
Under review as submission to TMLR

Improving the Language Understanding Capabilities of Large
Language Models Using Reinforcement Learning

Anonymous authors
Paper under double-blind review

Abstract

Large language models (LLMs), primarily built on decoder-only transformer architectures,
excel in natural language generation tasks and have shown promise in adapting to di-
verse downstream tasks using zero-shot and few-shot prompting techniques. However, these
prompting methods often fall short on natural language understanding (NLU) tasks, where
smaller encoder-only models like BERT-base consistently outperform LLMs on benchmarks
such as GLUE and SuperGLUE. In this paper, we explore two approaches—supervised fine-
tuning and proximal policy optimization (PPO)—to enhance the NLU capabilities of LLMs.
To reduce the computational cost of full-model fine-tuning, we integrate low-rank adapta-
tion (LoRA) layers, restricting updates to these layers during both supervised fine-tuning
and PPO stages. In the supervised fine-tuning approach, task-specific prompts are concate-
nated with input queries and ground-truth labels from the NLU training corpus, optimizing
the model using the next-token prediction objective. Despite this, LLMs still underperform
compared to encoder-only models like BERT-base on several NLU tasks. To address this
gap, we employ PPO, a reinforcement learning technique that treats each token generation
as an action and evaluates the sequence of generated tokens using a reward function based
on their alignment with ground-truth answers. PPO then updates the model to maximize
these rewards, effectively aligning its outputs with the correct labels. Our experiments with
the LLAMA2-7B-chat-hf model demonstrate that PPO-based fine-tuning significantly im-
proves performance, delivering an average gain of 6.3 points over supervised fine-tuning on
the GLUE benchmark. PPO surpasses zero-shot prompting by 38.7 points and few-shot
prompting by 26.1 points on GLUE, while also outperforming these baselines by 28.8 and
28.5 points on SuperGLUE. Additionally, PPO exceeds the performance of BERT-large, a
strong baseline, with an average improvement of 2.7 points on GLUE and 9.3 points on Su-
perGLUE. These improvements are consistent across models such as Qwen2.5-7B-Instruct
and MPT-7B-chat, highlighting PPO’s robustness and effectiveness in improving the NLU
capabilities of LLMs. Furthermore, LLAMA2-7B-chat-hf and LLAMA2-13B-chat-hf mod-
els fine-tuned with PPO on a single dataset exhibit strong zero-shot generalization across
diverse unseen datasets. On average, they outperform GPT-4o by over 4% on sentiment
analysis and natural language inference tasks, achieving notable gains of 7.3% on the Men-
tal Health dataset and more than 10.9% on SIGA-nli. Our code is publicly available at
https://anonymous.4open.science/r/LLM_NLU-BE83.

1 Introduction

Large language models (LLMs) (Radford et al., 2019; Brown, 2020; Touvron et al., 2023b) have revolutionized
natural language processing (NLP) with their powerful text generation capabilities, driven by their decoder-
only transformer architecture (Radford, 2018). Pretrained on large amounts of unlabeled text, LLMs can
generate coherent and contextually relevant content. Using prompt-based strategies like zero-shot and few-
shot prompting (Brown, 2020), LLMs can tackle various downstream tasks without requiring task-specific
fine-tuning. However, these methods often underperform on natural language understanding (NLU) tasks
compared to encoder-only models like BERT (Devlin, 2018), which consistently excel on benchmarks such as

1

https://anonymous.4open.science/r/LLM_NLU-BE83

Under review as submission to TMLR

GLUE (Wang et al., 2019) and SuperGLUE (Wang et al., 2020). For instance, our evaluations on LLAMA2-
7B-chat-hf showed that zero-shot prompting with task-specific prompts yielded an average performance of
46.1 across all GLUE datasets, while few-shot prompting improved performance to 58.7, both of which
significantly lag behind BERT-base’s 79.6 as shown in Table 1. This underperformance is largely due to
LLMs’ inability to capture bidirectional context and perform deeper semantic analysis. Improving the NLU
performance of LLMs remains a challenge, as their autoregressive nature limits their ability to model the
bidirectional dependencies crucial for NLU tasks (Radford et al., 2019; Brown, 2020).

LLAMA2-7B
Premise:

The man broke his toe.

Question:

What was the cause?

Options:

(A) He dropped a hammer on

his foot.

(B) He got a new pair of shoes.

Instruction:

Choose the most plausible

option (A or B) based on the

premise.

Input query

LLAMA2-7B

Training

instances

PPO-based optimization

LoRA layers

LLAMA2-7B

Improved
performance

Reward Generation

Frozen components

PPO fine-tuned model

Trainable components

Zero-shot/Few-shot prompting

Figure 1: PPO-based fine-tuning of LLAMA2-7B-chat-hf to improve the performance on NLU tasks.

To enhance the performance of LLMs on NLU tasks, we explore two approaches. First, we apply supervised
fine-tuning (SFT) of LLMs on NLU training datasets. The model is fine-tuned on input sequences consisting
of task-specific prompts, training examples, and their corresponding ground-truth labels, using the next-
token prediction objective. To reduce computational overhead, we employ low-rank adaptation (LoRA)
layers (Hu et al., 2021a), ensuring that only these lightweight matrices are updated during fine-tuning, rather
than the entire model. However, in our experiments with LLAMA2-7B-chat-hf, this approach underperforms
compared to BERT-base on several GLUE datasets, including QQP, SST-2, STS-B, and MRPC, as detailed in
Table 1. On average, across all GLUE datasets, BERT-base achieves a score of 79.6, outperforming LLAMA2-
7B-chat-hf fine-tuned model, which attains 78.5. This indicates the need for an alternative approach to
further boost performance.

To further enhance the performance of LLMs on NLU tasks, we adopt a proximal policy optimization
(PPO) (Schulman et al., 2017a) based fine-tuning approach, leveraging LoRA layers to reduce computational
complexity. Previous works, including A3C (Mnih et al., 2016), AlphaGo (Silver et al., 2017b), OpenAI
Five (OpenAI et al., 2019), and AlphaZero (Silver et al., 2017a), have demonstrated that policy-based
reinforcement learning can effectively train neural networks to perform actions in complex environments.
These methods have also been widely applied to align LLM responses with human preferences (Bai et al.,
2022a; Ouyang et al., 2022a) and improve reasoning capabilities (Havrilla et al., 2024). Building on this
foundation, we employ PPO to improve LLM performance on NLU tasks. We frame the task of generating
responses by LLMs as a reinforcement learning problem, where the sequence of input tokens represents the
state st, and the token generated at each timestep t is treated as the action at. After the entire sequence is
generated, a heuristic-based process extracts the answer, which is compared to the ground truth label, and
a reward R is assigned accordingly. Our major contributions are:

2

Under review as submission to TMLR

• We utilize a PPO-based fine-tuning approach to improve the NLU capabilities of LLMs. To reduce
computational complexity, we fine-tune only the LoRA layers.

• Our evaluation on the GLUE and SuperGLUE benchmarks using the LLAMA2-7B-chat-hf
model(Touvron et al., 2023a) shows that PPO-based fine-tuning significantly outperforms zero-
shot and few-shot baselines, with an average improvement of 38.7 and 26.1 points on the GLUE
benchmark, and 28.8 and 28.5 points on the SuperGLUE benchmark, respectively. Additionally,
PPO-based fine-tuning achieves an average gain of 6.3 points over SFT on the GLUE benchmark
and outperforms BERT-large, with a 2.7-point gain on GLUE and a 9.3-point improvement on
SuperGLUE benchmark.

• We evaluate the zero-shot generalization capabilities of LLAMA2-7B-chat-hf and LLAMA2-13B-
chat-hf models fine-tuned using PPO. The models are fine-tuned on SST-2 for sentiment analysis
tasks and MNLI for natural language inference tasks, then tested on multiple unseen datasets span-
ning various tasks. Both models demonstrate significant improvements over GPT-4o. LLAMA2-
13B-chat-hf achieves a 4.5% improvement on Labelled Financial News, 6.2% on Babi-nli, and over
10.9% on SIGA-nli, while LLAMA2-7B-chat-hf shows a 7.3% improvement on the Mental Health
dataset. On average, PPO fine-tuned LLAMA2-chat-hf models outperform GPT-4o by more than
4% on sentiment analysis and natural language inference tasks. These results underscore the effec-
tiveness of PPO fine-tuning in improving zero-shot generalization, even compared to a significantly
larger model like GPT-4o.

• The results are consistent with other LLMs such as Qwen2.5-7B-Instruct and MPT-7B-chat, demon-
strating the robustness of our approach.

2 Related Works

2.1 Natural Language Understanding

Natural language understanding (NLU) tasks are crucial for evaluating a model’s ability to comprehend and
process human language in various contexts, such as classification, inference, and reasoning. The GLUE
benchmark (Wang et al., 2019) serves as a key standard for NLU performance, covering tasks like CoLA,
SST-2, MRPC, MNLI, and so on, which assess grammatical acceptability, sentiment analysis, paraphrase
detection, and textual entailment. For more complex challenges, the SuperGLUE benchmark (Wang et al.,
2020) was introduced, featuring more difficult tasks that require advanced reasoning and comprehension.
Together, GLUE and SuperGLUE provide a comprehensive assessment of a model’s language understanding
capabilities.

Models such as BERT (Devlin, 2018), which utilize a bidirectional encoder architecture, have achieved state-
of-the-art performance in NLU tasks. BERT’s architecture allows it to capture bidirectional context. Its
pretraining strategy, which uses masked language modeling (MLM), helps the model learn deep semantic
representations. This combination makes BERT highly effective across a wide range of NLU tasks. The
success of encoder-only models in benchmarks such as GLUE and SuperGLUE can largely be attributed to
their ability to capture rich bidirectional context during pretraining, which is critical for NLU tasks.

In contrast, LLMs like GPT-2 (Radford et al., 2019), GPT-3 (Brown, 2020), and LLAMA (Touvron et al.,
2023b) rely on scaling model size with decoder-only architectures, achieving significant success in text gen-
eration tasks. However, their zero-shot performance with task-specific prompts remains suboptimal on NLU
tasks, such as those in the GLUE benchmark. This underperformance is attributed to their autoregressive
nature, which limits their ability to capture the bidirectional dependencies crucial for deep contextual un-
derstanding (Devlin, 2018; Radford et al., 2019; Brown, 2020). Efforts to adapt LLMs for NLU have focused
on prompt-based methods like few-shot prompting (Brown, 2020), which show promise but still fall short of
the performance achieved by encoder-only models like BERT on these tasks.

3

Under review as submission to TMLR

2.2 Policy-based Reinforcement Learning

Policy-based reinforcement learning (RL) directly optimizes an agent’s policy by learning its parameters to
maximize long-term rewards. Unlike value-based methods like Q-learning (Watkins & Dayan, 1992) and
DQN (Hester et al., 2018), which indirectly derive policies through value functions, policy-based methods
represent the policy as a parameterized function. This function, pθ(a|s), defines the probability of taking
action a in state s, where θ represents the policy parameters. The goal is to learn optimal parameters θ∗

that maximize the expected cumulative reward, typically through policy gradient methods (Sutton et al.,
1999). These methods excel in high-dimensional or continuous action spaces, where value-based methods
can struggle (Deisenroth et al., 2013).

Policy-based methods in reinforcement learning (RL) have evolved significantly over time, starting with
REINFORCE (Williams, 1992), which optimizes policies using the policy gradient theorem but suffers from
high variance due to its reliance on Monte Carlo estimates of the reward. Monte Carlo estimates refer to
calculating the total reward based on full episodes of interaction, meaning updates are made only after an
entire sequence of actions and rewards is observed, which can lead to noisy and slow learning. To address
this, actor-critic methods like A2C and A3C (Mnih, 2016) introduced a critic that estimates the value of
the current state, allowing for smoother updates by reducing the variability in policy updates and speeding
up convergence. However, these methods still faced instability when large updates caused the new policy
to diverge too far from the previous one. Trust Region Policy Optimization (TRPO) (Schulman, 2015)
tackled this by limiting the size of policy updates using a KL divergence constraint, but its implementation
was complex and computationally expensive. Proximal policy optimization (PPO) (Schulman et al., 2017a)
simplified this process by introducing a clipped objective function that keeps policy updates within a stable
range while being easier to implement. PPO’s balance between simplicity and stability has made it a widely
adopted method in modern RL research.

In NLP, PPO has been effectively used in reinforcement learning from human feedback (RLHF) to align LLM
outputs with human preferences, as seen in works like InstructGPT (Ouyang et al., 2022b) and Constitutional
AI (Bai et al., 2022b). These approaches treat the LLM as a policy, where model responses are actions,
and human feedback serves as rewards. PPO updates the policy based on the reward model trained on
human preferences. Additionally, policy-based RL methods have been applied to enhance LLM reasoning
capabilities (Ziegler et al., 2019; Havrilla et al., 2024; Hu & Shu, 2023). In this work, we apply PPO to
fine-tune LLMs on NLU tasks.

3 Preliminaries on Application of PPO for Fine-tuning LLMs

Proximal policy optimization (PPO)(Schulman et al., 2017b) is an online reinforcement learning algorithm.
In this section, we describe the process to fine-tune an LLM using PPO. During training, at each timestep
t, the LLM (policy) generates a token prediction at (action) based on the state st, which consists of the
sequence of generated tokens up to timestep t − 1. The final generated output is evaluated in the context of
the downstream task, where the environment provides feedback in the form of rewards. The model updates
its parameters based on these rewards to improve its ability to generate accurate predictions over time.

PPO uses gradient ascent to optimize the following objective, aiming to maximize cumulative rewards:

J(θ) = E(st,at)∼πθ′

[
min

(
pθ(at|st)
pθ′(at|st)

Ât, clip
(

pθ(at|st)
pθ′(at|st)

, 1 − ϵ, 1 + ϵ

)
Ât

)]
Here, pθ(at|st) is the probability of taking action at in state st under the current policy, while pθ′(at|st)
represents this probability under the old policy. In PPO, the training data—specifically, the state-action
pairs (st, at)—are sampled using the old policy πθ′ (the LLM before it is updated), rather than the new
policy currently being optimized. Thus, the ratio pθ(at|st)

pθold (at|st) accounts for how much the new policy has
changed relative to the old policy and adjusts the likelihood of an action accordingly. This ratio is multiplied
by Ât, the Generalized Advantage Estimation (GAE) (Schulman et al., 2018), which measures how much
better or worse an action at is compared to the expected outcome under the current policy.

Ât = Rt + γVt+1 − Vt + γλÂt+1,

4

Under review as submission to TMLR

Here, Rt + γVt+1 − Vt represents the temporal difference (TD) error (Sutton, 1988). In this expression, Rt

is the immediate reward received after taking action at, Vt is the expected reward before the action, and
γVt+1 is the discounted estimate of the future reward after the action. This term reflects how the action at

performed when compared to the expected return at state st. The second term, γλÂt+1, is the smoothing
factor in GAE, where λ is the trade-off parameter. This recursive estimate allows the model to incorporate
future information, making the advantage estimate more stable. Smaller values of λ emphasize on immediate
rewards, while larger values capture longer-term dependencies. The discount factor γ controls how much
emphasis is placed on future rewards compared to immediate ones, with higher values of γ giving more
weight to future rewards. Vt, which represents the expected future reward from state st, is estimated by a
critic model.

The clipping function clip(ratio, 1 − ϵ, 1 + ϵ) limits the change between the current and old policy, ensuring
stable updates by preventing large deviations. This helps avoid too-large policy changes that could destabilize
training. In summary, PPO optimizes the policy using gradient ascent to maximize cumulative rewards while
ensuring stable updates through clipping, with the GAE providing a more stable and accurate advantage
estimate by incorporating future information recursively.

Critic Model The critic model consists of a value head, which is a multi-layer perceptron attached to the
final layer of the LLM. It takes the LLMs representation of the generated token sequence up to timestep t
(i.e., the state st) and predicts a scalar value representing the value function Vt for that state. The critic
model is updated using the square of TD error, which is computed as:

δt = (Rt + γVt+1 − Vt)2, (1)

where δt represents the L-2 loss between the actual reward Rt, combined with the discounted estimate of
future rewards γVt+1, and the current predicted value Vt for state st. By minimizing this TD error via
gradient descent, the critic model updates its value function predictions, improving alignment with the
actual rewards and future outcomes. In summary, LLM uses the PPO objective to update its policy based
on feedback from the critic model, while the critic model is updated to better predict the value function for
future states.

4 Method

To enhance the performance of LLMs on NLU tasks, we adopt two distinct fine-tuning methods. The first
approach involves supervised fine-tuning, where the input consists of a concatenation of the task-specific
prompt, query and the ground truth answer, with the model optimized using the next-token prediction
objective. The second approach utilizes PPO, framing response generation as a reinforcement learning
problem. In this setup, the sequence of input tokens until timestep t − 1 represents the state st, and each
token generated at timestep t is treated as an action at. After generating the entire sequence, a heuristic-based
process extracts the final answer from this generated sequence, and is compared to the ground truth. PPO
is then employed to optimize the model by maximizing the cumulative reward derived from this comparison.
To reduce computational complexity, we fine-tune LoRA layers instead of the full model.

4.1 Task-Specific Prompt Design

We detail the construction of task-specific prompts used to query the LLM for NLU tasks. Each prompt
begins with a clear task description, outlining the necessary background information to guide the model in
solving the task. Following this, we specify strict requirements for the output format, ensuring that the
response is encapsulated within a predefined structure, specifically between ‘<Judgement></Judgement>’
tags. This structure ensures consistency in the model’s responses, facilitating easier extraction and evaluation
of the results.

For example, in the CoLA task, which assesses grammatical acceptability, the prompt is structured as follows:
System_prompt :

You are an assistant to analyze the linguistic properties

5

Under review as submission to TMLR

of a sentence . The task is to decide the linguistic acceptability
of a sentence . If the sentence is linguistically correct then it
is acceptable , else it is not.

The result you give should have the following form:
<Judgement > { Insert only "Yes" or "No" here} </Judgement >

Prompt :
Now judge if the sentence "{ sentence }" is linguistically acceptable .

Assistant :
<Judgement >

The prompt starts with background information about CoLA, specifies restrictions on the output (such as
labeling a sentence as acceptable or unacceptable), and concludes with a special start token, <Judgement>,
to initiate the model’s response generation.

4.2 Supervised Fine-tuning of LLM on NLU Tasks

Given an NLU training dataset, D(tr) = {(xi, yi)}N
i=1, where xi represents the input text and yi the ground

truth label, we fine-tune the LLM on a sequence consisting of the task-specific prompt p (described in section
4.1) concatenated with the input xi and the ground truth answer yi. The model is trained using the next-
token prediction objective, where it predicts the next token in the sequence by conditioning on all preceding
tokens. This objective trains the model to learn to predict the correct answer for the NLU task conditioned
on the task-specific prompt and input.

4.3 Proximal Policy Optimization for LLM Fine-tuning on NLU Tasks

We utilize PPO to fine-tune the LLM on NLU tasks, following the training protocol outlined in section 3.
The reward function is specifically designed for each NLU task. In this work, we use a simple reward function,
where a reward is assigned at the end of the generation based on alignment with the ground truth labels. We
use regular expression matching to extract answers from the LLMs outputs by first locating the text within
the ‘<Judgement></Judgement>’ tags. Depending on the task, we then search for task-specific keywords
(such as “yes”, “no”, “acceptable”, or “not acceptable”) to identify the answer. These extracted answers are
compared with the ground truth to determine the appropriate rewards.

For instance, CoLA, which is a classification task, answers are categorized as acceptable, unacceptable, or
exceptional (incorrect format). For STS-B, which is a regression task, the extracted answer is a floating-point
number between 0 and 5. The reward per generation for classification tasks is given by R = 1(ŷ == yi),
where ŷ is the model’s prediction and y is the ground truth. For STS-B, a regression task, the reward
per generation is calculated based on how close the prediction is to the ground truth: R = 2.5 − |ŷi − yi|.
Incorrectly formatted responses are penalized with a value of -1 for classification tasks and -2.5 for regression
tasks.

4.4 Low-Rank Adaptation

To mitigate the computational cost of full-model fine-tuning, we employ LoRA (Hu et al., 2021b) during both
the supervised fine-tuning and PPO stages. Instead of updating the entire model, we restrict the updates
to LoRA layers, which significantly reduces the number of trainable parameters by decomposing the weight
matrices into low-rank matrices.

5 Experiments

5.1 Experimental Setup

We trained and evaluated our models on the GLUE(Wang et al., 2019) and SuperGLUE(Wang et al., 2020)
benchmarks. All experiments were conducted using instruction-tuned LLAMA2-7B models(Touvron et al.,
2023a)1. We perform both single task and multi-task fine-tuning: 1) Single-task Fine-tuning: For each

1https://huggingface.co/daryl149/llama-2-7b-chat-hf

6

https://huggingface.co/daryl149/llama-2-7b-chat-hf

Under review as submission to TMLR

subtask within GLUE and SuperGLUE, a separate task-specific LoRA module was trained independently.
2) Multi-task Fine-tuning: In the multi-task setting, datasets from different subtasks within each benchmark
were combined, and a single LoRA module was trained to handle all tasks simultaneously.

Hyperparameter Settings For PPO-based fine-tuning, grid search is performed to select the batch size
in 4, 8, 12, and 16 for each task. A batch size of 24 was used across all tasks during supervised fine-tuning
(SFT). The PPO epoch is set to 4, meaning that each sampled batch is used for updating the model four
times. The initial learning rate for all tasks was set to 9 × 10−6. We utilized the Adafactor optimizer for
PPO training and AdamW for SFT. A cosine annealing learning rate scheduler with a warmup phase was
employed, where the learning rate was gradually increased during the first 10% of training steps and then
reduced to one-tenth of the initial value by the end of training. We use a rank r = 16 for the LoRA layers.
We trained both PPO and SFT models until convergence on the validation set. The best hyperparameters
were selected based on performance on the validation set. The final reported results for the GLUE and
SuperGLUE are from their corresponding evaluation server. For evaluation, multinomial sampling with a
temperature of 1 was used to generate a single response per data sample. The model generated responses
with lengths between 12 and 32 tokens, with the generation process concluding using a special identifier
“</Judgement>”.

5.2 Baselines

We evaluated the performance of our approach against three baselines:

• Encoder-only models: We compare our results with encoder-only transformer models, specifically
BERT-base (110M parameters) and BERT-large (340M parameters)(Devlin et al., 2019).

• Zero-shot prompting: The model is provided with task-specific prompts, as outlined in section 4.1,
along with the input query. The model is required to generate predictions solely based on these
prompts and the input query, without any additional task-specific fine-tuning.

• Few-shot prompting: In this setting, the model is provided with both the task-specific prompt
and one to five labeled examples (which ever gave the best performance) from the training dataset
as demonstrations. These examples are provided as reference to guide the model in generating more
accurate responses for the input query. Similarly, no task-specific fine-tuning is performed.

After generating a response, we applied regular expression matching to extract the relevant answer from the
model’s output. We directly matched task-specific keywords (like “yes” or “no”) in the generated text to
identify the answer. This extracted answer was then compared to the ground truth label to evaluate the
model’s performance.

5.3 Results on GLUE Benchmark

In this section, we present our experiments on the GLUE benchmark, comparing the results with encoder-
only models such as BERT(Devlin et al., 2019). We use the LLAMA2-7B-chat-hf model as the LLM for our
evaluations. The baselines include zero-shot prompting and few-shot prompting. For fine-tuning methods,
we compare both supervised fine-tuning and PPO across single-task and multi-task settings. The results are
summarized in Table 1. From the results, we make the following observations.

First, we observed that zero-shot prompting of the LLAMA2-7B-chat-hf model with task-specific prompts
consistently underperformed compared to the smaller BERT-base model. LLAMA2-7B-chat-hf struggled
notably on simpler tasks like SST-2, which only required classifying sentiment as positive or negative. This
underscores the model’s weak language understanding capabilities, with zero-shot prompting proving in-
adequate compared to BERT-base. Second, few-shot prompting showed improvements over the zero-shot
baseline, achieving an average score of 58.7 compared to 46.1, but it still lagged significantly behind the
BERT-base model’s score of 79.6. Third, supervised fine-tuning (SFT) using LoRA modules for each task
further boosted performance, bringing it closer to BERT’s level with an average score of 78.5, though still

7

Under review as submission to TMLR

Models MNLI-m MNLI-mm QQP QNLI SST-2 CoLA

BERT-base 84.6 83.4 71.2 90.5 93.5 52.1
BERT-large 86.7 85.9 72.1 92.7 94.9 60.5
LLAMA2-7B-chat-hf
Zero-shot prompting 38.3 39.7 31.3 58.5 75.7 18.6
Few-shot prompting 62.4 61.7 30.9 60.7 84.2 29.0
PPO-ST 88.8 88.2 70.5 93.2 96.4 59.9
SFT-ST 87.0 86.5 63.8 93.6 73.8 50.7
PPO-MT 88.7 88.3 67.3 90.2 94.6 47.7
SFT-MT 84.9 84.5 62.9 86.0 72.0 41.4

Models STS-B MRPC RTE WNLI AX Average

BERT-base 85.8 88.9 66.4 / / 79.6
BERT-large 86.5 89.3 70.1 / / 82.1
LLAMA2-7B-chat-hf
Zero-shot prompting 27.5 66.3 59.3 44.5 9.2 46.1
Few-shot prompting 45.5 80.8 72.9 51.4 9.2 58.7
PPO-ST 92.6 89.4 84.3 74.7 52.7 84.8
SFT-ST 84.7 85.8 80.4 63.7 45.1 78.5
PPO-MT 94.7 86.7 86.9 66.4 43.4 82.9
SFT-MT 85.5 82.6 86.2 76.0 41.2 76.22

Table 1: GLUE test results are scored by the evaluation server (GLUE benchmark). Average column
indicates the averaged performance across all the datasets excluding the WNLI and AX datasets. F1 scores
are reported for QQP and MRPC, Spearman correlations for STS-B, Matthew’s correlations for CoLA, and
accuracy scores for the other tasks. Zero-shot prompting refers to prompting with task-specific prompts and
an input query, while Few-shot prompting refers to prompting with task-specific prompts, 1-5 demonstrations
(chosen based on the best performance), and an input query. PPO stands for proximal policy optimization,
and SFT refers to Supervised Fine-tuning. “ST” represents Single-task, while “MT” represents Multi-task.
The bolded results indicate the best results, and the underlined results indicate the second-best results.

slightly behind BERT-base’s 79.6. Fourth, fine-tuning with PPO delivered the best results, achieving an
average score of 84.6, surpassing even BERT-large’s 82.1. Moreover, zero-shot and few-shot prompting of
LLAMA2-7B-chat-hf displayed a noticeable output imbalance, with a tendency to favor certain classes or
values. In contrast, models fine-tuned with PPO showed no significant bias. Fifth, the total computational
time for PPO is approximately 1.32 times that of SFT, indicating only a marginal increase in computational
costs.

Additionally, we compared the results with multi-task training, where a single LoRA module was trained
across all datasets using both SFT and PPO to reduce time complexity. We found that SFT on individual
tasks outperformed its multi-task fine-tuning counterpart. However, while PPO on multi-task training did
not perform as well as PPO on single-task training, it still outperformed BERT-large in average performance,
achieving a score of 82.9 compared to BERT-large’s 82.1. These results demonstrate that while single-task
fine-tuning yields the best performance, multi-task training with PPO can still achieve competitive results,
even surpassing state-of-the-art models like BERT-large.

5.4 Evaluating Zero-Shot Generalization of PPO Fine-Tuned Models and Comparison with GPT-4o

We evaluate the zero-shot generalization capabilities of LLAMA2 7B and 13B models fine-tuned using
PPO on a single dataset and subsequently tested across multiple other datasets (Table 2). For sentiment
analysis tasks, the models were fine-tuned on SST-2 and evaluated on diverse datasets, including Financial
PhraseBank (Malo et al., 2014), Labelled Financial News (Sood, 2024), Mental Health (Gaes, 2023), and
Emotion (Saravia et al., 2018). Similarly, for natural language inference (NLI) tasks, the models were
fine-tuned on MNLI and evaluated on Babi-nli (Weston et al., 2015) and SIGA-nli (Nizamani et al., 2024).

8

https://gluebenchmark.com/leaderboard

Under review as submission to TMLR

Tasks LLAMA2-7B PPO-ST LLAMA2-13B PPO-ST GPT-4o

Sentiment Analysis
Financial PhraseBank 97.2 97.7 97.5
Labelled Financial News 70.2 72.3 67.8
Mental Health 67.2 66.6 59.9
Emotion 78.0 76.4 77.6

Natural Language Inference
Babi-nli 68.3 69.4 63.2
SIGA-nli 46.2 46.3 35.4
Average 71.2 (4.3↑) 71.5 (4.6↑) 66.9

Table 2: Accuracy of different models across downstream tasks. For sentiment analysis tasks, models are
fine-tuned on SST-2 and zero-shot evaluated on Financial PhraseBank (Malo et al., 2014), Labelled Financial
News (Sood, 2024), Mental Health (Gaes, 2023), and Emotion (Saravia et al., 2018). Similarly, for natural
language inference tasks, models are fine-tuned on MNLI and zero-shot evaluated on Babi-nli (Weston
et al., 2015) and SIGA-nli (Nizamani et al., 2024). PPO-ST represents fine-tuning using Proximal Policy
Optimization. Gains over GPT-4o model in the average row is indicated with green arrows.

Tasks LLAMA2-7B PPO-ST LLAMA2-13B PPO-ST GPT-4o

Sentiment Analysis
Financial PhraseBank (96.2, 98.1) (96.9, 98.5) (96.6, 98.4)
Labelled Financial News (66.1, 74.6) (69.0, 76.6) (63.2, 72.2)
Mental Health (66.6, 67.7) (66.0, 67.1) (59.3, 60.5)
Emotion (77.4, 78.6) (75.8, 77.0) (77.0, 78.2)

Natural Language Inference
Babi-nli (64.3, 71.5) (65.1, 73.0) (58.8, 67.6)
SIGA-nli (39.0, 53.9) (40.6, 53.7) (28.5, 42.2)

Table 3: To quantify uncertainty in our evaluations, we generate 100 predictions for each example in the
dataset. The evaluation metric is then computed for each set over the entire dataset, forming a distribution
of values. The 95% confidence interval is defined by the 2.5th and 97.5th percentiles of this distribution. For
sentiment analysis, models fine-tuned on SST-2 are evaluated in a zero-shot setting on Financial PhraseBank,
Labelled Financial News, Mental Health, and Emotion datasets. For natural language inference, models fine-
tuned on MNLI are zero-shot evaluated on Babi-NLI and SIGA-NLI.

Our results demonstrate that PPO fine-tuning improves the zero-shot performance of LLAMA2-chat-hf
models compared to GPT-4o, a strong baseline. For sentiment analysis, LLAMA2-13B-chat-hf achieves
97.7% accuracy on Financial PhraseBank, slightly outperforming GPT-4o (97.5%). On Labelled Financial
News, LLAMA2-13B-chat-hf records 72.3%, exceeding GPT-4o by 4.5%. Similarly, on the Mental Health
dataset, LLAMA2-7B-chat-hf achieves 67.2%, marking a notable gain of 7.3% over GPT-4o. For the Emotion
dataset, LLAMA2-7B-chat-hf achieves 78.0%, with a smaller gain of 0.4%. For NLI tasks, LLAMA2-13B-
chat-hf achieves 69.4% accuracy on Babi-nli, surpassing GPT-4o by 6.2%. Additionally, LLAMA2-13B-chat-
hf achieves 46.3% accuracy on SIGA-nli, outperforming GPT-4o by more than 10%. On average, both 7B
and 13B versions of PPO fine-tuned LLAMA2-chat-hf models demonstrate a performance gain of over 4%
compared to GPT-4o, which is significantly larger in size and highly optimized.

To ensure robust comparisons, we quantify uncertainty in our evaluations by generating 100 predictions for
each example in the dataset. The evaluation metric is then computed over the entire dataset for each set,

9

Under review as submission to TMLR

yielding a distribution of values. The 95% confidence interval is defined by the 2.5th and 97.5th percentiles
of this distribution. Results are presented in Table 3.

These results demonstrate the effectiveness of simple PPO fine-tuning on a single task-specific dataset in
significantly enhancing model performance on similar tasks. LLAMA2-chat-hf models fine-tuned with PPO
consistently outperform GPT-4o across diverse downstream tasks, reinforcing PPO fine-tuning as a robust
approach for improving the NLU capabilities of LLMs.

We measured inference time on the Financial PhraseBank dataset with a batch size of 4. The BERT-base
model, with 110M parameters, required 0.035s per step, while the LLAMA2-7B model, with 7B parameters
and multi-token generation, took 0.997s per step. This difference is expected given the larger model size
and the need for multiple forward passes in LLAMA2-7B. While LLM inference is slower, our focus is on
improving natural language understanding with PPO, which achieves strong performance gains on both
in-distribution and out-of-distribution NLU and NLI tasks.

5.5 Evaluation of Instruction-Following in Out-of-Distribution Tasks

To assess the instruction-following capabilities of LLMs in tasks differing from their fine-tuned format, we
conduct evaluations using the LLAMA2-7B-chat-hf model fine-tuned on the SST-2 dataset. Specifically, we
evaluate the performance of this model on the Amazon review task, which requires generating an integer
rating between 1 and 5 based on the provided textual review. Although SST-2 and Amazon reviews both
involve sentiment analysis, the two tasks differ distinctly in their input-output formatting, providing a clear
measure of instruction-following adaptability.

We compare three versions of the LLAMA2-7B-chat-hf model: the original non-fine-tuned model, a version
fine-tuned using SFT, and another fine-tuned with PPO. The 95% confidence intervals (CI) reported here
are defined by the 2.5th and 97.5th percentiles of the bootstrap distribution. Using a consistent prompt
across models, we find that the PPO-fine-tuned model achieves an accuracy of 39.35% (95% CI: 38.39,
40.29), significantly outperforming the original model, which achieves 27% accuracy (95% CI: 19.00, 36.03).
Conversely, the SFT-fine-tuned model demonstrates extremely poor performance, achieving less than 1%
accuracy.

Method Accuracy 95% CI

Original 27.00 (19.00, 36.03)
SFT 0.00961 (0.00, 0.03)
PPO 39.35 (38.39, 40.29)

Table 4: Performance of LLAMA2-7B-chat-hf on the Amazon Review dataset. Best results are highlighted
in bold.

Qualitative analysis of sampled outputs reveals that the PPO-fine-tuned model reliably adheres to the in-
struction format and generates detailed reasoning to support its predictions. In contrast, the SFT-fine-tuned
model often fails to adapt its responses to the required format, demonstrating limited generalization capa-
bilities. PPO fine-tuning maintains proximity to the original model distribution via a clipping mechanism,
thus preserving and enhancing the model’s intrinsic instruction-following capabilities. In contrast, SFT fine-
tuning appears to narrow the model’s learned distribution to task-specific training data, negatively impacting
its original instruction-following proficiency.

5.6 Impact of Fine-Tuning on Language Modeling Ability

We experiment with SFT and PPO to improve NLU capabilities of LLMs and observe improved performance
using PPO. However, it is crucial to ensure that fine-tuning methods do not significantly degrade the models’
general language generation abilities. To assess this, we directly evaluate the PPL (jel, 1977; Chelba &
Jelinek, 2000) of LLAMA2-7B-chat-hf models fine-tuned on the SST-2 dataset using the WikiText-2 test

10

Under review as submission to TMLR

set (Merity et al., 2016), which follows a natural human-written text distribution. We compare these fine-
tuned models against the original, non-fine-tuned baseline model, with the expectation that the PPL of the
fine-tuned models should closely match the baseline. Our results reveal that the original LLAMA2-7B-chat-hf
achieves a perplexity of 6.939. The PPO-fine-tuned model closely maintains this baseline performance with
a perplexity of 6.966, indicating minimal impact on its general language modeling capabilities. In contrast,
the SFT-fine-tuned model displays a notably higher perplexity of 7.384, suggesting a significant reduction
in generation capabilities due to convergence toward task-specific training distributions. We conjecture
that PPO’s clipping mechanism effectively constrains policy updates, preventing large deviations from the
reference model and thereby preserving the original language modeling capabilities of LLMs. These findings
underscore PPO’s effectiveness in maintaining the general language abilities of LLMs during fine-tuning.

Method perplexity

Original 6.939
SFT 7.384
PPO 6.966

Table 5: Perplexity of LLAMA2-7B-chat-hf on the WikiText-2 test set. Lower perplexity indicates better
language modeling ability.

5.7 Results on SuperGLUE Benchmark

Models BoolQ CB COPA MultiRC ReCoRD RTE

BERT-large 77.4 75.7/83.6 70.6 70.0/24.0 72.0/71.3 71.6
BERT-large++ 79.0 84.7/90.4 73.8 70.0/24.1 72.0/71.3 79.0
LLAMA2-7B-chat-hf
Zero-shot prompting 75.8 26.4/43.6 57.0 51.9/20.3 27.0/26.2 59.2
Few-shot prompting 80.2 49.8/66.0 73.4 46.6/15.4 36.3/35.3 72.9
PPO-ST 85.9 74.7/88.0 88.6 82.5/50.0 70.6/69.9 84.3

Models WiC WSC AXb AXg Average

BERT-large 69.5 64.3 23.0 97.8/51.7 69.0
BERT-large++ 69.5 64.3 38.0 99.4/51.4 71.5
LLAMA2-7B-chat-hf
Zero-shot prompting 54.4 52.1 9.1 64.0/55.1 49.5
Few-shot prompting 54.4 62.3 9.1 64.0/55.1 54.9
PPO-ST 72.1 78.1 52.7 91.0/79.8 78.3

Table 6: SuperGLUE test results are scored by the evaluation server (SuperGLUE benchmark). The ex-
perimental data for BERT-large and BERT-large++ are taken from the original SuperGLUE paper (Wang
et al., 2020). The metrics used in the experiments are as follows: CB: F1 / Acc; MultiRC: F1 / Exact Match;
ReCoRD: F1 / Exact Match; AXb: MCC; AXg: Gender parity score / Acc. For the remaining tasks not
mentioned, accuracy (Acc) is reported. Average column corresponds to the averaged performance across all
the datasets. For tasks with multiple evaluation metrics, we first compute the average of those metrics to
obtain a single task score, which is then used in the overall average calculation. The bolded results indicate
the best results, and the underlined results indicate the second-best results.

We fine-tuned the LLAMA2-7B-chat-hf model using PPO on the SuperGLUE dataset and compared its
performance against several baselines, including BERT-large, BERT-large++, and zero-shot and few-shot
prompting of LLAMA2-7B-chat-hf. The term “BERT++” refers to a BERT model fine-tuned using the

11

https://super.gluebenchmark.com/

Under review as submission to TMLR

supplementary training on intermediate labeled-data tasks (STILTs) approach (Phang et al., 2018), where
the model is first fine-tuned on related transfer tasks before being fine-tuned on SuperGLUE tasks. For
example, MNLI from the GLUE benchmark(Wang et al., 2019) is used as an intermediate task for CB, RTE,
and BoolQ(Wang et al., 2020). In contrast, our experiments with LLM did not use this method. Our models
were only fine-tuned on the datasets included in the SuperGLUE benchmark.

As shown in Table 6, the PPO-tuned LLAMA2-7B-chat-hf achieved the highest average performance, sur-
passing all baselines. PPO demonstrated particularly strong improvements on reasoning-intensive tasks like
COPA and MultiRC, where it significantly outperformed both prompting methods and encoder-only models.
These results highlight the effectiveness of PPO in improving the model’s capabilities, particularly for tasks
requiring reasoning and contextual understanding.

It is worth noting that on MultiRC, few-shot prompting performs slightly worse than zero-shot prompting.
This may be because MultiRC involves long input contexts, and incorporating multiple examples in a few-shot
prompt can cause the total input length to approach or exceed the LLMs maximum context window. Even
in the one-shot setting, providing an excessively long context can dilute the model’s attention, potentially
leading to reduced performance.

5.8 Performance Comparison Across Different LLMs

Models STS-B COPA

BERT-large 86.5 70.6
LLAMA2-7B-chat-hf
Zero-shot prompting 27.5 57.0
Few-shot prompting 45.5 73.4
PPO-ST 92.6 88.6
Qwen2.5-7B-Instruct
Zero-shot prompting 83.7 96.6
Few-shot prompting 87.0 96.0
PPO-ST 92.2 97.0
MPT-7B-chat
Zero-shot prompting 19.7 57.4
Few-shot prompting 21.7 57.2
PPO-ST 89.3 84.0

Table 7: Performance comparison of LLAMA2-7B-chat-hf, Qwen2.5-7B-Instruct(Hui et al., 2024), and
MPT-7B-chat(MosaicML, 2023) models on the GLUE STS-B and SuperGLUE COPA tasks under zero-shot
prompting, few-shot prompting, and PPO based fine-tuning. Results are sourced from the official GLUE
benchmark and SuperGLUE benchmark evaluation servers. For STS-B, we report Spearman correlation,
and for COPA, accuracy is used as the evaluation metric.

To assess the consistency of our findings across different models, we evaluated Qwen2.5-7B-Instruct and MPT-
7B-chat alongside LLAMA2-7B-chat-hf on the STS-B dataset from the GLUE benchmark and the COPA
dataset from the SuperGLUE benchmark. The results confirm that PPO-based fine-tuning consistently
outperforms the BERT-large model, as well as the zero-shot and few-shot prompting baselines for all LLMs,
highlighting its effectiveness across different LLMs. Additionally, the effect of few-shot prompting on COPA
performance varies across different LLMs, indicating that different LLMs have varying capabilities to process
and follow long-context instructions, which results in variable performance outcomes.

5.9 Reward Curve for PPO Fine-Tuning

We present the reward curve from fine-tuning LLAMA2-7B-chat-hf using PPO in a multitask setting on
the GLUE dataset. Figure 2 illustrates the reward values over training iterations, offering insights into the

12

https://gluebenchmark.com/leaderboard
https://gluebenchmark.com/leaderboard
https://super.gluebenchmark.com/

Under review as submission to TMLR

Figure 2: Reward curve for multitask PPO fine-tuning of LLAMA2-7B-chat-hf on the GLUE dataset. The
plot illustrates the relationship between training iterations (x-axis) and reward values (y-axis), demonstrating
the effectiveness of the PPO optimization approach in improving model performance over time.

training dynamics of the model. The curve serves as a key performance metric, tracking the model’s learning
progress across multiple tasks. The consistent upward trend demonstrates that PPO fine-tuning effectively
improves LLAMA2-7B-chat-hf’s ability to generate task-relevant outputs.

6 Conclusion

Prompting-based approaches, such as zero-shot and few-shot prompting, have gained popularity for adapting
LLMs to downstream tasks. However, when applied to LLAMA2-7B-chat-hf, these methods underperform
on NLU tasks compared to smaller encoder-only models like BERT-base and BERT-large. To address
this limitation, we explore two fine-tuning strategies that leverage LoRA layers to reduce computational
overhead. First, we employ supervised fine-tuning by concatenating task-specific prompts, input queries, and
ground-truth labels, optimizing the model with the next-token prediction objective. While this approach
improves LLAMA2-7B-chat-hf’s performance over prompting-based methods, it still lags behind BERT-
base on the GLUE benchmark. To further enhance performance, we adopt PPO, treating the LLM as
a policy that generates the next token (action) based on the current input sequence (state). A reward
function then evaluates how closely the generated tokens match the ground-truth labels, guiding updates
to the policy. PPO-based fine-tuning of LLAMA2-7B-chat-hf, tested across benchmarks like GLUE and
SuperGLUE, resulted in significant performance gains, outperforming strong baselines like BERT-large.
Similar trends were observed in other LLMs, including Qwen2.5-7B-Instruct and MPT-7B-chat, showcasing
the robustness of this approach. We also assess the zero-shot generalization capabilities of LLAMA2-7B-
chat-hf and LLAMA2-13B-chat-hf models fine-tuned using PPO. By fine-tuning these models on a single
dataset and testing them on multiple unseen datasets, we demonstrate their ability to generalize effectively.
LLAMA2-13B-chat-hf outperforms GPT-4o with gains of 4.5% on Labelled Financial News, 6.2% on Babi-
nli, and over 10.9% on SIGA-nli, while LLAMA2-7B-chat-hf achieves an improvement of 7.3% on the Mental
Health dataset. These findings underscore the robustness of PPO fine-tuning in improving NLU capabilities
of LLMs. Future work could extend these techniques to more diverse datasets and refine reward functions
for handling complex NLU tasks.

References
Perplexity—a measure of the difficulty of speech recognition tasks. The Journal of the Acoustical Society of

America, 62(S1):S63–S63, 1977.

Dario Amodei, Chris Olah, Jacob Steinhardt, Paul Christiano, John Schulman, and Dan Mané. Concrete
problems in ai safety. arXiv preprint arXiv:1606.06565, 2016.

13

Under review as submission to TMLR

Yuntao Bai, Saurav Kadavath, Sandipan Kundu, Amanda Askell, Jackson Kernion, Andy Jones, Anna
Chen, Anna Goldie, Azalia Mirhoseini, Cameron McKinnon, Carol Chen, Catherine Olsson, Christopher
Olah, Danny Hernandez, Dawn Drain, Deep Ganguli, Dustin Li, Eli Tran-Johnson, Ethan Perez, Jamie
Kerr, Jared Mueller, Jeffrey Ladish, Joshua Landau, Kamal Ndousse, Kamile Lukosuite, Liane Lovitt,
Michael Sellitto, Nelson Elhage, Nicholas Schiefer, Noemi Mercado, Nova DasSarma, Robert Lasenby,
Robin Larson, Sam Ringer, Scott Johnston, Shauna Kravec, Sheer El Showk, Stanislav Fort, Tamera
Lanham, Timothy Telleen-Lawton, Tom Conerly, Tom Henighan, Tristan Hume, Samuel R. Bowman, Zac
Hatfield-Dodds, Ben Mann, Dario Amodei, Nicholas Joseph, Sam McCandlish, Tom Brown, and Jared
Kaplan. Constitutional ai: Harmlessness from ai feedback, 2022a. URL https://arxiv.org/abs/2212.
08073.

Yuntao Bai, Saurav Kadavath, Sandipan Kundu, Amanda Askell, Jackson Kernion, Andy Jones, Anna
Chen, Anna Goldie, Azalia Mirhoseini, Cameron McKinnon, et al. Constitutional ai: Harmlessness from
ai feedback. arXiv preprint arXiv:2212.08073, 2022b.

Tom B Brown. Language models are few-shot learners. arXiv preprint arXiv:2005.14165, 2020.

Ciprian Chelba and Frederick Jelinek. Structured language modeling. Comput. Speech Lang., 14:283–332,
2000. URL https://api.semanticscholar.org/CorpusID:14339957.

Marc Peter Deisenroth, Gerhard Neumann, Jan Peters, et al. A survey on policy search for robotics.
Foundations and Trends® in Robotics, 2(1–2):1–142, 2013.

Jacob Devlin. Bert: Pre-training of deep bidirectional transformers for language understanding. arXiv
preprint arXiv:1810.04805, 2018.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. Bert: Pre-training of deep bidirectional
transformers for language understanding, 2019. URL https://arxiv.org/abs/1810.04805.

Joan Gaes. Depression Dataset on hugging face. https://huggingface.co/datasets/joangaes/
depression, 2023.

Alex Havrilla, Yuqing Du, Sharath Chandra Raparthy, Christoforos Nalmpantis, Jane Dwivedi-Yu, Maksym
Zhuravinskyi, Eric Hambro, Sainbayar Sukhbaatar, and Roberta Raileanu. Teaching large language models
to reason with reinforcement learning. arXiv preprint arXiv:2403.04642, 2024.

Todd Hester, Matej Vecerik, Olivier Pietquin, Marc Lanctot, Tom Schaul, Bilal Piot, Dan Horgan, John
Quan, Andrew Sendonaris, Ian Osband, et al. Deep q-learning from demonstrations. In Proceedings of the
AAAI conference on artificial intelligence, volume 32, 2018.

Edward J Hu, Yelong Shen, Phillip Wallis, Zeyuan Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang, and
Weizhu Chen. Lora: Low-rank adaptation of large language models. arXiv preprint arXiv:2106.09685,
2021a.

Edward J. Hu, Yelong Shen, Phillip Wallis, Zeyuan Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang, and
Weizhu Chen. Lora: Low-rank adaptation of large language models, 2021b. URL https://arxiv.org/
abs/2106.09685.

Zhiting Hu and Tianmin Shu. Language models, agent models, and world models: The law for machine
reasoning and planning. arXiv preprint arXiv:2312.05230, 2023.

Binyuan Hui, Jian Yang, Zeyu Cui, Jiaxi Yang, Dayiheng Liu, Lei Zhang, Tianyu Liu, Jiajun Zhang, Bowen
Yu, Kai Dang, et al. Qwen2. 5-coder technical report. arXiv preprint arXiv:2409.12186, 2024.

P. Malo, A. Sinha, P. Korhonen, J. Wallenius, and P. Takala. Good debt or bad debt: Detecting semantic
orientations in economic texts. Journal of the Association for Information Science and Technology, 65,
2014.

Stephen Merity, Caiming Xiong, James Bradbury, and Richard Socher. Pointer sentinel mixture models,
2016.

14

https://arxiv.org/abs/2212.08073
https://arxiv.org/abs/2212.08073
https://api.semanticscholar.org/CorpusID:14339957
https://arxiv.org/abs/1810.04805
https://huggingface.co/datasets/joangaes/depression
https://huggingface.co/datasets/joangaes/depression
https://arxiv.org/abs/2106.09685
https://arxiv.org/abs/2106.09685

Under review as submission to TMLR

Volodymyr Mnih. Asynchronous methods for deep reinforcement learning. arXiv preprint arXiv:1602.01783,
2016.

Volodymyr Mnih, Adrià Puigdomènech Badia, Mehdi Mirza, Alex Graves, Timothy P. Lillicrap, Tim Harley,
David Silver, and Koray Kavukcuoglu. Asynchronous methods for deep reinforcement learning, 2016. URL
https://arxiv.org/abs/1602.01783.

MosaicML. Introducing mpt-7b: A new standard for open-source, commercially usable llms, 2023. URL
www.mosaicml.com/blog/mpt-7b. Accessed: 2023-05-05.

Rashid Nizamani, Sebastian Schuster, and Vera Demberg. SIGA: A naturalistic NLI dataset of English
scalar implicatures with gradable adjectives. In Proceedings of the 2024 Joint International Conference
on Computational Linguistics, Language Resources and Evaluation (LREC-COLING 2024), 2024.

OpenAI, :, Christopher Berner, Greg Brockman, Brooke Chan, Vicki Cheung, Przemysław Dębiak, Christy
Dennison, David Farhi, Quirin Fischer, Shariq Hashme, Chris Hesse, Rafal Józefowicz, Scott Gray, Cather-
ine Olsson, Jakub Pachocki, Michael Petrov, Henrique P. d. O. Pinto, Jonathan Raiman, Tim Salimans,
Jeremy Schlatter, Jonas Schneider, Szymon Sidor, Ilya Sutskever, Jie Tang, Filip Wolski, and Susan Zhang.
Dota 2 with large scale deep reinforcement learning, 2019. URL https://arxiv.org/abs/1912.06680.

Long Ouyang, Jeff Wu, Xu Jiang, Diogo Almeida, Carroll L. Wainwright, Pamela Mishkin, Chong Zhang,
Sandhini Agarwal, Katarina Slama, Alex Ray, John Schulman, Jacob Hilton, Fraser Kelton, Luke Miller,
Maddie Simens, Amanda Askell, Peter Welinder, Paul Christiano, Jan Leike, and Ryan Lowe. Training
language models to follow instructions with human feedback, 2022a. URL https://arxiv.org/abs/2203.
02155.

Long Ouyang, Jeffrey Wu, Xu Jiang, Diogo Almeida, Carroll Wainwright, Pamela Mishkin, Chong Zhang,
Sandhini Agarwal, Katarina Slama, Alex Ray, et al. Training language models to follow instructions with
human feedback. Advances in neural information processing systems, 35:27730–27744, 2022b.

Jason Phang, Thibault Févry, and Samuel R Bowman. Sentence encoders on stilts: Supplementary training
on intermediate labeled-data tasks. arXiv preprint arXiv:1811.01088, 2018.

Alec Radford. Improving language understanding by generative pre-training. 2018.

Alec Radford, Jeffrey Wu, Rewon Child, David Luan, Dario Amodei, Ilya Sutskever, et al. Language models
are unsupervised multitask learners. OpenAI blog, 1(8):9, 2019.

Elvis Saravia, Hsien-Chi Toby Liu, Yen-Hao Huang, Junlin Wu, and Yi-Shin Chen. CARER: Contextualized
affect representations for emotion recognition. In Proceedings of the 2018 Conference on Empirical Methods
in Natural Language Processing, pp. 3687–3697, Brussels, Belgium, October-November 2018. Association
for Computational Linguistics. doi: 10.18653/v1/D18-1404. URL https://www.aclweb.org/anthology/
D18-1404.

John Schulman. Trust region policy optimization. arXiv preprint arXiv:1502.05477, 2015.

John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. Proximal policy optimiza-
tion algorithms. arXiv preprint arXiv:1707.06347, 2017a.

John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. Proximal policy optimiza-
tion algorithms, 2017b. URL https://arxiv.org/abs/1707.06347.

John Schulman, Philipp Moritz, Sergey Levine, Michael Jordan, and Pieter Abbeel. High-dimensional
continuous control using generalized advantage estimation, 2018. URL https://arxiv.org/abs/1506.
02438.

Zhihong Shao, Peiyi Wang, Qihao Zhu, Runxin Xu, Junxiao Song, Xiao Bi, Haowei Zhang, Mingchuan
Zhang, Y. K. Li, Y. Wu, and Daya Guo. Deepseekmath: Pushing the limits of mathematical reasoning in
open language models, 2024. URL https://arxiv.org/abs/2402.03300.

15

https://arxiv.org/abs/1602.01783
www.mosaicml.com/blog/mpt-7b
https://arxiv.org/abs/1912.06680
https://arxiv.org/abs/2203.02155
https://arxiv.org/abs/2203.02155
https://www.aclweb.org/anthology/D18-1404
https://www.aclweb.org/anthology/D18-1404
https://arxiv.org/abs/1707.06347
https://arxiv.org/abs/1506.02438
https://arxiv.org/abs/1506.02438
https://arxiv.org/abs/2402.03300

Under review as submission to TMLR

David Silver, Thomas Hubert, Julian Schrittwieser, Ioannis Antonoglou, Matthew Lai, Arthur Guez, Marc
Lanctot, Laurent Sifre, Dharshan Kumaran, Thore Graepel, Timothy Lillicrap, Karen Simonyan, and
Demis Hassabis. Mastering chess and shogi by self-play with a general reinforcement learning algorithm,
2017a. URL https://arxiv.org/abs/1712.01815.

David Silver, Julian Schrittwieser, Karen Simonyan, et al. Mastering the game of go without human knowl-
edge. Nature, 550:354–359, 2017b. doi: 10.1038/nature24270.

Arav Sood. Sentiment analysis - labelled financial news data, 2024. URL https://www.kaggle.com/dsv/
7414190.

Richard S Sutton. Learning to predict by the methods of temporal differences. Machine learning, 3:9–44,
1988.

Richard S Sutton, David McAllester, Satinder Singh, and Yishay Mansour. Policy gradient methods for
reinforcement learning with function approximation. Advances in neural information processing systems,
12, 1999.

Hugo Touvron, Louis Martin, Kevin Stone, Peter Albert, Amjad Almahairi, Yasmine Babaei, Nikolay Bash-
lykov, Soumya Batra, Prajjwal Bhargava, Shruti Bhosale, Dan Bikel, Lukas Blecher, Cristian Canton Fer-
rer, Moya Chen, Guillem Cucurull, David Esiobu, Jude Fernandes, Jeremy Fu, Wenyin Fu, Brian Fuller,
Cynthia Gao, Vedanuj Goswami, Naman Goyal, Anthony Hartshorn, Saghar Hosseini, Rui Hou, Hakan
Inan, Marcin Kardas, Viktor Kerkez, Madian Khabsa, Isabel Kloumann, Artem Korenev, Punit Singh
Koura, Marie-Anne Lachaux, Thibaut Lavril, Jenya Lee, Diana Liskovich, Yinghai Lu, Yuning Mao,
Xavier Martinet, Todor Mihaylov, Pushkar Mishra, Igor Molybog, Yixin Nie, Andrew Poulton, Jeremy
Reizenstein, Rashi Rungta, Kalyan Saladi, Alan Schelten, Ruan Silva, Eric Michael Smith, Ranjan Subra-
manian, Xiaoqing Ellen Tan, Binh Tang, Ross Taylor, Adina Williams, Jian Xiang Kuan, Puxin Xu, Zheng
Yan, Iliyan Zarov, Yuchen Zhang, Angela Fan, Melanie Kambadur, Sharan Narang, Aurelien Rodriguez,
Robert Stojnic, Sergey Edunov, and Thomas Scialom. Llama 2: Open foundation and fine-tuned chat
models, 2023a. URL https://arxiv.org/abs/2307.09288.

Hugo Touvron, Louis Martin, Kevin Stone, Peter Albert, Amjad Almahairi, Yasmine Babaei, Nikolay Bash-
lykov, Soumya Batra, Prajjwal Bhargava, Shruti Bhosale, et al. Llama 2: Open foundation and fine-tuned
chat models. arXiv preprint arXiv:2307.09288, 2023b.

Leandro von Werra, Younes Belkada, Lewis Tunstall, Edward Beeching, Tristan Thrush, Nathan Lambert,
Shengyi Huang, Kashif Rasul, and Quentin Gallouédec. Trl: Transformer reinforcement learning. https:
//github.com/huggingface/trl, 2020.

Alex Wang, Amanpreet Singh, Julian Michael, Felix Hill, Omer Levy, and Samuel R. Bowman. GLUE:
A multi-task benchmark and analysis platform for natural language understanding. In International
Conference on Learning Representations, 2019. URL https://openreview.net/forum?id=rJ4km2R5t7.

Alex Wang, Yada Pruksachatkun, Nikita Nangia, Amanpreet Singh, Julian Michael, Felix Hill, Omer Levy,
and Samuel R. Bowman. Superglue: A stickier benchmark for general-purpose language understanding
systems, 2020. URL https://arxiv.org/abs/1905.00537.

Christopher JCH Watkins and Peter Dayan. Q-learning. Machine learning, 8:279–292, 1992.

Jason Weston, Antoine Bordes, Sumit Chopra, Alexander M Rush, Bart Van Merriënboer, Armand Joulin,
and Tomas Mikolov. Towards ai-complete question answering: A set of prerequisite toy tasks. arXiv
preprint arXiv:1502.05698, 2015.

Ronald J Williams. Simple statistical gradient-following algorithms for connectionist reinforcement learning.
Machine learning, 8:229–256, 1992.

Daniel M Ziegler, Nisan Stiennon, Jeffrey Wu, Tom B Brown, Alec Radford, Dario Amodei, Paul Chris-
tiano, and Geoffrey Irving. Fine-tuning language models from human preferences. arXiv preprint
arXiv:1909.08593, 2019.

16

https://arxiv.org/abs/1712.01815
https://www.kaggle.com/dsv/7414190
https://www.kaggle.com/dsv/7414190
https://arxiv.org/abs/2307.09288
https://github.com/huggingface/trl
https://github.com/huggingface/trl
https://openreview.net/forum?id=rJ4km2R5t7
https://arxiv.org/abs/1905.00537

Under review as submission to TMLR

A Evaluation on Reading Comprehension Tasks

We evaluate LLAMA2-7B-chat-hf on the SQuAD reading comprehension task, where the objective is to
select a passage from a given context that best answers a question. Two training strategies are compared:
Supervised Fine-Tuning (SFT), which directly uses the ground-truth answer as the training label, and
Proximal Policy Optimization (PPO), which leverages reward functions based on Exact Match (EM) and F1
Score. EM metric is computed by comparing a normalized prediction against the normalized ground truth
(with normalization involving lowercasing and punctuation removal); a perfect match yields an EM score
of 1, otherwise 0. F1 score measures word-level overlap, balancing how many predicted words are correct
(precision) and how many ground-truth words are included (recall).

Models were fine-tuned for one epoch on the SQuAD training set and evaluated on the development set.
In our evaluation, zero-shot prompting yields an EM of 7.66 and an F1 score of 32.27. SFT significantly
improves these metrics (EM: 59.17, F1: 76.48), while PPO further enhances performance, achieving an
EM of 65.74 and an F1 score of 81.82—corresponding to improvements of 6.57 and 5.34 points over SFT,
respectively.

These results indicate that optimizing with reward functions based on EM and F1 via PPO leads to further
improvements in reading comprehension performance, thereby validating our approach relative to both zero-
shot prompting and standard SFT.

Method EM F1

Original 7.66 32.27
SFT 59.17 76.48
PPO 65.74 81.82

Table 8: Performance of LLAMA2-7B-chat-hf on the SQuAD dataset. PPO uses Exact Match and F1 as
reward signals. Best results are highlighted in bold.

B Comparison of RL Algorithms: PPO vs. GRPO

Algorithms SST-2 MRPC RTE CoLA QNLI Average Per-Step
Runtime

SFT 73.8 85.8 80.4 50.7 93.6 76.9 4.124
PPO 96.4 89.4 84.3 59.9 93.2 84.6 4.299
GRPO 96.7 91.2 88.5 55.2 93.1 84.94 5.155

Table 9: Performance comparison of models trained with SFT, PPO, and GRPO on the GLUE SST-2,
MRPC, RTE, CoLA, and QNLI tasks under zero-shot prompting. Results are sourced from the official
GLUE benchmark evaluation servers. For MRPC, we report F1 score. Best results are highlighted in bold.

Our objective is to improve the natural language understanding capabilities of the base (policy) model
through RL fine-tuning. In this context, we compare two approaches: PPO and Group Relative Policy
Optimization (GRPO) (Shao et al., 2024). PPO is highly effective but introduces additional computational
overhead. This overhead stems from the need for repeated sampling and from updating a separate critic
model to compute value functions. In contrast, GRPO was designed to mitigate these costs by bypassing the
critic model entirely. Instead of maintaining a separate value network, GRPO samples multiple trajectories
per prompt and computes each trajectory’s advantage by comparing its reward to the batch’s average (and
standard deviation). This method not only simplifies the architecture but also reduces memory usage.

For our experiments, we utilized the TRL library (von Werra et al., 2020) on a single Nvidia A100 GPU,
with a batch size of 16 and gradient checkpointing enabled. While SFT involves a simple forward pass, loss

17

https://gluebenchmark.com/leaderboard

Under review as submission to TMLR

computation, and backward pass per step, both PPO and GRPO add extra steps such as LLM sampling,
reward calculation, and advantage estimation.

As detailed in Table 9, both PPO and GRPO deliver notable performance improvements over SFT. Notably,
PPO only incurs about a 4% increase in per-step runtime compared to SFT. However, GRPO’s need to
generate multiple responses per sample results in a higher runtime, despite its memory efficiency benefits.
Overall, our analysis highlights the trade-offs between these RL algorithms: PPO offers efficient runtime with
the cost of additional overhead from the critic model, while GRPO reduces memory usage at the expense of
increased sampling time.

C Reward Function Design and Evaluation

Method Accuracy (%)

PPO 96.4
PPO-RM 89.7

(a) SST-2 performance on GLUE.

Method GPT Eval. Score

PPO 3.479
PPO-RM 4.104

(b) Quality of generated analyses.

Table 10: Comparison of reward function designs for LLAMA2-7B-chat-hf. The model trained with a rule
based reward (PPO) achieves a high SST-2 classification accuracy of 96.4%, while incorporating a sophis-
ticated reward model (PPO-RM) significantly reduces accuracy (89.7%) but yields substantially improved
analysis quality, with a GPT evaluation score of 4.104 compared to 3.479 for the simple reward. Best results
are highlighted in bold.

While our primary reward function is based on matching generated outputs to true labels, we recognize
that more sophisticated reward designs may be necessary for complex NLU tasks. To address this, we
investigate the effect of integrating a reward model into our PPO training, with the aim of enhancing not
only classification performance on SST-2 but also the quality of generated analyses.

Reward Modeling Setup. For the first 5,000 training samples of the SST-2 dataset, LLAMA2-7B-chat-hf
generates four responses per data point. Each response includes a sentiment judgment (Positive/Negative)
and a supporting analysis. To robustly rank these responses, we use GPT-4o as an evaluator. GPT-4o ranks
the responses based on: (i) the correctness of the sentiment judgment (i.e., matching the ground truth), (ii)
the consistency between the judgment and its accompanying analysis, and (iii) the overall factual correctness
and helpfulness of the analysis. To ensure clear differentiation, we include two reference responses—one with
only the correct answer and one with only the incorrect answer—and define the ranking order as: correct
answer with analysis > only correct answer > incorrect answer with analysis > only incorrect answer.

Training the Reward Model. A reward model is then trained on this ranked dataset using a BERT-based
architecture (bert-base-cased). For each input x, we consider pairs of responses (yw, yl), where yw denotes a
response ranked higher by our evaluator (GPT-4o) due to its correct sentiment and coherent analysis, and yl

denotes a lower-ranked response. The model learns to assign higher scores to better responses via a pairwise
ranking loss:

L(θ) = −E(x,yw,yl)∼D [log σ (rθ(x, yw) − rθ(x, yl))] ,

where rθ(x, y) is the score assigned to response y given x, and σ is the sigmoid function converting the score
difference into a probability. This loss encourages the reward model to output higher scores for responses
with superior judgments and analyses.

Incorporating the Reward Model into PPO Training. During PPO training on SST-2, LLM is tasked
with generating both a sentiment judgment and an analysis. The trained reward model provides the reward
signal by scoring these outputs. As shown in Table 10a, while the PPO model trained with reward signals
from the reward model (PPO-RM) produces analyses of higher quality, it suffers from a significant reduction
in classification performance, dropping from 96.4% to 89.7%. We believe this discrepancy might be due to
the limited sample size used for reward model training and potential reward hacking Amodei et al. (2016)
during optimization. However, we will explore this further in our future works.

18

Under review as submission to TMLR

Evaluation of Generated Analyses. To further assess the impact of our reward design, we evaluated the
quality of generated analyses. We sampled 100 data points from three models: the original LLAMA2-7B-
chat-hf, the PPO model trained using only correct-answer rewards (PPO), and the PPO model trained with
the reward model (PPO-RM). GPT-4o then scored each analysis on a scale from 1 to 5 based on answer
correctness and logical coherence. As indicated in Table 10b, the PPO model using reward model signals
achieved the highest average score, suggesting that a more complex reward function can enhance the quality
of generated outputs.

In summary, while the integration of a reward model in PPO training significantly reduces classification
performance compared to using only correct-answer rewards, it considerably improves the GPT evaluation
scores of the analyses produced by the LLM.

19

	Introduction
	Related Works
	Natural Language Understanding
	Policy-based Reinforcement Learning

	Preliminaries on Application of PPO for Fine-tuning LLMs
	Method
	Task-Specific Prompt Design
	Supervised Fine-tuning of LLM on NLU Tasks
	Proximal Policy Optimization for LLM Fine-tuning on NLU Tasks
	Low-Rank Adaptation

	Experiments
	Experimental Setup
	Baselines
	Results on GLUE Benchmark
	Evaluating Zero-Shot Generalization of PPO Fine-Tuned Models and Comparison with GPT-4o
	Evaluation of Instruction-Following in Out-of-Distribution Tasks
	Impact of Fine-Tuning on Language Modeling Ability
	Results on SuperGLUE Benchmark
	Performance Comparison Across Different LLMs
	Reward Curve for PPO Fine-Tuning

	Conclusion
	Evaluation on Reading Comprehension Tasks
	Comparison of RL Algorithms: PPO vs. GRPO
	Reward Function Design and Evaluation

