 1: DEXCAP facilitates the in-the-wild collection of high-quality human hand motion capture data and 3D observations.
Leveraging this data, DEXIL adapts it to the robot embodiment and trains control policy to perform the same task.

Abstract—Imitation learning from human hand motion data
presents a promising avenue for imbuing robots with human-like
dexterity in real-world manipulation tasks. Despite this potential,
substantial challenges persist, particularly with the portability of
existing hand motion capture (mocap) systems and the complexity
of translating mocap data into effective robotic policies. To tackle
these issues, we introduce DEXCAP, a portable hand motion
capture system, alongside DEXIL, a novel imitation algorithm
for training dexterous robot skills directly from human hand
mocap data. DEXCAP offers precise, occlusion-resistant tracking
of wrist and finger motions based on SLAM and electromagnetic
field together with 3D observations of the environment. Utilizing
this rich dataset, DEXIL employs inverse kinematics and point
cloud-based imitation learning to seamlessly replicate human
actions with robot hands. Beyond direct learning from human
motion, DEXCAP also offers an optional human-in-the-loop
correction mechanism during policy rollouts to refine and further
improve task performance. Through extensive evaluation across
six challenging dexterous manipulation tasks, our approach not
only demonstrates superior performance but also showcases the
system’s capability to effectively learn from in-the-wild mocap
data, paving the way for future data collection methods in the
pursuit of human-level robot dexterity.

I. INTRODUCTION

Building robotic systems to perform everyday manipulation
tasks is a long-standing challenge. Our living environments
and daily objects are designed with human hand functionality
in mind, posing a substantial challenge for developing future
home robots. Recent breakthroughs in robotic dexterity, espe-
cially in the control of multi-fingered mechanical hands with a
high degree of freedom, have shown remarkable potential [1–
3]. However, enabling robotic hands to emulate human-level
dexterity in manipulation tasks remains unsolved, due to both
hardware and algorithmic challenges.

Imitation Learning (IL) [4, 5] has recently made con-
siderable strides toward this goal [6, 7], especially through

supervised training using human demonstration data. One
commonly used way to collect data is to teleoperate robot
hands to perform the tasks. However, due to the requirement
of a real robot system and slow robot motion, this approach is
expensive to scale up. An alternative way is to directly track
human hand motions during manipulation without controlling
the robot. Current system is primarily vision-based with a
single-view camera. However, besides the question of whether
the tracking algorithm can provide accurate 3D information
which is critical for robot policy learning, these systems are
vulnerable to visual occlusions that frequently occur during
hand-object interactions.

A better alternative to vision-based methods for gathering
dexterous manipulation data is through motion capture (mo-
cap). Mocap systems provides accurate 3D information and
are robust to visual occlusions. Hence human operators can
directly interact with the environment with their hands, which
is fast and easier to scale up since no robot hardware is
required. To scale up hand mocap systems to data collection in
everyday tasks and environments for robot learning, a suitable
system should ideally be portable and robust for long capture
sessions, provide accurate finger and wrist poses, as well as
3D environment information. Most hand mocap systems are
not portable and rely on well-calibrated third-view cameras.
While electromagnetic field (EMF) gloves overcome this issue,
they cannot track the 6-DoF wrist pose in the world frame,
which is important for end-effectors policy learning. Devices
like IMU-based whole-body suits can monitor wrist position
but are prone to drift over time.

In addition to hardware challenges, there are also algorith-
mic challenges to use motion capture data for robot imitation
learning. While dexterous robot hands enable the possibility
of learning directly from human hand data, the inherent dif-
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ferences in size, proportion, and kinematic structure between
the robot hand and human hand call for innovative algorithms
to overcome these embodiment gaps. Towards solving these
challenges, our work simultaneously introduces a new portable
hand mocap system, DEXCAP, and an imitation algorithm,
DEXIL, that allows the robot to learn dexterous manipulation
policies directly from the human hand mocap data.

DEXCAP (Fig. 1) is a portable hand mocap system that
tracks the 6-DoF poses of the wrist and the finger motions in
real-time (60Hz). The system includes a mocap glove to track
finger joints, a camera mounted on top of each glove to track
the 6-DoF poses of the wrists with SLAM, and an RGB-D
LiDAR camera on the chest to observe the 3D environments.

Besides the hardware challenges, research efforts on de-
veloping algorithms to utilize mocap data for robot learning
have been missing due to the lack of such a data collection
system and collected data. Prior algorithms that learn from
human motion focus on learning the rewards [8, 9], high-
level plans [10, 11], and visual representations [12, 13], which
often require additional robot data and cannot be directly used
for low-level control. In this work, we argue that the main
challenge of learning low-level control from human motion is
that the data is missing precise 3D information of the hand
motion (e.g., 6-DoF hand pose, 3D finger positioning), which
are exactly what DEXCAP can provide.

To leverage data collected by DEXCAP for learning dex-
terous robot policies, we propose imitation learning from
mocap data, DEXIL, which consists of two major steps —
data retargeting and training generative-based behavior cloning
policy with point cloud inputs, with an optional human-in-the-
loop motion correction step. For retargeting, we use inverse
kinematics (IK) to retarget the robotic hand’s fingertips to the
same 3D location as the human’s fingertips. The 6-DoF pose
of the wrist is used to initialize the IK to ensure the same wrist
motion between the human and the robots. Then we convert
RGB-D observations to point cloud-based representations. We
then use a point cloud-based behavior cloning algorithm based
on Diffusion Policy [14]. In more challenging tasks when IK
is insufficient to fulfill the embodiment gap between human
and robot hands, we propose a human-in-the-loop motion
correction mechanism. During policy rollouts, humans can
wear the DEXCAP and interrupt the robot’s motion when
unexpected behavior occurs, and such interruption data can
be further used for policy finetuning.

In summary, the main contributions of this work include:

• DEXCAP: a novel portable human hand mocap system,
enabling real-time tracking of wrist and finger movements
for dexterous manipulation tasks.

• DEXIL: an imitation learning framework leveraging hand
mocap data for directly learning dexterous manipulation
skills from human hand motions.

• Human-in-the-Loop Correction: a human-in-the-loop cor-
rection mechanism with DEXCAP, significantly enhanc-
ing robot performance in complex tasks.

II. RELATED WORKS

A. Dexterous manipulation

Dexterous manipulation has been a long-standing research
area in robotics [15–19], posing significant challenges to
planning and control due to the high degrees-of-freedom. The
traditional optimal control methods [17–19] often necessitate
simplification of the contacts, which is usually not tenable
in more complex tasks. Recently, reinforcement learning has
been explored to learn dexterous policies in simulation with
minimal assumptions about the task or the environment [2, 20–
29]. The learned policies can solve complex tasks, including
in-hand object re-orientatation [2, 20, 23–25, 28], bimanual
manipulation [26, 30], and long-horizon manipulation [22, 27].
However, due to the sim-to-real gap, deploying the learned
policy on a real-world robot remains challenging. Imitation
learning, on the other hand, focuses on learning directly
from real-world demonstration data, which is obtained through
either teleportation [1, 6, 31, 32] or human videos [3, 33, 34].
DIME [31] uses VR to teleoperate a dexterous hand for data
collection; Qin et al. [35] uses an RGB camera to track hand
pose for teleoperation; DexTransfer [36] uses human mocap
data to guide dexterous grasping; DexMV [33], DexVIP [34]
and VideoDex [3] leverages human video data for learning
the motion priors but often require additional training in
simulation or real robot teleoperation data. Our work focuses
on dexterous imitation learning, which relies on DEXCAP to
collect high-quality hand mocap data grounded in 3D point
cloud observation, which can be directly used to train low-
level positional control on robots with single or dual hands.

B. Hand motion capture system

Human hand mocap is an important technique for appli-
cations in computer vision and graphics. Most previous sys-
tems are camera-based, IMU-based, or electromagnet(EMF)-
based. Camera-based systems utilize monocular camera [37–
39], RGB-D camera [40–42], VR headset [43], or multi-view
camera with markers [44, 45]. However, the quality of hand
motion tracking quickly deteriorates in scenarios involving
heavy occlusions, which happen frequently in hand-object
interactions. Some of these systems also require third-view
calibrated cameras which are not portable or scalable. More
recently, Inertia Measurement Unit (IMU) has been used for
in-the-wild human mocap [46–50]. Nevertheless, most of them
focus on whole-body motion capture and miss fine-grained
finger motions. EMF-based mocap gloves are designed for
capturing finger motion, which is widely used for dexterous
teleoperation [51–53]. However, the glove does not track the
6-DoF palm poses grounded in the environment and misses
visual observations for training robot policies. DEXCAP is a
mocap glove system that is designed to collect data for training
visuomotor manipulation policies. Through novel engineering
designs, our system stays robust to occlusions, captures fine-
grained finger motion, tracks palm poses using SLAM, and
records RGB-D images to reconstruct the scene with a wear-
able camera vest.
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Fig. 2: Details of the human system. (a) Our setup includes a 3D-printed rack on a chest harness, featuring a Realsense
L515 LiDAR camera on top and three Realsense T265 tracking cameras below. (b) An Intel NUC and power bank in a
backpack power the system for approximately 40 minutes of data collection. (c) The T265 cameras, initially in a known pose
for calibration, are relocated to hand mounts during data collection to monitor palm positions, ensuring consistency through a
click-in design. Finger motions are captured by Rokoko gloves, accurately tracking the finger joint positions.

C. Robot learning with human demonstration

Imitation Learning (IL) has enabled robots to successfully
perform various manipulation tasks [4, 54–60]. Traditional
IL algorithms such as DMP and PrMP [61–64] enjoy high
learning sample efficiency but are limited in their ability to
handle high-dimensional observations. In contrast, recent IL
methods built upon deep neural networks can learn policies
with raw image observation inputs [65, 66], even for high-
degree robot systems with bimanual arms [67, 68]. Despite
their effectiveness, one key challenge for imitation learning
is how to scale up the training data. Prior works focus on
teleoperation data [66, 69–77] which is expensive to collect
due to the requirement of the robot hardware. More recently,
learning from human motion data has started to receive
more attention because it allows collecting data without robot
hardware [78]. By leveraging human videos [11, 79], hand
trajectories [10, 80–82], promising results have been shown
to train policies with less manual human effort. However,
these human motions are in 2D image space [80, 83, 84],
which fails to directly train 6-DoF manipulation policies in
3D environments and usually requires additional teleoperation
data to bridge the gap [10, 11, 79]. Recently, human-in-
the-loop correction algorithms have also shown promising
results in robot learning [85–87]. Our DEXCAP provides
tracking of 6-DoF hand poses together with finger motions
grounded in 3D point cloud observations, which is portable
for data collection without a robot. Based on the data collected
with DEXCAP, we introduce DEXIL which is a point cloud-
based imitation learning algorithm for learning fine-grained
dexterous manipulation policies, with an optional human-in-
the-loop correction step for more challenging tasks.

D. Portable data collection systems for manipulation

Recently advancements in low-cost hand-held grippers have
shown promising results in collecting robot manipulation data
without robot hardware [88–94]. All of these systems are

designed and used for the parallel-gripper data collection
process, while in this work we aim to collect multi-finger
hand motion data for dexterous manipulation tasks (e.g., using
scissors and unscrewing bottle caps).

III. HARDWARE SYSTEM: DEXCAP

In this section, we introduce the system design including (1)
a portable human hand motion capture system DEXCAP that
is used for data collection (Sec. III-A) and (2) a bimanual
robot system equipped with dexterous hands for testing the
policies learned from the collected data (Sec. III-B).

A. DexCap

To capture the fine-grained hand motion data suitable to
train dexterous robot policies, DEXCAP is designed with four
key objectives in mind: (1) detailed finger motion tracking,
(2) accurate 6-DoF wrist pose estimation, (3) aligned 3D ob-
servations recording in a unified coordinate frame with hands,
and (4) outstanding portability for data collection in various
real-world environments. We achieved these objectives with
zero compromise on scalability—DEXCAP must be simple to
calibrate, inexpensive to build, and robust for data collection
of daily activities in the wild.

Tracking finger motions. Our system uses electromag-
netic field (EMF) gloves, offering a significant advantage
over vision-based finger tracking systems, particularly in the
robustness to visual occlusions that frequently occur in hand-
object interactions. In our system, finger motions are tracked
using Rokoko motion capture gloves as illustrated in Figure 2.
Each glove’s fingertip is embedded with a tiny magnetic
sensor, while a signal receiver hub is placed on the glove’s
dorsal side. The 3D location of each fingertip is measured
as the relative 3D translation from the hub to the sensors.
In appendix we included a qualitative comparison between
our EMF glove system and state-of-the-art vision-based hand-
tracking methods across different manipulation scenarios.
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Fig. 3: Details of the robot system. Mirroring the human system, the robot system reuses the same chest cameras and mount.
(a) Once the motion is captured by DexCap, it’s retargeted to LEAP hand through discarding pinky finger and IK to match
fingertip location. (c) An optional human-in-the-loop correction step can be performed to further refine the motions transferred.
Specifically, the human will provide the delta input in real time when the robot system is carrying out the task. Note the hand
T265 is only used at correction time, as the robot arm already knows the exact location of fingers.

Tracking 6-DoF wrist pose. Beyond finger motion, know-
ing the precise positioning of a robot’s end-effector in a
3D space is crucial for robot manipulation. This necessitates
DEXCAP to estimate and record the 6-DoF pose trajectories of
human hands during data collection. While camera-based and
IMU-based methods are commonly used, each has its limita-
tions. Camera-based systems, often non-portable and limited
in their ability to estimate wrist orientation, are less suited
for data collection in manipulation tasks. IMU-based systems,
although wearable, tend to suffer from position drifting when
used for long recording sessions. To address these challenges,
we develop a 6-DoF wrist tracking system based on the
SLAM algorithm, as shown in Figure 2(c). This system uses
an Intel Realsense T265 camera, mounted on each glove’s
dorsal side. It combines images from two fisheye cameras
and IMU sensor signals to construct an environment map
using the SLAM algorithm, enabling consistent tracking of
the wrist’s 6-DoF pose. This design has three key advantages:
it is portable, allowing for wrist pose tracking without the
need for hands to be visible in third-person camera frames;
SLAM can autonomously correct position drift with the built
map for long-time use; and the IMU sensor provides crucial
wrist orientation information to train the robot policy in the
subsequent pipeline.

Recording 3D observations and calibration. Capturing
the data necessary for training robot policies requires not
only the tracking of hand movement but also recording ob-
servations of the 3D environment as the policy input. As
depicted in Figure 2(a), we design a wearable camera vest
for this purpose. It incorporates an Intel Realsense L515
RGB-D LiDAR camera, mounted on the top of the chest, to
capture the observations during human data collection. The
next critical question then becomes how to effectively integrate
the tracked hand motion data with the 3D observations. To
simplify the calibration process, we designed a 3D-printed
camera rack underneath the chest camera mount as illustrated
in Figure 2(c). At the beginning of the data collection, all
tracking cameras are placed in the rack slots, which secures

a constant transformation between the camera frames. Then,
we take off the tracking cameras from the rack and insert
them into the camera slot attached to each glove. In this way,
we can easily transform the hand pose tracking results into the
observation frame of the chest camera with the constant initial
transformation. The full calibration process is demonstrated
in Appendix Figure 13 and supplementary videos, which
takes around 10 seconds. To further ensure stable observations
amidst human movement, another fisheye tracking camera
(marked red in Fig. 2(c)) is mounted under the LiDAR camera,
which provides a more robust SLAM performance than the
LiDAR camera with its wide field of view. We define the initial
pose frame of this tracking camera as the world frame for all
stream data. Figure 6 is the visualization of the collected data
by transforming the observations into colored point clouds in
the world frame alongside the captured hand motions.

System Portability. Central to the portability of DEXCAP
is a compact mini-PC (Intel NUC 13 Pro), carried in a
backpack, which serves as the primary computation unit for
data recording. This PC is powered by a portable power bank
with a 40000mAh battery, enabling approximately 40 minutes
of continuous data collection (Fig. 2(b)). The total weight of
the backpack is 3.96 pounds. The supplementary video shows
that donning and calibrating DEXCAP is fast and simple,
taking less than 10 seconds. Additionally, DEXCAP’s hardware
design is modular and inexpensive to build — no restriction to
brands or models of cameras, motion capture gloves, and mini-
PCs. We will open-source the code and instruction videos for
builders, along with a range of hardware options. The overall
cost of the DEXCAP is kept within a $4k USD budget.

B. Bimanual dexterous robot

To validate the robot policy trained by the data from
DEXCAP, we establish a bimanual dexterous robot setup.
This setup comprises two Franka Emika robot arms, each
equipped with a LEAP dexterous robotic hand (a four-fingered
hand with 16 joints) [95], as depicted in Figure 3(b). For
policy evaluation, the chest LiDAR camera used in human
data collection is detached from the vest and mounted on
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Fig. 4: Algorithm overview. (a) DEXIL first retargets the DEXCAP data to the robot embodiment by first constructing 3D
point clouds from RGB-D observations and transforming it into robot operation space. Meanwhile, the hand motion capture
data is retargeted to the dexterous hand and robot arm with fingertip IK. Based on the data, a robot policy is learned to output
a sequence of future goal positions as the robot actions. (b). DEXCAP also offers an optional human-in-the-loop correction
mechanism, where humans apply delta residual action to the policy-generated actions to correct robot behavior. The corrections
are stored in a new dataset and uniformly sampled with the original dataset for fine-tuning the robot policy.

a stand positioned between the robot arms. To simplify the
process of switching the camera system between the human
and robot, a quick-release buckle has been integrated into the
back of the camera rack, allowing for swift camera swaps –
in less than 5 seconds. In this way, the robot utilizes the same
observation camera employed during human data collection.
Note that, for robot setups, only the LiDAR camera is used
and wrist cameras are not needed. Both the robot arms and
the LEAP hands operate at a control frequency of 20Hz. We
use end-effector position control for both robot arms and joint
position control for both LEAP hands.

IV. LEARNING ALGORITHM: DEXIL

Our goal is to use the human hand motion capture data
recorded by DEXCAP to train dexterous robot policies. There
are several research questions along the way - (1) How can
we re-target the human hand motion to the robotic hand? (2)
What algorithm can learn dexterous policies, especially when
the action space is high-dimensional in the bimanual setup?
(3) In addition, we would like to investigate the failure cases
for learning directly from human motion capture data and their
potential solutions.

To tackle these challenges, we introduce DEXIL, a three-
step framework to train dexterous robots using human hand
motion capture data. The first step is to re-target the DEXCAP
data into the action and observation spaces of the robot em-
bodiment (Sec. IV-A). Second step trains a point-cloud-based
diffusion policy using the re-targeted data (Sec. IV-B). The
final step involves an optional human-in-the-loop correction
mechanism, designed to address unexpected behaviors that
emerge during the policy execution (Sec. IV-C).

A. Data re-targeting
Action re-targeting. As illustrated in Figure 3(a), a notable

challenge emerges due to the size disparity between the human
hand and the LEAP hand, with the latter about 50% larger [95].
This size difference makes it hard to directly transfer the finger
motions to the robotic hardware. The first step is to retarget the
human hand motion capture data into the robot embodiment,
which requires mapping the finger position and 6-DoF palm
pose with inverse kinematics (IK).

One critical finding in prior research is that fingertips
are the most frequently contacted areas on a hand when
interacting with objects (as evidenced in studies like HO-
3D [41], GRAB [44], ARCTIC [45]). Motivated by this,
we re-target finger motion by matching fingertip positions
using inverse kinematics (IK). Specifically, we deploy an IK
algorithm that generates smooth and accurate fingertip motion
in real time [96–98] to determine the 16-dimensional joint
positions for the robotic hand. This ensures the alignment
between robot fingertips and the human fingertips in the
DEXCAP data. Considering the design of the LEAP hand,
which features four fingers, we adapt our process by excluding
little finger information during IK computations. Additionally,
the 6-DoF wrist pose captured in the mocap data serves as an
initial reference for wrist pose in the IK algorithm. Figure 6
demonstrates the final result of re-targeting. The 6-DoF pose
of the wrist pt = [Rt|Tt] and the finger joint positions Jt of
the LEAP hands are then used as the robot’s proprioception
state st = (pt,Jt). We use position control in our setup
and the robot’s action labels are defined as next future states
at = st+1.

Observation post-processing. Observation and state rep-



resentation choice are critical for training robot policies. We
convert the RGB-D images captured by the LiDAR camera
in the DEXCAP data into point clouds using the camera
parameters. This additional conversion offers two significant
benefits compared to RGB-D input. First, because DEXCAP
allows the human torso to move naturally during data acqui-
sition, directly using RGB-D input would need to account
for the moving camera frame. By transforming point cloud
observations into a consistent world frame—defined as the
coordinate frame of the main SLAM camera at the start of
the mocap (the main camera is marked in red in Fig. 2(c))—
we isolate and remove torso movements, resulting in a stable
robot observation. Second, point clouds provide flexibility
in editing and alignment with the robot’s operational space.
Given that some motions captured in the wild may extend
beyond the robot’s reachability, adjusting the placement of
point cloud observations and motion trajectories ensures their
feasibility within the robot’s operational range. Based on these
findings, all RGB-D frames from the mocap data are processed
into point clouds aligned with the robot’s space, and the
task-irrelevant elements, such as the table surface points, are
excluded. This refined point cloud data thus becomes the
observation inputs ot fed into the robot policy π.

B. Point cloud-based diffusion policy

With the transformed robot’s state st, action at and cor-
responding 3D point cloud observation ot, we formalize the
robot policy learning process as a trajectory generation task.
More specifically, a policy model π, processes the point
cloud observations ot and the robot’s current proprioception
state st into an action trajectory (at,at+1, . . . ,at+d) (as in
Fig. 4). Given point cloud observation with N points ot

in RN×3, we uniformly down-sample it into K points and
concatenate the RGB pixel color corresponding to each point
into the final policy input in RK×6. To bridge the visual gap
between human hands and the robot’s hand, we use forward
kinematics to transform the links of the robot model with
the proprioception state st and merge the point clouds of the
transformed links into the observation ot. During training, we
also use data augmentation over the inputs by applying random
2D translations to the point clouds and motion trajectories
within the robot’s operational space.

One challenge of learning dexterous robot policies, espe-
cially for bimanual dexterous robots, is handling the large
dimensional action outputs. In our setup, the action output
includes two 7-DoF robot arms and two 16-DoF dexterous
hands for d steps, which forms a high-dimensional regression
problem. Similar challenges have also been studied in image
generation tasks, which aim to regress all pixel values in a
high-resolution frame. Recently, diffusion model [99, 100],
with its step-by-step diffusion process, has shown success in
modeling complex data distributions with high-dimensional
data. For robotics, diffusion policy [14] follows the same idea
and formalizes the control problem into an action generation
task. Thus we use a diffusion policy as the action decoder,

where we empirically find it outperforms traditional MLP-
based architecture for learning dexterous robot policies.

C. Human-in-the-loop correction

With the design presented above, DEXIL can learn chal-
lenging dexterous manipulation skills (e.g., pick-and-place and
bimanual coordination) directly from DEXCAP data without
the need for on-robot data. However, our simple retargeting
method does not address all aspects of the human-robot
embodiment gap. For example, when using a pair of scissors,
a stable hold of scissors requires inserting the fingers deep into
the handle. Due to the differences in finger length proportion,
directly matching the fingertips and the joint motion does not
guarantee the same force exerted on the scissors.

To address this issue, we offer a human-in-the-loop mo-
tion correction mechanism, which consists of two modes -
residual correction and teleoperation. During policy execution,
we allow humans to provide corrective actions to robots
in real-time by wearing DEXCAP. In residual mode, DEX-
CAP measures the delta position changes of human hands
(∆pH

t ,∆JH
t ) relative to hands’ initial states (pH

0 ,JH
0 ) at

the beginning of the policy roll-out. The delta position is
applied as a residual action ar

t = (∆pH
t ,∆JH

t ) to the
robot policy action at = (pt+1,Jt+1), scaled by α and
β. The corrected robot action can then be formalized as
a′
t = (pt+1

⊕
α · ∆pH

t ,Jt+1 + β · ∆JH
t ). We empirically

find that setting β with a small scale (< 0.1) offers the best
user experience, which avoids fingers moving too fast.

In the case when a large position change is desired, a
press on the foot pedal will switch the system to teleoperation
mode. DEXCAP now ignores the policy rollout and applies
human wrist delta directly to the robot wrist pose. The robot
fingertips are now directly following human fingertips. In other
words, the robot fingertip will track the human fingertip in
their respective wrist frame through IK. Users can also switch
back to the residual mode after correcting the robot’s mistake
by pressing the foot pedal again.

Since the robot has already learned an initial policy, typi-
cally the correction happens in a small portion of the rollout,
greatly reducing the human effort. The corrected actions and
observations are stored in a new dataset D′. Training data
is sampled with equal probability from D′ and the original
dataset D to fine-tune the policy model, similar to IWR [101].

V. EXPERIMENTS

We aim to answer the following research questions:

Q1: What is the quality of DEXCAP data?
Q2: Can DEXIL directly learn dexterous robot policies from

DEXCAP data without any on-robot data?
Q3: What model architecture choices are critical to improv-

ing the performance?
Q4: Can DEXIL learn from in-the-wild DEXCAP data?
Q5: How does human-in-the-loop correction help when

DEXCAP data is insufficient?
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Fig. 5: Experiment Tasks. (a) Sponge Picking: Pick and lift the sponge. (b) Ball Collecting: Pick up a ball and drop it into a
basket. (c) Plate Wiping: Use both hands to pick up a plate and sponge, then wipe the plate vertically twice. (d) Packaging:
Place items into a box with one hand while using the other to either push or stabilize them, before securely closing the box
lid. (e) Scissor Cutting: Secure paper with one hand and use scissors in the other to cut through the paper. (f) Tea Preparing:
Grasp the tea bottle with one hand, use the other hand to uncap, then pick up tweezers to extract tea and pour it into the pot.

Q6: Can the whole framework handle extremely challeng-
ing bimanual dexterous manipulation tasks (e.g., using
scissors and preparing tea)?

A. Experiment setups

a) Tasks: we evaluate DEXIL using six tasks of varying
difficulty to assess its performance with DEXCAP data. These
tasks range from basic, such as Sponge picking, Ball collecting,
and Plate wiping, which test single-handed and dual-handed
coordination, to more complex ones like Packaging, which
looks at bimanual tasks and generalization using both familiar
and new objects. Scissor cutting focuses on the effectiveness
of the human-in-the-loop correction mechanism in precise tool
use, whereas Tea preparing challenges the system with a long-
horizon task requiring intricate actions. To further analyze
performance, we introduce the Subtask metric for multi-step
tasks, indicating the completion of task subgoals, such as
placing an object inside a box in Packaging, or picking up
scissors in Scissor Cutting.

b) Data: We utilize two data types: (1) DEXCAP data
capturing human hand motion (In-the-wild data refers to a
mixture of data collected in more than 10 scenes) and (2)
human-in-the-loop correction data for adjusting robot actions
or enabling teleoperation to correct errors, collected using a
foot pedal. Data were initially recorded at 60Hz and then
downsampled to 20Hz to match the robot’s control speed,
except for correction data, which was collected directly at
20Hz. For data collection, we gathered 30 minutes of DEXCAP
data across the first three tasks, resulting in 251, 179, and
102 demos respectively. An hour of in-the-wild DEXCAP
data provided 104 demos for Packaging. Scissor Cutting and
Tea Preparing tasks each received an hour of DEXCAP data,
yielding 96 and 55 demos respectively.

c) Baselines: We evaluate multiple baselines to deter-
mine the model architecture with the best performance, fo-
cusing on three key aspects using DEXCAP data: identifying
the best imitation learning framework for bimanual dexterous
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Fig. 6: Data Retargeting for Tasks. DEXIL effectively retargets human mocap data for activities like plate wiping, scissor
cutting, and packaging. The initial column displays the raw point cloud scene. Columns 2-7 offer three views—right, middle,
left—with blue background columns depicting human data and yellow for robot hand retargeting. This side-by-side arrangement
highlights the precision of our fingertip IK in translating human to robot hand motions.
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Fig. 7: Compare with vision-based method. We demonstrate
that motion capture gloves provide more stable hand pose
estimation results compared to vision-based methods and are
not affected by visual occlusion.

manipulation between BC-RNN [102] and diffusion policy
(DP)[14], assessing the most effective observation type to
bridge the visual gap between human and robot hands (com-
paring image inputs [14, 65] and a point cloud method [103]),
and determining the most suitable encoder for point cloud
inputs by comparing PointNet[104] and Perceiver [105, 106]
encoders. Implementation details are included in the appendix.

d) Metric: Each model variant is tested for 20 trials in
each task with randomized initial placements. The task success
rate is reported in Table I II III. For the multi-object Packaging
task, each object is tested with 5 trials - 6 trained objects (30

total trials) and 9 unseen objects (45 total trials).

B. Results
DEXCAP delivers high-quality 3D mocap data (Q1).

Figure 6 showcases DEXCAP’s ability to capture detailed hand
motion in 3D, aligning human actions with object point clouds
across all views, such as in Plate wiping and Scissor cutting
tasks (blue columns). The retargeted robot hand motions,
depicted in the yellow columns, demonstrate precise alignment
in the same 3D space. In Figure 7, we compare DEXCAP with
the state-of-the-art vision-based hand pose estimation method
HaMeR [39], observing their performance from similar view-
points. We find that the vision-based approach is vulnerable
to self-occlusion, particularly when the fingers are obscured.
As depicted in Figure 7, HaMeR struggles in instances of
significant occlusion, either failing to detect the hand (as seen
in the second column) or inaccurately estimating fingertip
positions (noted in the first, third, and fourth columns). In
contrast, DEXCAP demonstrates good robustness under these
conditions. Beyond the challenge of occlusion, most vision-
based methods rely on 2D hand estimation, predicated on
learning from 2D image projection losses. Consequently, these
methods are inherently limited in their ability to discern the
precise 3D hand positioning, as they are trained based on
presumed, fixed camera intrinsic parameters, which do not
necessarily match the actual camera used for experiments. In
Figure 8, we showcase the data collection throughput of DEX-
CAP, which is three times faster than traditional teleoperation.

DEXCAP data can directly train dexterous robot policies
(Q2). Table I is the experiment result of training robot policies
only using DEXCAP data. Within 30-minute hand motion cap-
ture demonstrations collected by DEXCAP, the learned policies



(a). Human motion (b). DexCap (c). Teleoperation

Fig. 8: Data collection throughput comparison. DEXCAP’s data collection speed in the Ball collecting task is close to natural
human motion and is three times faster than traditional teleoperation.

Fig. 9: Visualization of human-in-the-loop corrections. DEXCAP supports teleoperation and residual correction for human-
in-the-loop adjustments. Teleoperation directly translates human hand movements to the robot end-effector actions, indicated
by color-fading trajectories from blue to green (human) and red to yellow (robot) over 20 timesteps. Residual correction adjusts
the robot’s end-effector based on changes from the human hand’s initial pose, enabling minimal movement but requiring more
precise control. Users can switch between correction modes with a foot pedal.

achieve up to 72% average task success rate in single-hand
pick-and-place (Sponge picking, Ball collecting) and bimanual
coordination (Plate wiping) tasks. This result highlights the
effectiveness of DEXCAP data on training dexterous robot
policies without on-robot data, which introduces a new way
for training robot dexterous manipulation.

Generative-based algorithm with point cloud inputs
shows advantages (Q3). In Table I, we compare the per-
formance of multiple model architectures. We first observe
that, due to the visual appearance gap between human and
robot hands, the policies with full image inputs fail completely
(BC-RNN-img, DP-img). We then try masking out human and
robot hands with white circles in training and evaluation. This
setting brings improvements, where DP-img-mask achieves
more than 30% success rate in all tasks. Meanwhile, diffusion
policy works better than MLP-based BC-RNN policies (25%
higher in averaged task success rate). This result verifies
our hypothesis that generative-based policy is more suitable
for learning dexterous policies. Although getting promising
results, masking out the end-effector loses details for in-hand
manipulation. This hypothesis is verified by the low success
rate in the Plate wiping task, which requires the robot to
use fine-grained finger motion to grab the plate from the
edge. Our point cloud-based learning algorithms (DP-point-

raw, DP-point, DP-prec), on the other hand, do not require
masking over observations and achieve more than 60% task
success rate. This result highlights the advantage of using point
cloud inputs, which allow us to add robot hand points to the
observation without losing the details in the original inputs. We
also observe that, even without adding robot hand points, DP-
point-raw achieves close performance to DP-point. This might
because the downsampling process of the point cloud inputs
lowers the appearance gap between human gloves and robot
hands. Furthermore, compared to the PointNet, the model
with Perceiver encoder has higher performance, especially in
bimanual tasks with multiple task objects (20% improvement
on task success rate in Plate wiping). Based on these findings,
we use DP-perc as the default model architecture for DEXIL.

DEXIL can purely learn from in-the-wild DEXCAP data
(Q4). The first three columns of Table II are the results of
training policies using in-the-wild DEXCAP data. We first
notice that image-input baselines (BC-RNN-img-mask, DP-
img-mask) have close to zero performance when learning with
in-the-wild data. This observation verifies our hypothesis that
the viewpoint changes caused by human body movements
during in-the-wild data collection bring challenges to learn-
ing image-based policies. Our DEXIL transforms the point
cloud inputs into a consistent world frame, resulting in stable



DEXCAP Data Only
Sponge picking Ball collecting Plate wiping Overall

BC-RNN-img 0.00 0.00 0.00 0.00
BC-RNN-img-mask [65] 0.25 0.10 0.10 0.15
BC-RNN-point [103] 0.45 0.30 0.25 0.33
BC-RNN-prec [105] 0.50 0.30 0.35 0.38
DP-img 0.00 0.00 0.00 0.00
DP-img-mask [14] 0.55 0.40 0.30 0.42
DP-point-raw 0.70 0.70 0.40 0.60
DP-point 0.75 0.65 0.50 0.63
Ours (DP-perc) 0.85 0.60 0.70 0.72

TABLE I: Quantitative results for learning with DEXCAP data.

Packaging In-the-wild DEXCAP 30 human corrections
Subtask All Unseen Subtask All Unseen

BC-RNN-img-mask [65] 0.00 0.00 0.00 0.23 0.07 0.00
BC-RNN-point [103] 0.33 0.23 0.16 0.40 0.27 0.22
DP-img-mask [14] 0.17 0.00 0.00 0.47 0.33 0.00
Ours 0.70 0.47 0.40 0.83 0.57 0.42

TABLE II: Quantitative results for the Packaging task.

Trained objects Unseen objects

Fig. 10: Objects used in the Packaging task

observations and thus getting better results (70% in Subtask
and 47% in full task setup). Please refer to our video results
for more visualization of the stabilized input point clouds. By
training the policy with multiple task objects using in-the-
wild (Fig. 10), our model can already generalize to unseen
object instances, with a 40% success rate. During evaluation,
we identified two primary issues with the policy learned
from in-the-wild DEXCAP data: firstly, the absence of force
information in DEXCAP data causes the right hand to struggle
with stabilizing the box during box closure attempts by the
left hand. Secondly, the box lid occasionally moves out of the
chest camera’s view due to human movements, hindering the
robot’s ability to learn precise lid grasping. These challenges
prompt us to seek improvement strategies.

Human-in-the-loop correction greatly help when DEX-
CAP data is insufficient (Q5). Figure 9 illustrates two types
of human-in-the-loop correction mode with DEXCAP. Users
can switch between the two modes by stepping on the foot
pedal and the whole trajectory is stored and used for fine-
tuning the policy. The last three columns of Table II show-
case the effectiveness of using human-in-the-loop correction
together with policy fine-tuning to improve the model perfor-
mance. With just 30 human correction trials during policy roll-
out, the fine-tuned policy with image inputs (DP-img-mask)
achieves a 33% improvement in the full task success rate for
trained objects. This significant boost is mainly because the
human correction data is collected using a fixed camera -

Scissor cutting DEXCAP Data Only 30 human corrections
Subtask All Subtask All

BC-RNN-point [103] 0.00 0.00 0.10 0.00
Ours 0.00 0.00 0.45 0.20

TABLE III: Quantitative results for the Scissor cutting task.

Tea preparing DEXCAP Data Only 30 human corrections
Subtask All Subtask All

Ours 0.30 0.00 0.65 0.25

TABLE IV: Quantitative results for the Tea preparing task.

the same setup used for the evaluations. This result further
supports our conclusion: image-based approaches are more
effective in learning with fixed third-view cameras compared
to the in-the-wild scenarios with moving cameras. Human
corrections also result in a 10% improvement in our approach
that utilizes point cloud inputs. However, we’ve observed that
fine-tuning with human corrections has a minor effect on the
results for unseen objects, primarily due to the limited amount
of correction data (30 trials in total).

Our whole framework can handle extremely challenging
tasks (Q6). DEXIL together with human-in-the-loop correc-
tion is able to solve extremely challenging tasks such as
Scissor cutting and Tea preparing. In Table III, we showcase
that our system can achieve a 45% success rate on picking up
the scissor from the container and 20% in cutting a piece of
paper tape. In our supplementary video, we also showcase how
the robot performs the long-horizon Tea preparing task which
includes unscrewing a bottle cap and pouring tea into the pot.
Table IV presents the evaluation results of our approach (DP-
perc) in the Tea preparing task. The subtask is defined as
successfully unscrewing the cap of the tea bottle. We found
that even with human mocap data only (DEXCAP Data Only),
our model can achieve a 30% success rate in uncapping.
Most of the failures occur during the task of picking up
the tweezers, which requires high-precision control over the
fingertip. In such cases, human-in-the-loop correction signifi-
cantly improves performance. With 30 human corrections, we
achieve a 35% improvement in the uncapping success rate and
attain a 25% success rate for the entire task. Please refer to
our video submission for more qualitative results of this task.
These tasks showcase the high potential of our framework in
learning extremely challenging dexterous manipulation tasks.

VI. CONCLUSION AND LIMITATIONS

We present DEXCAP, a portable hand motion capture
system, and DEXIL, an imitation algorithm enabling robots
to learn dexterous manipulation directly from human mocap
data. DEXCAP, designed to overcome occlusions, capture fine-
grained 3D hand motion, record RGB-D observations, and
allow data collection outside the lab. DEXIL applies this data
to teach robots complex dexterous manipulation tasks, with an
optional human-in-the-loop correction mechanism to further
improve performance. Demonstrating proficiency in tasks like
scissor cutting and tea preparation, DEXCAP and DEXIL
significantly advance robotic dexterity. We hope DEXCAP can



pave the path for future research on scaling up dexterous
manipulation data with portable devices. All hardware designs
and code will be open-source.

While DEXCAP collects high-quality mocap data in-the-
wild for learning challenging dexterous manipulation tasks,
it has several limitations that need future research: (1) The
system’s power consumption currently restricts the collection
time to be at most 40 minutes. Future improvements will
focus on enhancing power efficiency to extend the collection
time. (2) Our learning algorithm DEXIL utilizes fingertip
inverse kinematics to retarget human hand motion to various
robotic hands. However, the size difference between human
and robotic hands (with some robotic fingers being thicker)
can make some tasks difficult to perform, such as playing the
piano. Future developments will aim to integrate advancements
in robotic hand design to minimize these size differences and
fully demonstrate the system’s potential. (3) Current DEXCAP
collects only 3D observations and motion capture data, lacking
force sensing. One promising direction we plan to explore
involves the use of conformal tactile textiles, as introduced in
[107], to gather tactile information during data collection.
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APPENDIX A
IMPLEMENTATION DETAILS

A. DEXCAP hardware implementations

Figure 11 illustrates the hardware design of DEXCAP. All
models are 3D-printed with PLA material. The chest camera
mount is equipped with four slots for cameras: at the top,
an L515 RGB-D LiDAR camera, followed by three T265
fisheye SLAM tracking cameras. The LiDAR camera and
the uppermost T265 camera are securely fixed to the camera
rack, while the two lower T265 cameras are designed to be
detachable and can be affixed to the glove’s back for hand 6-
DoF pose tracking. The design features of the camera mounts
on both the chest and gloves include a locking mechanism
to prevent the cameras from accidentally slipping out. On the
glove, the camera mount is positioned over the magnetic hub
on its dorsal side, ensuring a firm attachment between the hub
and the mount. For powering and data storage, the user wears
a backpack containing a 40000mAh portable power bank and
a mini-PC with 64GB RAM and 2TB SSD. The system’s
total weight is 3.96 pounds, optimized for ease of mobility,
supporting up to 40 minutes of continuous data collection.
The power bank’s rapid recharge capability, requiring only 30
minutes for a full charge, enables extensive data collection
sessions over several hours.

B. Data collection details

Figure 13 and the supplementary video illustrate the begin-
ning steps of a data collection session. Initially, all cameras
are mounted on the chest. Upon initiating the program, the
participant moves within the environment for several sec-
onds, allowing the SLAM algorithm to build the map of
the surroundings. Subsequently, the bottom T265 cameras are
relocated to the glove mounts, initiating the data collection
phase. This preparatory phase is completed in approximately
15 seconds, as demonstrated in the video submission.

The data collection encompasses four data types, recorded
at 60 frames per second: (1) the 6-DoF pose of the chest-
mounted LiDAR camera, as tracked by the top T265 camera;
(2) the 6-DoF wrist poses, as captured by the two lower T265
cameras attached to the gloves; (3) the positions of finger
joints within each glove’s reference frame, detected by the
motion capture gloves; and (4) RGB-D image frames from
the LiDAR camera. The initial pose of the top T265 camera
establishes the world frame for all data, allowing for the
integration of all streamed data—RGB-D point clouds, hand
6-DoF poses, and finger joint locations—into a unified world
frame. This configuration permits unrestricted movement by
the participant, enabling easy isolation and removal of body
movements from the dataset.

Data are initially buffered in the mini-PC’s RAM, support-
ing a 15-minute collection at peak frame rate (60 fps). Once
the RAM is full, data capture slows to 20 fps due to storage
shifting to the SSD. We empirically find that this reduction
in frame rate may affect SLAM tracking accuracy, potentially
leading to jumping tracking results. Thus, we use the first

Fig. 11: Detailed view of chest mount and glove mount
The glove mount follows the contour of the hump on the
top of the Rokoko glove, and an opening is added to route
the USB-C cable to the glove. The angle of the camera is
set to 45 degrees facing upwards so that the camera view is
less obstructed from the back of the hand. The slide guide
has an indentation matching the position of the back plate
to ensure the same insertion position across experiments. The
chest mount houses 3 identical slots following the contour of
the T265. An additional slot is added to fit in the slide plate
of the T265.

10 minutes of each session prioritized for high-quality data
capture. After collection, transferring the data from RAM to
SSD is efficiently completed within 3-5 minutes using multi-
threading.

In this study, we primarily investigate two types of DEXCAP
data: (1) data captured in the robot space and (2) data collected
in the wild. For the first category, we position the chest camera
setup on a stand between two robot arms. The robots are then
adjusted to a resting position, clearing the operational space
for human interaction. This arrangement allows for the direct
use of DEXCAP to collect data within the robot’s operational
area. Such data underpins basic experiments for tasks like
Sponge picking, Ball collecting, and Plate wiping, alongside
more complex challenges, including Scissor cutting and Tea
preparing. For the second category, individuals don DEXCAP
to gather data outside the lab setting, focusing on the system’s
zero-shot learning performance with in-the-wild DEXCAP data
and its ability to generalize to unseen objects, particularly in
the Packaging task.

C. Data retargeting details

To adapt the collected raw DEXCAP data for training robot
policies (commonly known as retargeting). This involves two
key steps: (1) retargeting the observations and (2) retargeting
the actions.

For observation retargeting, the initial step is to convert the
RGB-D inputs into 3D point clouds, ensuring each pixel’s
color is preserved. These point clouds are then aligned with the
world frame, defined by the initial pose of the main T265 cam-
era. Subsequently, a point cloud visualization UI is launched,
displaying the aligned input point clouds alongside the robot
operation space’s point clouds within a unified coordinate
frame. Through this UI, users can adjust the point cloud’s
position within the robot operation space using the keyboard’s



directional keys. This adjustment process is required only once
for all data collected in the same location and is completed in
under a minute. After aligning the point clouds with the robot
space, points below the robot’s table surface are eliminated,
refining the observation data for policy development.

Action retargeting begins with applying a consistent trans-
formation between the T265 cameras on the chest mount to
translate the hand joint locations into the world frame. Then,
we use the previously calculated point cloud transformation
matrix to transform the hand joints to the robot operation
space. The results of this process are visualized in Figure 12 by
depicting the transformed hand joints together with the point
cloud as a skeletal model of the hand. The final phase employs
inverse kinematics to map the fingertip positions between the
robot hand (LEAP hand) and the human hand. We use the
hand’s 6-DoF pose to initialize the LEAP hand’s orientation
for IK calculation. Figure 12 illustrates the IK results, showing
the robot hand model integrated with the observational point
clouds, thereby generating the actions required for training the
robot policy.

All of the point cloud observations are downsampled uni-
formly to 5000 points and stored together with robot propri-
oception states and actions into an hdf5 file. We manually
annotate the start and end frames of each task demonstration
from the entire recording session (10 minutes each). The
motion for resetting the task environment is not included in
the training dataset.

D. Robot controller details

Position control is employed throughout our experiments,
structured hierarchically: (1) At the high level, the learned
policy generates the goal position for the next step, which
encompasses the 6-DoF pose of the end-effector for both
robot arms and a 16-dimensional finger joint position for both
hands. (2) At the low level, an Operational Space Controller
(OSC) [108], continuously interpolates the arm’s trajectory
towards the high-level specified goal position and relays inter-
polated OSC actions to the robot for execution. Meanwhile,
finger movements are directly managed by a joint impedance
controller. Following each robot action, we calculate the dis-
tance between the robot’s current proprioception and the target
pose. If the distance between them is smaller than a threshold,
we regard that the robot has reached the goal position and
will query the policy for the next action. To prevent the robot
from becoming idle, if it fails to reach the goal pose within
h steps, the policy is queried anew for the subsequent action.
We designate h = 10 in our experiments. We empirically find
that for tasks that consist of physical contact with objects or
applying force, this situation happens more often and a smaller
h will have a smoother robot motion.

E. Policy model and training details

For all image-input methods, we use ResNet-18 [109] as
the image encoder. For models based on diffusion policy, we
use Denoising Diffusion Implicit Models (DDIM) [110] for
the denoising iterations. For all baselines, the time horizon of

Hyperparameter Default

Batch Size 16
Learning Rate (LR) 1e-4

Num Epoch 3000
LR Decay None

Image Encoder ResNet-18
Image Feature Dim 64

RNN Type LSTM
RNN Horizon 3

GMM None

TABLE V: Hyperparameters - BC-RNN-img

Hyperparameter Default

Batch Size 16
Learning Rate (LR) 1e-4

Num Epoch 3000
LR Decay None

Point Cloud Encoder PointNet
Point Cloud Downsample 1000

Pooling Type MaxPooling
UNet Embed Dim 256
UNet Down dims [256, 512, 1024]
UNet Kernel Size 5

Diffusion Type DDIM
Diffusion Num Train 100
Diffusion Num Infer 10

Input Horizon 3

TABLE VI: Hyperparameters - DP-point

the inputs is set to three. For pointcloud-based methods, the
input point cloud is uniformly downsampled to 1000 points.
We list the hyperparameters for each architecture in Table V,
VI, VII.

F. Task implementations

In this section, we introduce the details of each task design
• Sponge Picking: A sponge is randomly placed on the

table within a 40×70 centimeter area. The objective is
to grasp the sponge and lift it upwards by more than 30
centimeters.

• Ball Collecting: A ball is randomly positioned on the
right side of the table within a 40×30 centimeter area,
while a basket is similarly placed randomly on the left
side within the same dimensions. The task is completed
when the ball is grasped and then dropped into the basket.

• Plate Wiping: In a setup akin to the Ball Collecting task,
a plate and a sponge are randomly placed on the right and
left sides of the table, respectively, each within a 40×30
centimeter area. The goal involves using both hands to
pick up the plate and sponge separately, then utilizing
the sponge to wipe the plate twice. This task demands
coordination between the two hands, positioning the plate
in the table’s middle area to facilitate the wiping action.

• Packaging: An empty paper box and a target object are
randomly positioned on the table, with the object within
a 40×30 centimeter area on the right and the box within
a 10×10 centimeter area on the left. This task aims to
assess the model’s ability to generalize across various
objects, including unseen ones not present in the training
dataset. Success involves using one hand to pick up the
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Fig. 12: Visualization of collected human data and retargeted robot data. DEXIL successfully adapts human motion capture
data for tasks such as plate wiping, scissor cutting, and packaging. We demonstrate the entire workflow of executing these
tasks.

Hyperparameter Default

Batch Size 16
Learning Rate (LR) 1e-4

Num Epoch 3000
LR Decay None

Point Cloud Encoder Perceiver
Point Cloud Downsample 1000

Pooling Type MaxPooling
UNet Embed Dim 256
UNet Down dims [256, 512, 1024]
UNet Kernel Size 5

Diffusion Type DDIM
Diffusion Num Train 100
Diffusion Num Infer 10

Input Horizon 3

TABLE VII: Hyperparameters - Ours (DP-prec)

object and the other to move the box to the table’s center.
The object is then placed into the box, followed by
stabilizing the box with one hand while the other closes
it by grasping and moving the lid.

• Scissor Cutting: A container is fixed at the table’s center,
with scissors on the left and a strip of paper tape on
the right. The task begins with the left hand function-
ally grasping the scissors—inserting the thumb into one
handle and the index and middle fingers into the other.
Simultaneously, the right hand grasps the paper tape. Both
scissors and tape are then lifted and moved towards the
center, with the left hand operating the scissors to cut
the tape. A cut exceeding 3 millimeters deems the task
successful.

• Tea Preparing: A tea table is centrally placed with a fixed
orientation, accompanied by a tea bottle, tweezers, and
a teapot. The robot must first grasp the tea bottle with
the left hand and unscrew the cap with the right hand,
completing two rotations. The cap is then taken off and
placed on the right side of the tea table. Subsequently, the
right hand picks up the tweezers from the top right corner
of the tea table. The robot then attempts to pour tea from



Fig. 13: Prepration of data collection in the wild. The first row illustrates data collection conducted in a laboratory setting,
and the second row depicts in-the-wild data collection. (a) Initially, the human data collector moves around in the environment
to track 6-DoF wrist poses with SLAM. (b)-(d) Subsequently, the data collector detaches the two cameras from the chest mount
and secures them onto the glove mount. (e) With this setup, the human is prepared to begin data collection.

Fig. 14: Switching DEXCAP from the human to the robot. We illustrate, from both first-person and front views, the seamless
transition of DEXCAP from a human data collector to a bimanual dexterous robot system. This process involves effortlessly
detaching the cameras from the chest mount and inserting them into a stationary mount on the robot’s table.

the bottle into the teapot with the left hand, while the
right hand uses the tweezers to aid the pouring process.
Finally, the robot returns the tweezers and the tea bottle
to their corresponding positions on the table. The task is
deemed successful if tea makes it into the teapot and both
the tea bottle and tweezers are returned to their respective
places. For the task to be considered fully successful, the
tea bottle must be completely released from the left hand.

G. Human-in-the-loop implementations

DEXCAP incorporates two human-in-the-loop correction
methodologies: teleoperation and residual correction. Both
methods can be utilized during policy rollouts to gather

additional correction data, which is used in further refining the
policy for enhanced task performance. Detailed descriptions of
these algorithms and their implementation are provided in the
main paper. In the human-in-the-loop process, we employ the
mini-PC to live stream data from all T265 tracking cameras.
This tracking information is then transmitted to a Redis server
configured on the local network. Concurrently, the robot,
operating the learned policy on a workstation, receives delta
movements of the human hands from the Redis server. These
deltas serve as residual corrections and are integrated into each
robot action. The RGB-D LiDAR camera, positioned on the
central bar between the robot arms, connects to the workstation
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Fig. 15: Compare with IMU-based mocap system. We
disable the SLAM mapping and pose-correction features of the
T265 tracking camera, forcing it to rely on IMU information
to track the pose. The human operator held the camera, started
from a fixed location, moved it along a predefined trajectory,
and then returned to the starting position. IMU-based method
(first row) fails to match the endpoint with the start point,
which indicates that there is pose drift during tracking. Our
SLAM-IMU method (second row) doesn’t drift and captures
smooth trajectory during the tracking.

Drifting error (cm) Trajectory 1 Trajectory 2

IMU-based 8.0± 3.1 11.3± 4.7
SLAM-IMU (Ours) 0.4± 0.2 0.8± 0.3

TABLE VIII: Drifting error of different tracking methods.

to capture observation data. Instead of recording the robot’s
actual positional changes, we log the action commands dis-
patched to the robot controller. This design is crucial for tasks
involving physical contact with the environment and objects.

APPENDIX B
SUPPLEMENTARY EXPERIMENT RESULTS

A. Tracking accuracy

Figure 15 and Table VIII present qualitative and quantitative
results, respectively. We observe that the IMU-based method
suffers from pose drifting during tracking, while our SLAM-
IMU approach more accurately tracks hand poses, with an
average error of 0.8 cm compared to the 11.3 cm error of the
IMU-based method.
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