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Abstract: For everyday service robotics, the ability to navigate back and forth
based on tasks in multi-subscene environments and perform delicate manipula-
tions is crucial and highly practical. While existing robotics primarily focus on
complex tasks within a single scene or simple tasks across scalable scenes indi-
vidually, robots consisting of a mobile base with a robotic arm face the challenge
of efficiently representing multiple subscenes, coordinating the collaboration be-
tween the mobile base and the robotic arm, and managing delicate tasks in scalable
environments. To address this issue, we propose Target-driven Multi-subscene
Mobile Manipulation (TaMMa), which efficiently handles mobile base movement
and fine-grained manipulation across subscenes. Specifically, we obtain a reliable
3D Gaussian initialization of the whole scene using a sparse 3D point cloud with
encoded semantics. Through querying the coarse Gaussians, we acquire the ap-
proximate pose of the target, navigate the mobile base to approach it, and reduce
the scope of precise target pose estimation to the corresponding subscene. Opti-
mizing while moving, we employ diffusion-based depth completion to optimize
fine-grained Gaussians and estimate the target’s refined pose. For target-driven
manipulation, we adopt Gaussians inpainting to obtain precise poses for the origin
and destination of the operation in an imagine before you do it manner, enabling
fine-grained manipulation. We conduct various experiments on a real robotic to
demonstrate our method in effectively and efficiently achieving precise operation
tasks across multiple tabletop subscenes.

Keywords: Multi-subscene, 3D Gaussians, Scene Inpainting, Target-driven Mo-
bile Manipulation

1 Introduction

It is common and highly practical for robotics to perform everyday tasks with cross-subscene mo-
bility and fine-grained manipulation in a scalable environment. Handling compositional tasks is
especially challenging. For example, robotics may be required to pick up a cup from one table and
place it on another, pour water from a bottle in one location into a cup in another, collect cups from
various tabletops and organize them on a cup rack, or tidy up multiple surfaces. However, existing
robotics mainly focus on complex tasks in a single scene [1, 2, 3, 4] or simple tasks in a scalable
scene [5, 6, 7, 8, 9] individually. Previous successful works [10, 8, 9, 11, 12, 13] often relied on
Large Multimodal Models (LMMs) for scene perception and action planning, laying the ground-
work for accomplishing long-horizon tasks. Nevertheless, due to a lack of further refinement of
3D scenes and their action planning often being in the form of policies, their generalization ability
to scenes is relatively weak, leading to low success rates in various compositional tasks. Works
like [5, 14] have also employed iterative search through building 3D scene graphs to accomplish
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Figure 1: Our proposed multi-subscene mobile manipulation approach. Coarse scene prior and re-
fined pose estimation empower the mobile base movement and robotic arm manipulation effectively
and efficiently on compositional challenging tasks such as pouring, stacking, and tidy-up.

tasks across multiple subscenes. However, the computational resources and manpower required for
this approach are substantial. It is essential to research a method that can construct unstructured 3D
subscenes and execute precise manipulations to handle compositional tasks efficiently.

For the sake of generality and simplicity, we assume the robotics structure is conducted with a
robotic arm leveraging on a mobile base. To tackle cross-subscene compositional target-driven mo-
bile manipulation tasks, robotics need the following properties: (1) Represent precise multiple sub-
scenes in a unified space. In such multi-subscenes, it is impractical to achieve cross-subscene tasks
with observation through a single camera, ignoring the environmental prior knowledge. (2) Collab-
orate the mobile base with the robotic arm. The end-to-end robotic learning pipeline is not ready
to solve delicate cross-subscene tasks due to the challenge of generalizing to different scenes and
hardware. (3) Obtain precise pose for target manipulation. To achieve compositional target-driven
mobile manipulation in a scalable scene, estimating a fine-grained 6 Degree-of-Freedom(DoF) pose
is equally significant besides representing the whole scene.

To effectively represent 3D scenes and obtain the pose of target objects, the distilled feature
fields(DFFs) like works[15, 16, 17, 18, 19, 20, 21] have recently been proposed to model 3D scenes
with implicit representations by distilling 2D features to 3D, enabling scene content querying and
interaction. However, these approaches suffer from (1) the requirement of sufficient views to train
the feature field, (2) the disability to perform complex tasks such as pouring liquids or stacking, (3)
the lack of generalizability for tasks across multiple sub-scenes, and (4) the disability to model en-
vironmental changes caused by manipulation. At the same time, 3D Gaussian Splatting(3DGS)[22]
is proposed as a highlight approach with real-time processing capability that enables scene editing.
The application of diffusion-based strategies has achieved promising results [23, 24, 25], demon-
strating its few-shot reconstruction and scene completion ability. Recently, InFusion[26] proposed
using diffusion priors for 3D Gaussians editing. While the 6 DoF pose of targets serves as a powerful
guide for precise manipulation, these approaches enable the possibility of representing and editing
scenes efficiently in a scalable scene to get a refined target pose at the origin and destination.

In this paper, we propose TaMMa to realize cross-subscene fine-grained target-driven mobile manip-
ulation. Our approach leverages scene priors to facilitate mobile movement and simplify subsequent
pose optimization. We employ a diffusion-based 3D Gaussian completion and inpainting technique
to obtain the refined target pose for manipulation. Specifically, we first scan only a few posed
RGB-D frames of each subscene and unproject them to a sparse 3D point cloud to initialize the
3D Gaussians. Grounded-Light-HQ-SAM[3] is introduced to extract queries and encode semantics
following [27, 28] into Gaussians, which can be queried to provide a coarse pose of the manipula-
tion target. This coarse pose serves as a prior, deciding which subscene the target belongs to. The
robotic base is then navigated to approach the target, and the scope of fine-grained pose estimation is
narrowed down to the related subscene. Simultaneously, the diffusion-based depth completion and
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Figure 2: The pipeline of our proposed cross-subscene mobile manipulation method. RGB-D se-
quences with camera poses are used for point cloud unprojection, which initializes the Gaussians.
Grounded-Light-HQ-SAM[3] is employed to encode semantics for Gaussians and depth comple-
tion. The coarse Gaussians provide a scene prior to mobile base navigation; further, a fine-grained
manipulation target pose is optimized from completed and inpainted Gaussians with an object mask.

Gaussian refinement are processed, and a precise pose is optimized from the refined Gaussians and
target inpainting for fine-grained manipulation. The method pipeline is shown in Fig. 2.

In summary, our contributions are as follows: (1) To facilitate robotics in performing everyday
tasks, we propose TaMMa, showing showcases cross-subscene compositional target-driven mobile
manipulation ability efficiently and effectively. (2) By fusing scene-level priors from roughly re-
constructed 3D Gaussians and precisely optimized target pose from diffusion-powered Gaussians
completion and inpainting, TaMMa realizes cross-subscene movement and manipulation with insuf-
ficient observations in a sophisticated environment. (3) We conduct various experiments on Franka
Panda arm with a mobile base, evaluating the availability of the 3D Gaussians reconstruction and
refinement, the scene inpainting, and the fine-grained cross-subscene manipulation.

2 Related Works

3D Scene Reconstruction. To obtain accurate object poses for robotic manipulation, it is neces-
sary to model the 3D scene with sufficient geometric and semantic information. Neural radiance
field(NeRF)[29], as a highly prominent work in scene reconstruction, has attracted significant at-
tention since its proposal, encouraging impressive works[30, 31, 32, 33, 34, 35]. Recently, DFF
approaches[15, 16, 17] distilled features into a 3D implicit feature field, achieving a unified 3D fea-
ture representation. However, they fall short in the requirement of sufficient views, the disability
to perform complex tasks, the lack of generalizability for multiple sub-scenes, and the disability to
model environmental changes. On the other hand, 3D Gaussian Splatting[22] has gained widespread
attention due to its promising reconstruction results and fast training process. However, the recon-
struction performance of 3D Gaussians heavily relies on the initial points obtained from Structure
from Motion(SFM)[36]. Inadequate initialization can lead to overfitting on training observations.
InFusion[26] employed depth completion learned from diffusion models, demonstrating that with a
learned depth inpainting model, the placement of initial Gaussian points can be refined obviously.
These works showcase the possibility of completing and inpainting the scene representation with
inadequate observations of a scalable scene.

Depth-only Pose Estimation Preliminaries. Obtaining the 6-DoF pose of objects serves as a pow-
erful guide for executing precise robotic manipulation. We have made some extensions to the ex-
isting pose estimation methods [37, 3, 38] based on grounded visual perception, which can handle
common tabletop-level category objects. The extended method relies solely on depth map inputs and
aligns shapes using the queried mask with template classes, enabling pose estimation adaptable to
unstructured settings. In real-world robotic perception, the quality of point clouds obtained from typ-
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Figure 3: The comparison of depth completion effects. (a) is the raw depth shot by RealSense
camera. (b) is the diffusion-based completed depth. Pose estimation in (c) is conducted on the
raw depth, and in (d), it is leveraged on the depth from completed Gaussians. (e) shows the initial
Gaussians and (f) shows the Gaussians fine-tuned by diffusion-completed depth.

ical depth cameras is often unsatisfactory, making depth estimation challenging for semi-transparent
and highly reflective metallic objects. This significantly limits depth-based pose estimation models.
In this work, we further harness the ability of latent diffusion models (LDMs) [24, 39, 25] to com-
plete depth and enhance real-world pose estimation by optimizing the depth map.

Target-driven Mobile Manipulation. Target-driven mobile manipulation (TDMM) has emerged as
a critical area in robotics, aiming to enhance the capabilities of robotics in complex environments.
The primary goal of TDMM is to enable mobile robotics to navigate and interact with objects to
achieve specific tasks or targets, often in unstructured settings. This requires a synthesis of advanced
techniques in visual perception, navigation, and manipulation [40]. Such synthesis presents numer-
ous challenges. First, target-driven manipulation requires a fine-grained perception of the interactive
scene and continuous guidance of robotic manipulation through foreseeable goals. CLIP-Fields [41]
proposed a neural field which can be queried for mobile movement. Previous work [5, 14, 6, 42] has
integrated global and local perception information through 3D scene mapping, providing executable
plans for mobile manipulator robotics. Although some existing real-world scene maps from these
works can understand and represent the environment, they are often structured. Xiong et al. [43] pro-
posed an adaptive learning framework to tackle realistic articulated object operation. These works
mainly present two issues: 1. The mapping process of the task space is time-consuming; 2. It fails
to meet the needs for fine-grained scene updates. Second, mobile manipulation tasks often require
the integration of navigation and actions to provide target-oriented sequences. Benefiting from the
emergent capabilities of large language models (LLMs) in long-horizon planning [44, 45, 46], some
works have decomposed mobile manipulation into a series of atomic tasks. However, they have not
adequately considered the affordance of real-world objects, resulting in low accuracy in achieving
the goals. On the other hand, imitation learning from human demonstrations has shown impressive
performance in robotics. Works like MOMA-Force[47], TeleMoMa[48], Mobile-ALOHA[49], and
[50] employed behavior cloning on solving mobile manipulation tasks. However, data collection
and demonstration selection which rely on complex human labor remain a problem. In this work,
we address these challenges by integrating 3D Gaussians and category-level depth-only pose estima-
tion algorithms and focusing on the environment and object representations. Additionally, we edit
scenes via 3D Gaussian inpainting, providing operational targets that can be utilized across different
scenes.

3 Method

3.1 Formulation and Overview

Problem Formulation Given an unstructured environment with multiple subscenes S =
{s1, s2, . . . , sm}, we aim to achieve a cross-subscene instruction T of the target task leveraging on
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a mobile base and robotic arm with a set of color images I = {Ii}ni=1, depth images D = {Di}ni=1

and relative poses P = {Pi}ni=1 as input. To be specific, first, a whole scene representation

θ = F (I,D,P) (1)

is needed to serve as the scene knowledge memory for querying the target object because the multi-
subscene environment is too big to be perceived through the observation of a single view. Then, a
pose estimation method is required to obtain the manipulation target object’s pose

p = G(t, θ), (2)

where t is the extracted query from T . Furthermore, to model the changes in the scene, a scene
editing method is needed to update the scene representation

θ′ = H(θ, T ). (3)

To enable a robotic with the ability to reconstruct and inpaint the scene and apply fine-grained
manipulation across subscenes, the following properties are required.

Understanding of the whole environment and each subscene. For an unstructured environment
with multiple subscenes, prior knowledge of the whole scene and a detailed understanding of each
subscene is vital for tasks across subscenes. Given a set of images I with depths D and corre-
sponding camera poses P , an entire 3D scene can be reconstructed using 3D Gaussians θ. Depth
and pose input are utilized to get a reliable initialization of Gaussians θinit with semantics encoded
following[3, 27]. Moreover, by incorporating diffusion priors into estimating the depth images, the
missing observation regions and regions that are inaccurate from depth camera shots can be com-
pleted. The refined depth D′ can be unprojected to a fine-grained point cloud and, together with θinit,
can be fine-tuned to form precise Gaussians θ.

Imagine before you do it. For precise manipulation across subscenes, the robotic needs accurate
poses of the origin and destination of target objects. Scene inpainting allows for making desired
changes to the scene in a manner similar to imagination. For example, in tasks like pick-and-place,
by inpainting the scene to remove the object from its original position pori and add it to the intended
destination pdest, the robotic can acquire a precise pose for picking up and placing the object and
obtain updated 3D Gaussians θ′.

Moving while optimizing. Cross-subscene manipulation tasks involve both the mobile base move-
ment and robotic arm manipulation. However, optimizing the precise pose of the target in the un-
structured scalable scene often takes time. An efficient approach is to navigate the robotic to the
vicinity of the target position using a roughly estimated coarse pose pc. During the robotic’s move-
ment, a fine-grained pose pf can be further optimized in a narrowed-down subscene region. This
two-step process allows for a more time-efficient execution of the task, during which pc can be ob-
tained by querying the above-mentioned initial Gaussians θinit and the fine-grained pose pf can be
obtained from fine-tuned and inpainted Gaussians θ′.

3.2 Multi-subscene Gaussians Reconstruction and Refinement

The effectiveness of using 3D Gaussians as a 3D scene representation heavily relies on the allocation
of initial points[51]. To get a reliable initialization θinit, we unproject the depth maps D to 3D space
with poses P . However, directly using depth captured by cameras may lead to inaccurate values,
especially for objects at the visual edges and for reflective or translucent objects. What’s more, it’s
often hard to get sufficient observation of a multi-subscene environment, which leads to missing
views of some partials. To address this issue, we employ diffusion-based depth completion to obtain
more accurate depth for fine-tuning the initial Gaussians. Fig. 3 shows the visualization results.

The diffusion-based depth completion process takes a set of RGB image I , depth image D, and
an object mask M of the target region as input. The mask M indicates regions that need to be
refined. In our approach, Grounded-Light-HQ-SAM[3] is employed as the segmentor to produce
M . A pre-trained Variational Auto-Encoder(VAE) E and a U-Net-like[52] denoiser U are employed
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Figure 4: The inpainting process of Gaussians is shown in (a). The color image is inpainted fol-
lowing SDXL[25], and with the target mask, the depth value in the mask is updated by employing
diffusion policies. The Gaussians are updated with inpainted color and depth images consequently.
(b) compares the training views of Gaussians for each subscene. It can be seen that only 20 views
can reconstruct Gaussians well enough.
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Figure 5: (a) compares the initialization method. It can be seen that more accurate Gaussians can
be obtained by leveraging fewer optimization iterations with the 3D point cloud initialization than
random initialization. (b) shows the inpainting results on the fine-grained Gaussians.

in the diffusion process. Firstly, the depth D is normalized and repeated to form a 3-channel input
D′, together with I , it is encoded by VAE to embeddings eD′ and eI . The encoded depth embedding
is further noised with etD′ = αte + θtϵ. The mask M is also down-sampled to match the encoded
embeddings as M ′. Consequently, the noised embeddings at step t can be denoted as

et = {etD′ , eD′ ⊙M ′, eI ,M ′}. (4)

The loss function of the diffusion process can be denoted as

L = Et||ϵ− U(et)||2, (5)

where t ∈ {1, 2, . . . , T} is the diffusion steps. The process is optimized following the DDPM[39]
strategy. After completion, the depth D′ is unprojected to 3D, and together with θinit, is fine-tuned
to get the refined Gaussians θ with several iterations’ optimization.

3.3 Scene Inpainting for Manipulation Imagination

Precise manipulation in the multi-subscene environment needs fine-grained object pose on the ori-
gin and destination. Taking the pick-and-place task as an example, the pose of pick targets can be
obtained by direct estimation. However, for the placement target, it’s hard to get an accurate pose
straightforwardly. To address this, we propose an “imagine and do it” approach. We inpaint the
target object into the destination subscene and estimate the pose of the inpainted object as the place-
ment pose. Simultaneously, we erase the object at the origin pose and update the related subscenes.
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Specifically, to inpaint the changes in the environment, we select a set of reference views vs in
subscene s for inpainting. Firstly, the depth Dvs can be obtained from the Gaussians θ. The color
image Ivs inpainting is processed using an SDXL-based[25] model Ĩvs = SDXL(Ivs

⊙Mvs), and
the depth image is completed as mentioned above

D̃vs = C(Dvs , Ĩvs ,Mvs), (6)

where C is the depth completion process. The loss function is conducted as

Lvs
= λ1||I ′vs − Ĩvs ||1 + λ2 ·DSSIM(I ′vs − Ĩvs), (7)

where I ′vs is the rendered RGB and λ1 and λ2 is the loss weight.

3.4 Coarse-to-fine Pose Refinement for Mobile Manipulation

Scene Knowledge Prior. In environments with multiple subscenes, the mobile base needs to move
back and forth within the scene to collaborate with the robotic arm in completing tasks. However,
optimizing the precise pose for robotic arm operations in the whole scene can be time-consuming.
It would be highly inefficient to wait for all optimizations done before taking any movement. As
mentioned earlier, a rough pose can be obtained by querying the initial Gaussians θinit for the mobile
base to approach the target within the reachable range of the robotic arm. Moreover, based on the
retrieved pose, the range of optimization can be narrowed down to the relevant subscene.

Depth Completion Empowered Fine-grained Pose Estimation. Depth values obtained from depth
cameras can be inaccurate for pose estimation, especially at the camera’s edges or in regions with
translucent or reflective objects. Additionally, there may be missing or insufficient observations in
certain partials during the entire scene capture process. The depth-completed Gaussians θ can be
projected onto the queried views from coarse poses for more precise estimation, as shown in Fig. 3.

4 Experiments

Views
Render and Compare Inpainting
Deviation Speed Deviation Speed

View1 1.26 10.8 0.72 18.2
View2 1.55 11.2 0.80 17.7
View3 1.47 10.9 0.68 18.1

Table 1: Comparison of the render-and-
compare and inpainting method on the scene
editing task. The average pose Deviation is
evaluated in cm and optimization speed is
evaluated in Hz of each subscene. View 1∼
3 are sampled from 3 subscenes.

Methods Pick & Place Stack Pouring Tidy-up
F3rm[2] 5/10 2/10 0/10 1/10

HomeRobot[6] 5/10 4/10 1/10 2/10
Ours* 8/10 5/10 3/10 5/10
Ours 9/10 7/10 5/10 7/10

Table 2: Comparison of success rate on tasks across-
subscene. Evaluation is conducted on various chal-
lenging tasks. To enable F3rm[2] and HomeRobot[6]
with cross-subscene ability, we fine-tuned them to re-
construct the subscenes in an aligned space for given
tasks. ‘Ours*’ stands for using Gaussians not refined
by completed depth.

Experiments Setups We collect RGB-D images with a RealSense D435 camera mounted on a
Franka Panda arm with a movement base. For each subscene tabletop, we scan 20 images with a
resolution of 640× 480, and we set three tables at a distance from each other as multiple subscenes
in our environment. Additionally, we take 2 ∼ 3 images of the whole scene far from three tables to
get a good visualization. The scans are set surrounding the tabletop without a fixed trajectory. Our
models and real-world robotic experiments are trained and run on an Nvidia RTX 3090 GPU.

Multi-subscene Reconstruction We conduct experiments comparing Gaussian initialization, show-
ing that reliable coarse Gaussians can be obtained with the unprojected 3D point cloud initialization.
Fig. 5 shows the comparisons. On the other hand, the reconstruction of an unstructured scalable
scene typically demands extensive observations. However, our coarse-to-fine approach, coupled
with the diffusion policy, significantly reduces the required number of sample views. The compara-
tive results depicted in Fig. 4 demonstrate that even with just a few input views, each subscene can
be reconstructed well.

7



Pick & Place

Pouring

Stack

Tidy-up

Figure 6: Examples of cross-subscene tasks which can be applied by our proposed method. We
demonstrate the ability to process tasks like stacking, pouring, and rearranging.

Target Driven Scene Inpainting. For manipulation across subscenes, estimating the target object’s
origin and destination position is of great significance. To demonstrate the effectiveness of inpaint-
ing, we compare it with a straightforward approach that directly optimizes the 3D Gaussians and
renders the resulting RGB image to compute a rendering loss. The results are shown in Tab. 1. It
can be seen that with Gaussians inpainting in the 3D space, the pose deviation and optimization time
consumption are less. Fig. 5 shows some inpainting examples on 3D Gaussians.

Depth Completion Empowered Pose Estimation Depth completion is an effective approach to get
a more dense and accurate pose estimation of the target object. To evaluate the depth completion,
we compare the depth map as well as the success rates of challenging tasks before and after depth
completion. Results in Fig. 3 and Tab. 2 show that depth completion plays a vital role when the raw
depth input is inaccurate, especially on translucent or reflective objects.

Fine-grained Manipulation Evaluation. To evaluate our proposed compositional target-driven
mobile manipulation pipeline, we evaluate the manipulation results on tasks spanning across sub-
scenes. As for the comparing methods, we realize the state-of-the-art manipulation method for
scalable environments and regard the whole scene as the workspace. The success rate on various
challenging tasks is evaluated as the metric. Results shown in Tab. 2 and Fig. 6 demonstrate the
advantages of our proposed method.

5 Conclusion

This paper proposes TaMMa, which leverages cross-subscene fine-grained mobile base movement
and robotic arm manipulation efficiently and effectively. The 3D point cloud, unprojected from
depth images and poses, serves as a reliable 3D Gaussians initialization to provide a rough pose
estimation of the target and narrow down the further optimizing scope of the target pose. Depth
completion is employed for precise pose optimization aiming to solve the inadequate observation
and inaccurate depth estimation. The completed point cloud is employed to refine the 3D Gaussians
and inpaint the scene changes for target manipulation. Moving while optimizing and imagine before
you do it manners are proposed as efficient coarse-to-fine and accurate manipulation pose estimation
approaches. Various experiments were conducted on a real robotic to evaluate our proposed method.

Limitations and Future Work. Our work have raised questions about two limitations: I. Single-
view depth completion is not so robust, which hinders optimization in depth-only pose estimation.
We plan to explore multi-view knowledge integration to improve depth completion. II. Inpainting
3D Gaussians works well for flat objects but struggles with complex, three-dimensional ones. Ex-
tracting and re-editing complex objects may not yield satisfactory results. Future research will aim
to enhance inpainting techniques for complex geometries.
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Appendix

A Setups

In this section, we illustrate the physical setup of the environment, robotic, and the target objects.
Moreover, we list the parameters and settings of the employed models in detail.

A.1 Physical Setup

Robotic Setup. The construction of mobile base is shown in Fig.A1. The mobile base mainly carries
a Franka Panda arm and a PC which takes control of the mobile base and arm. The maximum
velocity of mobile base is set to 1m/s and the Franka arm is controlled by MoveIt library. The
linear velocity is set to 0.2m/s, and gripper force is set to 5N . The robotic is placed initially about
1m away from the main experimental environment. A Realsense D435 camera is employed and
attached to the robotic arm end effector and calibrated with the easy-hand-eye package. The gripper
is a 3D-printed model with a length of 5 cm. For the mobile base, we employ the SLAMTEC
Hermes, equipped with a laser radar for simplified mapping, localization, obstacle avoidance, and
navigation. A comparison of the robotic setup with other related works is listed in Tab. 3 which
shows our versatility and simplicity.

Methods Camera Robotic Arm Robotic Base

CLIP-Fields[41] iPhone 13Pro
with LiDAR

Hello Robot Stretch
(not used) Hello Robot Stretch

F3RM[2] RealSense D415 Franka Panda Arm -

OK-Robot[7] RealSense D435 Hello Robot Stretch Hello Robot Stretch

Mobile ALOHA[49] Logitech C922x Pro
Stream Webcam * 4

ViperX 300 Robot
Arm 6DOF * 2

WidowX 250 Robot
Arm 6DOF * 2

Self-constructed

AMM.[43] RealSense D435
RealSense T265 xArm AgileX Ranger Mini 2

TeleMoMa[48] RealSense Tiago++ robot Tiago++ robot

TaMMa(Ours) RealSense D435 Franka Panda Arm SLAMTEC Hermes

Table 3: Comparison of robotic setups with representative previous works.

                  

3D Printed Gripper

Franka Panda Arm

PC

Mobile Base

            

Collision Sensor

Battery

Figure A1: The construction of the robotic setup. The mobile base mainly carries a Franka Panda
arm and a PC which takes control of the mobile base and arm.
Environment Setup. The subscenes taken as an experiment example in our paper is a multi-tabletop
scene in a big room. We set up 3 tables of different sizes in the scene, arranged in a triangular pattern,
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with an average distance of 1 m between the tables, as shown in the diagram. The objects on the
tables can be categorized as (1) daily-used containers, such as cups, bottles, plates, baskets, pen
holders, and a sink, (2) geometric objects like cubes, (3) challenging objects for grasping, such as
rubber toys, irregular toy models, and transparent objects. The arrangement of objects on the tables
is relatively random.

A.2 Experiment Setup

As for task evaluation:

1) Pick & Place. The task is thought to be completed when robotic successfully catch the target
object from a subscene, move to another subscene and put down it on the destination point without
falling on the first attempt.

2) Stacking. The task is thought to be successful when robotic collects objects from different scenes
and stacks them as instructed on the first attempt, during which no object falling happens and the
stacked objects won’t fall over without external forces.

3) Tidy-up. The task is successful when robotic recognizes all the objects needed to be rearranged
and carries them to the target destination without leftover.

4) Pouring. We prepare 300ml water in a plastic bottle. We consider the task successful if robotic
could carry the bottle from one subscene to another subscene without falling and pour the water into
the target cup more than 150ml.

A.3 Model Setup

Gaussian Reconstruction. For the Gaussian-Splatting-based scene reconstruction, we employ the
widely-used open-source 3DGS[? ] code base. The initial point clouds used as the Gaussian
initialization are downsampled by a factor of 5. The rendering process generates results as the
origin image resolution of 640 × 480. Subsequently, Gaussians are optimized for 30,000 iterations
across all scenes, utilizing the same loss function, Gaussian density, schedule, and hyperparameters
as specified in the original implementation, which includes a learning rate dynamically adjusts based
on the iteration number and a densification process that starts early in training and continues until
the specified iteration threshold. The densification parameters are finely tuned, with densification
performed every 100 iterations, an opacity reset interval of 1,000 iterations, and a gradient threshold
for densification set to 0.01.

Depth Completion. The depth inpainting process is powered by a diffusion model which is built
upon Latent Diffusion Models (LDMs) [24, 39, 25] using a pre-trained Variational Auto-Encoder
(VAE) and a U-Net-based[52] denoising architecture. Utilizing the frozen VAE, we encode both the
color image and the depth map into a latent space, forming the basis for training our conditional
denoiser. The depth map is repeated at channels to form a tri-channel input as an RGB image and is
normalized. A composite feature map is constructed by concatenating the encoded depth and image
elements. The denoising step is set to 20 at inference as default to trade off the time consumption and
the effect. The U-Net-based denoising architecture iteratively refines the depth latent by predicting
and removing noise at each timestep, which is managed by the DDIM[39] scheduler to ensure that
noise is progressively reduced in control.

Gaussian Merging and Fine-tuning. With the corresponding camera pose and obtained depth map
of the inpainted image, the 2D inpainted data is unprojected into a 3D colored point cloud from
image space. Then, features from the original and inpainted Gaussian point clouds are merged by
concatenating their poses, features, and opacities. To remove floaters at the edges of the mask, the
minimum number of points within a radius of 0.1 for a point to be considered not an outlier is set
to 100 as default. The following fine-tuning process optimizes the model using a combination of
L1 loss and D-SSIM (Differentiable Structural Similarity Index) to ensure that the final rendered
results closely match the inpainted reference images. The weight parameters are set to 0.8 and
0.2 respectively, reflecting the emphasis on maintaining a balance between pixel-wise accuracy and
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perceptual similarity. The optimization is performed over 150 iterations to achieve the final Gaussian
model.

B Task Videos

We provide videos illustrating our cross-subscene fine-grained manipulation ability on 4 tasks. Each
of the interacting objects can be located in the arbitrary sub-scenes.

Pick and Place. The input query is in the form of “Move the [A] to the [B]”, where [A] and [B]
are objects in the whole scene. For example, in the video, we set “Move the pink cup to the white
plate”, in which objects lie on 2 separate tables.

Stacking. The input query is in the form of “Stack the [A] onto the [B]”, where [A] are objects to
be stacked and [B] is the target place. In the video, we show the result of applying “Stack the orange
cubes onto the blue cube”. In this case, orange cubes on different tables will be collected and placed
on the blue one.

Pouring. The query is in the form of “Pour the liquid in the [A] into the [B]”, where [A] is the
container that has liquid in it and [B] is the target container. We show the result of “Pour the liquid
in the bottle into the white cup”. In this example, the robotic carries the bottle smoothly to the cup
and rotates the bottle to pour.

Tidy-up. The query is in the form of “Tidy up the table with [A]”, where [A] is the representative
objects of a subscene. For example, the video shows the result of “Tidy up the table with toys and
cups”. In this example, the small objects on the table with toys and cups will be rearranged into a
basket.

Long term tasks in complex environment with obstacles and more than 3 subscenes. To demon-
strate the manageability of our approach in a complex environment with multi-subscenes beyond
toy-example tabletops, we conduct an experiment instructed by ”Pour the water from the shelf bot-
tle into the pot, discard the bottle, and place the cleaning sponge in the pot.” The environment is
conducted with 4 subscenes: shelf, sink, table1, and table2, including obstacles on the way. The
subscene setting is just like the daily look as shown in Fig.B1.

Table1Sink & Table1 Table1 & Table2Sink

               Table2 & Shelf Shelf

Figure B1: The complex environment setup with obstacles and more than 3 subscenes, which is
conducted to demonstrate the manageability of our proposed method.

C Mobile Manipulation

Point Cloud Extraction To extract a scene-wide point cloud for manipulation, we reconstructed
the entire scene based on 3D Gaussian Splatting [? ] and performed depth completion using diffu-
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Figure C1: The qualitative results of pose estimation under different scenes. The top row shows the
excellent poses under the corresponding views. The two bottom rows show unmet poses (“Pen”)
with depth. In these bottom rows, the left column presents the original depths acquired by the depth
camera, while the right column shows the depths completed using our method.

sions [39]. Starting from the completed depth map, we performed back-projection to obtain point
clouds of several sub-scenes. Subsequently, we transformed the point clouds into the robot’s working
coordinate system , and executed specific navigation or manipulation tasks based on the transforma-
tion matrices of the movement base and end-effector relative to the working coordinate system.

Navigation and Manipulation The navigation process is finished by employing the API provided
by the SLAMTEC mobile base. Specifically, a 2D topdown occupancy map is built for the en-
vironment as the scene map. Based on the occupancy map, the trajectory planning and obstacles
avoidance is completed by querying the map with the target position and the current position. By
generating a set of waypoints, the mobile base is guided to the target position. As for manipulation,
Franka Panda Arm is operated through the MoveIt! library [? ]. We provide the 6 DoF pose of
the target and employ the movement API to approach and operate the gripper to close and open
depending on the width of the estimated target objects.
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Figure D1: The comparison of reconstruction failure caused by camera jittering and the successful
results.

Motion Planning based on 6D Pose Some fine-grained robotic manipulations mainly rely on the 6D
pose of the target for motion planning [? ]. In the motion planning process of TaMMa, we integrated
a depth-only pose estimation method, as the state of objects in 3D space is crucial for determining
meaningful manipulation points across various tasks. Specifically, since the poses of intra-category
instances are pre-normalized [? ], it becomes highly advantageous to define task-relevant category-
level grasping poses. These defined grasping poses are then transformed from object coordinates to
camera coordinates using the estimated 6D object poses. The robot subsequently performs motion
planning to move its gripper to the target grasping pose to accomplish each task. Based on the
poses of different category-level objects and the tasks to be performed (e.g., pouring, stack), we
utilized MoveIt! [? ] to set up target-driven action sequences. Therefore, the success rate of robotic
manipulation heavily depends on the accuracy of pose estimation. Fig. C1 presents the qualitative
results of pose estimation across different scenes. The top row of Fig. C1 demonstrates the excellent
poses in most cases. However, there are instances where the results are suboptimal, often due to
inaccurate depth data. This can be observed in the bottom two rows. When we attempt to acquire
the pose of the ”black pen,” the original depth (left column) and the completed depth (right column)
are both unsatisfactory, affecting the subsequent pose estimation process.

D Failure Cases

Capture Failures. Accurate camera pose is crucial for scene reconstruction. During the experi-
mentation process, we discovered that the jittering and offset errors of the mobile base and robotic
arm could result in inaccurate camera poses used for scene reconstruction. Consequently, this leads
to errors in the initialization and optimization processes of Gaussians, resulting in issues such as
ghosting in the reconstructed scene. One possible solution is to reduce the movement speed of the
base and robotic arm, capture data only when they are stable, and minimize frequent movements of
the chassis as much as possible. The visualization of comparison is shown in Fig. D1.

Segmentation Failures. Our experiments have shown that when using a segmentation model based
on SAM[3] as a mask for image inpainting and depth completion, the inaccuracy of the mask can
result in incomplete object editing, leaving behind edges or blurry traces. A more precise mask can
achieve better visual effects. The comparison inpainting results between using inaccurate masks and
refined masks are shown in Fig. D2.
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Origin Gaussians Gaussians Inpaiting Failure Gaussians Inpaiting Success

Figure D2: The comparison of inpainting failures caused by inaccurate masks and the successfully
inpainted Gaussians results.

E Detailed Illustration of Limitations

Monocular Depth Estimation. In practical applications of robotic arm manipulation, it is common
to use the depth values directly captured by a depth camera as the input for scene modeling and ob-
ject pose estimation. This is because the depth values provided by a depth camera are absolute depth
values, which differ from the relative depth typically obtained through monocular depth estimation.
This absolute depth information is highly valuable for practical operations. However, depth camera
captured results often exhibit errors and significant uncertainty, particularly at the edges of the cam-
era’s field of view and when dealing with transparent or reflective objects. These factors raise issues
in performing operations in challenging scenarios. In this paper, we utilize a diffusion-based depth
completion method to partially address the discontinuities and errors present in the depth camera
results. However, the completed depth results still contain certain errors compared to the original
absolute depth input. How to leverage depth maps from multiple viewpoints to supplement depth
maps from a single viewpoint and obtain a dense and reliable point cloud remains an open question.
What’s more, the object occlusion may also cause depth completion failure. As mentioned above,
even the diffusion-based method is also unable to solve the depth prediction problem for objects
with severe occlusion. Additionally, for transparent objects, objects located behind them can also
affect depth and pose estimation. To manage this issue in 3D space, amodal-based method will be
our future work direction.

3D Objects Inpainting. Calculating precise poses for robotic arm manipulation has always been
an open and challenging problem, especially in scenarios lacking constraints. For example, it is
difficult for a robotic arm to place a cup in the exact middle of the plate to achieve the same level of
precision as a human. Similarly, stacking blocks together is challenging for a robotic arm to achieve
a perfect appearance. These results stem from two main reasons: the difficulty of endowing the
robotic arm with real-time adjustment capabilities and the inability of the arm to obtain accurate
pose information of the target location. Through a comparison with existing successful robotic
arm grasping tasks, we observed that while the estimation of graspable object poses can now yield
fairly accurate results, it remains challenging to estimate the precise poses required for tasks such as
placing a cup in the center of a plate or achieving perfect block stacking. Consequently, we propose
using inpainting techniques, employing a ”think before you do it” approach, to address this issue.
We first edit the images and depth maps, followed by editing Gaussians to create a 3D representation
of the desired task-completed scenario. We then estimate the poses of the target objects in this scene
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to obtain a more accurate target pose for interaction. However, implementing this approach still
presents difficulties. The current Gaussians inpainting methods perform well for editing relatively
planar objects but struggle with editing voluminous and complex-shaped objects. Therefore, our
future research direction will focuse on how to edit objects in 3D space to obtain accurate results
that can be used for interactive operations.

More Complex and Larger-scale Scenes. We have successfully evaluated our approach in an
environment at about 200m2 with about 10 subscenes. The obstacles set on the way are boxes,
chairs, and objects with regular geometry with widths larger than 5cm. Each obstacle is observed
by about 3 frames from the camera when recording the environment. As for environments with a
larger number of subscenes, the whole scene is represented with united Gaussians, and subscenes
are divided by humans according to the distribution of optional interactive objects. We consider
a part as a subscene when there are many objects that need careful perception. The number of
subscenes doesn’t affect the Gaussians optimization. However, more sampled images are needed for
better results when there are more objects. As for the movement and manipulation, the target object
localization takes a text query as input and outputs a coarse 3D position, while manipulation takes
a task query as input and outputs manipulation strategy. The above steps are totally free from the
number of subscenes. Consequently, the number of subscenes does not affect our approach. As for
environments with larger scales and areas, this mainly affects the computation and memory that build
the Gaussians of the environment. Taking advantage of our coarse-to-fine approach, the point cloud
initialization of the Gaussians could be sub-sampled to an appropriate scale, and further optimization
could be conducted on the subscene with more interests. Further to this end, lots of recent works have
made great progress on expanding the Gaussians application to un-constrained and larger scenes.
This would be one of our future directions to optimize the Gaussians for application in a larger-scale
scene.

Transparent, Reflective, and Complex Shape Objects. The challenging objects’ appearance
mainly affects the depth estimation and the inpainting process. Reflective and transparent ob-
jects hesitate in their optical characteristics, making it difficult for depth cameras to capture precise
depths, thus affecting subsequent depth completion processes. Transparent objects are easily influ-
enced by other objects when occluding or being occluded, causing depth estimation to be affected,
resulting in phenomena like depth truncation. Similarly, in complex backgrounds, similar phenom-
ena may occur. Reflective objects are prone to distortion and pseudo-shadow phenomena in depth.
Objects with complex shapes affect the accuracy of depth estimation, with depth cameras showing
differences in attention to detail, and small parts being easily overlooked during depth estimation.
Furthermore, for object inpainting, errors in depth estimation and the complex relationship between
shapes, textures, and backgrounds can lead to a decrease in inpainting effects. Fig.E4 and E3 show
some examples of objects with transparent ones and complex shapes, demonstrating our model’s
ability to manage a number of challenging objects. However, such challenging situations can cause
blurs, shadows, and noises. Therefore, one of our future research directions is to optimize the depth
and pose estimation of challenging objects in 3D space under multi-view observations and introduce
various shape priors for common shapes to further enhance the representation accuracy of objects.

F Implementation Details of Comparison Methods

For the cross-subscene mobile manipulation task, only a few works have been open-sourced. In this
paper, we choose F3rm[2] and HomeRobot[6] as the comparison methods. To enable them with
the cross-subscene ability in our environment, we re-implement and fine-tune these methods for the
aiming tasks. Regarding real-world robotic tasks, we conduct evaluations across ten distinct scenes
per task, each featuring novel objects from various categories in arbitrary poses. We ensure that the
scenes are reset to approximately the same configuration for each method being compared.

F3rm. We implement F3rm to expand its workspace to the cross-subscene environment. For the data
source, the same images from RealSense D435 are used as input, and to be fair, the depth images
are also employed to train the implicit representation as an additional loss. The camera poses come
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Figure E3: The example of inpainting transparent objects and objects with complex shapes. Current
model can handle a number of these challenging objects but some blurs, shadows, and noise still
exist.

(a) View-1 of Transparent objects (b) View-2 of Transparent objects
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(c) View-3 of Transparent objects
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Figure E4: The qualitative results of transparent objects from multiple views. (a) and (b) illustrate
the pose estimation of the same object (“Transparent Bottle”) from different viewpoints. The top
trow presents the results based on the original depth, while the bottom row shows the results based
on the enhanced depth. (c) shows the different bottle from another view, where a satisfactory pose
estimation result is achieved even with the raw depth.
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from the calibrated camera on the robotic arm. As the environment expands, the need for VRAM
increases obviously. Fairly, we maximize the VRAM usage of the RTX 3090 by employing a smaller
feature resolution, as mentioned in F3rm, and ignoring the regions out of the tabletop workspace.
As for the manipulation process, we first drive the mobile base to ensure the manipulation targets
are reachable for the robotic arm and optimize the target pose for manipulation.

HomeRobot. We implement HomeRobot in our environment for the cross-subscene task. The
provided Detic and Grounded-SAM libraries are employed to get semantics. The exploration of
the environment is replaced by feeding the recorded RGB-D sequences to the HomeRobot, and the
navigation and planning of the mobile base is implemented in the same way as our proposed TaMMa.
For mobile manipulation, the mobile base is first guided to approach the target, ensuring the targets
are reachable, and the Contact Graspnet is employed to generate the 6 DoF grasp pose of the target.
The pose of the receptacle, the location on which the object is placed, comes from adjusting from a
reference object. For example, to put the cup on a plate, we optimize the pose of the plate and add a
bias on the y-axis to get the target pose of the cup.

G Supplementary Pseudocode

Diffusion based Depth Completion. Algorithm 1 outlines the process for diffusion based depth
completion, which provides a structured approach to filling in missing depth information with mul-
tiple views of RGB-D inputs, addressing common challenges in depth sensing tasks such as incom-
plete data or occlusions. Utilizing a diffusion process that leverages latent diffusion models (LDMs),
the algorithm mainly consists of three steps: Initialize Diffusion Process, Perform Depth Diffusion,
Refine Depth Maps. Finally, the algorithm outputs the refined and completed depth maps, which can
be used for the following 6D Pose Estimation task to enhance the effect of its depth-based estimation
method.

Algorithm 1 Diffusion based Depth Completion
1: Input:
2: IRGB : Set of RGB images of sub-scenes
3: Dinit: Set of initial depth maps
4: M : Set of masks delineating the target completion region
5: Output:
6: Denh: Set of completed depth maps
7: Step 1: Initialize Diffusion Process
8: for each dj ∈ Dinit and ij ∈ IRGB and mj ∈ M do
9: Apply a linear normalization via an affine transformation to dj

10: Leverage the frozen VAE encoder to encode normalized depth d
′

j and ij into latent space,
which produces a 4-channel feature map zj

11: Resize mj to align with the dimensions of zj , yielding downsampled m
′

j
12: Create a composite feature map zt by applying random noise to the above latent code
13: end for
14: Step 2: Perform Depth Diffusion
15: for each zt do
16: for t = 1 to T do
17: Initialize U-Net with trained weights for depth completion and feed zt into the U-Net-

based denoiser
18: Denoise and complete the depth map with interpolated depth values in uncertain areas
19: end for
20: Derive djenh from the latent representation decoded by the VAE decoder
21: end for
22: Step 3: Refine Depth Maps
23: for each denh ∈ Denh do
24: Apply channel-wise averaging to smooth the depth map denh for post-processing
25: end for
26: Return Denh
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Fine-grained 6D Pose Estimation based Manipulation. Algorithm 2 outlines the process for fine-
grained 6D pose estimation based manipulation, which aims to precisely estimate the pose and size
of objects within a scene and subsequently generate appropriate action sequences for cross-subscene
manipulation tasks. The algorithm mainly consists of four primary steps: Grounded Visual Percep-
tion, Depth-based Category-Level Pose Estimation, Coordinate Transformation, Generate Target-
driven Action Sequences. Finally, the algorithm returns the estimated 6D poses, 3D sizes, and
the generated action sequences, which collectively enable precise and efficient manipulation across
multi-subscenes.

Algorithm 2 Fine-grained 6D Pose Estimation based Manipulation
1: Input:
2: IRGB : Set of RGB images of sub-scenes
3: Denh: Set of depth-enhanced depth maps
4: Q: Set of attributes of instances as queries
5: T : Specific types of manipulation tasks
6: Output:
7: P6D: Estimated 6D pose for each instance
8: S3D: Estimated 3D size for each instance
9: A: Target-driven action sequences based on estimated poses

10: Step 1: Grounded Visual Perception
11: for each q ∈ Q do
12: for each I ∈ IRGB do
13: Apply Grounded-Light-HQSAM to obtain mask MI,q for query q from I
14: end for
15: end for
16: Step 2: Depth-based Category-Level Pose Estimation
17: for each MI,q and D ∈ Denh do
18: Back-project the depth map D and mask MI,q into point clouds in the observed view
19: Utilize MVPoseNet6D to estimate 6D pose P i

6D and 3D size Si
3D for each instance i from

the point clouds
20: end for
21: Step 3: Coordinate Transformation
22: for each P i

6D do
23: Transform pose P i

6D from the object coordinates to the camera coordinates
24: Transform pose P i

6D from the camera coordinates to the robotic arm base coordinates
25: end for
26: Step 4: Generate Target-driven Action Sequences
27: for each P i

6D do
28: Based on manipulation task type T , integrate each target pose P i

6D
29: Invoke MoveIt! to generate the action sequence Ai

30: end for
31: Return P6D, S3D, A
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