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ABSTRACT

Recent Vision Mamba models not only have much lower complexity for process-
ing higher resolution images and longer videos but also the competitive perfor-
mance with Vision Transformers (ViTs). However, they tend to fall into overfit-
ting and thus mainly reach up to a base size (about 80M). It is still unclear how
vanilla Vision Mamba (Vim) can be efficiently scaled up to larger sizes, which is
essentially for further exploitation. In this paper, we propose a stochastic layer-
wise shuffle regularization, which empowers successfully scaling non-hierarchical
Vision Mamba to a large size (about 300M) in a supervised setting. Specifically,
our base and large-scale ShuffleMamba models can outperform the supervised
ViTs of similar size by 0.8% and 1.0% classification accuracy on ImageNet1k,
respectively, without auxiliary data. When evaluated on the ADE20K semantic
segmentation and COCO detection tasks, our ShuffleMamba models also show
significant improvements. Without bells and whistles, the stochastic layer-wise
shuffle has the following highlights: (1) Plug-and-play: it does not alter model
architectures and is omitted during inference. (2) Simple but effective: it can im-
prove the overfitting in Vim training and only introduce random token permutation
operations. (3) Intuitive: the feature token sequences in deeper layers are more
likely to be shuffled as they are expected to be more semantic and less sensitive to
patch positions.

1 INTRODUCTION

Vision Transformers (ViTs) have showcased powerful capabilities for sequentially modeling visual
data (Dosovitskiy et al., 2021; Liu et al., 2021; Dong et al., 2022; He et al., 2022; Bao et al., 2022),
but are plagued by quadratic complexity for sequence length (Katharopoulos et al., 2020). State
Space Models (SSMs) (Kalman, 1960; Gu et al., 2021a;b; Smith et al., 2023) have recently gained
traction as potentially efficient alternatives to traditional Convolutional Neural Networks (CNNs)
and ViTs as sequence-based vision encoders (Zhu et al., 2024; Smith et al., 2023; Liang et al.,
2024). Thanks to the hardware-aware property and flexible selective scan computation, Mamba
(Gu & Dao, 2023) stands out in a group of SSMs. Compared to the quadratic computational com-
plexity of Transformers, Mamba architecture can scale to longer sequences with only nearly linear
complexity, thus has been adapted to the vision field as backbone models (Zhu et al., 2024; Liu
et al., 2024b; Wang et al., 2024). The recent efforts have paid to exploring 2-D vision data scanning
routes and incorporating visual priors into Mamba token mixers (Zhu et al., 2024; Li et al., 2024;
Yang et al., 2024; Huang et al., 2024). These Mamba models are experimentally demonstrated to
be competitive to the ViT family or their hierarchical counterparts while maintaining the sequen-
tial scalability advantage. Such models showcased superiority in both supervised pre-training and
downstream tasks (Chen et al., 2024; Patro & Agneeswaran, 2024).

Nevertheless, issues still hinder the further application of Vision Mamba models. The overfitting and
performance degradation plague the series of models to be scaled up further (Zhu et al., 2024; Yang
et al., 2024; Li et al., 2024; Wang et al., 2024), which is essential for nowadays backbone networks.
The successfully trained models are mainly at the base or even smaller size and thus are inferior to
CNNs and ViTs in terms of model capacity (Liu et al., 2024b; Huang et al., 2024). On the other
hand, various training techniques have been applied but still no satisfactory situation has arisen. A
very recent Mamba-Reg (Wang et al., 2024) work successfully trained large-size Mamba models
using registers to eliminate the impact of high-norm regions in features. Such a method needs to
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introduce a group of extra tokens into the plain structure. It is still an emergency to explore how the
vanilla Vision Mamba model can be scaled up.

In this paper, we argue that new training techniques should be proposed to mitigate the overfitting
problem for scaling vanilla Vision Mamba (Zhu et al., 2024) up. Starting from the sequential com-
putation of Mamba and positional transformation invariance, we present a Stochastic Layer-Wise
Shuffle training regularization algorithm that successfully helps to improve the large-size vanilla
Vision Mamba model training. Specifically, deeper layers are expected to be more semantically
sophisticated and less sensitive to low-level positional information, while shallower units should
be better at sensing initial input data. Consequently, our regularization includes a token shuffle
procedure to enhance the positional transformation invariance, along with a layer-dependent proba-
bility assignment according to the layer perception assumption. As a plug-and-play algorithm, our
method neither brings the heavy cost for training nor changes the Vision Mamba architecture. Ab-
lation results demonstrate the effectiveness of our regularization for addressing overfitting and the
computation efficiency. Additionally, the trained ShuffleMamba-L achieves up to 83.6% accuracy
on ImageNet classification (Deng et al., 2009), 49.4 mIoU on ADE20K segmentation (Zhou et al.,
2017), and even outperforms the ImageNet-21K pre-trained ViT on COCO detection task. These
results reach the state-of-the-art place over the existing Vision Mamba models and outperform the
similar-size ViTs.

2 RELATED WORK

Vision Backbones In the field of computer vision, the exploration of efficient and scalable back-
bone architectures has led to significant advancements (He et al., 2016; Krizhevsky et al., 2017;
Dosovitskiy et al., 2021; Zhu et al., 2024), primarily driven by CNNs (Simonyan & Zisserman,
2015; Li et al., 2019; Liu et al., 2022b) and ViTs (Dosovitskiy et al., 2021; Liu et al., 2021; Wang
et al., 2021) recently. Initially, CNNs serve as the foundation and have evolved into deeper architec-
tures, such as AlexNet (Krizhevsky et al., 2017), VGG (Simonyan & Zisserman, 2015), and ResNet
(He et al., 2016). Various studies have introduced advanced operators, architectures, and attention
mechanisms to improve the effectiveness of models such as SENet (Hu et al., 2018) and SKNet
(Li et al., 2019). The continuous refinement of convolutional layers has resulted in architectures
like RepLKNet (Ding et al., 2022) and ConvNeXt (Liu et al., 2022b), which offer improved scal-
ability and accuracy. Despite significant advancements, CNNs primarily focus on exploiting spatial
locality, making assumptions about feature locality, translation, and scale invariance.

The introduction of ViT (Dosovitskiy et al., 2021) marks a turning point. Adapted from the NLP
community Vaswani et al. (2017), ViTs treat images as sequences of flattened 2D patches to capture
global relationships (Liu et al., 2022a; Wang et al., 2021). As ViTs evolved, models like DeiT
addressed optimization challenges (Touvron et al., 2021; He et al., 2022), while others introduced
hierarchical structures and convolution operations to incorporate inductive biases of visual percep-
tion (Liu et al., 2021; Wang et al., 2021; 2022). These modifications allow for better performance
across diverse visual tasks, although at the cost of added complexity in the models. Recently, there
has been a trend of reverting to the original, plain ViT architecture due to its simplicity and flexi-
bility in pre-training and fine-tuning across tasks (Bao et al., 2022; Xia et al., 2022; Carion et al.,
2020; Cheng et al., 2022). However, one of the major challenges is the quadratic complexity of the
self-attention mechanism (Katharopoulos et al., 2020; Zhu et al., 2023), which limits the number of
visual tokens that can be processed, impacting scalability.

State Space Vision Models Early state space transformations (Gu et al., 2021a;b; Smith et al.,
2023; Gu et al., 2023), inspired by continuous state models and bolstered by HiPPO initialization
(Gu et al., 2020), showcased the potential for handling extensive dependency problems (Nguyen
et al., 2023; Tallec & Ollivier, 2018). To overcome computational and memory issues, S4 (Gu et al.,
2021a) enforced diagonal structure on the state matrix, while S5 (Smith et al., 2023) introduced
parallel scanning to enhance efficiency further. The Mamba model (Gu & Dao, 2023) stands out
for its novel approach to SSMs. Parameterizing the state space matrices as projections of input data,
Mamba proposed the more flexible selective scanning.

While ViTs and CNNs have laid a robust foundation for various visual tasks, Mamba offers a unique
potential due to the ability to scale linearly with sequence length (Patro & Agneeswaran, 2024;
Zhu et al., 2024; Nguyen et al., 2022; Lieber et al., 2024). S4ND (Nguyen et al., 2022) is the
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pioneering effort to integrate SSM into visual applications. However, the straightforward expansion
of the S4 model did not efficiently capture image information. This gap led to further innovations
in hybrid CNN-SSM architecture, such as U-Mamba (Liu et al., 2024a). Recent efforts have sought
to build generic vision backbones purely based on SSMs without relying on attention mechanisms
(Zhu et al., 2024; Liu et al., 2024b; Li et al., 2024; Yang et al., 2024; Wang et al., 2024; Huang
et al., 2024). Vision Mamba model, built by sequentially stacking Mamba blocks, has been shown
to outperform ViT in both tiny and small model sizes. VMamba (Liu et al., 2024b) incorporated the
hierarchical prior into Mamba to enhance adaptability for visual tasks. There are also some work
exploring to refine the scanning method in Vim for visual data (Yang et al., 2024; Li et al., 2024;
Huang et al., 2024; Chen et al., 2024). Nevertheless, Vims are stuck into issues like overfitting and
only Mamba-Reg (Wang et al., 2024) successfully scale it up by introducing a group of registers in
the supervised training.

Training Regularizations To improve the training and generalization of deep models, various reg-
ularization techniques have been developed over the past years. Normalizations (Ioffe & Szegedy,
2015; Ulyanov et al., 2016; Wu & He, 2018) are proven to be effective for speeding the conver-
gence up, in which the Layer Normalization (Ba et al., 2016) and RMSNorm (Zhang & Sennrich,
2019) are popular in training of large models. The family of data augmentations (Cubuk et al.,
2020; Hoffer et al., 2020; Yun et al., 2019; Zhang et al., 2018a) help to produce more robust repre-
sentations and enhance performance. Stochastic depth and drop path (Huang et al., 2016; Larsson
et al., 2016) drop the connection in the block level, which can not only overcome overfitting but
also decrease the training cost. Weight decay (Krogh & Hertz, 1991; Loshchilov & Hutter, 2019)
is commonly adopted for mitigating overfitting as well in a weight-penalizing manner. Besides,
the earlier Dropout approach (Srivastava et al., 2014) introduces disturbance by dropping hidden
units. They have played roles in various network training scenarios. Despite their benefits, these
existing methods show limitations for Vim training and scalability. In this paper, we argue that new
regularization should be considered to address the overfitting problem and scale Vim up.

Shuffle Models Random shuffling is not a common practice in the field of visual modeling as
it can be seen as a disturbance for the original signal. In the existing related work, ShuffleNet
(Zhang et al., 2018b) proposed to shuffle channels on group convolution to design lightweight CNN.
Spatially Shuffled Convolution (Kishida & Nakayama, 2020) designs a permutation matrix for
input spacial shuffling to enhance the receptive field perception of convolution. Besides, Shuffle
Transformer (Huang et al., 2021) introduces the shuffle operation across different windows for
hierarchical Transformer models with the motivation of improving the long-range vision attention
modeling. Unlike these methods that shuffle elements across groups, we propose to use random
shuffle to improve the sequential vision training for the 2-D spatial nature of image data.

3 METHOD

In this section, we introduce our Stochastic Layer-Wise Shuffle Regularization (SLWS) for Vision
Mamba training. We briefly present the preliminaries in the following subsections for a better under-
standing of our algorithm, then introduce the regularization from intuition to formulation in detail.

3.1 PRELIMINARIES

State Space Model (SSM) (Gu et al., 2021a;b) is originally designed for modeling continuous time
systems by projecting 1-D input stimulation x(t) to the output signal y(t) via hidden state h(t) ∈ Rn.
Formally, SSM is expressed with the subsequent ordinary differential equation (ODE) as follows:

h′(t) = Ah(t) +Bx(t),

y(t) = Ch(t) +Dx(t),
(1)

where A ∈ Rn×n denotes the system’s evolutionary matrix, with B ∈ Rn×1, C ∈ R1×n and D
are projection parameters. In a discrete system scenario, the above SSM is discreted by a timescale
parameter ∆, transforming the expressions of A and B into their discrete equivalents Ā and B̄. In
Mamba models, such conversion is implemented with the Zero-Order Hold (ZOH) rule, which is
expressed as follows:

Ā = exp(∆A),

B̄ = ∆A−1(exp(∆A− I)) ·∆B.
(2)
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Figure 1: Stochastic layer-wise shuffle regularization. Higher layers are assigned with larger
probabilities for shuffle regularization to enhance positional transformation invariance. bℓ is sampled
according to the probability to determine to whether execute regularization. Stochastic layer-wise
shuffle only includes sequence permutation and is not involved in inference.

Then, a sequential input {xi}Li=1 is mapped via this discreted system to its output {yi} as:

h′
i = Āhi−1 + B̄xi,

yi = Ch′
i +Dxi.

(3)

Mamba (Gu & Dao, 2023) designs the B, C and ∆ to be input-dependent to improve the intrinsic
capacity for contextual sensitivity and adaptive weight modulation. Besides, a Selective Scan Mech-
anism is ensembled in for efficient computation. To this end, for a Vim (Zhu et al., 2024) block
(or layer) sℓ, it includes an SSM branch, whose output is multiplied by the result of another gated
branch to produce the final output sequence Xℓ ∈ RT×D. Thus, the corresponding forward process
is expressed in the following form:

Xℓ = sℓ (Xℓ−1) . (4)

3.2 STOCHASTIC LAYER-WISE SHUFFLE

As formulated above, the SSM-based Mamba is initially proposed for sequence modeling but can-
not be naturally adapted to 2-D image data, whose patch sequences are not casual structures. Some
previous work has incorporated various scanning manners into Mamba layers to improve the spatial
context perception (Zhu et al., 2024; Liu et al., 2024b; Yang et al., 2024; Li et al., 2024). Never-
theless in training, they are still stuck in the simple 1-D corner-to-corner scanning and plagued by
issues such as overfitting. To improve the Vim training, we propose the stochastic layer-wise shuffle
regularization according to the following intuitions:

(1) These corner-to-corner sequential scannings in SSM modules of vision models do not nat-
urally align with the prior of capturing local neighborhood relationships and long-range
global correlations.

(2) The deeper layers of a vision encoder are expected to output higher semantic-level repre-
sentations, while those shallower ones provide more low-level information.

(3) Better semantic-level perception of deeper layers needs transformation invariance for patch
positions, and shallower units should maintain the positional sensitivity.

(4) Adding disturbance to the basic sequential structure computing can intensify challenges
associated with the visual task and thus may be beneficial for the overfitting problem.

We present the stochastic layer-wise shuffle training regularization, which introduces randomness
to the corner-to-corner sequential scanning and helps to enhance the transformation invariance for
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patch positions of output representations. It is a simple layer-dependent form for Vim models and is
formulated as follows:

Random Shuffle Forward Regularization. Inspired by stochastic depth (Huang et al., 2016), we
use a Bernoulli random variable bℓ ∈ {0, 1} to indicate whether the ℓth layer training is to be im-
plemented with regularization. To strengthen the positional transformation invariance and intensify
challenges for visual prediction task, the input token sequence Xℓ−1 of the ℓth layer will be shuffled
to a random order to be X

′

ℓ−1 if bℓ = 1, else Xℓ−1 maintain itself. Such an operation is defined
as π (· | bℓ), and π−1 (· | bℓ) or π−1

ℓ (·) denotes the inverse process to restore the corresponding out-
put Xℓ to the original sequential order. Particularly, π (· | bℓ) shuffles tokens obeying the simple
uniform distribution. Then the forward process in Eq. (4) is reformulated as follows:

Xℓ = π−1
ℓ (sℓ (π (Xℓ−1 | bℓ))) . (5)

Layer-Wise Probabilities Assignment. For another, layers of Vim are assigned with different
execution probabilities of training regularization. This also echoes the semantic level prior for model
layers, i.e., deeper features are expected to be higher semantic. Consequently, the ℓth probability is
designed to be an increasing function of ℓ. In this paper, we simply take a linear form and ℓ starts
from 0. Specifically, the probability pℓ of implementing the shuffle forward regularization for the
ℓth layer is expressed as:

P (bℓ = 1) =
ℓ

L
PL, (6)

where PL is a hyper-parameter of the stochastic layer-wise shuffle and will be explored in the exper-
iment part. As we design the shuffle process to obey a discrete uniform distribution, there exists the
token position transformation distribution, i.e., the probability that the i-th token in the j-th position
after shuffled:

P
(
xℓ
i ⇒ x

′ℓ
j

)
=

1

L+ 1
P (bℓ = 1)

=
ℓ

(L+ 1)L
PL.

(7)

Algorithm 1 Layer-Wise Shuffle forward
Require: token sequence Xℓ−1 ∈ RB×T×D ,

layer sℓ, probability pℓ, training flag F
Ensure: token sequence Xℓ

1: # this layer is trained with regularization
2: if F and rand(1) < pℓ then
3: shuffle indices = randperm(T).expand(B, 1, D)
4: restore indices = argsort(shuffle indices, dim=1)
5: X

′
ℓ−1 = gather(Xℓ−1, 1, shuffle indices)

6: X
′
ℓ = sℓ(X

′
ℓ−1)

7: Xℓ = gather(X
′
ℓ , 1, restore indices)

8: else
9: # inference or trained without regularization

10: Xℓ = sℓ(Xℓ−1)
11: end if
12: Return: Xℓ

Efficiency Analysis. Fig. 1 and Al-
gorithm 1 with PyTorch functions fur-
ther illustrate the SLWS algorithm for
Vim training. It can be found that such
a method introduces very limited ex-
tra computing costs. Particularly, the
random indices generation and restora-
tion involve the sequence length linear
complexity O(L) and sorting computing
complexity O(L logL), respectively. As
we shuffle all of the sequences in a batch
with the same randomly sampled index
order, the batch size does not affect the
calculation of this step. Another extra
operation in this regularization is gath-
ering tensors according to the indexes of
the sequence dimension, which involves
O(L) complexity for a sequence. Therefore, the proposed Stochastic Layer-Wise Shuffle regular-
ization only introduces O(L logL) computing complexity totally. Ablation results in Sec. 4.3 echo
the limited training efficiency decrease as well.

Overall, our proposed stochastic layer-wise shuffle algorithm fulfills some advantages:

(1) The layer-dependent probability assignment and token shuffle operations are intuitive for
Vision Mamba to enhance the modeling of non-casual 2-D visual data.

(2) As a training regularization, it is plug-and-play without changing the model architecture,
which will be dumped in inference, and thus will not affect the application efficiency.

(3) It raises the task complexity for visual prediction to overcome overfitting but does not bring
heavy extra computation as it only introduces a few complexities, thus is efficient.

5
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(a) Loss curves. (b) Training throughputs.

Figure 2: (a) Training and evaluation loss for 300 epochs middle-size Vims. When equipped
with SLWS, the model finally showcases lower evaluation loss and larger training loss. This implies
that SLWS is effective for improving the overfitting problem. (b) Training throughput change
for middle-size Vims under different input resolutions. SLWS only has very limited degradation
(< 2%) on training throughput.

4 EXPERIMENTS

Model #Depth #Dim #Param. #GFlops.

Small 24 384 7M 4.3
Middle 32 576 74M 12.7
Base 24 768 98M 16.9
Large1 40 1024 284M 49.8
Large2 48 1024 340M 59.7

Table 1: Configurations of models
(when only one [CLS] token ac-
counted) in different size.

In this section, we conduct comprehensive experiments to
evaluate the stochastic layer-wise shuffle regularization for
improving Vim training. We explored and compared the
performance of different models in classification and dense
prediction tasks, but also studied the algorithm properties in
depth with ablations in the following subsections.

4.1 IMPLEMENTATION SETTINGS

Following the common step, we train Vision Mamba models from scratch on the ImageNet-1K
(Deng et al., 2009) that contains 1.28M training samples in a supervised style and evaluate them
with the DeiT protocols (Touvron et al., 2021). Specifically, we take four different size models in
this section, which are described in Table 1. The middle and base-size models are trained for 300
epochs with a 2048 batch size, while the Large1 is trained for 200 epochs with a 1024 batch size.
We use AdamW optimizer (Loshchilov & Hutter, 2019) with selecting {20,30} epochs warmup,
a cosine learning rate schedule and a 5e-4 initial basic learning rate scaled by 512. The betas and
weight decay rate of AdamW are set as (0.9, 0.95) and 0.1, respectively. Mixup (Zhang et al.,
2018a), Cutmix (Yun et al., 2019), Random erasing and Rand augment (Cubuk et al., 2020) are
used for data augmentations. We also utilize BFloat16 precision following exiting settings for train-
ing stability. Exponential Mean Average (EMA) with a decay rate of 0.9999 classification results
are reported. Besides, the drop path rate and shuffle rate PL for middle and base-size models are
{0.5,0.5} while are {0.7,0.6} for ShuffleMamba-L1, respectively. Following the VideoMamba (Li
et al., 2024) classification setting, we place a [CLS] token at the beginning of token sequences
to provide classification features. For the ”reg” version training, we follow Mamba-Reg (Wang
et al., 2024) to perform a prefix 128 resolution pre-training (Touvron et al., 2019; 2022) and then
fine-tuning along with adding same numbers of register tokens to the model.

4.2 RESULTS AND ANALYSIS

Classification Classification results on ImageNet-1K are reported in Table 2. We mainly focus
on those sizes that are inferior in previous studies, i.e., middle, base, and large-size models. It
can be seen that SSM-based models show competitive or better performance under similar model
sizes. When compared to the ViT family (Dosovitskiy et al., 2021; Touvron et al., 2021), our

6



324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

Table 2: ImageNet-1K classification comparison. All results are obtained under 224×224 resolution
training except for register models. Our ShuffleMamba results are highlighted in blue .

Arch. Method EMA Distill. Param. FLOPs Acc. (%)
Hierarchical

CNN

RegNetY-4G(Radosavovic et al., 2020) 21M 4G 80.0
RegNetY-8G (Radosavovic et al., 2020) 39M 8G 81.7
RegNetY-16G(Radosavovic et al., 2020) 84M 16G 82.9

ConvNeXt-T(Liu et al., 2022b) 29M 4.5G 82.1
ConvNeXt-S(Liu et al., 2022b) 50M 8.7G 83.1
ConvNeXt-B(Liu et al., 2022b) 89M 15.4G 83.8

Trans.
Swin-T(Liu et al., 2021) 28M 4.6G 81.3
Swin-S(Liu et al., 2021) 50M 8.7G 83.0
Swin-B(Liu et al., 2021) 88M 15.4G 83.5

SSM
VMamba-T(Liu et al., 2024b) ✓ 31M 4.9G 82.5
VMamba-S(Liu et al., 2024b) ✓ 50M 8.7G 83.6
VMamba-B(Liu et al., 2024b) ✓ 89M 15.4G 83.9

Non-Hierarchical

CNN
ConvNeXt-S(Liu et al., 2022b) 22M 4.3G 79.7
ConvNeXt-B(Liu et al., 2022b) 87M 16.9G 82.0

Trans.

DeiT-S 22M 4.6G 79.8
DeiT-B(Touvron et al., 2021) 87M 17.6G 81.8
DeiT-B(Touvron et al., 2021) ✓ 87M 17.6G 81.9
ViT-B (MAE sup.)(He et al., 2022) 87M 17.6G 82.1
ViT-B (MAE sup.)(He et al., 2022) ✓ 87M 17.6G 82.3
ViT-L (MAE sup.)(He et al., 2022) 309M 191G 81.5
ViT-L (MAE sup.)(He et al., 2022) ✓ 309M 191G 82.6

SSM

Vim-S(Zhu et al., 2024) 26M 4.3G 80.5
VideoMamba-S(Li et al., 2024) 26M 4.3G 81.2
VideoMamba-M(Li et al., 2024) 74M 12.7G 80.9
VideoMamba-M(Li et al., 2024) ✓ 74M 12.7G 82.8
VideoMamba-B(Li et al., 2024) 98M 16.9G 79.8
VideoMamba-B(Li et al., 2024) ✓ 98M 16.9G 82.7
LocalViM-S(Huang et al., 2024) ✓ 28M 4.8G 81.2
PlainMamba-L2(Yang et al., 2024) ✓ 25M 8.1G 81.6
PlainMamba-L3(Yang et al., 2024) ✓ 50M 14.4G 82.3
Mamba-Reg-S(Wang et al., 2024) 28M 4.5G 81.4
Mamba-Reg-B(Wang et al., 2024) 99M 17.8G 83.0
Mamba-Reg-L(Wang et al., 2024) 341M 64.2G 83.6
ShuffleMamba-S 26M 4.3G 81.2
ShuffleMamba-M 74M 12.7G 82.7
ShuffleMamba-M ✓ 74M 12.7G 82.8
ShuffleMamba-B 98M 16.9G 82.6
ShuffleMamba-B ✓ 98M 16.9G 82.7
ShuffleMamba-Reg-B 99M 17.8G 83.1
ShuffleMamba-L1 284M 49.8G 82.9
ShuffleMamba-L1 ✓ 284M 49.8G 82.9
ShuffleMamba-Reg-L2 341M 64.2G 83.6
256×256 Test
Mamba-Reg-B(Wang et al., 2024) 99M 22.9G 83.0
Mamba-Reg-L(Wang et al., 2024) 341M 82.4G 83.2
ShuffleMamba-M 74M 16.5G 82.8
ShuffleMamba-M ✓ 74M 16.5G 83.0
ShuffleMamba-B 98M 22.0G 82.9
ShuffleMamba-B ✓ 98M 22.0G 83.0
ShuffleMamba-Reg-B 98M 22.9G 83.2
ShuffleMamba-L1 284M 49.8G 83.1
ShuffleMamba-L1 ✓ 284M 49.8G 83.2
ShuffleMamba-Reg-L2 341M 82.4G 83.6
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ShuffleMamba-B has a 0.4% higher point than the supervised trained ViT-B in MAE work (He
et al., 2022). ShuffleMamba-B also achieves a 0.8% accuracy higher than DeiT-B trained with the
distillation technique. On the other hand, when equipped with the multi-stage training scheme and
registers like (Wang et al., 2024), both Mamba-Reg and our ShuffleMamba get state-of-the-art per-
formance among SSM-based models. Our ShuffleMamba-Reg has a slight advantage compared to
Mamba-Reg. In addition, hierarchical Tansformers and SSM-based models show better classifica-
tion performance.

When generalized to 256×256 test resolution (position embeddings are processed by bicubic in-
terpolation), our ShuffleMamba models exhibit general improvements to higher testing resolution
and reach the state-of-the-art place, indicating that 256×256 is included in the effective receptive
fields (ERF) of our ShuffleMamba. Our ShuffleMamba-Reg models showcase a significant mar-
gin to Mamba-Reg up to 0.4%. This also confirms our basic motivation, like layer-wise semantic
hypothesis and positional sensitivity for improving vision Mamba models beyond overfitting.

It is also worth noting that only Mamba-Reg and ShuffleMamba can scale the Vim model to the
large size (around 300M parameters) in supervised training up to now. Thanks to our plug-and-play
SLWS technology, we successfully scale up vanilla Vim with or without the need for registers.

Table 3: Semantic segmentation results on ADE20K Val. Computation FLOPs are measured
under 512×2048 input resolution. ”MS” means multi-scale test. Our ShuffleMamba results are
highlighted in blue .

type backbone crop size Param. FLOPs mIoU +MS

CNN
ResNet-50 5122 67M 953G 42.1 42.8
ResNet-101 5122 85M 1030G 42.9 44.0
ConvNeXt-B 5122 122M 1170G 49.1 49.9

Trans.

DeiT-B+MLN 5122 144M 2007G 45.5 47.2
ViT-B 5122 127M - 46.1 47.1
ViT-Adapter-B 5122 134M 632G 48.8 49.7
Swin-B 5122 121M 1170G 48.1 49.7

SSM

ViM-S 5122 46M - 44.9 -
Mamba-Reg-B 5122 132M - 47.7 -
Mamba-Reg-L 5122 377M - 49.1 -
ShuffleMamba-M 5122 106M 384G 47.2 48.2
ShuffleMamba-B 5122 131M 477G 47.0 48.3
ShuffleMamba-Reg-B 5122 131M 477G 48.2 48.9
ShuffleMamba-Reg-Adapter-B 5122 145M 1428G 49.3 50.1
ShuffleMamba-L1 5122 320M 1168G 48.8 49.9
ShuffleMamba-Reg-L2 5122 376M 1373G 49.4 50.1

Semantic Segmentation To evaluate the capabilities of our ShuffleMamba in dense prediction task,
we choose the semantic segmentation task and experiment on the commonly used ADE20K bench-
mark that contains 20K training samples. A UperNet (Xiao et al., 2018) head is built upon the
ShuffleMamba backbone trained on ImageNet-1K. Following the common settings (Chen et al.,
2023; Yang et al., 2024; Wang et al., 2024), we use an Adam optimizer with 0.01 weight decay and
a polynomial learning rate schedule. All the models are trained for 160K iterations with batch size
16. The learning rates of the base and large-size models are set as 6e-5 and 3e-5, respectively. The
[CLS] and register tokens are discarded in the segmentation task.

The mIoU results in single-scale and multi-scale testing are listed in Table 3. Representative CNN,
Transformer and non-hierarchical SSM-based backbones are taken into account. With the SLWS
regularization, the ShuffleMamba pre-trained models demonstrate superior performance. Our base-
size model with registers outperforms ViT-B by a significant margin and the corresponding Mamba-
Reg without SLWS training. When equipped with the multi-scale Adapter (Chen et al., 2023), the
ShuffleMamba-Reg-Adapter-B model exhibits a further 1.6 points advantage compared to Mamba-
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Reg-B and 0.5% higher than ViT-Adapter-B. Additionally, our ShuffleMamba-Reg-L2 gets the state-
of-the-art accuracy on single and multi-scale test over the listed backbones in different types.

Table 4: Object detection and instance segmentation results using Mask R-CNN on MS COCO
with 1× schedule. All the listed SSM-based models use Adapter (Chen et al., 2023) structure to
compute multi-scale features. FLOPs are calculated with input size 1280×800. Our ShuffleMamba
results are highlighted in blue . Gray fonts indicate the models pre-trained on ImageNet-21K.

type backbone Param. FLOPs APb APb
50 APb

75 Apm APm
50 Apm

75

CNN ConvNeXt-B 108M 486G 47 69.4 51.7 42.7 66.3 46

Trans.

Swin-B 107M 496G 46.9 - - 42.3 - -
ViT-B 114M - 42.9 65.7 46.8 39.4 62.6 42.0
ViT-L 337M - 45.7 68.9 49.4 41.5 65.6 44.6
ViT-Adapter-B 120M - 47 68.2 51.4 41.8 65.1 44.9
ViT-Adapter-L 348M - 48.7 70.1 53.2 43.3 67.0 46.9

SSM

PlainMamba-L3 79M 696G 46.8 68 51.1 41.2 64.7 43.9
ShuffleMamba-M 103M 564G 46.8 68.8 50.7 41.8 65.6 44.8
ShuffleMamba-Reg-B 131M 726G 47.7 69.7 51.8 42.6 66.7 45.8
ShuffleMamba-Reg-L2 383M 1734G 48.9 70.8 53.4 43.6 67.4 47.0

Object Detection and Instance Segmentation In this subsection, we also implement downstream
object detection and instance segmentation tasks following previous work to evaluate our Shuffle-
Mamba. The Mask R-CNN (He et al., 2017) structure is adopted with 1× schedule for 12-epoch
fine-tuning. We utilize the commonly used settings in previous work (Liu et al., 2021) and compare
to different-type backbones. To compute the multi-scale features to fit the FPN network structure,
we use the Adapter setup following (Yang et al., 2024; Chen et al., 2023).

The detection and instance segmentation results on the COCO dataset are reported in Table 4. It can
be seen that our middle-size model is on par with the corresponding CNN and Transformer model,
while the base-size model with registers outperforms ViT-Adapter-B and ConvNext-B by 0.7 points
APb. Besides, our ShuffleMamba-Reg-L2 can achieve the state-of-the-art APb and APm among
all the listed models and even be better than the ViT-Adapter-L and ViT-L trained on ImageNet-
21K that is 10 times larger than our adopted ImageNet-1K. These downstream results consistently
demonstrate the superiority brought by the proposed SLWS regularization.

4.3 ABLATION STUDIES

In this subsection, we ablate or change settings in the stochastic layer-wise shuffle regularization
to investigate the effects and provide in-depth studies of this algorithm. Middle-size vanilla Vision
Mamba models are adopted by default for experiments. Unless otherwise stated, the corresponding
settings are the same as those in Sec. 4.1.

SLWS is effective for mitigating overfitting. One of the key motivations of our stochastic layer-
wise shuffle regularization is to overcome the overfitting issue that prevents previous work to scaling
Vim up. Fig. 2a shows the evaluation and training loss comparisons. We can observe that the model
trained with SLWS finally has lower evaluation loss and higher training loss, while the ablated one
tends to overfit with lower training loss but a higher evaluation error rate. This confirms the cor-
rectness of SLWS to add disturbance for sequential perception training to raise the task complexity
for Vim. The results in Table 5 further suggest the effectiveness of mitigating overfitting. Specif-
ically, though refining the training recipe in Vim and VideoMamba (80.9% with base model) can
help model learning, our SLWS can bring a further 0.9% gain w.r.t. ImageNet-1K accuracy.

SLWS has a negligible impact on training throughput. The proposed SLWS plays a role in train-
ing for input and output sequences of a mamba block, where the efficiency has been analyzed in the
former Sec 3.2. We conduct experiments with different commonly adopted training image sizes to
evaluate the effect on throughput for further exploration. Fig. 2b exhibits training throughout under
128×128 resolution to 768×768 and the corresponding percentage of degradation when exploiting
SLWS. It can be seen that SLWS only causes lower than 2% throughput degradation among this
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Table 5: Ablations of probability settings. Our
default setup is highlighted in blue . PL =
0 indicates the model degenerates to vanilla
Vim (trained with improved recipe except using
SLWS).

Probability assignment PL Acc. (%)

Layer-Dependent

0.4 82.3
0.5 82.7
0.6 82.4
0.7 82.4

Constant
0 81.8

0.1 81.5
0.4 81.1

Table 6: Ablation study of [CLS] token in
shuffle regularization. We shuffle the total
sequence including [CLS] token by default,
which is beneficial for the classification perfor-
mance of different size models.

model shuffle w/ [CLS] token Acc.

Middle
× 82.6
✓ 82.7

Base
× 82.6
✓ 82.6

Large1
× 82.8
✓ 82.9

range of input sizes. Therefore, SLWS is a simple but effective and efficient training regularization
for Vim.

Layer-wise probability assignment is necessary. The layer-wise dependent probability is a key
component for the SLWS design, which introduces the semantic level prior to different layers. We
list results in the context of different probability assignment settings in Table 5. We can see that the
layer-dependent cases generally outperform the constant ones. Additionally, as shallower blocks are
more sensitive to the patch positions, when all of the layers (except the input layer) are assigned with
a through 0.1 and 0.4 probability, the model even shows inferior accuracy compared to the vanilla
Vim. On the other hand, 0.5 is a better choice for the middle-size model among the listed values.

Directly including [CLS] in shuffling is slightly better. As the [CLS] token is taken as the
feature for classification training, we experiment in this part to explore the effect of whether or not
it is included in shuffling. The ablation results for different size models are shown in Table 6. It
can be observed that including the [CLS] in shuffle is slightly better for middle and large models.
Therefore, we just shuffle the whole sequence for blocks by default for code simplicity and the case
of using registers is as the same.

5 CONCLUSION

In this paper, we propose a stochastic layer-wise shuffle regularization (SLWS) strategy for improv-
ing vanilla Vision Mamba training. Motivated by the semantic levels of different layers and the
positional transformation invariance, we design SLWS to be layer-dependent. Specifically, deeper
layers are assigned with larger probabilities to be regularized. On the other hand, SLWS is a plug-
and-play algorithm, which does not change the model architecture but also only introduces light-cost
permutation disturbance to token sequences. Ablation results demonstrate that our SLWS can ef-
fectively mitigate the overfitting problem of Vim and the reasonableness of the layer-wise strategy.
Besides, SLWS is absent in inference and only causes negligible efficiency impact on training. More
importantly, this simple but effective algorithm is verified on scalability to large-size models and su-
periority for comparing to state-of-the-art methods.
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