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Abstract

Event temporal reasoning aims at identifying001
the temporal relations between two or more002
events from narratives. However, knowledge003
conflicts arise when there is a mismatch be-004
tween the actual temporal relations of events in005
the context and the prior knowledge or biases006
learned by the model. In this paper, we propose007
to detect knowledge-conflict examples in event008
temporal reasoning using bias indicators, which009
include event relation prior bias, tense bias,010
narrative bias, and dependency bias. We define011
conflict examples as those where event rela-012
tions are opposite to biased or prior relations.013
To mitigate event-related knowledge conflicts,014
we introduce a Counterfactual Data Augmenta-015
tion (CDA) based method that can be applied to016
both Pre-trained Language Models (PLMs) and017
Large Language Models (LLMs) either as ad-018
ditional training data or demonstrations for In-019
Context Learning. Experiments suggest both020
PLMs and LLMs suffer from knowledge con-021
flicts in event temporal reasoning, and CDA022
has the potential for reducing hallucination and023
improving model performance.024

1 Introduction025

An important goal of event understanding is to iden-026

tify the temporal relations (TEMPRELS) among027

events described in natural language text (Cham-028

bers et al., 2007). This task aligns with human’s029

cognitive ability (Zacks and Tversky, 2001; Za-030

cks et al., 2007), which often involves routinely031

reasoning about how events happening around us032

are temporally sequenced, planned, and lead to033

consequences and decisions (Schank and Abelson,034

1977). From the intelligent system perspective, it035

also benefits many NLP applications for narrative036

understanding (Li et al., 2018; Cai et al., 2022),037

schema induction (Li et al., 2021), and question038

answering (Zhu et al., 2017; Stricker, 2021).039

In event temporal reasoning, the input includes040

two parts, the event mentions and the context. The041

Corpus Statistics:
Count(see, before, sick): 3
Count(see, after, sick):   8

see the doctor happens [MASK] sick.
before: 5.8×10!"

after: 7.0×10!"
[MASK]

ChatGPT:

I went to e1: see the doctor. However, I was more 
seriously e2: sick.
Q: the temporal relation between e1 and e2?
A: before

PLM: 

Bias Indicators (Prior Knowledge in the Corpus or LM)

Q: select the correct temporal relation. 
1. Seeing a doctor happens before sick.  
2. Seeing a doctor happens after sick. 

A: The correct temporal relation is: 2. 
Seeing a doctor happens after sick. 

Knowledge-Conflict Example

I went to e1: see the doctor because I was seriously e2: sick.
Q: the temporal relation between e1 and e2?
A: after

Normal Example

Figure 1: An example of a knowledge-conflict instance.
The actual TEMPREL in the context differs from the
biased or prior TEMPREL in the corpus and the language
model, leading to the emergence of knowledge conflicts.

TEMPREL a model seeks to infer should be based 042

on the context, rather than only revealed by the 043

event mentions themselves. For example, in Fig. 1, 044

without a context, the event mention see (the doc- 045

tor) and sick have certain temporal prior where 046

see the doctor statistically happen more often after 047

sick, either by corpus statistics or probing a masked 048

PLM. However, under the context of “I went to see 049

the doctor, However, I was more seriously sick,” 050

we can infer that see happens before sick instead 051

of after due to the presence of the connective How- 052

ever. This is known as the phenomenon of knowl- 053

edge conflicts (Longpre et al., 2021), where the 054

contextual information contradicts the knowledge 055

memorized by the language model. Hence, the 056

essential requirement for accountable temporal rea- 057

soning is context-faithfulness (Wang et al., 2023; 058

Zhou et al., 2023), where models are expected to 059

perform reasoning based on the context instead of 060

guessing using only the prior knowledge about the 061

events encoded in their parameters. 062

However, most current language models, includ- 063

ing both Pre-trained Language Models (PLMs) and 064

Large Language Models (LLMs) 1, rely on short- 065

1PLMs, or smaller models, are used in a pre-train and fine-

1



cuts from the mentions without being faithful to066

the context (Xu et al., 2022; Bender et al., 2021) to067

varying degrees, leading to hallucination. This is-068

sue is particularly severe in contexts where event or069

entity mentions have a different relation prior than070

what is presented in the context. Though entity-071

related knowledge conflicts (Longpre et al., 2021;072

Wang et al., 2022; Li et al., 2022) have recently073

attracted much attention, questions about event-074

related knowledge conflicts remained intact.075

First, it is necessary to understand the con-076

flicts regarding relations of events, which is more077

complicated than that of a single event. Second,078

the substitution-based paradigm defined in entity079

knowledge conflicts or spurious correlation detec-080

tion (Longpre et al., 2021) cannot be directly ap-081

plied to events. Entity mentions can often be re-082

placed randomly with other entities with the same083

typing to study the faithfulness towards the con-084

text other than the entity mention, which remains085

unchanged after the replacement. For example,086

in open-domain QA, a possible question can be087

“Who is the CEO of Twitter?” based on the context088

“Yaccarino succeeded Elon Musk as the CEO of089

Twitter”. To check whether models faithfully rely090

on the context instead of hallucinating, Yaccarino091

in the context can be changed to a random name to092

see if the model can still output the “correct” CEO093

instead of Yaccarino as they have learned in pre-094

training. However, events are usually denoted by095

predicates in the context (Bethard et al., 2007), and096

directly substituting the predicate (e.g., from see097

in Fig. 1 to another random verb such as play) will098

alter the semantic meaning of the whole context,099

including both the predicate and its dependency100

with the arguments, making it infeasible to analyze101

the faithfulness towards the original context. Thus,102

instead of resorting to a substitution, in this paper,103

we study the effect of knowledge conflicts in event104

temporal reasoning by selecting conflict examples105

from the original dataset based on corpus statistics,106

and evaluate models on the conflict subsets.107

We outline the contributions of this paper as108

follows. First, we define four types of bias that109

can lead to knowledge conflicts, including event-110

relation bias, narrative bias, tense bias, and depen-111

dency bias. The data instances where the actual112

TEMPREL contradicts with the prior TEMPREL are113

referred to as knowledge-conflict instances (§3), as114

tune paradigm, while LLMs, larger and more powerful models
with over 10B parameters, are commonly employed through
in-context learning (Sun, 2023).

they conflict with the prior knowledge provided to 115

language models. Second, to mitigate the effect of 116

knowledge conflicts, we propose a Counterfactual 117

Data Augmentation (CDA) technique that explic- 118

itly generates contexts with knowledge-conflict el- 119

ements, thereby reducing the overall bias in the 120

data distribution. CDA can be applied to both 121

fine-tuned PLMs and LLMs with (test-time) in- 122

context learning (§3.3). Third, we study the effect 123

of various kinds of knowledge conflicts and our pro- 124

posed bias mitigation method on two popular event 125

temporal reasoning benchmarks, TORQUE (Ning 126

et al., 2020) and MATRES (Ning et al., 2018). We 127

show that models suffer from performance drop 128

on knowledge-conflict subsets, and our bias-aware 129

data augmentation method outperforms baselines 130

by a remarkable margin on both bias mitigation 131

and overall performance (§4). 132

2 Related Works 133

Event Temporal Reasoning. Event temporal 134

reasoning aims at identifying the temporal relations 135

(TEMPREL) of events in narratives. There are two 136

common ways of formulating this problem. The 137

first formulation is the TEMPREL extraction task, 138

which involves determining the TEMPREL between 139

two annotated event triggers from a pre-defined re- 140

lation set (Bethard et al., 2007, 2017; Ning et al., 141

2018; Naik et al., 2019). Meanwhile, another for- 142

mulation is a reading comprehension task, which in- 143

volves determining more complicated TEMPRELS 144

expressed in natural language questions (Ning et al., 145

2020; Han et al., 2021). To conduct event tempo- 146

ral reasoning, literature has leveraged various ap- 147

proaches, including graph neural networks (Zhang 148

et al., 2022; Zhou et al., 2022), rhetorical discourse 149

features and temporal arguments from semantic 150

role labels (Mathur et al., 2021), and distant su- 151

pervision (Zhou et al., 2021; Zhao et al., 2021). 152

In addition, Wang et al. (2023) study the effect of 153

counterfactual inference as well as Dirichlet pa- 154

rameterization to improve uncertainty calibration 155

of the model. LLMs such as GPT3 (Brown et al., 156

2020) and ChatGPT are also leveraged for event 157

temporal reasoning (Chan et al., 2023) with care- 158

fully designed prompts and In-Context Learning. 159

Our work differs from previous studies in that we 160

study the knowledge conflicts in event temporal 161

reasoning and how to mitigate them. 162

Knowledge Conflict in Language Models. 163

Knowledge conflicts have been widely studied for 164
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entity-centric NLU tasks (Schuster et al., 2021).165

For example, Longpre et al. (2021) studied the166

knowledge conflict in open-domain question an-167

swering using entity substitution. Li et al. (2022)168

also adopted this strategy to study the enhancement169

of a PLM’s robustness against context noise with170

a knowledge-aware working memory. Xu et al.171

(2022) systematically formulate six types of bi-172

ases in entity typing to study spurious correlations.173

Certain types of biases, such as Mention-Context174

and Named Entity bias, can reflect knowledge con-175

flicts in entities. Zhou et al. (2023) use opinion-176

based prompting and counterfactual demonstration177

to enhance the context-faithfulness of test-time-178

only LLMs against knowledge conflicts. Feng et al.179

(2022) proposed a dataset studying the differential180

effects of TEMPREL reasoning given additional181

contexts, while their focus is on annotating addi-182

tional out-of-distribution data instead of explor-183

ing existing knowledge conflicts within the dataset.184

Our work systematically defines and detects knowl-185

edge conflicts in event temporal reasoning and pro-186

poses a data-augmentation-based method to miti-187

gate those conflicts based on the detected bias.188

3 Event Knowledge Conflict189

In this section, we introduce the problem definition190

(§3.1) and formally define four types of bias and191

how to select knowledge-conflict data (§3.2). We192

then introduce our proposed Counterfactual Data193

Augmentation (§3.3).194

3.1 Problem Definition195

In event temporal reasoning, the primary objective196

is to determine the TEMPREL between two or more197

events, which previous studies (Ning et al., 2018;198

Naik et al., 2019) typically classify as before, after,199

equal (indicating two events occurring simultane-200

ously), and vague. Without the loss of generality,201

our study is based on pairwise event relations: the202

relation r of an event pair (e1, e2) based on the203

context c. More complex cases can be easily ad-204

dressed by breaking down the relations involving205

multiple events into pairwise relations. The case206

where evaluating the temporal status of a single207

event (happened, happening, will happen, etc.) can208

also be easily adapted in this framework by replac-209

ing the features of event pairs to a single event.210

Detailed adaptations to different datasets will be211

introduced in §4.2.212

To study event-related knowledge conflict, we213

create an automated framework to use corpus 214

co-occurrence statistics to select conflict subsets. 215

Similar to the co-occurrence statistics in report- 216

ing bias (Gordon and Durme, 2013), to obtain 217

knowledge-conflict data, we first define bias, as the 218

opposite side of the conflict. We identify four types 219

of bias in event temporal reasoning and defined 220

corresponding bias statistics. We then selected a 221

subset of the original dataset where feature-relation 222

pairs were rare (i.e., knowledge-conflict) based on 223

the bias scores. As the (reporting) bias in the train- 224

ing corpus is usually learned and amplified by the 225

language models (Shwartz and Choi, 2020), our 226

selected subsets, which represent the opposite side 227

of the bias, conflict with the knowledge encoded in 228

the language models. 229

3.2 Knowledge Conflict Diagnosis 230

We first define a bias score b(P1, P2, r) with regard 231

to certain patterns (P1 and P2) against a specific 232

relation r ∈ R, where R is a subset of all relations 233

defined in a certain dataset. Patterns Pi can be 234

the event lemmas themselves, tense, dependency 235

patterns, and narrative orders of either event. Some- 236

times (P1, P2) is represented by one feature only, 237

for example, the dependency relation and narrative 238

orders between two events. Denote c(P1, P2, r) as 239

the number of occurrences of (P1, P2) under rela- 240

tion r in a corpus, and the bias score is defined as: 241

242
b(P1, P2, r) =

c(P1, P2, r)∑
r′∈R c(P1, P2, r′)

(1) 243

For example, in the tense bias defined below, the 244

bias score of the tense pattern (VBD, VBZ) (past tense 245

and third person singular present tense) when we 246

only consider two relations R = {before, after} is 247

defined as: 248

b(VBD,VBZ, before)=
c(VBD, VBZ, before)

c(VBD, VBZ, before)+c(VBD, VBZ, after)
(2)

249

Knowledge Conflict Detection. In a set of rela- 250

tions, those with higher bias scores indicate higher 251

degrees of bias towards certain relations, and others 252

with lower bias scores indicate higher degrees of 253

knowledge conflict. We select instances whose pat- 254

terns do not follow the majority distribution in the 255

training set as knowledge-conflict instances. A new 256

instance in the test set with a pattern-relation pair 257

(P1, P2, r) is considered knowledge conflict if the 258

bias score is less than the context-free frequency 259

of relations b(P1, P2, r) < c(r)∑
r′∈R c(r′) . More- 260

over, to ensure a significant degree of conflicts, 261
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Type Context & Label Bias Scores

Relation Prior
(relation)

(TORQUE) Chidambaram e1:drew up the previous United Front govern-
ment’s Indian budget for 1997-98 which is to be e2: approved by parliament
this week . Gujral has e3: adopted the same budget.
Question: What will happen after e1: drew?
True label: e2: approve. Biased Prediction: e3: adopted

b(draw, adopt, before) = 1.0
b(draw, approve, before) = 0

Relation Prior
(warm-up)

Question: What will happen in the future?
True label: e2: approve. Biased Prediction: e3: adopt

b(approve, happened) = 0.9
b(approve, future) = 0.05

Tense
(relation)

(MATRES) Albright e1: told (VBD) ambassadors of 30 African countries in
Washington, who came to the State Department to e2: offer (VB) condolences.
True label: e1 happens after e2; Biased Prediction: before

b(VBD, VB, before) = 0.70
b(VBD, VB, after) = 0.27
b(VBD, VB, equal) = 0.03

Tense
(warm-up)

(TORQUE) That’s what will e1: keep computer makers e2: coming (VBG) in
spite of the e3: irritation of e4: bugs.
Question: What will happen in the future?
True Label: e1, e2: coming; Biased Prediction: e1

b(VBG, happened) = 0.42
b(VBG, future) = 0.13
b(VBG, happening) = 0.45

Narrative
(MATRES) Now events are e1: doing the work for Schumer. Slepian’s death
was among the first topics e2: raised in Saturday night’s debate between the
two men, ... ; True label: e1 happens after e2; Biased Prediction: before

b(p1 < p2, before) = 0.59
b(p1 < p2, after) = 0.37
b(p1 < p2, equal) = 0.04

Dependency
(MATRES) Castro e1: said Gonzalez would e2: travel with his current wife
and their son (Dependency: says → ccomp → travel)
True label: e1 happens before e2; Biased Prediction: after

b(ccomp, before) = 0.66
b(ccomp, after) = 0.32
b(ccomp, equal) = 0.02

Table 1: Examples of different forms of knowledge conflicts.

we set a threshold Tr such that b(P1, P2, r) <262

Tr < c(r)∑
r′∈R c(r′) , to ensure that the conflict is large263

enough. For example, a test instance where the264

event with a past tense happens after the event with265

a present tense may be selected as a knowledge-266

conflict instance, as the context makes the actual267

TEMPREL different from the biased relation before.268

Next, we introduce the definitions of different269

forms of bias in detail. Data instances that coun-270

teract the biased distribution are selected as corre-271

sponding knowledge-conflict subsets.272

Relation Prior Bias. Bias toward certain TEM-273

PRELS exists because there are natural selectional274

preference (Wilks, 1975) between the specific275

events. For example, in the TORQUE dataset, ar-276

resting dominantly happen after killing, and voting277

more often happens before winning. These findings278

suggest that the occurrence of certain events may279

be more likely to follow or precede other events,280

which can however, lead to bias when the con-281

text describes the TEMPREL differently from the282

most frequent cases. Our definition of the bias283

scoring function is based on the frequency of the284

co-occurrence of event e1 and e2 under relation r:285

b(e1, e2, r) =
c(e1, e2, r)∑

r′∈R c(e1, e2, r′)
(3)286

Narrative Bias. Narrative bias in event temporal287

reasoning is the tendency for the model to inter-288

pret the chronological order of the events to be the289

same as their narrative order. However, these two290

orders, though more often accord with each other,291

do not always necessarily follow the same (Zwaan 292

et al., 1995). In this sense, we only study before, 293

after, and equal relations for narrative bias. Denote 294

p = P (e, c) as the position of event e in context 295

c, where the earlier position of e indicates that this 296

event is described earlier in the narrative. The bias 297

scoring function is defined as follows for the case 298

where the positions of the two events follow the 299

order of p1 < p2: 300

b(p1 < p2, before) =
c(p1 < p2, before)∑
r′∈R c(p1 < p2, r′)

(4) 301

We select the event pairs where p1 < p2 while 302

the actual relation is (e1, after/equal, e2) or p1 > p2 303

while the actual relation is (e1, before/equal, e2) as 304

the knowledge-conflict examples. 305

Tense Bias. Tense bias is the tendency to rely on 306

the grammatical tense of verbs as evidence for the 307

temporal order of events. For example, past tense 308

is typically used to describe events that occurred 309

before the present moment, while present tense is 310

typically used for events that are happening now 311

or in the future. However, this grammatical con- 312

vention does not always correspond to the actual 313

temporal order of events. Denote t1 and t2 as the 314

tense (POS-tags parsed by Spacy 2 as more fine- 315

grained tense information) of event e1 and e2 under 316

context c, then the bias score is defined as: 317

b(t1, t2, r) =
c(t1, t2, r)∑

r′∈R c(t1, t2, r′)
(5) 318

2https://spacy.io/
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Dependency Bias Dependency bias is the ten-319

dency to rely on syntactic dependency patterns320

in language as evidence for the temporal order of321

events. For example, if two events e1 and e2 are322

directly connected in the dependency tree, the de-323

pendency pattern (e1, dobj, e2) (where e1 is the324

subject of the sentence, e2 is the direct object, and325

dobj is the dependency between them) often indi-326

cates that e1 is the entity performing an action on327

e2. This pattern may suggest that e1 must occur328

before e2 in time, but this is not always the case.329

Denote d as the dependency relation between e1330

and e2 in context c (d is null if e1 and e2 are not331

directly linked in their dependency tree).332

b(d, r) =
c(d, r)∑

r′∈R c(d, r′)
(6)333

We summarize the core features of each defined334

bias associated with examples in Tab. 1. Our focus335

is particularly on two datasets, namely TORQUE336

and MATRES, which will be presented in §4.1.337

Prior to that, we introduce our proposed conflict-338

mitigating method.339

3.3 Counterfactual Data Augmentation340

In this sub-section, we introduce our proposed341

Counterfactual Data Augmentation (CDA) method342

for mitigating knowledge conflicts (Fig. 2). We343

discuss the usage of CDA on both PLM and LLM344

separately, as they differ in their applications.345

Pre-trained Language Models. PLMs are usu-346

ally fine-tuned on a training corpus, which naturally347

contains event-relation biases that tend to be ampli-348

fied after fine-tuning (Hall et al., 2022). To mitigate349

bias, our proposed method automatically generates350

context that contains event pairs whose actual tem-351

poral relation is different from the biased relation.352

Such knowledge-conflict (counterfactual) counter-353

parts are trained together with the original training354

corpus to mitigate the biased training distribution.355

To be more specific, for each event pair (e1, e2)356

that is identified as biased, we ask an Instruction-357

finetuned Language Models (Chung et al., 2022) to358

generate context where (e1, e2) is associated with a359

TEMPREL that leads to a low bias score of a certain360

bias type, entitled augmented knowledge-conflict361

data. The intuition is that, even though language362

models may suffer from bias and cannot directly363

solve the task, they can be well applied to generate364

synthetic data under structured instructions (Josi-365

foski et al., 2023).366

Instructions:Write a story where 𝑒! happens 𝒓 𝑒". 

statistics-based
bias discovery

LLM inference time
bias discovery

Training dataset

Context: 
Q: .. A: ..

…𝑒!…𝑒"

Testing dataset

Context: 
Q: .. A: ..

…𝑒!…𝑒"

(𝑒!, 𝑟"#$%&, 𝑒') (𝑒!, 𝑟"#$%&, 𝑒')

(𝒓 ∈ 𝑅 − {𝑟!"#$%})

CDA generator: Instruction-finetuned LLM
🍮Flan-T5; 🤖 GPT-3.5;       ChatGPT

Context: 
Q: .. A: r

…𝑒!…𝑒"

PLM augmented data 
for fine-tuning

Context: 
Q: .. A: r

…𝑒!…𝑒"

LLM
In-context exemplars

Figure 2: An overview of the CDA pipeline.

Large Language Models. The de facto way of 367

leveraging LLMs for downstream tasks is test-time 368

In-Context Learning, as further fine-tuning of the 369

LLM is typically impractical or unviable. In this 370

case, we extend the idea of Counterfactual Data 371

Augmentation to automatically generate counter- 372

factual examples for in-context learning. Unlike 373

the data augmentation in PLMs, we generate coun- 374

terfactual counterparts for every event pair to be 375

studied instead of only for the biased ones. For a 376

new event pair (e1, e2) to be studied, we acquire 377

the predicted relation rLLM by the LLM, which is 378

regarded as a “factual” prediction as it is what the 379

LLM itself hallucinates. We leverage the LLM to 380

generate context examples where (e1, e2) are asso- 381

ciated with relations that belong to R−{rLLM} as 382

counterfactual examples to showcase the LLM the 383

alternative cases when (e1, e2) happens following 384

a different TEMPREL. Note that this method is still 385

considered a zero-shot as no training examples are 386

seen during inference. 387

4 Experiments 388

In this section, we introduce the datasets (§4.1), the 389

settings of knowledge conflict diagnosis (§4.2), and 390

conflict mitigation (§4.3), the primary experimental 391

results and analysis (§4.4). 392

4.1 Datasets 393

We select two event temporal reasoning datasets: 394

TORQUE: TORQUE (Ning et al., 2020) is a 395

reading comprehension benchmark with a focus on 396

event temporal reasoning questions. In TORQUE, 397

each passage is associated with around 10 human- 398

annotated questions regarding the TEMPREL be- 399

tween certain events, and the task objective is to 400

select the correct answers from the pre-defined set 401
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of annotated event triggers. We evaluate the model402

performance using exact-match (EM) and Macro403

F1. TORQUE is more flexible than simple relation404

extraction benchmarks as the reading comprehen-405

sion framework allows more complicated TEM-406

PRELS including uncertain relations (e.g., might407

before), hypothetical relations (e.g., what will hap-408

pen if ...), and negated relations (e.g., not after).409

MATRES: MATRES (Ning et al., 2018) is a410

TEMPREL extraction dataset that includes refined411

annotations from documents in TimeBank (Puste-412

jovsky et al., 2003), AQUAINT (Louis and413

Nenkova, 2012), and Platinum (UzZaman et al.,414

2013). The task in MATRES is defined as iden-415

tifying the TEMPREL between two events in the416

context, where R = {before, after, equal, vague}.417

We use the pre-processing by Wang et al. (2020) to418

acquire the training and development set from the419

raw annotations in MATRES, where the context420

includes the sentences containing the two events e1421

and e2, together with a precedent sentence to give422

more contextual information. We randomly sample423

1,000 entries (out of ∼6k) from the development424

set to perform evaluations for LLMs3.425

4.2 Knowledge Conflict Diagnosis426

We apply the bias statistics introduced in §3 on the427

training set to select knowledge-conflict subsets428

from both TORQUE and MATRES development429

sets. In MATRES, we directly make use of the430

TEMPREL information (e1, e2, r) provided in each431

data entry to count the occurrence and calculate432

bias. However, in TORQUE, the problem is formu-433

lated as reading comprehension, which requires fur-434

ther pre-processing to acquire pairwise TEMPRELS.435

Specifically, we parse each question to acquire the436

temporal predicate and arguments. For example,437

for the question “What happened after Bush gave438

four key speeches?” and answers “{called, elect,439

vote}” under a certain context, we can acquire three440

event relation triples (gave, before, called), (gave,441

before, elect), and (gave, before, vote). We use442

those triples for calculating and detecting bias. In443

addition, TORQUE includes warm-up questions444

that analyze whether a single event has happened,445

will happen, or is happening. Our study calculates446

bias statistics based on a single event and its tempo-447

ral status (happened, will happen, or is happening)448

relative to a time expression in the context. The449

3A common practice when doing GPT3-related experi-
ments to reduce the overall cost (Bian et al., 2023).

bias in warm-up questions is labeled with warm-up, 450

while the other questions studying event-pair rela- 451

tions are labeled with relation. In addition, Tab. 7 in 452

the appendix lists the most biased features selected 453

for both datasets. We can find some intuitive bias, 454

for example, a past tense is more often predicted as 455

before a present tense. 456

For each type of bias, we empirically set thresh- 457

olds to select knowledge-conflict subsets. For a 458

feature-relation pair f (e.g., f represents depen- 459

dency) and r, it is knowledge-conflict if b(f, r) < 460
c(r)∑

r′∈R c(r′) , indicating that it does not conform to 461

the dominant distribution of relation r. Such se- 462

lection criteria can be further enhanced by setting 463

a threshold Tr < c(r)∑
r′∈R c(r′) , which increases the 464

level of conflicts by further restricting b(f, r) to 465

be less than Tr. The hyperparameters we used are 466

listed in Appx. §A. The statistics of the knowledge- 467

conflict subsets we acquired are presented in Tab. 6. 468

4.3 Setup for Conflict Mitigation 469

Counterfactual Data Augmentation. We intro- 470

duce the details of conducting Counterfactual Data 471

Augmentation here. In augmentations for PLM, we 472

choose Flan-T5 (11B) (Chung et al., 2022) as the 473

generator. For each event pairs (e1, e2, r) identi- 474

fied as being biased according to Relation Prior 475

Bias, we generate context with the prompt Write a 476

story where e1 happens r′ e2:, where r′ ∈ R−{r} 477

(e.g., r′=before). In TORQUE, we thus construct a 478

question Q=“What happened r′ e2”, and the cor- 479

responding answer is e1. In MATRES, we require 480

the model to directly predict the relation r given 481

the generated context. Based on the above coarse 482

data, we apply additional filters to only retain the 483

generated data that are not biased in terms of tense 484

and narrative. 485

For LLMs, we ask the model itself to predict the 486

labels of the test data first. Take MATRES as an 487

example, denote rLLM as the factual prediction by 488

the LLM, and then we ask the LLM itself to Gen- 489

erate a paragraph where event e1 happens r′ e2, 490

where r′ ∈ R − {rLLM}. More detailed prompts 491

are presented in Appx. §C.2. 492

Model Configuration. We perform experiments 493

using both PLMs and LLMs4. To use LLMs, 494

we use the following prompt template for 495

4We refer readers to Appx. §C for more details experimen-
tal setups. We also present the effects of different prompt
templates and the number of few-shot exemplars.
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all Rel.Prior
(relation)

Rel.Prior
(warm-up)

Narrative
(relation)

Tense
(relation)

Tense
(warm-up)

Dep.
(relation) Confl.Avg.

EM F1∗ EM F1∗ EM F1∗ EM F1∗ EM F1∗ EM F1∗ EM F1∗ EM F1∗

PLM
RoBERTa-L 50.4 75.7 29.5 73.3 50.0 75.1 31.4 69.0 33.5 72.9 48.4 72.4 41.7 78.6 39.1 73.6
PoE 33.3 65.8 21.6 76.1 22.7 59.8 23.5 67.1 27.5 71.1 22.5 57.0 32.3 79.2 25.0 68.4
L.-mixin 46.8 74.8 27.2 75.2 50.0 72.1 27.8 68.4 30.8 72.6 49.3 69.8 33.8 76.8 36.5 72.5
L.-mixin+H 37.6 70.6 20.4 73.4 40.9 71.6 28.5 69.6 28.8 71.6 38.0 67.7 32.3 76.0 31.5 71.7
Cont. Inf. 53.1 75.9 28.4 75.3 50.0 72.5 35.7 68.9 35.4 73.1 49.3 70.2 44.1 78.9 40.5 73.2
AFLite 50.5 75.8 34.1 73.5 48.5 72.1 26.4 68.2 34.6 72.7 47.9 69.8 39.7 77.3 38.5 72.3
CDA (Ours) 51.0 76.1 33.7 75.4 50.0 75.9 30.7 68.6 35.5 73.1 48.8 73.2 44.1 79.1 40.5 74.2

LLM
GPT-3.5 8.36 45.5 4.82 59.9 4.62 47.0 2.13 50.7 4.46 53.5 5.71 45.9 2.94 57.7 4.12 52.5

+ ICL 7.22 44.9 9.09 60.2 9.09 55.6 2.14 51.3 5.35 55.5 8.45 52.6 4.41 58.8 6.42 55.7
+ GDA 4.85 44.0 5.68 60.0 1.54 49.4 3.19 54.6 3.18 56.1 1.43 48.3 2.94 58.6 3.00 54.5
+ CDA 5.53 45.1 5.68 60.6 1.52 48.0 2.14 56.5 4.53 54.1 1.41 50.1 2.94 61.2 3.04 55.1

ChatGPT 17.7 40.7 9.09 40.3 4.55 38.3 6.43 42.3 10.3 41.4 4.23 35.8 7.35 42.2 6.99 40.0
+ ICL 3.92 43.9 4.55 58.3 4.55 50.1 1.43 48.9 3.70 52.8 4.23 47.9 1.47 54.8 3.32 52.1
+ GDA 4.38 44.2 3.41 56.2 1.52 50.6 1.43 50.0 3.29 52.9 1.41 48.3 2.94 57.4 2.33 52.6
+ CDA 6.72 45.2 3.41 55.6 1.52 50.9 1.43 51.4 2.06 53.3 2.82 50.0 4.41 59.1 2.60 53.3

Table 2: Experimental results on the TORQUE dataset. Exact-Match (EM) rate and Macro-F1 (F1, regarded as the
primary metric ∗ since EM can be susceptible to manipulation by simply predicting ‘none’) scores are reported.
Best-performed results are bold-faced and the second-best are underlined.

TORQUE: Q: [question], select none or sev-496

eral from [all events] [context] \n A:. We497

use GPT-3.5 (text-davinci-003) and ChatGPT498

(gpt-3.5-turbo) as the backbone LLM. For MA-499

TRES, we formalize the problem as a multi-choice500

question-answering format5.501

Baselines. We compare our proposed meth-502

ods with other representative bias mitigation ap-503

proaches, including Product-of-Experts (PoE; Hin-504

ton 2002; He et al. 2019), Learned-mixin (Clark505

et al., 2019), Counterfactual Inference (Wang et al.,506

2022, 2023), and AFLite (Le Bras et al., 2020).507

These baselines are typical bias-agnostic debias-508

ing baselines that address known or unknown bias509

with statistical approaches. For LLMs, we use the510

vanilla In-Context Learning (ICL) by randomly511

retrieving one set of exemplars from the training512

set as demonstrations. Note that ICL is consid-513

ered few-shot learning while our method is purely514

zero-shot. In addition, to study the effect of the515

strategy for generating counterfactual exemplars,516

we add an additional baseline named Generative517

Data Augmentation (GDA) that performs exemplar518

generation without counterfactual guidance6.519

4.4 Results and Analysis520

We present the main experimental results for521

TORQUE in Tab. 2 and for MATRES in Tab. 3.522

The all row indicates the performance on the whole523

5Details of prompts are listed in Appx. §C.2.
6Details of all baselines are in Appx. §C.1

evaluation set. The Confl.Avg. column is an aver- 524

age of all knowledge-conflict subsets, measuring 525

models’ ability on knowledge conflicts. 526

Impact of Knowledge Conflicts. Models on 527

both TORQUE and MATRES show a decrease 528

in performance when evaluated on knowledge- 529

conflict subsets. Tab. 4 shows a comparison of 530

baseline model performance on the conflict and 531

non-conflict partitions of MATRES. The compar- 532

ison on TORQUE is presented in Tab. 5 in the 533

Appendix, showing a similar trend. This finding in- 534

dicates that the selected conflict subsets are indeed 535

more confusing for language models, proving the 536

effectiveness of our conflict detection framework. 537

For LLMs, the overall performance is not sat- 538

isfactory compared with fully-supervised models, 539

which is in line with the findings in several eval- 540

uation works on LLMs (Chan et al., 2023; Zhou 541

et al., 2023; Yuan et al., 2023), due to the fact that 542

such tasks focusing on specific types of contextual- 543

ized reasoning, when not trained with instruction 544

fine-tuning, often lead to poor performance (Zhang 545

et al., 2023). Nonetheless, since LLMs are not fine- 546

tuned on the biased training set, their performance 547

on knowledge-conflict subsets does not drop as sig- 548

nificantly in comparison to that on the entire evalua- 549

tion set, while even being better in some cases. This 550

suggests that zero-shot predictions using LLM can 551

be more generalizable when not trained on smaller 552

and biased data. 553
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all Rel. Prior Narrative Tense Dependency Confl.Avg.
Micro Macro∗ Micro Macro∗ Micro Macro∗ Micro Macro∗ Micro Macro∗ Micro Macro∗

PLM
RoBERTa-large 70.8 44.9 59.7 28.5 59.2 27.1 54.8 33.2 58.5 38.3 58.0 31.8
PoE 69.4 45.3 60.0 30.7 52.6 32.8 61.1 29.0 53.1 36.7 56.7 32.3
Learned-mixin 71.0 45.0 60.4 29.5 55.7 34.6 60.9 27.5 60.0 40.1 59.2 32.9
Learned-mixin+H 70.5 44.8 59.6 29.2 54.3 34.0 62.2 27.7 58.5 39.8 58.6 32.6
Cont. Inf. 67.6 45.0 60.3 31.4 60.7 27.3 48.8 32.5 55.3 38.9 56.3 32.5
AFLite 64.3 43.4 52.4 28.8 50.3 32.8 62.5 30.0 55.0 39.3 55.1 32.7
CDA (Ours) 72.2 45.5 61.5 29.3 58.8 27.3 57.2 35.1 62.2 39.9 59.9 32.9

LLM
GPT-3.5 53.3 19.7 54.7 25.3 2.57 3.98 36.7 17.2 28.6 13.0 30.6 14.9

+ ICL 51.6 18.4 56.1 20.9 1.52 2.31 35.7 16.4 26.2 10.6 29.9 12.6
+ GDA 45.6 27.6 52.0 32.4 15.1 14.9 37.6 24.0 33.3 18.9 34.5 22.6
+ CDA 51.3 30.0 53.4 36.0 16.6 26.8 38.1 27.2 33.3 21.5 35.4 27.9

ChatGPT 39.8 25.9 31.1 22.3 37.6 32.5 27.0 17.6 21.4 13.8 29.3 21.6
+ ICL 43.1 23.8 53.4 23.5 34.8 22.2 11.3 12.7 28.6 11.1 32.0 17.4
+ GDA 45.7 30.8 36.5 25.1 29.5 26.2 32.5 20.7 40.5 24.4 34.7 24.1
+ CDA 49.3 32.0 42.6 24.3 37.1 31.0 31.2 20.7 33.3 19.3 36.1 23.8

Table 3: Experimental results on MATRES. We use two evaluation metrics, Micro-F1 (denoted as Micro) and Macro
F1 (denoted as Macro; regarded as the primary metric ∗ due to the significant class imbalance). Best-performed
results are bold-faced and the second-best is underlined.

Conflict Non-Conflict
Micro Macro Micro Macro

RoBERTa-large
Relation Prior 59.7↓ 28.5↓ 75.7 40.9
Narrative 59.2↓ 27.1↑ 76.8 21.7
Tense 54.8↓ 33.2↓ 72.8 47.2
Dependency 58.5↓ 38.3↓ 70.0 45.7

GPT-3.5
Relation Prior 54.7↓ 25.3↓ 56.8 28.6
Narrative 2.57↓ 3.98↓ 85.8 26.3
Tense 36.7↓ 17.2↓ 60.3 27.2
Dependency 28.6↓ 13.0↓ 57.7 28.9

Table 4: Experimental results on the model performance
on knowledge conflict and non-conflict data in MA-
TRES. The RoBERTa-Large model suffers from a per-
formance drop when tested on the conflict subsets. ↓
indicates a performance drop in the conflict subsets.

Knowledge Conflicts Mitigation. CDA signif-554

icantly improves the performance of the vanilla555

PLM RoBERTa-large both on the entire evaluation556

set and on each of the knowledge-conflict subsets.557

Bias-agnostic baselines adopt a model trained only558

with event arguments and without context, which559

performs debiasing by countering event-relation560

bias. This yields competent results related to the561

relationship prior bias. The counterfactual infer-562

ence is more effective than other fine-tuned-based563

methods, as also reported by previous work (Wang564

et al., 2022). However, bias-aware data augmenta-565

tion methods are generally more effective, as they566

explicitly address different forms of bias and have567

a more focused performance on biased datasets. In568

the appendix, we show that more CDA data better569

help the model training (Fig. 3), and compare CDA570

with several plain data augmentation techniques in 571

Tab. 8 and Tab. 9. 572

As for LLMs, on MATRES, CDA-based demon- 573

strators can improve the performance on both the 574

whole evaluation set and all the knowledge con- 575

flict datasets, with the exception of a minor setback 576

compared to ChatGPT-GDA in terms of Confl.Avg. 577

Macro-F1. On TORQUE, CDA on ChatGPT out- 578

performs all baselines in terms of overall perfor- 579

mance and Confl.Avg. on the main metric F1. For 580

GPT-3.5, the zero-shot setting surprisingly achieves 581

the best overall performance. However, CDA can 582

outperform GDA, indicating that adding a counter- 583

factual prior can better help LLMs to understand 584

event temporal reasoning. Another noteworthy 585

point is that our CDA method is purely zero-shot 586

compared with ICL, showing the superiority of ap- 587

plying counterfactual guidance to LLMs. 588

5 Conclusion 589

In this paper, we investigate knowledge conflicts in 590

event temporal reasoning by formally defining four 591

types of biases to identify a knowledge conflict di- 592

agnoses evaluation set. We observe that both PLMs 593

and LLMs are susceptible to knowledge conflicts 594

in this task, resulting in decreased performance on 595

knowledge-conflict datasets. To address this issue, 596

we propose a CDA method that is suitable for both 597

PLMs through pre-training and LLMs through In- 598

Context Learning. Our experiments demonstrate 599

the effectiveness of our proposed method in miti- 600

gating knowledge conflicts. 601

8



Limitations602

This paper only discussed bias calculated based on603

statistics in the training set. However, there are604

various other ways of characterizing bias, such as605

using predictions of zero-shot pre-trained language606

models (Xu et al., 2022) and context masking, are607

not discussed, which can be left as a future work.608

Ethics Statement609

There are no direct societal implications of this610

work. The datasets we use, TORQUE and MA-611

TRES, are publicly available and shared via open-612

access licenses for research purposes. Even though613

we are detecting bias and conflicts in the origi-614

nal datasets, we focus on bias toward temporal615

relations of events and do not involve any bias to-616

ward certain gender or ethnics groups. The context617

where event relations are derived from TimeBank7,618

AQUAINT8, and Platinum9, which has not shown619

to contain any obvious social biases that would620

raise concerns within the community. The coun-621

terfactual data augmentation technique we propose622

can effectively mitigate bias in event relation extrac-623

tion. In conclusion, to the best of our knowledge,624

this paper does not raise ethical concerns.625
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Appendices 950

A Knowledge-conflict Selection 951

Hyperparameters 952

In TORQUE, we set an empirical T Relation Prior
before = 953

T Relation Prior
after = T Relation Prior

equal = 0.25 by investi- 954

gating the distribution of before, after, and equal 955

relations. For tense bias, we set T tense
before = T tense

after = 956

0.25, and T tense
equal = 0.2 for the relations indicating 957

two events happening simultaneously. For narrative 958

and dependency bias, the threshold is simply set as 959

0.5. In MATRES, we set Tbefore = Tafter = 0.3 and 960

Tequal = 0.1. 961

B Impact of Knowledge Conflict 962

We compare the model performance on knowl- 963

edge conflict subsets and the non-conflict subsets to 964

show the impact of knowledge conflicts on model 965

performance in Tab. 5. In general, models perform 966

more poorly on the conflict subsets, compared with 967

those without conflicts. This discovery suggests 968

that the chosen conflict subsets pose greater chal- 969

lenges for PLMs and LLMs, thus validating the 970

efficacy of our conflict detection framework. 971

C Additional Details of the Models 972

C.1 Baselines 973

For TORQUE, the model consists of a one-layered 974

perceptron built on top of RoBERTa. The trans- 975

formers’ output corresponding to the token being 976

analyzed serves as input to the perceptron layer as 977

a sequence tagging task, where the expected output 978

is either 0 or 1, indicating whether this event argu- 979

ment is a correct answer or not. Following the orig- 980

inal paper of TORQUE, we fine-tuned RoBERTa- 981

large on the training set of TORQUE, using a batch 982

size of 6 (each input is a concatenation of one pas- 983

sage and one question, and the output is a vector 984

measuring the probability of each event argument 985

token). The learning rate is 1e-5, total epoch is 10, 986

and three random seeds were selected. The exper- 987

iments are conducted on NVIDIA A5000 GPUs, 988

which takes around 30 minutes for training one 989

epoch. 990

In MATRES, each data entry is composed of 991

a passage and the corresponding positions of the 992

two event triggers. The model consists of a one- 993

layer perceptron to aggregate the embeddings of 994

the two event triggers provided by the transform- 995

ers. We use pre-trained Big Bird (Zaheer et al., 996
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Conflict Non-Conflict
EM F1 EM F1

RoBERTa-large
Rel.Prior 29.5↓ 73.3↓ 40.7 74.5
Rel.Prior (warm-up) 50.0↓ 75.1↓ 75.0 76.2
Narrative 31.4↑ 69.0↓ 48.4 75.2
Tense 33.5↓ 72.9↓ 50.7 75.0
Tense (warm-up) 48.4↓ 72.4↓ 77.3 78.6
Dependency 41.7↑ 78.6↓ 37.5 81.2

GPT-3.5
Rel.Prior 4.82↓ 59.9↑ 4.87 51.1
Rel.Prior (warm-up) 4.62↓ 47.0↑ 25.0 30.4
Narrative 2.13↓ 50.7↑ 7.21 44.4
Tense 4.46↓ 53.5↑ 7.27 42.6
Tense (warm-up) 5.71↓ 45.9↑ 25.3 30.0
Dependency 2.94↑ 57.7↑ 2.72 56.7

Table 5: Experimental results on the model perfor-
mance on knowledge conflict and non-conflict data in
TORQUE. The RoBERTa-Large model suffers from per-
formance drop when tested on the conflict subsets. On
the contrary, GPT-3.5, when not fine-tuned on the biased
training set, suffer less from the knowledge conflict in
general. However, there is still a large performance gap
on warm-up questions for GPT-3.5, dropping from an
EM of around 25% to 5%.

2020), a RoBERTa variation that deals with longer997

documents, following Wang et al. (2023). The998

experiments are conducted on NVIDIA A5000999

GPUs, which takes around 2 minutes for training1000

one epoch.1001

We then introduce the bias-agnostic baselines1002

that we adopt.1003

PoE (Hinton, 2002) and Learned-mixin (Clark1004

et al., 2019). In this line of approaches, a biased1005

model is trained to specifically target biased fea-1006

tures in the data. The output of the biased model is1007

then combined with the output of the robust model1008

using product of predicted probabilities. This en-1009

ables the robust model to focus less on the biased1010

features and improve its overall performance. De-1011

note the probabilities predicted by the biased model1012

for element i as bi, and the probabilities by the ro-1013

bust model as pi, the ensemble to predict the final1014

label by PoE is:1015

p̂i = softmax(log(pi) + log(bi))

As PoE assumes conditional independence be-1016

tween the bias in the data and all the features ex-1017

cept for bias in the data, which may be too strong,1018

learned-mixin is thus proposed to make the rela-1019

tions between pi and bi learnable. A function g(x)1020

of the input x is learned to dynamically adjust how1021

TORQUE MATRES

Whole Dev Set 1,483 1,000
Rel. Prior (relation) 88 148
Rel. Prior (warm-up) 66 -
Narrative 140 477
Tense (relation) 243 210
Tense (warm-up) 71 -
Dependency 68 42

Table 6: Statistics of each knowledge-conflict subset in
TORQUE and MATRES.

much to trust the biased model, leading to the final 1022

estimation as: 1023

p̂i = softmax(log(pi) + g(xi) log(bi))

However, a model could learn to set g(xi) to 0 1024

to ignore the effect of biased model, learned-mixin 1025

+ H is thus proposed by adding an entropy penalty: 1026

R = wH(softmax(g(xi) log(bi))

Here the entropy function takes the form 1027

H(z) = −
∑

j zj log(zj). The entropy term can 1028

help encourage the biased term to be non-uniform, 1029

providing more biased information. 1030

To train the biased model for all these three base- 1031

lines, we mask all context except for the event 1032

triggers. Other hyperparameters are the same as 1033

training a RoBERTa baseline. 1034

Counterfactual Inference (Wang et al., 2022, 1035

2023). Counterfactual inference focus on event 1036

trigger bias and frequent label bias that leads to 1037

spurious correlations. A causal graph is established 1038

to analyze the causal relations between the effect 1039

of event triggers, the whole context, and the fi- 1040

nal prediction. To mitigate event trigger bias and 1041

label bias, element-wise subtraction operation is 1042

conducted to get the final prediction: 1043

y = yx − λ1yx̄,e − λ2yx̄

where yx is the prediction given by the model 1044

trained on the original data without any masking, 1045

yx̄,e is the prediction of the model trained on the 1046

data where context except for event triggers are 1047

masked, and yx̄ is the prediction where the model 1048

sees nothing as input, which reflects label bias. 1049

λ1 and λ2 are tuned by conducting 5-fold cross- 1050

validations on the training set. The parameters that 1051

yield the best cross validation are selected. The 1052
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search space is [−1, 1] with an interval of 0.1. For1053

TORQUE, λ1 = −0.8, λ2 = −0.1. For MATRES,1054

λ1 = −0.1, λ2 = 0.3.1055

AFLite (Sakaguchi et al., 2021; Le Bras et al.,1056

2020). AFLITE, which stands for Lightweight1057

Adversarial Filtering, is an alternative bottom-up1058

approach to algorithmic bias reduction proposed1059

by (Sakaguchi et al., 2021). AFLITE trains an en-1060

semble of linear classifiers on random subsets of1061

the training data and filters other instances in the1062

training data that linear classifiers can correctly1063

classify. The rationale of this baseline is that in-1064

stances that can be classified correctly by a shallow1065

linear model wound contain artifacts.1066

In this paper, we use logistic regression as the
linear classifier. We repeat training the logistic re-
gression model 20 times on randomly sampled sub-
sets of the training data. Then, we used the trained
logistic regression model to predict the labels of
the rest of the training instances. We compute a
score for every instance e based on the following
equation:

score(e) =
the times of e is predicted correctly

the times of e is predicted
.

After repeating, we filter instances that owns1067

a score higher than 0.8. Following previouse1068

work (Sakaguchi et al., 2021), we use dense rep-1069

resentations produced by frozen robert-large1070

and bigbird-roberta-large, instead of manu-1071

ally identified lexical features, to train logistic re-1072

gression classifiers on TORQUE and MATRES,1073

respectively.1074

C.2 Large Language Models1075

Prompts for the Tasks. For TORQUE, the1076

prompt template we use is “Q: {question}, select1077

none or several from {all_events} \n {context} \n1078

A:”. Here, question, context are provided in each1079

data entry in TORQUE. all_events indicates all the1080

annotated event triggers in the context. GPT3 is1081

expected to generate none or several events that are1082

the answers to the question given the context. We1083

also check another prompt as an additional analysis,1084

which is “Given the context {context}, {question},1085

select none or several from all_events} \n A:”. The1086

performance analysis are introduced in Tab. 10.1087

For MATRES, we formulate the problem as a1088

multi-choice question answering (MCQA) task for-1089

mat, as it’s inherently a four-way classification task.1090

The prompt takes the form “Given the context:\n1091

TORQUE

Rel.Prior b(kill, arrest, before)=0.69,
b(bombing, condemn, before)=0.67
b(incident, happened)=1,b(host, future)=0.91,
b(progress, happening)=1

Tense b(VBN, VB, before)=0.64,b(VBN, VBD, before)=0.48,
b(VBD, VB, before)=0.55
b(VBD, happened)=0.95,b(VB, future)=0.60,
b(VBZ, happening)=0.62

Narrative b(p1<p2, before)=0.50,b(p1<p2, after)=0.32,
b(p1<p2, equal)=0.03,b(p1<p2, vague)=0.13

Dependency b(xcomp, before)=0.81,b(ccomp, after)=0.70

MATRES

Rel.Prior b(say, have, after)=1,b(rise, close, before)=1,
b(have, close, before)=0.83

Tense b(VBN, VB, before)=0.80,b(VBN, VBP, before)=0.78,
b(VBD, VB, before)=0.70

Narrative b(p1<p2, before)=0.50,b(p1<p2, after)=0.32,
b(p1<p2, equal)=0.03,b(p1<p2, vague)=0.13

Dependency b(xcomp, before)=0.61,b(ccomp, after)=0.60

Table 7: Selected top biased event features in TORQUE
and MATRES.

{context} \n\n Q: What’s the temporal relation be- 1092

tween the event {e1} and {e2}? \n Choice A: {e1} 1093

happens before {e2}. \n Choice B: {e1} happens 1094

after {e2}. \n Choice C: {e1} happens during {e2}. 1095

\n Choice D: unknown. \n Answer only with A, B, 1096

C, or D. \n\n A: Choice”. Here, e1 and e2 are the 1097

target event triggers to be studied. The expected 1098

output is either A, B, C, or D. In addition, we com- 1099

pare our MCQA template with other templates that 1100

have been used in previous works, denoted as tem- 1101

plate 2 (Chan et al., 2023) and template 3 (Yuan 1102

et al., 2023). A comparison of different templates 1103

are presented in Tab. 11. We also present the ef- 1104

fect of the three prompt templates in Tab. 13, and 1105

find that our MCQA template achieves the best 1106

performance. 1107

Baselines We use In-Context Learning (ICL) and 1108

Generative Data Augmentation (GDA) as two in- 1109

tuitive baseline that can be directly comparable to 1110

our CDA method. For ICL, specifically, we re- 1111

trieve one passage-question pair in TORQUE, and 1112

retrieve one example per relation from before, af- 1113

ter, equal, and unknown as as set of exemplars 1114

for MATRES (denoted as 1-shot), to form the ICL 1115

demonstration. Note that ICL is considered few- 1116

shot learning while our method is purely zero-shot. 1117

We study the variability of different sets of exem- 1118

plars as well as the effect of 1-shot and 3-shot ICL 1119

in Tab. 13. We can find that the performance of 1120

ICL is quite stable across different sets of random 1121

exemplars, and 3-shot exemplars help on template 1122

1 but not the other two templates. 1123
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In addition, we add an additional baseline named1124

Generative Data Augmentation (GDA) that per-1125

forms exemplar generation without a counterfac-1126

tual guidance. That is to say, we ask LLMs to gen-1127

erate exemplars under all relations from R, instead1128

of only the counterfactual relations.1129

Counterfactual Data Augmentation We intro-1130

duce how to do Counterfactual Data Augmentation1131

(CDA) for both PLMs and LLMs.1132

In CDA for PLM, we generate augmented data1133

at scale. For TORQUE, we first retrieve all event1134

pairs that are identified as biased in the training1135

set. For an event-relation triple (e1, e2, r), where r1136

is identified as knowledge-conflict, which appears1137

less frequently in the training set, we ask Flan-T5 to1138

generate some context where e1, e2 happens under1139

relation r, to augment the undervalued distribution1140

of these two events under the conflict relation r.1141

The prompt is: “Write a story where e1 happens1142

r′ e2:”. We set temperature as 1 and use greedy1143

decoding to get the results. After generating the1144

context, the question associated with the context is1145

thus Q=What happened r′ e2 and the correspond-1146

ing answer is e1. We do similar generations for1147

warm-up questions that asks what events have hap-1148

pened / is happening / will happen. We first acquire1149

events that are knowledge-conflict with regard to a1150

relation r ∈ {happened, will happen, happening},1151

and randomly sample two or events that are conflict1152

with regard to r. We ask Flan-T5 “Write a story1153

where e1 and e2 r”. The corresponding question as-1154

sociate with the generated context is then Q=What1155

have happened/will happen in the future/is happen-1156

ing?, based on what r is. After such augmentations,1157

we conduct an additional filtering step by select-1158

ing only knowledge-conflict augmented data. We1159

keep a proportion of augmented data that is scored1160

with low loss by a fine-tuned PLM on TORQUE to1161

boost the initial learning process when trained on1162

augmented data. For MATRES, the prompt given1163

to Flan-T5 is “Write a story where e1 happens r′1164

e2”. Then r is used as the final label.1165

In CDA for LLM, we generate demonstrations1166

to perform in-context learning. In MATRES, for1167

an example (c, e1, e2, r), we first ask the LLM to1168

predict the temporal relation rLLM . Then we use1169

the same prompt as in CDA for PLM to generate1170

counterfactual examples dedicated to the event pair1171

(e1, e2), under relations other than rLLM . The gen-1172

erated examples are thus served as exemplars. In1173

TORQUE, the pipeline is more complicated. An1174
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Figure 3: Effect of varying proportions of Counterfac-
tual Data Augmentation (CDA) on MATRES. Models
benefit from increased amounts of CDA data.

entry is composed of context c, the set of event 1175

triggers E in c, the question q, and the answers a, 1176

which is a subset of E. We first ask an LLM to pre- 1177

dict the answers aLLM , which is also expected to 1178

be a subset of E. We then ask the LLM itself to gen- 1179

erate some context where the ground answers are 1180

sampled from E − aLLM , using the same prompt 1181

as in CDA for PLM. Examples on MATRES are 1182

presented in Tab. 12. 1183

D Additional Ablations 1184

In this section, we compare our Counterfactual 1185

Data Augmentation method with other popular data 1186

augmentation methods to show the effectiveness 1187

of CDA with regard to knowledge conflict mitiga- 1188

tion. Specifically, we adopt EDA and Synonym re- 1189

placement as representative text-editing-based data 1190

augmentation baselines, and we use a Generative 1191

Data Augmentation (GDA) baseline to automati- 1192

cally generate task data using the same backbone 1193

language model, Flan-T5-11B, to generate training 1194

data without counterfactual constraints. The only 1195

difference between GDA and CDA is that GDA 1196

does not use counterfactual constraints, and GDA 1197

can serve as an ablation to study the effect of coun- 1198

terfactual constraints. The results for TORQUE are 1199

presented in Tab. 8 and the results for MATRES 1200

are presented in Tab. 9 1201
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all Rel.Prior
(relation)

Rel.Prior
(warm-up)

Narrative
(relation)

Tense
(relation)

Tense
(warm-up)

Dep.
(relation)

Confl.Avg.

EM F1 EM F1 EM F1 EM F1 EM F1 EM F1 EM F1 EM F1

RoBERTa-L 50.4 75.7 29.5 73.3 50.0 75.1 31.4 69.0 33.5 72.9 48.4 72.4 41.7 78.6 39.1 73.6
+EDA 50.2 75.5 33.5 74.2 50.7 71.7 30.7 67.9 33.9 71.8 50.0 69.4 41.1 79.6 40.0 72.4
+Synonym 49.7 76.1 28.0 71.8 49.5 72.3 29.5 68.7 33.5 72.0 47.4 69.7 35.8 75.9 37.3 71.7
+GDA 49.9 75.8 30.3 73.8 50.5 74.0 31.7 69.1 34.4 72.6 34.4 72.6 49.3 71.5 38.4 72.3
+CDA 51.0 76.1 33.7 75.4 50.0 75.9 30.7 68.6 35.5 73.1 48.8 73.2 44.1 79.1 40.5 74.2

Table 8: Experimental results on the TORQUE dataset using different data augmentation techniques. Exact-Match
(EM) rate and Macro-F1 (F1) scores are reported. Best-performed results are bold-faced and the second-best are
underlined.

all Rel. Prior Narrative Tense Dependency Confl.Avg.
Micro Macro Micro Macro Micro Macro Micro Macro Micro Macro Micro Macro

RoBERTa-large 70.8 44.9 59.7 28.5 59.2 27.1 54.8 33.2 58.5 38.3 58.0 31.8
+EDA 70.5 46.0 60.9 29.8 58.7 27.4 55.1 33.8 60.0 38.4 58.7 32.4
+Synonym 70.4 45.0 59.6 28.3 59.5 26.9 55.5 33.7 61.9 41.3 57.8 32.5
+GDA 72.2 43.6 62.0 27.2 57.5 25.3 54.0 31.4 58.1 36.0 57.9 30.0
+CDA (Ours) 72.2 45.5 61.5 29.3 58.8 27.3 57.2 35.1 62.2 39.9 59.9 32.9

Table 9: Experimental results on MATRES using different data augmentation techniques. We use two evaluation
metrics, Micro-F1 (denoted as Micro) and Macro F1 (denoted as Macro). Best-performed results are bold-faced
and the second-best are underlined.

EM F1

CDA (1-shot) 5.16 44.6
CDA (3-shot) 14.5 50.1

template 1 (zero-shot) 8.36 45.5
template 2 (zero-shot) 8.16 45.9

template 1 (1-shot)-1 4.52 43.4
template 1 (1-shot)-2 6.00 44.7
template 1 (1-shot)-3 13.1 46.9
template 1 (1-shot)-avg 7.87 45.0
template 2 (1-shot)-1 9.51 50.5
template 2 (1-shot)-2 12.6 51.2
template 2 (1-shot)-3 10.5 48.8
template 2 (1-shot)-avg 10.9 50.2
template 1 (3-shot)-1 13.0 46.7
template 1 (3-shot)-2 16.4 48.5
template 1 (3-shot)-3 11.2 48.2
template 1 (3-shot)-avg 13.5 47.8
template 2 (3-shot)-1 19.3 56.1
template 2 (3-shot)-2 18.6 55.4
template 2 (3-shot)-3 23.3 54.0
template 2 (3-shot)-avg 20.4 55.2

Table 10: Experimental results on TORQUE using dif-
ferent prompt templates.
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MATRES

Strategies Template input GPT3.5 Gold T/F

Prompt 1
(MCQA)

Given the context:\n Jim Unruh, Unisys’s president, said he is
approaching next year with caution. He said the strength of the world-
wide economy is suspect, and doesn’t see much revenue growth in
the cards. He also said that the price wars flaring up in parts of the
computer industry will continue through next year. He said the move
toward standard operating systems means customers aren’t locked
into buying from their traditional computer supplier and can force
prices down. \n\nQ: What’s the temporal relation between
the event "suspect" and "flaring"? \n Choice A: suspect
happens before flaring. \n Choice B: suspect happens
after flaring. \n Choice C: suspect happens during
flaring. \n Choice D: unknown. \Answer only with A, B,
C, or D. \n\nA: Choice

A A T

Prompt 2
(Chan et al., 2023)

Determine the temporal order from "suspect" to "flaring"
in the following sentence: ""Jim Unruh, Unisys’s president,
said he is approaching next year with caution. He said the strength of
the world-wide economy is suspect, and doesn’t see much revenue
growth in the cards. He also said that the price wars flaring up in
parts of the computer industry will continue through next year. He
said the move toward standard operating systems means customers
aren’t locked into buying from their traditional computer supplier
and can force prices down. "". Only answer one word from
AFTER, BEFORE, EQUAL, VAGUE. Answer:

BEFORE BEFORE T

Prompt 3
(Yuan et al., 2023)

Given the document Jim Unruh, Unisys’s president, said he is
approaching next year with caution. He said the strength of the world-
wide economy is suspect, and doesn’t see much revenue growth in
the cards. He also said that the price wars flaring up in parts of
the computer industry will continue through next year. He said the
move toward standard operating systems means customers aren’t
locked into buying from their traditional computer supplier and
can force prices down. and a list of temporal relations
[before, after, vague, equal] and event triggers suspect
and flaring. what is the temporal relation between suspect
and flaring? Answer vague if unsure. Keep the answer
short and concise.

before before T

Table 11: Prompt templates for MATRES.
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MATRES

Strategies Template input GPT3.5 Gold T/F

Zero-shot

Given the context:\n [Context] \n\nQ: What’s the temporal relation
between the event "e1" and "e2"? \n Choice A: e1 happens before
e2. \n Choice B: e1 happens after e2. \n Choice C: e1 happens
during e2. \n Choice D: unknown. \Answer only with A, B, C, or
D. \n\nA: Choice

A B F

Counterfactual
generation

Generate a paragraph where event e1 happens before e2:
Generate a paragraph where event e1 happens after e2:
Generate a paragraph where event e1 happens in the same time as
e2:
Generate a paragraph where the temporal relation of e1 and e2
cannot be determined based on the context:

cA, cB ,
cC , cD

/ /

CDA prompting

Given the context:\n cB \n\nQ: What’s the temporal relation
between the event " · · · A: Choice B
Given the context:\n cC \n\nQ: What’s the temporal relation
between the event " · · · A: Choice C
Given the context:\n cD \n\nQ: What’s the temporal relation
between the event " · · · A: Choice D
Given the context:\n [Context] \n\nQ: What’s the temporal relation
between the event "e1" and "e2"? \n Choice A: e1 happens before
e2. \n Choice B: e1 happens after e2. \n Choice C: e1 happens
during e2. \n Choice D: unknown. \Answer only with A, B, C, or
D. \n\nA: Choice

B B T

Table 12: A running example of CDA in MATRES. The LLM itself first predict the label of the example, where
the prediction is denoted as rLLM . Then, the LLM is asked to generate four context given e1 and e2 under four
different temporal relations, using the prompts in the second columns, where the corresponding generated context
are then cA, cB , cC , cD. Then, the generated contexts other than under the predicted relation rLLM are used as
demonstrations for in-context learning.
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Micro F1 Macro F1

CDA (1-shot) 51.3 30.0
CDA (3-shot)∗ 51.5 26.3

template 1 zero-shot (MCQA) 53.3 19.7
template 2 (Chan et al., 2023) 52.1 17.1
template 3 (Yuan et al., 2023) 13.4 13.0
template 1 (1-shot)-1 52.3 18.5
template 1 (1-shot)-2 53.1 20.4
template 1 (1-shot)-3 51.6 18.4
template 1 (1-shot)-avg 52.3 19.1
template 1 (1-shot)-MV 52.1 19.0
template 2 (1-shot)-1 49.9 22.0
template 2 (1-shot)-2 49.3 22.1
template 2 (1-shot)-3 50.1 19.8
template 2 (1-shot)-avg 49.8 21.3
template 2 (1-shot)-MV 50.0 20.6
template 3 (1-shot)-1 32.7 18.6
template 3 (1-shot)-2 34.4 20.7
template 3 (1-shot)-3 28.8 17.8
template 2 (1-shot)-avg 32.0 19.0
template 3 (1-shot)-MV 31.9 18.5
template 1 (3-shot)-1∗ 57.5 24.1
template 1 (3-shot)-2∗ 57.0 28.0
template 1 (3-shot)-3∗ 50.0 23.4
template 1 (3-shot)-avg∗ 54.8 25.2
template 1 (3-shot)-MV∗ 57.0 24.4
template 2 (3-shot)-1∗ 46.5 18.2
template 2 (3-shot)-2∗ 47.0 18.1
template 2 (3-shot)-3∗ 47.5 24.9
template 2 (3-shot)-avg∗ 47.0 20.4
template 2 (3-shot)-MV∗ 48.0 19.2
template 3 (3-shot)-1∗ 35.5 21.3
template 3 (3-shot)-2∗ 29.0 15.7
template 3 (3-shot)-3∗ 34.0 20.2
template 2 (3-shot)-avg∗ 32.8 19.1
template 3 (3-shot)-MV∗ 33.0 19.2

Table 13: Experimental results on MATRES using dif-
ferent prompt templates. ∗ indicates we test the perfor-
mance on the same 200 randomly down-sampled exam-
ples from MATRES. We run 3 different random seeds
per few-shot in-context learning experiments. ‘avg’ in-
dicates the average between the three runs, and ‘MV’
indicates the majority voting across the three runs.
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