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ABSTRACT

This paper studies the problem of fairness-aware graph adaptation, which aims
to transfer knowledge from a labeled source graph to an unlabeled target graph
with the consideration of fairness. Previous approaches usually utilize adversarial
learning to learn invariant graph representations of sensitive attributes. However,
these approaches assume that sensitive attributes are known on the target graph,
which may not always be the case in the real world. Towards this end, we propose
a new approach named Causality-attended Representation Disentanglement with
Structural Alignment (COSTA) for fairness-aware graph adaptation. The core of
our COSTA is to build a causal graph to guide the feature representation disentangle
with enhanced fairness. In particular, our causal graph explores the underlying
mechanism of graph generation and then utilizes a sensitive encoder and a causal
encoder for feature extraction. To ensure representation disentanglement, we
minimize the mutual information between causal representations and sensitive
representations, considering the conditional distribution. To make use of unlabeled
data, we generate pseudo-labels for both target and sensitive attributes and measure
the similarity relations for unbiased node representations. To further mitigate the
domain shift, we construct a fairness-aware bipartite graph, which can further guide
the domain alignment. Extensive experiments on benchmark datasets validate the
effectiveness of the proposed method in comparison to competing baselines.

1 INTRODUCTION

Graph Neural Networks (GNNs)’ social impact has broadened significantly since their adoption as the
de facto approach for modeling complex relational structures Kipf & Welling (2017); Xu et al. (2019).
Thanks to their powerful ability to capture both node features and relational dependencies through
message passing mechanisms, GNNs have achieved remarkable success in numerous graph-based
tasks Wu et al. (2020); Ju et al. (2024). Among these, node classification endeavors to predict
the label of each node in a graph and stands as one of the most fundamental tasks in numerous
graph-learning-based applications, i.e., community detection Bianchi et al. (2020), cross-model
retrieval Qian et al. (2022) and molecular property prediction Wang et al. (2021). Nevertheless, graph
learning often suffer from fairness issues due to inherent biases in graph data, which can be further
exacerbated by the message-passing mechanisms of GNNs Chen et al. (2024).

To mitigate this issue, recent years have witnessed considerable efforts toward fair graph learning.
Depending on the stage at which the fairness intervention is introduced, existing approaches are
generally categorized into pre-, in-, and post-processing strategies. Pre-processing strategies aim
to mitigate bias prior to the model training phase through manipulating the original input graph,
i.e., node feature masking Köse & Shen (2021), structure rewiring Spinelli et al. (2021); Dong et al.
(2022). By contrast, in-processing strategies incorporate fairness constraints to modify the objective
function during the training process, such as through regularization Agarwal et al. (2021); Jiang et al.
(2024), adversarial debiasing Ling et al. (2023), and disentangled representation learning Zhu et al.
(2024a); Lee et al. (2025). Finally, post-processing strategies adjust the model’s outputs after training
to mitigate bias and enhance fairness Dai & Wang (2021); Zhang et al. (2024b).
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However, most of these approaches assume access to sensitive attributes (e.g., race, gender) for all
nodes during training, which is often impractical due to privacy concerns or missing demographic
information. Graph transfer learning seeks to leverage knowledge from a source graph where such
attributes are available to improve performance on a target graph with scarce or missing labels Han
et al. (2021); Zhu et al. (2021; 2024b). Within this paradigm, graph domain adaptation (GDA)
has emerged as a key strategy that directly aligns the distributions of source and target graphs in
the learned GNN-representation space, and there are numerous efforts that have been proposed
recently Qiao et al. (2023); You et al. (2023); Liu et al. (2024). Therefore, this naturally spurs a
question: How can fairness knowledge be effectively transferred across graphs when sensitive labels
are unavailable in the target domain? This insight motivates the formalization of an innovative
application scenario, namely, graph fairness adaptation.

Nonetheless, developing such a graph fairness adaptation framework for node classification remains a
non-trivial task since it must address two basic challenges: ❶ Sensitive Group Distribution Shift under
Domain Discrepancy. The structural heterogeneity and semantic shifts between source and target
graphs implicitly alter the underlying distribution of sensitive groups, which destabilizes fairness
knowledge transfer from the source and consequently weakens bias mitigation in the target domain.
For example, prior studies have observed that a fair income prediction model developed in one state
may lose its fairness when transferred to another state Ding et al. (2021). ❷ Alignment Collapse
during Entangled Information Transfer. Existing methods typically rely on distribution discrepancy
minimization Wu et al. (2023) and adversarial learning Dai et al. (2022) to align domain distributions,
which inevitably induce unintended correlations between the target-relevant and sensitive-related
information. Transferring such entangled information may create a conflict between fairness and
performance objectives, potentially leading to distribution alignment collapse.

Towards this end, in this paper, we propose a Group-acquiRed BipartitE Alignment framework
(termed COSTA) for graph fairness adaptation, which aims to transfer the fairness knowledge from
the source graph to the unlabeled target graph. Specifically, our COSTA incorporates a dual graph
encoder with a two-fold mutual information (MI) constraint, enabling the model to disentangle
task-relevant and sensitive-related representations. Based on this, we generate pseudo-sensitive
labels for target graph nodes and partition them into corresponding demographic groups. To enhance
fairness in pseudo-labeling, a group-acquired unbiased learning strategy is then introduced, which
explicitly emphasizes negative pairs sharing identical sensitive labels. Finally, for each target graph
node, we retrieve source nodes with the same target while distinct sensitive labels for bipartite graph
construction between two domains and employ a bipartite-aware domain alignment to decorrelate
sensitive and target information for enhanced fairness adaptation.

In a nutshell, the contributions of the paper are as follows: ❶ New Perspective. We highlight
the limited or unavailable nature of sensitive information in graph fairness learning and introduce
an underexplored yet graph fairness adaptation problem. To the best of our knowledge, this is
the first attempt to explore this problem. ❷ Novel Methodology. We propose a novel framework
termed COSTA, which generalizes both target and sensitive representations with a dual graph
encoder under a two-fold MI constraint and performs group-acquired bipartite alignment for unbiased
domain alignment. ❸ Extensive Experiments. We conduct extensive experiments on multiple
benchmark datasets to evaluate COSTA. The results demonstrate that our framework achieves
superior performance and fairness for the adaptation task. The code is available at https://
anonymous.4open.science/r/COSTA_ICLR_2026-EFBE/.

2 PRELIMINARIES & PROBLEM DEFINITION

Notations. Let the source domain graph be denoted as Gso = {Vso, Eso,Xso,Y so,Sso}, where Vso

and Eso represents the node and edge set respectively. We use the adjacency matrix Aso to describe
the structure information of the source domain graph, where Aso

uv = 1 if there is an edge (u, v) ∈ Eso,
otherwise Aso

uv = 0. The node feature matrix is given by Xso ∈ R|Vso|×d, where each row xv ∈ Rd

represents the d-dimensional feature vector of node v. The node sensitive attribute are specified
as Sso = {s1, . . . , s|Vso|} ∈ {0, 1}|V

so|, where sv is the sensitive label of node v. We consider
the binary node classfication and the target node label matrix can be Y so = {y1, . . . , y|Vso|} ∈
{0, 1}|Vso|. Similarly, the target domain graph is denoted as Gta = {Vta, Eta,Xta} with completely
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unlabeled node set Vta and edge set Eta. Note that to facilitate alignment, we construct a unified
feature space across the source and target domain graphs.
Definition 2.1 (Sensitive Group). The sensitive group of the source and target domain graph is
partitioned by nodes according to their sensitive attribute, formally defined as:

V∗
s = {v ∈ V∗|sv = s}, ∗ ∈ {so, ta}. (1)

Definition 2.2 (EO Group). The Equality Odds (EO) group of the graph is formed by partitioning
nodes according to both target label y and sensitive attribute s of the node:

V∗
y,s = {v ∈ V∗|(sv = s) ∩ (yv = y)} ∗ ∈ {so, ta}. (2)

Definition 2.3 (Demographic Parity). Demographic parity Calders et al. (2009) is achieved to
ensure fairness by enforcing that nodes from different demographic groups have equal probabilities
of being assigned positive predictions. Accordingly, ∆DP of target domain graph can be:

∆DP = |Eu∈Vta(ŷu = 1|su = 1)− Ev∈Vta(ŷv = 1|sv = 0)|, (3)

where ŷv and yv denote the predicted and ground-truth label of node v. Consequently, the dependence
between predictions ŷ and sensitive attribute s, namely ŷ |= s, is measured by ∆DP .
Definition 2.4 (Equalized Odds). Equal odds Hardt et al. (2016) stipulates fairness by ensuring that
the True Positive Rate (TPR) and False Positive Rate (FPR) are identical across demographic groups.
Formally, ∆EO of target domain graph is defined as:

∆EO =
1

2

1∑
y=0

|Eu∈Vta(ŷu = y|yu = y, su = 1)− Ev∈Vta(ŷv = y|yv = y, sv = 0)|. (4)

Note that ∆EO quantifies the conditional independence between the predicted label ŷ and sensitive
attribute s given the ground-truth label y, i.e., ŷ |= s | y.

Problem Definition. Graph fairness adaptation aims to transfer the target and sensitive knowledge
from a labeled source domain graph to a completely unlabeled target domain graph. Specifically, given
the labeled source domain graph Gso and the unlabeled target domain graph Gta with the covariate
shift assumption Ben-David et al. (2006; 2010), i.e., P(Gso) ̸= P(Gta) and P(Y |Gso) = P(Y |Gta),
the objective of graph fairness adaptation is to label the nodes within the target domain graph Gta
while ensuring both high performance and fairness.

3 THE PROPOSED COSTA

3.1 FRAMEWORK OVERVIEW

In this section, we present COSTA, a framework that achieves unbiased adaptation by disentangling
target and sensitive feature transfer through group-acquired bipartite alignment. Figure 1 provides an
overview of the framework and we present the details of each component below.

3.2 CAUSALITY-ATTENDED REPRESENTATION DISENTANGLEMENT WITH MUTUAL
INFORMATION OPTIMIZATION

Causal Graph Construction. Since the key challenge of the graph fairness adaptation lies in identi-
fying stable sensitive-free features that preserve fair prediction while suppressing sensitive-aware
features across domains, we perform feature disentanglement based on the constructed causal graph.
We formalize the dependencies between variables through a Structural Causal Model (SCM) Pearl
et al. (2016), where the three key mechanisms can be defined as:

• Domain Latent Factorization: C∗←D∗, ∗ ∈ {so, ta}→ S∗ ensures that task-relevant factor C∗

is preserved, while permitting residual dependencies attributed to sensitive factors S∗ across the
source domain Dso and target domain Dta.

• Graph Generation: C∗→G∗← S∗ specifies that the observed graph data of two domains G∗ is
generated through the causal variable and the bias fairness-aware variable.

3
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Figure 1: Illustration of COSTA with three modules: (1) Causality-attended Disentanglement: MI-
based encoders disentangle task-relevant and sensitive factors. (2) Group-attended Unbiased Learning:
Generate pseudo labels to support group-attended unbiased learning (3) Bipartite Domain Alignment:
Reduce domain shift through clustering-based bipartite graph alignment

• Label Determination: C∗→Y ∗ indicates that the causal variable is the only endogenous parent to
determine the ground-truth task label Y ∗ under distribution shift.

Note that the spurious correlations of C∗ and S∗ within and between the graphs lead to poor fairness
generalization under distribution shifts.

Feature Disentanglement for Fairness Preservation. Following the causal theory Wu et al. (2022),
there exist a directed link between the variable Y to its parent PA(Y ) in an SCM, if and only if a
causal mechanism Y = H(PA(Y ), ϵY ) persists, where the ϵY |= PA(Y ) is the exogenous noise of
Y . In our setting, the mechanism can be represented as:

Y = H(PA(Y ), S), Y |= S|C. (5)
Thus, we disentangle S and C to preserve the causal effect of C on Y , while eliminating the influence
of S for graph fairness adaptation. Specifically, we employ a GNN to obtain the node embeddings
Zso

s of the source domain graph and incorporate a sensitive discriminator ξ(·) : Zso
s → S to explicitly

correlate with the sensitive attribute. The classification loss can be defined as:
Ls
cls = −

∑
v∈Vso

BCE(sv, ξ(z
so
v,s)). (6)

Based on the sensitive-aware embeddings, we employ another GNN to generate the causal task-
relevant embedding Zso

c and implement the graph fairness learning through:
max I(Zso

c ;Dso|Zso
s )︸ ︷︷ ︸

Conditional Fair Prediction

−βI(Zso
s ;Zso

c )︸ ︷︷ ︸
Sensitive-Free

, (7)

where I(·, ·) denotes the mutual information. In practice, we derive a sample-based MI upper bound
based on the Contrastive Log-ratio Upper Bound (CLUB) Cheng et al. (2020) for the aforementioned
sensitive-free constraints, which can be formulated as:

min I(Zso
s ;Zso

c ) := Ls
MI =

1

M

M∑
v=1

[
log qθ(z

so
v,s|zso

v,c)−
1

M

M∑
u=1

qθ(z
so
u,s|zso

v,c)

]
, (8)

where we leverage a Multilayer Perceptron (MLP) qθ(zso
v,s|zso

v,c) to approximate the conditional
probability. For the requirement of the conditional fair prediction constraint, we leverage a model
pre-trained with the target task label to generate the low-rank node embedding µv given the high-
dimension and sparsity of the source domain graph. Then, we employ a Conditional InfoNCE Gupta
et al. (2021) for the MI lower-bound, which can be defined as:

max I(Zso
c ;Dso|Zso

s ) := Lc
MI = E

[
log

exp f(µv, z
so
v,c, z

so
v,s)

1
M

∑M
u=1 exp f(µu, zso

v,c, z
so
v,s)

]
, (9)
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where µv ∼ p(µv|zso
v,s) and f(·) denotes the conditional score function, where we implement as the

weighted cosine similarity following the prior work Zhao et al. (2023):

f(µv, z
so
v,c, z

so
v,s) = sim(µv, z

so
v,c + αzso

v,s), (10)

where α is the trade-off hyper-parameter and sim(·) is the cosine similarity function. Note that since
the bias direction of the sensitive attribute, we implement the conditional sampling based on the
direction function, namely {µv′ |π(zso

v,c, z
so
v′,c) > 0}. So in this way, we can ensure that the sampled

embedding belongs to the same bias direction w.r.t. the conditional distribution. The composite
fairness learning objective for the source domain graph is LMI = Ls

cls + Ls
MI − Lc

MI .

3.3 GROUP-ATTENDED PSEUDO-LABELING FOR UNBIASED REPRESENTATION LEARNING

To mitigate the label scarcity of the target domain graph while preventing fairness in pseudo-labels, we
develop a fairness-preserving discriminative learning mechanism with group-acquired enhancement.
Specifically, we employ the dual-encoder to get the node embedding Zta

c and Zta
s of the target

domain graph and leverage them to determine the corresponding pseudo-label distribution,

ŷtav = argmaxψ(zta
v,c), ŝ

ta
v = argmax ξ(zta

v,s), (11)

where ψ(·) projects the causal feature to the task label space. To preserve fairness in pseudo-label
predictions, we decompose node similarities in the target domain graph into fine-grained types w.r.t.
demographic groups, and explicitly penalize the model when it captures spurious correlations or
sensitive information Park et al. (2022); Zhang et al. (2024a). Specifically, given an anchor node v,
we categorize its similarity relations into three groups defined as follows.

• Intra-Group (IG): The similarity is determined according to the EO group, and the corresponding
node group is formulated as Vta

ig (v) = {ig ∈ Vta|sig = ŝtav ∩ yig = ŷtav }.
• Sensitive Inter-Group (SG): We define the similarity between an anchor and nodes that belong to

the same target class but distinct sensitive attributes, with the corresponding node group formally
denoted as Vta

sg(v) = {sg ∈ Vta|ssg ̸= ŝtav ∩ ysg = ŷtav }.
• Target Inter-Group (TG): The similarity is defined between an anchor and nodes that share the

same sensitive attribute, while differing in target class, and the node group can be defined as
Vta
tg (v) = {tg ∈ Vta|stg = ŝtav ∩ ytg ̸= ŷtav }.

Building upon this, we encourage higher similarity among nodes within IG and SG than among those
within TG to promote fairness in the target domain graph, formulated as:

Lscl = −
1

|Vta|
∑

v∈Vta

1

|Vc(v)|
∑

u∈Vc(v)

log
ϕu,c∑

tg∈Vta
tg (v)

ϕtg,c
, (12)

where Vc(v) = Vta
ig (v) ∪ Vta

sg(v) and ϕ∗,c = exp(zta
v,c · zta

∗,c/τ), ∗ ∈ {u, tg}. Meanwhile, we further
decorrelate the sensitive information within IG of the target domain graph, defined as:

Ldis = −
1

|Vta|
∑

v∈Vta

1

|Vs(v)|
∑

u∈Vta
ig (v)

log
ϕu,s∑

ig∈Vta
ig (v) ϕig,c

, (13)

where ϕu,s = exp(zta
v,c · zta

u,s/τ). The group-acquired unbiased loss is Lub = Lscl + Ldis, which
emphasizes negative pairs with the same sensitive labels to promote fairness under distribution shift.

3.4 DOMAIN ALIGNMENT WITH FAIRNESS-AWARE BIPARTITE

Despite the pseudo-labels are generated for the target domain graph, the severe shift between source
and target domains persists, which may lead to unreliable supervision signals. To mitigate this, we
construct a bipartite graph where edges connect similar sensitive-free node pairs across domains
and introduce a bipartite-aware mechanism for the domain alignment. Specifically, given the node
u ∈ Vta from target domain graph with pseudo-labels ŷtau and ŝtau , we retrieve nodes v ∈ Vso from
source domain graph and add edges between pair (u, v) as:

Buv =

{
1, ŷtau = ysov ∩ ŝtau ̸= ssov
0, otherwise

, (14)
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where B denotes the adjacency matrix of the bipartite graph, with each source and target domain
sample being a node. To facilitate domain alignment, we impose a graph clustering constraint on the
label predictions, enforcing that the majority of connected edges lie within the same clusters, which
not only reduces domain discrepancy but also strengthens the discriminative capacity of task-relevant
embeddings. The bipartite alignment loss can be defined as:

Lba = ∥(I −L)− PP T ∥2F , (15)

where P is the label prediction matrix, which is constructed as P = [1(Y so), ξ(Zta
c )] with 1[·] as

the one-hot function. L denotes the normalized Laplacian matrix of B, and I is the identity matrix.
Note that we ignore the intra-domain relationships and the above loss can be rewritten as:

Lba = −2
∑
u,v

Buv√
du
√
dv

pT
upv +

∑
u,v

Buv(p
T
upv)

2 + const, (16)

where du denotes the degree of node u in the bipartite graph.

3.5 OVERALL OPTIMIZATION

To alleviate label scarcity while avoiding overconfidence in target domain pseudo-labels, we also
quantify the prediction certainty through maximum class probability:

mta
v = max

k′
ψ(zta

v,c)[k], (17)

where mta
v is the confidence score. Then, we introduce an adaptive confidence score τk for class k

based on the estimated prediction certainty, defined as

τk =Mk · τ, Mk = max{mta
v | argmax

k′
ψ(zta

v,c)[k
′] = k} (18)

where τ denotes the threshold. And the confident set C of the target domain graph can be refined as:

C = {v|v ∈ Vta, k = argmax
k′

ψ(zta
v,c)[k

′],mta
v > τk}. (19)

We further optimize the model within the confident set C for cross-domain stability:

Lta = − 1

|C|
∑
v∈C

logψ(zta
v,c)[ŷ

ta
v ]. (20)

Similarly, we also leverage a threshold δ to filter out nodes with a high-confidence sensitive label for
group-acquired enhancement. The overall objective of our graph fairness adaptation framework is:

L = LMI + βLub + γLba + ηLta (21)

where β, γ and η denote the hyperparameter to balance each component.

3.6 THEORETICAL ANALYSIS

Theorem 3.1. (Fairness Upper Bound)

Let classifier h depend only on Zc. Assume h is L-lipschitz in distribution shift. Define

∆EO =
∑

y∈{0,1}

|P (h = 1|S = 0, Y = y)− P (h = 1|S = 1, Y = y)|.

If (1) I(Zs;Zc) ≤ ϵ, and (2) I(Zc;Y ) ≥ κ > 0,

then there exist constants c1, c2 > 0 such that

∆EO ≤ c1
√
ϵ

κ
+ c2L.

Theorem 3.2. (Fair Domain Adaptation Bound)

Let h be a classifier on Zc. Then

ϵta(h) ≤ ϵso(h) + C · disc(pso(Zc), pta(Zc)) + λ∗ + c1I(Zs;Zc),

where disc is a discrepancy measure(e.g., H∆H divergence),λ∗ is the joint optimal error, and the
last term accounts for residual sensitive leakage.

6
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Table 1: Classification and fairness metrics (%±σ) on the Bail, Credit, Pokec and syn datasets.
Results are reported as mean ± standard deviation across runs. ↑ denotes higher-is-better and ↓
lower-is-better. The best result in each column is bold; the second best is underlined.

Dataset Metric GCN NIFTY FairVGNN FairSIN SFG SPA SGDA FatraGNN DANCE COSTA

Bail-t

ACC↑ 81.37±1.76 81.18±0.81 82.75±1.54 80.1±0.55 75.64±13.07 84.01±2.71 74.40±1.11 81.84±2.24 84.43±1.85 94.21±0.04

ROC-AUC↑ 95.39±1.32 91.20±0.39 91.15±0.87 96.28±0.91 94.35±0.73 89.34±2.94 81.41±0.78 91.88±0.34 95.96±0.49 97.96±0.06

∆DP ↓ 7.37±0.38 5.54±0.33 11.27±5.55 8.07±1.61 4.01±1.97 5.72±1.45 11.50±0.47 5.83±0.90 3.99±1.05 3.88±0.03

∆EO ↓ 7.73±0.80 5.83±0.97 10.47±1.77 3.75±2.68 5.61±2.91 4.41±1.92 9.68±0.23 10.70±0.41 4.29±0.69 4.98±0.20

Rank 5 6 9 3 7 4 10 8 2 1

German-t

ACC↑ 56.79±3.07 56.27±0.79 50.51±0.71 55.93±3.54 54.98±2.11 54.03±8.87 57.48±2.09 56.39±1.83 74.29±2.23 64.05±0.27

ROC-AUC↑ 62.85±1.51 65.31±1.03 59.36±0.61 69.8±1.18 63.20±3.61 56.04±6.09 61.07±1.14 65.99±0.25 71.63±2.16 66.99±0.08

∆DP ↓ 15.04±13.18 9.43±9.01 3.65±5.16 2.37±2.28 7.70±5.35 4.33±3.06 4.85±1.48 18.27±5.45 24.76±5.70 1.83±1.07

∆EO ↓ 16.54±13.25 9.31±9.63 2.90±4.10 3.36±1.72 7.88±5.41 5.35±4.63 5.10±3.13 17.74±7.44 21.89±6.42 2.27±1.16

Rank 9 5 4 2 6 7 3 10 8 1

Pokec-n

ACC↑ 68.49±0.33 68.08±0.72 63.90±2.73 63.53±5.84 53.61±2.65 57.66±1.76 OOM 65.22±3.26 67.65±0.34 68.93±0.20

ROC-AUC↑ 76.36±0.24 72.68±0.46 70.33±0.30 70.56±1.03 64.02±2.80 60.58±2.72 OOM 72.66±0.39 74.44±0.23 76.16±0.11

∆DP ↓ 2.76±0.42 1.79±0.36 3.68±1.78 3.73±1.74 3.31±3.29 3.39±1.00 OOM 0.93±0.38 5.22±0.84 0.37±0.30

∆EO ↓ 2.01±0.44 1.98±0.36 2.56±1.43 3.9±1.8 2.47±2.60 2.95±1.85 OOM 1.46±0.85 5.54±0.94 0.71±0.33

Rank 2 3 6 7 9 8 10 4 5 1

syn-t

ACC↑ 82.50±0.01 82.65±0.13 82.55±0.03 62.39±9.03 84.10±0.83 70.58±0.99 78.45±0.15 81.46±1.59 86.87±0.34 79.70±0.02

ROC-AUC↑ 90.63±0.00 90.78±0.03 90.58±0.10 73.97±7.87 90.78±0.40 76.34±1.62 87.72±0.05 90.77±0.01 92.36±0.08 87.64±0.05

∆DP ↓ 11.51±0.07 12.36±0.27 11.01±0.86 14.61±10.0 26.96±1.44 5.14±3.18 29.35±0.28 13.62±0.05 25.34±0.67 3.36±0.26

∆EO ↓ 8.00±0.08 9.64±0.52 7.44±0.84 14.8±10.9 30.03±5.88 6.72±3.98 28.27±1.17 3.17±0.03 23.13±1.00 0.42±0.27

Rank 3 4 2 9 8 6 10 7 5 1

Lemma 3.3. (Bias Control with Class-wise Thresholds).

Let per-class adaptive thresholds τk = Mkτwith Mk = max{mta
v : arg maxψ(zv,c) = k}.Define

confident set C = {v : mta
v > τk}.Then selection bias satisfies

Biassel =
∑
k

|Pr(v ∈ C|Y = k)− ρ| ≤
∑
k

|Pr(mta
v > τk|Y = k)− ρ|,

for target coverage ρ. Adaptive τk balances coverage across classes, reducing bias while training
only on confident samples.

4 EXPERIMENTS

Datasets & Baselines. We evaluate COSTA on three enhanced real-world graphs and one synthetic
benchmark from Qian et al. Qian et al. (2024): 1) Credit-Cs is built from the Credit dataset Yeh &
Lien (2009). 2) Pokecs is constructed from a Slovak social network Dai & Wang (2022), grouping
users by province. 3) Bail-Bs is derived from the Bail dataset Jordan & Freiburger (2015), where
nodes are defendants released on bail. 4) Synthetic test fair GNNs when edges carry signal and
topology can amplify bias Qian et al. (2024). We compare COSTA with four groups of baselines: (A)
Traditional learning methods, including GCN Kipf & Welling (2016). (B) Fairness-Aware GNNs
under independent and identically distributed (IID) settings, including NIFTY Agarwal et al. (2021),
FairVGNN Wang et al. (2022), FairSIN Yang et al. (2024), and SFG Chen et al.. (C) General Domain
Adaptation Methods, including SGDA Qiao et al. (2023) and SPA Xiao et al. (2023). (D) Fairness-
Aware GNNs under Out-of-Distribution (OOD) Settings, including FatraGNN Li et al. (2024) and
DANCE Wang et al.. More details about the experimental settings are provided in Appendix B.

Performance Evaluation. We evaluate node classification performance using two primary metrics:
accuracy (ACC) and ROC AUC. Fairness is assessed using ∆DP and ∆EO, as defined in Section 2,
with lower values indicating better fairness. To comprehensively evaluate classification and fairness,
we adopt a composite metric: c = ACC + ROC AUC−∆DP −∆EO, where higher values indicate
better overall performance. The final score for each method is obtained by summing its scores in
target domain, and overall rankings are reported accordingly.

4.1 PERFORMANCE ANALYSIS

Table 1 report the best average performance of all methods across four datasets. Several key
observations can be drawn: (1) When comparing traditional learning methods with Fair GNNs,
we observe that fairness-oriented models improve fairness performance at the cost of classification
accuracy. Moreover, as Fair GNNs are designed for IID settings, they often struggle under domain
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Table 2: Ablation studies on the variants of COSTA.

Variant Pokec-n syn-t

Metric ACC↑ ROC-AUC↑ ∆DP ↓ ∆EO ↓ ACC↑ ROC-AUC↑ ∆DP ↓ ∆EO ↓

Var1 69.79±0.18 76.97±0.21 0.73±0.26 0.26±0.08 77.83±4.51 85.46±4.91 9.01±4.85 7.65±6.41
Var2 69.14±0.15 75.85±0.15 0.79±0.38 0.93±0.50 79.47±0.15 87.47±0.05 2.60±0.17 1.47±0.33
Var3 69.07±0.11 75.78±0.17 0.95±0.08 1.17±0.17 80.43±0.04 88.46±0.04 5.85±0.14 2.22±0.22
Var4 68.66±0.13 75.86±0.04 1.22±0.04 1.01±0.06 81.56±0.05 89.81±0.02 10.30±0.43 7.25±0.36

COSTA 68.93±0.20 76.16±0.11 0.37±0.30 0.71±0.33 79.70±0.02 87.64±0.05 3.36±0.26 0.42±0.27

Figure 2: Utility and fairness comparison w.r.t. different top-K for retrieval node from source domain
and different values for threshold parameter τ and δ.
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adaptation, exhibiting an even poorer trade-off between accuracy and fairness compared to vanilla
GCNs. (2) When comparing Fair GNNs with fairness-aware GNNs designed for OOD settings, we
observe that OOD methods achieve a better balance between classification and fairness under domain
adaptation, owing to their ability to learn fair representations across varying distributions. This
highlights the necessity of incorporating domain adaptation modules in fairness-aware GNNs. (3)
When comparing fairness-aware GNNs under OOD settings with general domain adaptation methods,
we find that the latter often achieve either high performance or strong fairness, but struggle to balance
both. This underscores the scarcity of fairness-aware GNN approaches specifically designed for
domain adaptation scenarios. (4) COSTA outperforms all other baselines in most cases. Compared to
fairness-aware GNNs under IID and OOD settings, as well as general domain adaptation methods,
COSTA achieves a better balance between accuracy and fairness in domain adaptation, demonstrating
the effectiveness of its domain adaptation module design.

4.2 ABLATION STUDY

To assess each module in COSTA and its contribution, we compare COSTA with four ablations:
(1) Variant 1: Replaces the MI-based GNN encoder with a vanilla GCN. (2) Variant 2: Removes
the bipartite-aware domain alignment module. (3) Variant 3: Removes the sensitive consistency
learning module. (4) Variant 4: Removes pseudo-label supervision and uses only ground-truth labels.
Table 2 reports results, with key observations as follows: (1) Compared to Variant 1, replacing the
MI-based GNN with a vanilla GCN significantly degrades both utility and fairness. The MI objective
yields fairness-aware embeddings that enable clean cross-domain top-k retrieval. Without MI-based
GNN, representation leaks sensitive information, biases edge selection, and weakens alignment
and consistency training. (2) The comparison with Variant 2 demonstrates that explicitly linking
same-label source–target nodes and regularizes PP T shrinks the cross-domain gap. This stabilizes
pseudo-labels, reduces biased edge propagation, and yields better alignment thereby improving
accuracy and fairness. (3) Compared with Variant 3, removing the sensitive consistency loss worsens
fairness and slightly hurts utility. Enforcing sensitive inter-group invariance and target inter-group
separation, which curbs sensitive-attribute leakage and keeps embeddings aligned across domains. (4)
Compared with Variant 4, removing pseudo-labels harms both utility and fairness. High-confidence
pseudo labels are pivotal, because they provide target-side supervision to adapt the decision boundary,
define label-consistent alignment pairs and cleaner cross-domain top-k retrieval, and enable the
sensitive consistency loss on target nodes. Without them, training is driven only by source labels,
cross-domain pairing becomes noisier, and representation drift increases bias.

4.3 PARAMETER ANALYSIS

We analyze the impact of three hyperparameter groups in COSTA: (1) The top-K source nodes
retrieved based on MI-based GNN; (2) The pseudo label threshold τ and δ; (3) The loss weights
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Figure 3: Fairness comparison w.r.t. different values for loss weights γ and β
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Figure 4: Domain adaptation t-SNE: Source-Learned Representations on Pokec-n (target domain)
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β and γ in the objective function (Equation 21). Our key findings are as follows: (1) As shown in
Figure 5a and 5a, too small top-K under-exploits informative cross-domain links, whereas overly
large K injects noisy or demographically imbalanced neighbors. Both degrade utility and fairness on
most datasets. Moreover, the optimal K is dataset-specific, varying substantially across Ba, German,
Pokec, and syn. (2) As shown in Figure 6c and 6d, moderate–high thresholds improve both utility
and fairness by filtering noisy pseudo-labels and sharpening the decision boundary. Effective regions
are typically δ, τ ≥ 0.75, though optima are dataset-dependent. Low thresholds admit noise and
harm fairness, whereas overly strict ones reduce supervision and can depress utility. (3) As shown in
Figure 3, the optimal (γ, β) settings vary widely across Bail, German, Pokec, and syn, and no single
setting dominates on fairness. Some datasets prefer stronger alignment (larger γ) with weaker fairness
regularization (smaller β), while others exhibit the opposite pattern. This reflects dataset-dependent
correlations among labels, sensitive attributes, and topology, necessitating dataset-specific weighting
to balance accuracy and fairness.

4.4 VISUALIZATION

We visualize the source-trained embeddings on the Pokec-n target graph using t-SNE Van der
Maaten & Hinton (2008). Points are colored by the (Y, S) group (target and sensitive labels). As
shown in Fig. 4, Fatra exhibits several well-separated islands, indicating stronger alignment of
the representation with group identity. DANCE yields more mixing across groups but still shows
noticeable cluster boundaries. COSTA produces the most group-mixed manifold with fewer isolated
clusters, suggesting reduced sensitive-attribute leakage and improved cross-domain alignment. While
t-SNE is qualitative, these patterns are consistent with the observed improvements in fairness metrics
(lower DP and EO) without sacrificing utility.

5 CONCLUSION

In this paper, we propose a causality-attended representation disentanglement framework with
structural alignment framework (COSTA) to address the problem of fairness-aware graph domain
adaptation. Moving beyond i.i.d. assumptions, COSTA disentangles task-relevant and sensitive
factors via dual encoders with mutual-information methodology, augments target supervision through
group-aware pseudo-labeling, and performs fairness-aware bipartite alignment to mitigate spurious
correlations across domains. Extensive experiments on three real-world and one synthetic benchmark
show consistent gains in both utility and group fairness under distribution shifts. These results
position COSTA as a reliable approach to fair graph learning in real-world cross-domain scenarios.
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.1 LARGE LANGUAGE MODELS USAGE STATEMENT

In the preparation of this research, large language models (LLMs) were employed strictly as a
limited-purpose auxiliary tool. The models were used exclusively for language polishing tasks,
including grammar checking, sentence structure optimization, and wording refinement to improve the
readability and linguistic fluency of portions of the text. The LLMs played no role in any core research
activities, including but not limited to: research ideation, theoretical development, experimental
design, data analysis, result interpretation, or scientific decision-making. All intellectual contributions
to this work originate solely from the human authors. The authors take full responsibility for the
entire content of this paper, including text polished by LLMs, and affirm its originality, accuracy, and
academic integrity.

A RELATED WORK

Group Fairness in GNNs. Graph neural networks (GNNs) can inadvertently propagate bias because
sensitive attributes are often entangled with graph topology Chen et al. (2024). Fairness in GNNs
is typically studied along two axes, namely group fairness and individual fairness, with most work
targeting the former by equalizing outcomes across demographic subpopulations. A prominent
line for group fairness removes sensitive information from representations via adversarial learning:
FairGNN Dai & Wang (2021) trains an auxiliary discriminator and adds a covariance penalty to
encourage statistical parity, while FairVGNN Wang et al. (2022) employs a discriminator to hide
protected attributes in learned representations. Beyond adversarial debiasing, explicit group-fairness
objectives are optimized by jointly minimizing accuracy loss with disparity-based penalties using
Lagrangian or multi-objective formulations Chen et al. (2024). For example, NIFTY constructs
counterfactual feature views by flipping the sensitive attribute and applies a contrastive loss that
pulls original–counterfactual pairs together while pushing apart label-inconsistent pairs Agarwal
et al. (2021). Another complementary line debiases inputs structure: For example, FairWalk Rahman
et al. (2019) FairWalk reweights random walks to yield demographically balanced contexts EDITS
Dong et al. (2022) removes sensitive cues from node features while preserving utility. In summary,
these research avenues outline mainstream paradigms—adversarial, constraint-based, contrastive,
and structural—for mitigating bias in GNN-based learning.

Fairness under Distribution Shift. Distribution shift can significantly degrade fairness when
test and training distributions diverge Liu et al. (2021). In response, a growing literature seeks to
maintain fairness amidst such shifts. Rezaei et al. (2021); Giguere et al. (2022); Lin et al. (2024).
Rezaei et al. (2021) propose a robust-fairness method for covariate shift that adapts models using
unlabeled target-domain data. Giguere et al. (2022) focus on demographic shift—changes in subgroup
prevalences—and provide high-confidence fairness guarantees when test-time group proportions
differ from training. Mandal et al. (2020) adopt a worst-case, distributionally robust approach,
modeling the test distribution as a weighted combination of training samples and optimizing fairness
under this adversarial shift. An et al. (2022) establish sufficient conditions for fairness transfer and
introduce a self-training algorithm with fairness-aware consistency regularization to maintain group
fairness across source and target domains. For a more full review for fairness under distribution shifts,
please refer to a recent survey Lin et al. (2024). The majority of these approaches ignore relational
structure and assume Euclidean data. In order to handle distribution shifts, FatraGNN Li et al. (2024)
explicitly addresses graphs by producing additional biased training graphs and minimizing group-wise
representation distances between the created and original graphs. In addition, DANCE Wang et al.
addresses group imbalance and emphasizes fairness under graph shifts, enhancing fairness under
shifting distributions without compromising task performance.

B DETAILED EXPERIMENTAL SETTINGS

Datasets. We evaluate COSTA on three enhanced real-world graphs and one synthetic benchmark
from Qian et al. Qian et al. (2024): 1) Credit-Cs is built from the Credit dataset Yeh & Lien (2009),
in which nodes represent credit card users. The task is binary credit-risk prediction with age as the
sensitive attribute. We apply modularity-based community detection Newman (2006) to split the
graph into credit-s as the source domain and credit-t as the target domain with distinct distributions. 2)
Pokecs is constructed from a Slovak social network Dai & Wang (2022), grouping users by province.
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The task predicts users’ working fields and the sensitive attribute is region. It consists of two graphs:
Pokec-z and Pokec-n, where the former is used as the source domain and the latter as the target domain.
3) Bail-Bs is derived from the Bail dataset Jordan & Freiburger (2015), where nodes are defendants
released on bail. The task is to decide whether a defendant should be granted bail and the sensitive
attribute is race. As the same with Credit-Cs, community detection yields Bail-s as the source domain
and Bail-t as the target domain. 4) Synthetic test fair GNNs when edges carry signal and topology
can amplify bias Qian et al. (2024). For each node, (S, Y ) are jointly sampled from a categorical
distribution with user-specified group proportions. Features concatenate two multivariate Gaussians
conditioned on S and Y with tunable means/variances. Each edge type is generated independently
via its own Bernoulli probability. We use Syn-2 as source domain and Syn-1 as target domain.

Baselines. We compare COSTA with four groups of baselines: (A) Traditional learning methods:
Fundamental graph representation learning approaches, including GCN Kipf & Welling (2016). (B)
Fairness-Aware GNNs under independent and identically distributed (IID) settings: GNNs specifically
designed to enhance fairness in IID scenarios, including NIFTY Agarwal et al. (2021), FairVGNN
Wang et al. (2022), FairSIN Yang et al. (2024), and SFG Chen et al.. (C) General Domain Adaptation
Methods: General approaches aimed at learning robust representations for domain adaptation,
including SGDA Qiao et al. (2023) and SPA Xiao et al. (2023). (D) Fairness-Aware GNNs under
Out-of-Distribution (OOD) Settings: Graph neural network methods specifically designed to address
distribution shifts while preserving fairness between training and test distributions, such as FatraGNN
Li et al. (2024) and DANCE Wang et al..

C ADDITIONAL RESULTS

C.1 EXPERIMENTAL SETTING.

During the experiments, we perform hyperparameter tuning via grid search across all dataset groups
to ensure a fair and comprehensive evaluation. For COSTA, the embedding dimension is set to 64. We
explore the number of graph encoder layers in the range of [2, 4], dropout rates between [0, 0.5], and
learning rates in [0.002, 0.006]. To ensure robustness, each method is evaluated over five independent
runs with different random seeds, and the mean and variance of each metric are reported.

C.2 MORE ABLATION STUDY RESULTS

The results of the complete ablation studies are presented in 3 and 4.

Table 3: Ablation studies on the variants of COSTA.

Variant Bail-t German-t

Metric ACC↑ ROC-AUC↑ ∆DP ↓ ∆EO ↓ ACC↑ ROC-AUC↑ ∆DP ↓ ∆EO ↓

Var1 92.58±0.95 97.06±0.26 3.42±0.75 5.45±0.40 63.26±0.08 67.34±0.12 5.14±0.80 9.75±0.26
Var2 93.72±0.18 97.81±0.10 4.16±0.08 5.59±0.14 64.11±0.41 67.04±0.13 2.77±1.58 3.10±1.65
Var3 93.81±0.03 97.66±0.08 4.09±0.04 5.06±0.25 63.63±0.23 66.92±0.15 2.65±1.60 3.38±1.71
Var4 93.78±0.13 97.83±0.08 4.12±0.03 5.37±0.18 63.75±0.62 66.99±0.09 2.22±1.46 2.30±1.16

COSTA 94.21±0.04 97.96±0.06 3.88±0.03 4.98±0.20 64.05±0.27 66.99±0.08 1.83±1.07 2.27±1.16

Table 4: Ablation studies on the variants of COSTA.

Variant Pokec-n syn-t

Metric ACC↑ ROC-AUC↑ ∆DP ↓ ∆EO ↓ ACC↑ ROC-AUC↑ ∆DP ↓ ∆EO ↓

Var1 69.79±0.18 76.97±0.21 0.73±0.26 0.26±0.08 77.83±4.51 85.46±4.91 9.01±4.85 7.65±6.41
Var2 69.14±0.15 75.85±0.15 0.79±0.38 0.93±0.50 79.47±0.15 87.47±0.05 2.60±0.17 1.47±0.33
Var3 69.07±0.11 75.78±0.17 0.95±0.08 1.17±0.17 80.43±0.04 88.46±0.04 5.85±0.14 2.22±0.22
Var4 68.66±0.13 75.86±0.04 1.22±0.04 1.01±0.06 81.56±0.05 89.81±0.02 10.30±0.43 7.25±0.36

COSTA 68.93±0.20 76.16±0.11 0.37±0.30 0.71±0.33 79.70±0.02 87.64±0.05 3.36±0.26 0.42±0.27
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C.3 MORE PARAMETER ANALYSIS RESULTS

The results of the complete parameter analysis are presented in 6 and 7.

Figure 5: Utility and fairness comparison w.r.t. different top-K for retrieval node from source domain.
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Figure 6: Fairness comparison w.r.t. different values for threshold parameter τ and δ
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Figure 7: Fairness comparison w.r.t. different values for loss weights γ and β
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D PROOF OF THEORETICAL RESULTS

Theorem D.1. (CLUB Upper Bound for I(Zs;Zc)).

For any conditional density estimator qθ(zs|zc),define

CLUBθ := Ep(zs|zc)[logqθ(zs|zc)]− Ep(zc)p(zs)[logqθ(zs|zc)].

Then,

I(Zs;Zc) ≤ CLUBθ + Ep(zs,zc)log
p(zs|zc)
qθ(zs|zc)

.

Hence,CLUBθ is an upper bound on I(Zs;Zc); the bound tightens as qθ → p(·|·).

Proof. By definition,

I(Zs;Zc) = Ep(zs,zc)[log
p(zs|zc)
p(zs)

].

For any variational distribution qθ, we add and subtract logqθ(zs, zc):

I(Zs;Zc) =
(
Ep(zs,zc) log qθ(zs | zc)− Ep(zc)p(zs) log qθ(zs | zc)

)
+ Ep(zs,zc)

[
log

qθ(zs | zc)
p(zs | zc)

]
= CLUBθ + Ep(zc) KL

(
p(· | zc) ∥ qθ(· | zc)

)
. (22)

Since the KL term is always non-negative, the inequality follows. Equality holds when qθ = p.

Theorem D.2. (Conditional InfoNCE as a Lower Bound on I(ZC ;D|Zs))

Let f(µ, zc, zs)be a bounded scoring function. For batch size M , define

LcNCE := −E[log
expf(µv, zv,c, zv,s)

1
M

∑M
u=1 expf(µu, zv,c, zv,s)

].

Then
I(µ;Zc|Zs) ≥ −LcNCE.

If the anchor µ encodes domain-related information, there exists κ > 0 such that I(Zc;D|Zx) ≥
−κLcNCE.

Proof. Given C = c, build a contrastive set S = {(µu, zu,c)}Mu=1 containing one positive from
p+(· | c) and M − 1 negatives from p−(· | c). Let K ∈ {1, . . . ,M} be the (uniform) index of the
positive pair. Define the softmax classifier

qf (k | S, c) =
exp f(µk, zk,c, c)∑M
i=1 exp f(µi, zi,c, c)

.

The usual sum-denominator InfoNCE cross-entropy is Lsum = E[− log qf (K | S, C)], and our avg
loss satisfies the identity LcNCE = Lsum − logM .

At the Bayes score f⋆ = log p+

p−
, qf⋆ = p(K | S, C), hence

min
f
Lsum = E[− log p(K | S, C)] = logM − I(K;S | C),

since H(K | C) = logM and I(K;S | C) = H(K | C) −H(K | S, C). For any f (by Gibbs’
inequality), Lsum ≥ logM − I(K;S | C). By data processing in the sampling scheme (the only
dependence of K on S flows through the joint information in (µ,Zc)), I(K;S | C) ≤ I(µ;Zc | C).
Thus

Lsum ≥ logM − I(µ;Zc | C) ⇐⇒ I(µ;Zc | C) ≥ logM − Lsum.

Using LcNCE = Lsum − logM gives the stated avg-form bound: I(µ;Zc | C) ≥ −LcNCE.
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Theorem D.3. (Fairness Upper Bound)

Let classifier h depend only on Zc. Assume h is L-lipschitz in distribution shift. Define

∆EO =
∑

y∈{0,1}

|P (h = 1|S = 0, Y = y)− P (h = 1|S = 1, Y = y)|.

If (1) I(Zs;Zc) ≤ ϵ, and (2) I(Zc;Y ) ≥ κ > 0,

then there exist constants c1, c2 > 0 such that

∆EO ≤ c1
√
ϵ

κ
+ c2L.

Proof. Fix y ∈ {0, 1} and let

Py := L(Zc|S = 0, Y = y), Qy = L(Zc|S = 1, Y = y).

Let Ah := {zc : h(zc) = 1}. Then

|Pr(h = 1|S = 0, Y = y)− Pr(h = 1|S = 1, Y = y)| = |Py(Ah)−Qy(Ah)| ≤ TV(Qy, Qy),

hence
∆EO ≤

∑
y∈{0,1}

TV(Py, Qy).

For binary S, standard inequalities(Pinsker’s inequality) relating TV and KL plus the
identityI(Zs;S|Y = y) =

∑
s∈{0,1} Pr(s|y)KL(L(Zc|s, y)||L(Zc|y)),give(absorbing the class-

imbalance factor into a constant Cy)

TV(Py, Qy) ≤ Cy

√
I(Zc;S|Y = y).

Summing over y and using
√
a+
√
b ≤

√
2(a+ b)yields∑

y

TV(Py, Qy) ≤ C
√
I(Zc;S|Y )

for a constant C > 0 that depends only on label/group proportions.

Since Zs is a proxy for S, by data processing and a near-sufficiency argument there exists a small
δ ≥ 0 such that

I(Zc;S|Y ) ≤ I(Zc;Zs|Y ) + δ ≤ I(Zc;Zs) + δ ≤ ϵ+ δ.

So
∆EO ≤ C

√
ϵ+ δ.

Assumption I(Zc;Y ) ≥ κ says Zc carries at least κ nats of task signal, Standard stability/margin
arguments (e.g., calibrated link or strong-convexity of the surrogate loss) imply that the contribution
of spurious variation in Zc to the decision probability is attenuated by a factor proportional to 1

κ .Thus
there is a constant c1 > 0 such that

∆EO ≤ c1
√
ϵ+ δ

κ
+ c2L,

where the additive c2Lterm accounts for the L-Lipschitz sensitivity of h under residual distributional
shift not captured by the MI control(a standard device to prevent amplification when mapping input
distributions to predictions).

Finally, absorb δ into ϵ and rename constants to get

∆EO ≤ c1
√
ϵ

κ
+ c2L

as claimed.
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Lemma D.4. (Spectral Consistency)

Let bipartite adjacency B connect source-target pairs with identical task labels but different sensitive
labels. Define normalizes Laplacian L and prediction matrix P .Then

Lba = ||(I − L)− PPT ||2F = −2
∑
u,v

Buv√
dudv

pT
upv +

∑
u,v

Buv(p
T
upv)

2 + const.

Proof. Expand the Frobenius norm:

Lba = ∥A∥2F + ∥PP⊤∥2F − 2 tr
(
A⊤PP⊤)

= ∥A∥2F + ∥PP⊤∥2F − 2 tr
(
P⊤AP

)
.

(i) For the trace term:

tr(P⊤AP) =
∑
u,v

Auv p
⊤
u pv =

∑
u,v

Buv√
dudv

p⊤
u pv.

(ii) For the squared term:

∥PP⊤∥2F =
∑
u,v

(
(PP⊤)uv

)2
=

∑
u,v

(p⊤
u pv)

2.

If we only accumulate over edges (u, v) with Buv = 1 (as in Eq. (16) of the main text).

(iii) Under the constraint P⊤P = IK , we have ∥PP⊤∥2F = K is constant. Therefore minimizing
Lba is equivalent to maximizing tr(P⊤AP), which by the Rayleigh–Ritz theorem is achieved by
choosing P’s columns as the top K eigenvectors of A. Equivalently, these correspond to the bottom
K eigenvectors of L, consistent with standard spectral clustering.

Lemma D.5. (Effect of Group-wise Contrastive Losses).

Partition neighbors into IG/SG/TG/TSG sets. Define losses Lscl and Ldis as in the main text. Then:

(1)Minimizing Lscl increase a lower bound of I(Zc;Y ) by treating IG and SG as positives, TG as
negatives.

(2)Minimizing Ldis reduces effective I(Zc;Zs) by penalizing alignment between task and sensitive
embeddings.

Proof. Let Zc denote task representations and Zs denote sensitive representations. For each anchor i
with label Yi, partition neighbors into IG/SG/TG/TSG; in the contrastive loss Lscl we treat IG∪SG as
positives and TG as negatives (TSG may be folded into TG as hard negatives). With a similarity score
sim(·, ·), Lscl follows the InfoNCE form where one positive j+ is sampled from an approximation of
the class-conditional p(zc | Yi) and N−1 negatives {j−} are sampled from the marginal p(zc). In
thisN -way discrimination, the Bayes-optimal score is a log-likelihood ratio log p(zc | Y )− log p(zc),
yielding the standard mutual-information lower bound

I(Zc;Y ) ≥ logN − Lscl − ε,

where ε collects finite-sample and sampling-mismatch errors. Thus minimizing Lscl increases a lower
bound on I(Zc;Y ) under the IG/SG-positive and TG-negative construction.

To reduce dependence between Zc and Zs, the decorrelation loss Ldis penalizes their alignment.
Assuming batchwise standardization (so Cov(Zc) = Cov(Zs) = I) and writing the cross-covariance
as Σcs = E[ZcZ

⊤
s ], a concrete choice is

Ldis ∝ ∥Σcs∥2F or E
[
((zci )

⊤zsj )
2
]

over IG/SG pairs,

both shrinking the singular values {σr} of Σcs toward zero. Under a Gaussian (whitened CCA)
approximation,

I(Zc;Zs) = − 1
2

∑
r

log
(
1− σ2

r

)
,
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which is monotone in the canonical correlations {σr}. Hence minimizing Ldis decreases a tight
surrogate of I(Zc;Zs) and suppresses residual sensitive leakage in Zc.

Intuition. Lscl pulls together same-class neighbors (IG/SG) and pushes away task-mismatched
ones (TG), thereby maximizing task information in Zc; Ldis orthogonalizes the task and sensitive
subspaces, cutting shared variation and lowering effective dependence between Zc and Zs.

Theorem D.6. (Fair Domain Adaptation Bound)

Let h be a classifier on Zc. Then

ϵta(h) ≤ ϵso(h) + C · disc(pso(Zc), pta(Zc)) + λ∗ + c1I(Zs;Zc),

where disc is a discrepancy measure(e.g., H∆H divergence),λ∗ is the joint optimal error, and the
last term accounts for residual sensitive leakage.

Proof. By the domain adaptation theorem of Ben-David et al., for any classifier h on the representa-
tion space Zc,

ϵta(h) ≤ ϵso(h) + C · disc
(
pso(Zc), pta(Zc)

)
+ λ∗.

Since p(Zc) =
∑

s p(Zc | S = s) p(S = s), the discrepancy term depends on shifts in the sensitive
prior p(S). By Pinsker’s inequality,

TV
(
p(Zc | s), p(Zc)

)
≤

√
1
2 KL

(
p(Zc | s) ∥ p(Zc)

)
.

Averaging over s yields

Es TV
(
p(Zc | s), p(Zc)

)
≤

√
1
2 I(Zs;Zc).

Hence the residual sensitivity leakage contributes an additional error bounded by the mutual informa-
tion term, and thus

ϵta(h) ≤ ϵso(h) + C · disc
(
pso(Zc), pta(Zc)

)
+ λ∗ + c1I(Zs;Zc).

Lemma D.7. (Bias Control with Class-wise Thresholds).

Let per-class adaptive thresholds τk = Mkτwith Mk = max{mta
v : arg maxψ(zv,c) = k}.Define

confident set C = {v : mta
v > τk}.Then selection bias satisfies

Biassel =
∑
k

|Pr(v ∈ C|Y = k)− ρ| ≤
∑
k

|Pr(mta
v > τk|Y = k)− ρ|,

for target coverage ρ. Adaptive τk balances coverage across classes, reducing bias while training
only on confident samples.

Proof. Let the target-domain maximum posterior confidence be mta
v = maxc ψ(zv, c). For each

class k, define the per-class scale Mk = max{mta
v : argmaxc ψ(zv, c) = k } and the class-wise

threshold τk =Mk τ with τ ∈ (0, 1) as a global baseline. Define the confident set C = { v : mta
v >

τk }, fix a target coverage ρ ∈ (0, 1), and write the selection bias as

Biassel(τ) =
∑
k

∣∣Pr(v ∈ C | Y = k)− ρ
∣∣.

By the definition of class-wise thresholding, under Y = k the events {v ∈ C} and {mta
v > τk}

coincide. Hence

Pr(v ∈ C | Y = k) = Pr(mta
v > τk | Y = k), Biassel(τ) =

∑
k

∣∣Pr(mta
v > τk | Y = k)−ρ

∣∣.
Conditioned on Y = k, introduce the normalized score Rk = mta

v /Mk and denote its CDF by
Fk(t) = Pr(Rk ≤ t | Y = k). Then, for any τ ∈ (0, 1),

Pr(mta
v > τk | Y = k) = Pr(Rk > τ | Y = k) = 1− Fk(τ).
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Let F be a reference distribution satisfying F (τ) = 1− ρ (e.g., the empirical mixture of {Rk} used
to set τ ). It follows that

Biassel(τ) =
∑
k

∣∣1− Fk(τ)− ρ
∣∣ =

∑
k

∣∣F (τ)− Fk(τ)
∣∣.

Define the (class-wise) Kolmogorov distances δk = supt |Fk(t)− F (t)|. Then

Biassel(τ) ≤
∑
k

δk.
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