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Abstract
The remarkable capabilities of large language
models stem from massive internet-scraped train-
ing datasets, often obtained without respecting
data owners’ intellectual property rights. Dataset
Inference (DI) enables data owners to verify unau-
thorized data use by identifying whether a sus-
pect dataset was used for training. However, cur-
rent DI methods require private held-out data with
a distribution that closely matches the compro-
mised dataset. Such held-out data are rarely avail-
able in practice, severely limiting the applicability
of DI. In this work, we address this challenge by
synthetically generating the required held-out set
through two key contributions: (1) creating high-
quality, diverse synthetic data via a data generator
trained on a carefully designed suffix-based com-
pletion task, and (2) bridging likelihood gaps be-
tween real and synthetic data, which is realized
through post-hoc calibration. Extensive experi-
ments on diverse text datasets show that using our
generated data as a held-out set enables DI to de-
tect the original training sets with high confidence,
while maintaining a low false positive rate. This
result empowers copyright owners to make legiti-
mate claims on data usage and demonstrates our
method’s reliability for real-world litigations.

1. Introduction
Large language models (LLMs) have recently achieved
remarkable success in a broad range of tasks, fueled by
the availability of massive high-quality text corpora of-
ten scraped from the internet (Weber et al., 2024; Penedo
et al., 2024). While this practice has enabled LLMs to
generate high-quality text and to excel on benchmarks, it
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also raises serious concerns related to intellectual property
rights (Reuters, 2023; Gry, 2023; Sil, 2023), data privacy,
and transparency (Rahman & Santacana, 2023; Wu et al.,
2023). The reliance on potentially unauthorized data creates
an urgent need for methods that allow independent authors
to verify whether a given dataset has been used to train an
LLM without the explicit consent of the model provider.

A promising approach to addressing these concerns is
dataset inference (DI) (Maini et al., 2021; Dziedzic et al.,
2022; Maini et al., 2024; Dubiński et al., 2024), which aims
to determine whether a suspect dataset has contributed to
a model’s training. This puts power in the hands of data
owners to monitor and exercise their intellectual property
rights. Despite its potential, DI currently faces a critical bot-
tleneck: it requires a held-out set—a dataset known to be ab-
sent from training—that shares the same distribution as the
suspect dataset (Zhang et al., 2024a). In practice, however,
such an in-distribution held-out set is rarely available. Data
creators do not typically reserve a dedicated held-out set for
auditing purposes, and any disclosed held-out data could it-
self be repurposed for future training. Moreover, even when
a dataset owner can provide held-out data, any slight distri-
butional shifts from the original suspect data can undermine
DI by inflating false positives (Das et al., 2024; Duan et al.,
2024; Meeus et al., 2024; Maini & Suri, 2024).

To illustrate the brittleness of using seemingly IID (Indepen-
dent and Identically Distributed) held-out data, we demon-
strate in Section 3 that even in a simple scenario—where an
LLM is fine-tuned on blog posts from a single author—there
exists a distributional shift between training data (members)
and randomly held-out blog posts from the same author.
This highlights how even subtle variations in held-out data
can undermine DI. Malicious actors may exploit this vul-
nerability by strategically introducing shifted held-out data,
falsely accusing model owners of copyright infringement
and further reducing the reliability of DI methods.

In this work, we address these challenges by proposing to
synthetically generate held-out data for DI, bypassing the
need for in-distribution held-out data. This vision, however,
is non-trivial to achieve. First, the generated texts must be re-
alistic, high-quality, and sufficiently diverse to approximate
the distribution of the original data. Second, the generation
process itself may introduce a distribution shift between nat-
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Figure 1. Dataset Inference Procedure with Synthetic Held-Out Data. This figure presents a high-level overview of how the proposed
dataset inference (DI) process will take place in real-world use cases. While original setting of DI requires a held-out dataset that is IID to
the suspect set ((a-d),(g)), we highlight the contributions of our work: (e) The arbiter generates IID synthetic held-out data that mimics
the author’s original data. (f) The arbiter calibrates likelihoods between real and synthetic data to ensure fair comparison, enabling them
to reliably perform dataset inference.

ural and synthetic held-out data. Such a shift complicates
DI: if a difference is observed between the suspect and held-
out sets, it becomes unclear whether this difference arises
from a genuine membership signal (i.e., the target model be-
haves differently on the suspect data because it has seen it
during training) or merely from the distribution shift (i.e.,
the model behaves differently on suspect data because it is
natural data). Recent studies have extensively highlighted
this issue in the context of Membership Inference Attacks
(MIAs) (Shokri et al., 2017), where distribution shifts lead
to misleading evaluation results (Das et al., 2024; Zhang
et al., 2024a; Maini et al., 2024; Dubiński et al., 2024).

To this end, we first train a carefully designed text genera-
tor on the suspect dataset itself, on a suffix completion task
(Section 4.1). This approach produces high-quality datasets
with only a small distributional shift from the suspect texts.
However, even small shifts in distribution can undermine
DI’s reliability. To address this, we introduce a post-hoc
calibration step (Section 4.2) to ensure that the generated
held-out set can serve as a reliable reference for DI. Specifi-
cally, we disentangle the effects of distributional shifts from
the actual membership signal—a critical factor in DI. To
achieve this, we propose a dual-classifier approach: (1) A
text-only classifier, trained to distinguish natural (original)
from generated data. (2) A membership-aware classifier,
which incorporates both the textual features and DI’s stan-
dard membership indicators. The key insight is that any
performance advantage of the membership-aware classifier
over the text-only classifier must arise from the presence
of membership signals rather than distributional artifacts.
This difference serves as our DI signal for inferring whether
the suspect dataset was used in the target model’s training.
This calibration strategy enhances DI’s robustness, reducing
false positives while maintaining high detection accuracy.

We demonstrate the effectiveness of our approach on di-
verse textual datasets, ranging from single-author datasets
to large-scale, multi-author collections such as Wikipedia.

Our results show that using synthetic held-out data, com-
bined with calibration, enables DI to detect unauthorized
training data use with high confidence while keeping false
positives low. This expands the practical applicability of DI
and provides a pathway for data owners to safeguard their
intellectual property in an era of LLMs.

2. Background and Related Work
2.1. Membership Inference

MIAs focus on deciding if a single data point was included
in a given model’s training dataset and often serve as fea-
tures extractors for DI. In the LLM domain, MIAs exploit
different signals to distinguish between members (training
data points) and non-members (data points not used dur-
ing training). For instance, LOSS exploits the perplexity or
loss function of the target model (Yeom et al., 2018). Shi
et al. (2024) find that the rare words in a sequence can leak
more privacy information, and select K% tokens with the
smallest probabilities for evaluation. Min-K%++ further
improves upon the Min-K% approach by introducing two
calibration factors (Zhang et al., 2024b). Zlib ratio (Carlini
et al., 2021) uses the compression rate of z-library to nor-
malize the perplexity of the target model. Neighborhood-
based methods compare a suspect sequence with its neigh-
boring texts, which can be produced by synonym substitu-
tion (Mattern et al., 2023) or paraphrasing (Duarte et al.,
2024). Moreover, reference-based methods compare the out-
put signals on a suspect sample between the target model
and a reference model (Fu et al., 2024). Yet, many recent
works have shown that the evaluation of MIAs suffers from
a falsified experimental setup, where a distributional shift
exists between the member and non-member sets (Zhang
et al., 2024a; Maini et al., 2024; Das et al., 2024). Duan
et al. (2024) show that most MIAs only perform slightly
better than random guessing if evaluated correctly on non-
biased benchmarks. Recently, Kazmi et al. (2024) proposed
how to de-bias MIAs from this distribution shift—which we
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use as a foundation for our DI calibration.

2.2. Dataset Inference

To strengthen the signal from training data further beyond
MIAs, Maini et al. (2021) introduced DI. DI aggregates the
membership signal over multiple data points, often referred
to as suspect set, to decide whether a given model was
trained on this data. More formally, given a target model
f , DI aims to detect whether f was trained on the suspect
dataset Dsus. Therefore, it needs an additional held-out
dataset Dval from the same distribution as Dsus. Given both
sets, DI extracts membership features from the data points
in Dsus and Dval, aggregates all features per given sample,
and then scores these aggregate features through a scoring
model. The scores should be lower for members than for
non-members. Then, DI performs statistical hypothesis
testing on the scores of Dsus and Dval. The null hypothesis
is that the average scores for Dsus are higher than for Dval.
If the statistical test manages to reject this null hypothesis,
this is a confident indicator that the data points from Dsus
are indeed members of model f ’s training data.

How to extract the best membership features from the data
points varies based on the learning paradigm. For example,
the original DI for supervised models (Maini et al., 2021)
designs a random walk strategy to estimate the distance
between data points and the decision boundary of a super-
vised model. This is based on the intuition that member
data points are further to the decision boundaries than non-
member data points. For self-supervised models, Dziedzic
et al. (2022) use Gaussian Mixture Model to estimate the rep-
resentational differences between the training dataset (mem-
bers) and the test data. Recent work for DI on LLMs (Maini
et al., 2024) relies on existing LLM MIAs to extract mem-
bership features and uses a linear model to weight the respec-
tive features. We follow this approach in our evaluations.

3. Failure Cases of DI
In this section, we dive deeper into the difficulties that arise
from DI’s assumption on the availability of an additional in-
distribution held-out dataset. More precisely, we show that
this assumption is extremely hard to meet in practice, even
in the simplest setups—only the articles for a single author
are used for DI.

3.1. DI on a Single Author’s Data

We consider a practical application of DI in copyright pro-
tection as detailed in Figure 1. In this scenario, an author
has some published texts on the internet of which they be-
lieve that they were illegitimately used by an LLM provider
to train their model. The author provides this published
works to an arbiter, as a suspect set and some non-published

Table 1. The distributional shift (GPT2 AUC) and DI p-value be-
tween a suspect set that consists of non-members and held-out blog
posts. Here, p-value < 0.05 indicates DI incorrectly suggests that
the suspect set is a member set.

Sequences per Blog 5 10 15 20 25

GPT2 AUC (%) 52.0 55.2 53.2 58.2 58.6
DI p-value 0.002 <0.001 <0.001 <0.001 <0.001

True Membership ✕ ✕ ✕ ✕ ✕
Inferred Membership ✓ ✓ ✓ ✓ ✓

blog-posts as held-out set from the same distribution, i.e.,
with the same style, topics, etc. Then, the arbiter performs
DI to resolve the copyright claims.

To evaluate this setup in practice, we collect blog posts of
a public blogger. The blogs are split into member, non-
member, and held-out sets. To avoid any potential temporal
or topic distributional shifts, we randomly shuffle all the
collected blogs before splitting. In lack of the computational
capacities to train an LLM from scratch, we finetune a
Pythia model (Biderman et al., 2023) on the member set.
The Pythia model is trained on the Pile dataset (Gao et al.,
2020), so we only used blogs after the release date of the
Pile to ensure that none of the blogs is part of the pre-
training data. Also, we only finetune the target model on the
member set for one epoch. Finally, we run DI. More detailed
experiment configurations can be found in Section 5.1.

3.2. Metrics of Distributional Gap

Before analyzing the results, we introduce the metrics we
use to quantify the distributional shift between the suspect
and held-out sets. Following the approach of Blind Base-
lines (Das et al., 2024), we formulate the measurement of
the distribution gap between two text datasets as a classifica-
tion problem. In particular, the suspect set Dsus is randomly
split into a classifier training split Dtrain

sus and a test split D test
sus .

The held-out set Dval is also split into D train
val and D test

val in the
same vein. Then, a classifier g is optimized to distinguish
the training splits Dtrain

sus and D train
val . Finally, we calculate the

area under the curve (AUC) score of the classifier on the
test splits D test

sus and D test
val , which is used to measure the dis-

tributional gap between Dsus and Dval.

The design of the classifier decides how the texts are vec-
torized and if the discrepancies between texts can be suf-
ficiently captured. Das et al. (2024) apply a bag-of-words
(BoW) classifier, which can only detect the differences in
terms of word frequency. Instead, we build a GPT2-based
classifier with two transformer blocks to also find the dif-
ferences in grammar, content, styles, etc. between two text
distributions. We train the classifier from scratch to avoid
the impact of any pre-training data. Using only two trans-
former blocks of the GPT2 architecture avoids overfitting.
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Table 2. Distributional shifts between the suspect set and generated
held-out set measured by Bag of Word (BoW) classifier vs GPT2.

Generation Method BoW AUC (%) GPT2 AUC (%)

ICL Paraphrasing 76.2 99.0
Preference Optimization 50.2 58.9

Suffix Completion 50.0 52.2

3.3. False Positive of DI

The AUC scores of the GPT2-based classifier in Table 1
show that there is a non-negligible distributional shift be-
tween the non-member and the held-out sets. The intuition
behind this observation is that each blog has different con-
tent and topics, which brings different words across the non-
member and held-out documents. The gap is enlarged when
we sample more sequences from each blog post. This small
distributional shift between texts leads to very low p-value
in the t-test, causing significant false positive rates during
DI. This means that the DI falsely accuses the LLM provider
of violating the copy right of an author. What is more is
that this shortcoming of DI can be maliciously exploited:
authors could deliberately provide held-out data from a dif-
ferent distribution than their suspect data to mislead DI and
illegitimately accuse the LLM provider. Please also refer to
Appendix M for a visualized demonstration of such shifts
during DI. As a solution to this problem, in the next sec-
tion, we propose our approach on generating an adequate
in-distribution held-out dataset synthetically.

4. Synthesizing Held-out Data
Our approach consists of two subsequent steps. First, we
generate high-quality held-out data, then, we perform a
calibration to account for the distribution shift that such
generation can introduce.

4.1. Held-out Data Generation

We explore three approaches that leverage LLMs for gen-
erating held-out data based on provided suspect data with
minimal distribution shift.

Baselines. We adapt two existing generative methods as
the baseline for the held-out data generation: 1) in-context
learning (ICL) and 2) preference optimization. Please refer
to Appendix A and Appendix B for more detailed explana-
tions of the two approaches.

Suffix Completion. The failure of the above methods
demonstrates the difficulty of producing high-quality held-
out data with a small enough distributional gap to the sus-
pect data. To solve this problem, we design a generator train-
ing scheme that enables the generator to derive a suspect set
from the author’s provided documents, together with a held-
out set from the same distribution as this suspect set. As

shown in Figure 2, we 1 first segment the provided docu-
ments into multiple short sequences. 2 All the sequences
are shuffled and randomly split into a generator training split
and a generator inference split. Then, 3 a low-rank adap-
tion (LoRA) generator is finetuned on the training split with
the cross-entropy loss for next-token prediction. Finally, 4
we segment each sequence in the generator inference split
into two parts, and the generator predicts a synthetic suffix
based on the prefix. Here, the original suffixes are used as
the suspect set, and the synthetic suffixes as the held-out
set. Note that, the training and inference sets are split on the
shuffled text sequences rather than on the documents. This
is to ensure that the text snippets from the generator train-
ing and inference splits are from the same distribution, such
that the generator can achieve better generalization from the
training to the inference set. Furthermore, we design a suffix
completion task for generator inference. In this task, both
the original suffix and the synthetic suffix share a common
prefix. This approach ensures that the synthetic text main-
tains the same position within a sentence as its original coun-
terpart, making the two suffixes directly comparable. An-
other important insight is that the generator can produce suf-
fixes of higher quality when the sequence length is relatively
short. Therefore, we limit the length of the sequences to no
longer than 64 tokens for a smaller distributional gap. The
results in Table 2 show that our method achieves a signifi-
cantly small distributional shift, and even GPT2-based clas-
sifier can only achieve an AUC as low as 52.2%. For exam-
ples of our generative approach, please refer to Appendix E.

4.2. Post-hoc Calibration

Since the generation itself can introduce a distributional shift
(natural vs generated) data, DI might yield false positives.
This is because it would detect differences between suspect
and held-out data also when they only differ in terms of
distribution but not necessarily in membership. Therefore,
we need to identify and mitigate this distribution shift.

To do so, we rely on an important observation: the genera-
tion shift between natural and synthesized data occurs in the
textual space, while the shift caused by the potential mem-
bership of the suspect set exists in the target LLM’s output
space. This allows us to disentangle the two signals. By
relying on our GPT-based text-classifier from Section 3.2,
we can quantify the textual distribution shift caused by the
generation. We denote this classifier by ctext(x), where x is
the text input for which the classifier should decide if it is
original or generated data. Inspired by Kazmi et al. (2024),
we also define a second MIA-classifier with input signals
from both the texts and the outputs of the target model, such
that we can quantify the combined effects of generation and
the membership signal. Concretely, we train a combined
classifier ccomb(x,MIA(f(x))) with inputs from both text
x and the MIA signal MIA(x) based on the outputs of f .
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Figure 2. An illustration of our proposed Held-out Data Generation (Left Panel) and Post-hoc Calibration (Right Panel).

Here, MIA(x) can also be a vector by concatenating multi-
ple MIA scores. We split both the suspect set and held-out
sets into training and test splits. The two classifiers are opti-
mized on the suspect train split Dtrain

sus and the held-out train
split D train

val , and evaluated on the suspect test split D test
sus and

the held-out test split D test
val . By comparing the distributional

shifts quantified by the MIA classifier and the shifts identi-
fied by the text classifier, we can separate the membership
signals from the distribution gap caused by generation.

We design a hypothesis test to statistically verify if the com-
bined classifier quantifies a larger distributional shift be-
tween the suspect and held-out data than the text classifier,
namely the difference comparison t-test. First, we sample a
suspect data point xsus ∈ Dsus and its generated counterpart
xval ∈ Dval. In every such original/held-out pair, we quan-
tify the shift caused by generation with the text classifier
as ctext(xval) − ctext(xsus). We also quantify the combined
effects caused by generation and membership with the com-
bined classifier as ccomb(xval)− ccomb(xsus). If the member-
ship signal is present, the combined effects will be stronger
than the generation effect, and the predicted probability will
be slightly more accurate for the combined classifier. To this
end, we design a t-test to statistically verify if this predic-
tion difference is significantly larger for ccomb than for ctext.
The null hypothesis of the t-test is formalized as follows:

H0 : Exval∈Dval,xsus∈Dsus [ccomb(xval)− ccomb(xsus)] ≤
Exval∈Dval,xsus∈Dsus [ctext(xval)− ctext(xsus)].

(1)

Table 3. Results for single author blog posts. Here, p-value < 0.05
indicates the suspect set is member set.

True AUC Text AUC Comb P-value Inferred
Membership (%) (%) Membership

✓ 53.8 55.6 0.01 ✓
✕ 53.8 53.9 0.13 ✕

Here, the groundtruth label xval is defined as 1 and xsus as
0. The difference comparison t-test is performed multiple
times with different random seeds, and the p-values are
aggregated with Sidac correction (Šidák, 1967).

5. Experimental Evaluation
We start by introducing our experimental setup, further de-
tailed in Appendix D. Then, we present the results of DI
executed based on our generated held-out data. We also per-
form ablation studies to investigate the contribution of each
component in our proposed method. Finally, we analyze the
impact of t-test sample size and the classifier architecture.

5.1. Experimental Setup

Single author data. We collect 1400 blog posts from a
single author. All figures, tables, videos, and hyperlinks are
removed during pre-processing and only plain text is used
for evaluation. We sample 450 posts as member data and
finetune a Pythia 410M deduplicated model as target model.
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The other posts are held out as non-member and held-out
sets for the evaluation.

More Complicated Dataset and Model. We also evaluate
our method on the Pile dataset (Gao et al., 2020), which is
much more complicated and has subsets of diverse types
of texts. We use the de-duplicated version of Pythia 410M
model as the target model. The training split of the Pile
dataset is used as member data, and the held-out and test
split is used as non-member data. Here, we only evaluate
Pile subsets that are free from copyright issues. Please also
refer to Appendix C for detailed configuration on the Pile.

Implementation Details We finetune a Llama 3 8B model
(Dubey et al., 2024) with LoRA as the generator. For both
types of datasets, we split 2,000 sequences as the generator
inference set, and the others as the generator training split.
Both text classifier and combined classifier are trained on
1,000 synthetic held-out data and 1,000 suspect data for each
dataset. Our proposed t-test is also conducted on 1,000 syn-
thetic held-out data and 1,000 suspect data. More implemen-
tation details can be found in Appendix D. We also provide
an analysis of hyperparameter sensitivity in Appendix I.

5.2. Results for Single Author Dataset

The experimental results on the single author dataset are pre-
sented in Table 3. On the member set, the combined classi-
fier ccomb outperforms the text classifier ctext, by a large mar-
gin of 1.8% AUC score. Moreover, the observed p-value of
0.01 strongly supports the alternative hypothesis, indicating
that the superior performance of ccomb over ctext is statisti-
cally significant. This enables our method to correctly iden-
tify that the target set is part of the training set. For the non-
member set, ccomb and ctext achieve comparable AUC scores,
with a p-value of 0.13 that significantly exceeds the thresh-
old of 0.05. This result confirms the ability of our approach
to correctly identify non-member texts as such, thus avoid-
ing the false positives that occur with the original LLM DI
approach. Here, we finetune the target model on the single
author dataset with LoRA for one epoch. We also present
the results with other fine-tuning setups in Appendix F.

5.3. Results for Pile Datasets

The results of different Pile subsets are shown in Table 4.
We observe that DI correctly predicts the membership of
datasets from diverse domains and styles, including plain
text, academic writing, and code using our method for gen-
erating the held-out data. The results also show that our gen-
eration method generalizes well to documents with different
lengths, ranging from 1 KB (Wikipedia) to 70 KB (PhilPa-
pers). Moreover, our proposed method generalizes well to
texts from different domains and languages, e.g., medical
(PubMed Central), legal (FreeLaw), technical (ArXiv), and
multilingual (EuroParl) domains. Notably, the p-values for

Table 4. Results for different Pile subsets. True represents the true
membership while Inferred denotes the inferred membership. Our
generation is successful if these two align.

Subset True AUC Text AUC Comb P-value Inferred(%) (%)

Pile-CC ✓ 53.1 60.3 <0.001 ✓
✕ 52.5 48.3 1.0 ✕

Wikipedia ✓ 51.7 58.6 <0.001 ✓
✕ 52.2 52.0 0.43 ✕

ArXiv ✓ 53.9 57.3 <0.001 ✓
✕ 53.1 44.7 1.0 ✕

NIH Exporter ✓ 51.4 54.1 0.005 ✓
✕ 53.3 51.6 1.0 ✕

FreeLaw ✓ 55.6 56.7 0.003 ✓
✕ 51.6 51.6 0.84 ✕

Ubuntu IRC ✓ 52.7 54.5 0.002 ✓
✕ 52.5 54.2 0.12 ✕

PubMed Central ✓ 54.1 54.4 0.004 ✓
✕ 52.4 49.5 0.66 ✕

Github ✓ 54.0 59.3 <0.001 ✓
✕ 53.3 51.9 0.97 ✕

EuroParl ✓ 51.3 65.0 <0.001 ✓
✕ 51.9 47.7 1.0 ✕

PhilPapers ✓ 58.5 57.0 <0.001 ✓
✕ 58.1 55.3 0.13 ✕

HackerNews ✓ 56.4 57.5 <0.001 ✓
✕ 57.1 56.3 0.14 ✕

Enron Emails ✓ 56.9 58.2 0.001 ✓
✕ 58.4 53.8 0.99 ✕

StackExchange ✓ 54.0 60.0 <0.001 ✓
✕ 52.7 50.8 1.0 ✕

PubMed Abstract ✓ 54.9 59.9 <0.001 ✓
✕ 54.7 53.0 0.66 ✕

USPTO Backgrounds ✓ 56.7 58.1 <0.001 ✓
✕ 55.8 55.7 0.13 ✕

our difference comparison t-test are significantly lower than
0.05 on all the evaluated member sets, and higher than 0.1
on all the non-member sets.

6. Conclusions
We propose how to synthetically generate an in-distribution
held-out dataset to enable the real-world application of DI.
Therefore, we solve two critical challenges, namely (1)
creating high-quality, diverse synthetic data that accurately
reflects the original distribution and (2) bridging likelihood
gaps between real and synthetic data. Our solution relies on
designing a data generator training scheme based on a suffix-
based completion task and post-hoc calibration to align the
likelihood gaps between real and synthetic data. Through
extensive experimental evaluation, we highlight that our
method enables a robust DI and correctly identifies training
data while achieving a low false positive rate. This shows
our method’s reliability to support copyright owners to make
legitimate claims on data usage for real-world litigations.

6



Unlocking Post-hoc Dataset Inference with Synthetic Data

References
The times sues openai and microsoft

over a.i. use of copyrighted work
https://www.nytimes.com/2023/12/27/business/media/new-
york-times-open-ai-microsoft-lawsuit.html. 2023. URL
https://www.nytimes.com/2023/12/27/b
usiness/media/new-york-times-open-a
i-microsoft-lawsuit.html.

Sarah silverman and authors sue openai and meta over copy-
right infringement. 2023. URL https://www.nyti
mes.com/2023/07/10/arts/sarah-silverm
an-lawsuit-openai-meta.html.
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A. Details of ICL Generation
We experiment with GPT-4-Turbo and prompt it using in-context-learning learning to paraphrase the suspect data. Each
prompt includes a few data points as demonstrations (shots) and requests the model to produce paraphrases for the suspect
set. We test two types of templates to prompt GPT-4-Turbo model with in-context-learning (ICL). One is to paraphrase the
given sample based on the examples, and the other is to complete the text with part of the sentence.

A.1. Text Completion Prompt

In the text completion prompt, we give ten examples from the author provided documents and truncate a target sample.
Then we prompt the GPT-4-Turbo model to complete the target sample, which is shown at the end of the prompt. Here is an
example of this kind of queries:

Input:

I have some text samples. Please help me complete the last sample based on my
example samples.

A device may be provided to sense an environment’s present temperature. For
example, [...] a thermistor that is robust and reliable and that can be
fabricated at a reasonable cost.

[...]
This invention relates to a method of synthesizing musical tones.A musical tone

or natural tone produced by an acoustic or natural musical instrument can
[...] With the music synthesizer it is considerably difficult to obtain
dynamic audio spectra.pneumoniae.

Radio communications receivers commonly receive and decode messages which contain
information. A part of this information may be [...]a single radio will
transmit messages to the remainder of the group. These radio

Output:

messages are selectively received by the grouped radios which decode the identity
information within the [...] and secure group communications in diverse and
often challenging operational environments.

A.2. Paraphrasing Prompt

In the paraphrasing prompt, we give ten examples from the author provided documents, and prompt the GPT-4-Turbo model
to paraphrase the last. Here is an example of this kind of queries:

Input:

Paraphrase the last sample according to the other samples.
1. Field of the Invention This invention relates generally to fluid injectors.

More particularly, this invention relates to a proportional needle control
fuel injector having a [...] The needle valve is moveable between a first
position closing the injection fuel outlet port and a second position to open
to injection fuel outlet.

[...]
The present invention relates to the structure of a casing of a miniature

portable [...] is forcibly urged away from the casing by a tool, it is likely
that the casing is scratched or the base plate is deformed.

This invention relates to fuel cells and, in particular, to improvements in the
catalyst used in internal [...] fuel cell in which the catalyst assembly
has minimum displacement and permits vertical and horizontal orientations of
the fuel cell.

Output:
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This invention pertains to fuel cells, specifically addressing enhancements in
catalysts utilized [...] and efficiency of internal reforming fuel cells by
mitigating previous limitations and improving overall system functionality.

A.3. Distribution Shift Analysis

The distributional shifts are quantified in BoW AUC and GPT2 AUC as shown in Table A1. As observed, both types of
prompt templates produces synthetic texts with large distributional shifts to the suspect sets. Notably, the GPT2-based
classfier can achieve as much as an AUC of 99.2%. The reason is that there are many words (such as ”remarkable” and
”moreover”) that appear much more frequently in the synthetic text than in the human-written text.

Table A1. Distributional shifts between the suspect set and GPT-4-Turbo generated validation set.

Template Type BoW AUC(%) GPT2 AUC(%)

ICL Text Completion 79.2 99.2
ICL Paraphrasing 76.2 99.0

B. Details of Preference Optimization Generation
Preference optimization methods focus on optimizing a pre-trained LLM based on human preference (Rafailov et al., 2024;
Xu et al., 2024). Particularly, LLMs iteratively produce random generations, then human annotators are requested to label
the generations as chosen or rejected, and the LLMs are further optimized according to this human feedback. We note
that, we can leverage preference optimization approaches to make our generator model prefer the human-written texts over
synthetic data, thus producing texts with a more similar distribution to natural texts. Here, we instantiate the preference
optimization scheme with a state-of-the-art method, the simple preference optimization (SimPO) (Meng et al., 2024). During
each training iteration, the human-written suspect data are always labeled as chosen and the generations from the last
iteration are marked as rejected. As noted in Section 4.1, this approach improves significantly upon prompted paraphrasing,
but still causes a large distributional shift between the suspect set and the generated held-out set.

Table A2. Segmentation configurations for different Pile subsets.

Subset Number of Chosen Max. Snippets Number of
Test Set in Pile Split Size per Document Tokens per Snippet

Pile-CC >4000 4000 20 32
StackExchange >4000 4000 5 64

PubMed Abstracts >4000 4000 20 64
Wikipedia (en) >4000 4000 5 32

USPTO Backgrounds >4000 4000 20 64
PubMed Central >4000 4000 10 32

FreeLaw >4000 4000 5 32
ArXiv >4000 200 100 32

NIH ExPorter >3000 3000 10 32
HackerNews >3000 3000 10 64

Github >1000 1000 30 32
Enron Emails 1957 1957 30 64

EuroParl 290 290 200 32
PhilPapers 132 132 500 64

Ubuntu IRC 43 43 500 32

C. Pile Dataset Segmentation
We present the details for the configurations of Pile subset in Table A2. We note that, it is claimed that the following Pile
subsets may have copyright issues and cannot be included for evaluation: Books3, OpenWebText2, Gutenberg (PG-19),
OpenSubtitles. BookCorpus2, and YoutubeSubtitles. For most subset there are documents that are much longer than the
other documents, which causes that too many snippets are sample from these documents if all snippets are used. Therefore,
we set a maximum snippet for each document on each subset according to the median lengths of the documents. Also, we
note that our approach can achieve good performance on most subsets with only 32 tokens. For certain subsets, we use
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a token length of 64 for a stronger membership signal. The average token number for the Pile subset is 45. In practical
applications, we suggest choosing the token numbers when the text-classifier has the minimal AUC to avoid distributional
shift as much as possible. As a more conservative approach, this avoids making false accusations of copyright violation.

D. Implementation Details
D.1. Generator

The LoRA rank for the generator is 32. The generator is trained for 100 epochs, and the learning rate is set to 2× 10−4. We
set a warm-up ratio of 0.03, and a linear scheduler is used to dynamically adjust the learning rate.

D.2. Text and Combined Classifiers

For both the text and the combined classifier, we leverage the basic architecture of the GPT2 classfier with an extra linear
layer. Specifically, the classifier has only two layers, with an embedding dimension of 1600 and an attention head number of
25. The GPT2-based classifier is optimized for 20 epochs, and the linear layer is further optimized for 200 epochs.

E. Examples of Synthetic Texts
In this section, we provide some examples of the synthetic texts on the Pile dataset. Here, prefix denotes the first half of
the generated text, real suffix refers to the original suffix of the natural text, and generated suffix refers to the synthetic
completion based on the prefix. We observe that, the generated suffixes are reasonable continuation of the prefixes. The
generated suffixes also align with the style of each dataset and do not overfit to the content of the real suffixes.

E.1. Pile-CC

Prefix:

are excited about and also what we hoped to see from this years E3!

Real suffix:

From the surprising new Spider-Man PS4 game to the bizarre We Happy Few and

Generated suffix:

Let us know your thoughts on this monologue as we are preparing for our next

E.2. StackExchange

Prefix:

var FKEntityListWithCastCopy = new debiteur().GetType().GetProperty(\""

Real suffix:

schakeling\").GetValue(dbEntry) as List<FKEntity>;//Just

Generated suffix:

FKEntityList\").GetValue(instance, null);\n foreach(var t in FKEntity

E.3. PubMed Abstracts

Prefix:

were calculated using the Kaplan-Meier method. Of the 117 patients in

Real suffix:
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whom data were analyzed, 103 had follow-up MR or CT images and 14 patients were

Generated suffix:

the study (76 with UC and 41 with DC), 45 patients required proctocolic resection

E.4. Wikipedia (en)

Prefix:

Em is going away for a while. While it’s not up to the standard

Real suffix:

of "Mockingbird," it is more fully realized than the two other new

Generated suffix:

of their three previous albums, cattle call is still an enjoyable romp,

E.5. USPTO Backgrounds

Prefix:

1. Field of the Invention\nThis invention relates to a storage device for
athletic equipment and, in particular, to a portable storage device for
transporting and retaining

Real suffix:

elongate items of athletic equipment such as hockey sticks and related athletic
equipment.\n2. Discussion of Related Art\nNumerous team athletic activities
require individual players on the

Generated suffix:

multiple pairs of basketballs.\n2. Description of the Related Art\nDuring the
summer and other periods when there is an extended break from an athletic
school or program

E.6. PubMed Central

Prefix:

example, both cycles apply Lewis acidic metal centers to bind the monomers (ep

Real suffix:

oxide or lactone), and both invoke labile metal alkoxide intermediates as

Generated suffix:

oxides or cyclic carbonates), but the axes of the metallacycle in

E.7. FreeLaw

Prefix:

Court, 638 P.2d 65 (Colo.1981
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Real suffix:

Here, the juvenile court denied the GAL’s motions because it did not want

Generated suffix:

), cert. denied, 454 U.S. 1146, 102

E.8. Arxiv

Prefix:

up and vice versa. In contrast, fundamentalists expect the price to track its

Real suffix:

fundamental value. Orders from this type of agent may be written as\n\n$$D

Generated suffix:

underlying fundamentals up and down, but given sufficient acceleration the price
might \u201crun away

E.9. NIH ExPorter

Prefix:

attachment and growth, respectively. Together with an industrial sponsor, Vaxiron
,

Real suffix:

Inc., we will develop quality control tools and metrics for assessing vaccine
antigen formulations,

Generated suffix:

the applicant has carried out clinical trials of different vaccine candidates
based on different viruses for

E.10. Github

Prefix:

.string \"reach only by using a BIKE technique.$\"\n\nRoute110_Text_

Real suffix:

16EEF6:: @ 816EEF6\n\t.string \"Which

Generated suffix:

16F381:: @ 816F381\n\t.string \"ROUTE {ROAD

E.11. Enron Emails

Prefix:

Lay. He went on to say that Kenneth was Dewayne Re
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Real suffix:

es’ cousin and started telling about all of your fine attributes and what a

Generated suffix:

ams’ direct \nreport and that it would be extremely difficult for Kenneth to get

E.12. EuroParl

Prefix:

het mondeling amendement op schrift heeft gekregen.\nIk st

Real suffix:

el voor om niet te spreken over \"de Raad en de lidstat

Generated suffix:

akk voor de uitnodiging om tijdens uw volgende bij

E.13. PhilPapers

Prefix:

distribute well among [the gods who fought with him] their titles and privileges

Real suffix:

" (885, cf. 66\u201367 and 74); to swallow

Generated suffix:

(17.1). Orderly distribution of praise for the victory is re

E.14. Ubuntu IRC

Prefix:

about setting up reoccuring status meetings?\n<dfarning> should we start

Real suffix:

holding those or is it too soon?\n<dfarning> Luke will be joining

Generated suffix:

with a status meeting or a design meeting?\n<manusheel> dfarning

E.15. HackerNews

Prefix:

Angular (work just uses Dojo).\n\nPeople don’t seem to

Real suffix:

be hungry here.\n\n------\nlewispollard\nWorked for IBM as a software engineer on
one of

Generated suffix:

care that it’s adding yet another ˜20KB per page. We’re\nsaying no
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F. Other Finetuning Configurations for Single Author Dataset
We evaluate our proposed approach on the single author dataset under different finetuning settings in Table A3. The results
show that, the membership signal is stronger with more iterations or larger parameter size, and therefore easier to detect.

Table A3. Results for different fine-tuning methods. True represents the true membership while Inferred denotes the inferred membership.
Our generation is successful if these two align.

Fine-tuning Method True AUC Text AUC Comb P-value Inferred(%) (%)

LoRA ✓ 53.8 55.6 0.01 ✓
(1 epoch) ✕ 53.8 53.9 0.13 ✕

LoRA ✓ 53.7 56.2 0.005 ✓
(10 epochs) ✕ 53.6 53.5 0.14 ✕

Full- ✓ 53.7 56.8 0.008 ✓
finetuning ✕ 53.8 53.7 0.21 ✕

G. Results on the OLMo Model
We conduct the experiments to analyze the performance with OLMo-7B (Groeneveld et al., 2024). The OLMo-7B model is
trained on the Dolma V.1.7 dataset (Soldaini et al., 2024), which serves as our member set. Following Duan et al. (2024),
we employ Paloma (Magnusson et al., 2024) as the non-member set. The results in Table A4 demonstrate that our method
successfully detects both member and non-member sets for Wikipedia and Common Crawl subsets when using the OLMo-
7B model as the target model.

Table A4. Results for OLMo-7B on different data subsets. True represents the true membership while Inferred denotes the inferred
membership. Our generation is successful if these two align.

Subset True AUC Text (%) AUC Comb (%) P-value Inferred

Wikipedia ✓ 52.9 55.4 0.009 ✓
✕ 52.1 50.6 1.0 ✕

Common Crawl ✓ 53.5 55.7 0.01 ✓
✕ 54.2 53.8 0.68 ✕

H. Ablation Studies on Single Author Dataset
Besides the ablation studies on the Pile presented in Appendix H.1, we also perform the ablation studies on the single
author dataset. The results in Table A5 follow a similar trend to the Pile, showing the importance of each component in our
framework.

Table A5. Results for different configurations. True Membership represents the true membership while Inferred Membership denotes the
inferred membership. Our generation is successful if these two align.

Configuration True Membership P-value Inferred Membership

w/o Suffix Completion ✓ 1.0 ✕
(ICL Paraphrasing) ✕ 1.0 ✕

w/o Post-hoc Calibration ✓ <0.001 ✓
(Original T-test in DI) ✕ <0.001 ✓

Ours ✓ 0.01 ✓
✕ 0.13 ✕
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H.1. Ablation on Post-hoc Dataset Inference

We conduct ablation studies to separately analyze the contribution of the three components in our held-out data generation:
suffix completion and post-hoc calibration.

Suffix Completion. As presented in Table 2, our proposed sequence completion scheme can synthesize held-out texts with
a distribution much more similar to the suspect texts when compared with the baseline methods. In addition to the AUC
results, we also show that the baseline generation methods cannot produce reliable held-out sets even when combined with
our post-hoc calibration and weight constraint in Table A6. In particular, we replace our generation scheme with three
baselines, including ICL paraphrasing, ICL text completion, and preference optimization. The p-values are presented as
Setting 1-3. We also remove two key designs in our generation method, 1) Segment and Shuffle, and 2) Suffix Comparison,
as shown in Setting 4-5. In all the above settings, the p-values for both member and non-member sets are 1.0, which indicates
that the ctext has better or similar performance when compared with ccomb. The reason behind the observation is that the
distributional shift caused by the generation is much larger than the shift induced by the membership signal, such that ccomb
does not outperform ctext even with extra membership inputs on the member set. Consequently, the DI predicts both sets as
non-member and suffers from false negatives.

Post-hoc Calibration. We replace our calibration method with the original DI without calibration, as shown in Setting 6 of
Table A6. Specifically, only a linear classifier is optimized to aggregate different MIA metrics and output the final prediction
score. Furthermore, the t-test is conducted directly between the predictions on the target set and the ones on the held-out set.
We observe that the p-values under this condition are extremely low for both member and non-member sets, and DI has false
positive in this case. This observation aligns with results in Section 3, where we show that even a small distributional shift
causes a significantly small p-value in the original DI. Therefore, our post-hoc calibration approach is crucial to evaluating
the distributional shift caused only by membership signals.

Table A6. Ablation studies of our approach. Setting 1-3: replacing our generation method with baselines. Setting 4-5: removing key
designs from our generation method. Setting 6: without post-hoc calibration. Setting 7: our complete method.

Setting Configuration True P-value Inferred
Membership Membership

1 w/o Suffix Completion ✓ 1.0 ✕
(ICL Paraphrasing) ✕ 1.0 ✕

2 w/o Suffix Completion ✓ 1.0 ✕
(ICL Text Completion) ✕ 1.0 ✕

3 w/o Suffix Completion ✓ 1.0 ✕
(Preference Optimization) ✕ 1.0 ✕

4 w/o Segment and Shuffle ✓ 1.0 ✕
✕ 1.0 ✕

5 w/o Suffix Comparison ✓ 1.0 ✕
✕ 1.0 ✕

6 w/o Post-hoc Calibration ✓ <0.001 ✓
(Original T-test in DI) ✕ <0.001 ✓

7 Ours ✓ <0.001 ✓
✕ 1.0 ✕

I. Analysis of Hyperparameter Sensitivity
We conducted a comprehensive analysis of hyperparameter sensitivity, focusing on two key parameters: the number of
epochs and the number of t-test samples. The number of epochs represents the training epochs for our linear model that
aggregates MIA scores. The number of t-test samples indicates the total sample size used in our statistical analysis, including
both the suspect and synthetic held-out sets. Our experimental results in Table A7 demonstrate that our proposed method
exhibits robust performance across a wide range of values for both hyperparameters, indicating low sensitivity to these
configuration choices.
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Table A7. Performance of our method across different numbers of epochs and T-test samples.

Hyperparameter Value True membership P-value Inferred membership

Number of Epochs

100 ✓ <0.001 ✓
✕ 1.0 ✕

200 ✓ <0.001 ✓
✕ 1.0 ✕

500 ✓ <0.001 ✓
✕ 1.0 ✕

1000 ✓ 0.003 ✓
✕ 1.0 ✕

Number of T-test Samples

1000 ✓ <0.001 ✓
✕ 1.0 ✕

2000 ✓ <0.001 ✓
✕ 1.0 ✕

3000 ✓ <0.001 ✓
✕ 0.41 ✕

4000 ✓ <0.001 ✓
✕ 0.25 ✕

Table A8. The AUC of different classifier architectures.

Architecture AUC Text Training Time

all-MiniLM-L6-v2 50.8 0.3
BERT 51.2 2.0

Llama3-8B, Pre-trained+LoRA 53.2 65.1
GPT2, Pre-trained+LoRA 53.0 26.2

GPT2, Pre-trained+Full Finetuned 52.3 36.8
GPT2, 2 Layers+Initialized 53.3 0.5

J. Other Related Works about Test Set Contamination Detection
Test set contamination is a newly identified risk, where the public test benchmarks are involved during LLM training
(Balloccu et al., 2024). For example, Roberts et al. (2024) observe that LLMs are better at generating code with more
appearances on GitHub, revealing that LLMs can be contaminated with open-source GitHub data and are overestimated
on coding tasks. Similarly, Li & Flanigan (2024) demonstrate that some LLMs have a better performance on few-shot
benchmarks constructed before the model training, which indicates test set contamination for LLMs. To detect test set
contamination, Golchin & Surdeanu (2023) design prompts that guide LLM to reproduce exact or near-exact test set
instances, such that the model encloses the contaminated samples memorized during the pre-training phase. Oren et al.
(2024) compare the target model predictions between a test set and all of its permutations. However, this method is based on
the assumption that the test set is involved in the training set in its exact order, which could be interrupted by a random
shuffle before training. Test set contamination can also be a potential application of our method, as the proposed approach
can perform training data detection on complex datasets composed by different authors.

K. Analysis of Sample Size
We also set out to analyze how the sample size in our proposed t-test affects the statistical confidence of DI with our
generated held-out data. Here, the sample size is the total number of the suspect and held-out set, which is also the number
of queries made to the target model. The two sets are of the same size, as they are produced in a pairwise manner. We
observe from Figure A1 that, as the number of samples increases, DI exhibits improved detection capability of training data.
Notably, with fewer than 1,000 samples, DI achieves statistical significance (p < 0.05) across most of the evaluated datasets.
When increasing the sample size to 2k queries, the method demonstrates even stronger statistical significance (p < 0.01)
consistently across all datasets.
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Figure A1. The p-values of member sets with change in sample size. MedianDataset denotes the median p-value of different datasets, and
MeanDataset is the maximum p-value of all subsets. Number of samples refers to the total size of both suspect and validation sets.

L. Choice of Classifier
We explore different text classifier backbones and chose the simple 2-layer GPT2-based classifier as our text classifier.
Considering the limited number of tokens provided by the author in the DI scenario, stronger text classifiers, such as Llama
and full GPT2 architecture can be easily overfitted, especially for SoTA LLM-based text classifiers. We present the results
for different architectures with different parameter sizes in Table A8. The results show that the simple GPT2-based classifier
with 2 layers and trained from scratch can achieve the best AUC in our experimental settings. Additionally, this simple
classifier has a significantly shorter training time, making the method more practical when faced with more queries. In
real-world applications, an arbitrator can select the most suitable text classifier based on their specific conditions regarding
data size, data type, and computation resources.

M. Visualization of DI on Single Author Data
In Section 3, we show that there is a distributional shift between the non-member data and held-out data, even for texts
composed by a single author. Here, we show this distributional shift in texts also lead to a shift in the MIA score. As
presented in Figure A2, the distributional shift in perplexities exists not only between member and held-out sets, but also
between non-member and held-out sets. This shows that the inherent distributional shift among documents is entangled with
the shift caused by membership signals in the MIA score, and makes DI fail to determine membership by simply detecting
any distributional shift in the MIA score.
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Figure A2. Probability distribution function of target model perplexities on different sets. We show the comparison between (a) the
member and held-out, and (b) the non-member and held-out sets.
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N. Algorithm of Our Work
We present the detailed algorithms for our held-out data generation in Algorithm 1, and post-hoc calibration in Algorithm 2.

Algorithm 1 Held-out Data Generation

Require: Documents Doc = {Doc1, ..., Docm}
Require: Hyperparameters: Document number m, Maximum sequence in each document MaxSeq
Ensure: Suspect set Dsus and held-out set Dval are nearly IID

1: Initialize: Seq,Dsus,Dval = {}, {}, {}
2: for each document doci ∈ Doc do
3: Segment doci into multiple sequences {seq1i , ..., seq

mi
i }

4: if mi < MaxSeq then
5: Seqi = {seq1i , ..., seq

mi
i }

6: else
7: Seqi = randomly sampled MaxSeq sequences from {seq1i , ..., seq

mi
i }

8: end if
9: Seq = Seq ∪ Seqi

10: end for
11: Randomly split Seq into generator training set Seqtrain and generator inference set Seqtest
12: Optimize generator g on Seqtrain with next-token prediction loss
13: for each seqi ∈ Seq do
14: prei, sufi = Divide(seqi)
15: suf ′

i = g(prei)
16: Dsus = Dsus ∪ {(sufi, 0)}
17: Dval = Dval ∪ {(suf ′

i , 1)}
18: end for

Algorithm 2 Post-hoc Calibration

Require: Target model f
Require: Suspect set Dsus and held-out set Dval are nearly IID.

1: Randomly split Dsus into suspect training set Dtrain
sus and suspect test set D test

sus
2: Randomly split Dval into held-out training set D train

val and held-out test set D test
val

3: Optimize a text classifier ctext(x) on Dtrain
sus ∪ D train

val
4: Optimize a combined classifier ccomb(x,MIA(f(x))) on Dtrain

sus ∪ D train
val

5: Ddiff
text = {}

6: Ddiff
comb = {}

7: for xtest
sus , x

test
val ∈ D test

sus ,D test
val do

8: Ddiff
comb = Ddiff

comb ∪ {ccomb(x
test
val ,MIA(f(xtest

val )))− ccomb(x
test
sus ,MIA(f(xtest

sus )))}
9: Ddiff

text = Ddiff
text ∪ {ctext(xtest

val )− ctext(x
test
sus )}

10: end for
11: Compare and Ddiff

comb and Ddiff
text with t-test
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