
CDQuant: Greedy Coordinate Descent for Accurate
LLM Quantization

Pranav Ajit Nair
Google DeepMind

pranavajitnair@google.com

Arun Sai Suggala
Google DeepMind

arunss@google.com

Abstract

Quantization has emerged as a key technique for compressing large models with
minimal impact on performance. The recent GPTQ algorithm, a post-training
quantization (PTQ) method, has proven highly effective for compressing LLMs,
sparking a wave of research that leverages GPTQ as a core component. Recognizing
the pivotal role of GPTQ in the PTQ landscape, we introduce CDQuant, a simple
and scalable alternative to GPTQ with improved performance. CDQuant uses
greedy coordinate descent to minimize the layer-wise reconstruction loss to achieve
high-quality quantized weights. Our algorithm is easy to implement and scales
efficiently to models with hundreds of billions of parameters. We perform extensive
evaluation on Gemma, and PaLM2 model families, and demonstrate that CDQuant
consistently outperforms GPTQ in 2-4 bit weight quantization. Moreover, CDQuant
improves the performance of state-of-the-art PTQ techniques such as QuIP and
FrameQuant when used as a replacement for their GPTQ component, resulting in
further gains in quality.

1 Introduction

Large language models (LLMs) have shown remarkable ability to handle various language tasks [Tou-
vron et al., 2023, OpenAI, 2023, Google, 2023], but their widespread adoption is hampered by
their substantial computational and memory demands. To tackle this challenge, researchers have
explored techniques like quantization, pruning, and distillation, with quantization being a particularly
promising avenue for reducing model size and inference time without significantly sacrificing perfor-
mance [Miao et al., 2023]. Quantization techniques broadly fall into two categories: post-training
quantization (PTQ) and quantization-aware training (QAT). QAT, while potentially yielding better
results, poses a significant challenge for LLMs due to the immense resources required to train these
large models. As a result, a growing body of research has focused on PTQ, which is generally less
computationally intensive and can be applied to large, pre-trained models.

A seminal work in PTQ for LLMs is GPTQ [Frantar et al., 2022], which introduced a one-shot
weight quantization approach that minimizes the following layer-wise output reconstruction loss:
‖X(W − Ŵ)‖2F , where X = [x1,x2 . . .xn] represents the layer inputs and W, Ŵ ∈ Rdin×dout are
the original and quantized weight matrices, respectively. This method has sparked a wave of research
in PTQ. Subsequent works have built upon GPTQ, addressing its limitations and improving it’s
performance. For instance, SpQR [Dettmers et al., 2023] and OWQ [Lee et al., 2023] improve GPTQ
by explicitly addressing outlier weights, maintaining them in full precision, while quantizing the
remaining weights using GPTQ. This hybrid approach improves quantization accuracy, particularly at
lower bit-widths. Another line of research focuses on transforming the weight space before applying
GPTQ. For instance, QuIP [Chee et al., 2024], FrameQuant [Adepu et al., 2024] transform the weights
into a more quantization-friendly space and apply GPTQ in the transformed space. AWQ [Lin et al.,
2023], SmoothQuant [Xiao et al., 2023] reduce the effect of activation outliers by performing feature
scaling before quantizing the weights using standard techniques.

Given the central role GPTQ plays in the landscape of PTQ methods for LLMs, improving its quality
directly translates to better quantization across numerous techniques that build upon it. Consequently,
in this work, we revisit the core optimization problem addressed by GPTQ and introduce a novel
coordinate descent based algorithm, CDQuant, to minimize the objective. CDQuant is an iterative
optimization technique that greedily selects coordinates to descend along in each iteration. This
approach contrasts with GPTQ, which cycles through the coordinates only once, in a predetermined
order, often leading to suboptimal solutions for the layer-wise objective (see Section 2 for more
details). CDQuant is simple to implement and scales effectively to models with billions of parameters.
We further extend CDQuant to group/sub-channel quantization, a technique gaining popularity of
late [Dettmers et al., 2021, Dettmers and Zettlemoyer, 2023].

Extensive experiments on Gemma [Mesnard et al., 2024], and PaLM2 [Anil et al., 2023] model fami-
lies demonstrate that CDQuant consistently outperforms GPTQ across various model sizes and quanti-
zation precision levels (2-4 bits). Notably, for INT2 quantization of PaLM2-Otter, CDQuant achieves
a 10% perplexity reduction compared to GPTQ. Furthermore, integrating CDQuant with QuIP [Chee
et al., 2024] and FrameQuant [Adepu et al., 2024] improves their performance by ∼ 5% for INT2
quantization of the Gemma-2 27B model, showcasing its potential as a drop-in replacement for GPTQ
in existing PTQ techniques.

2 Related Work
The literature on quantization is huge. In this section, we only review the works that are related to
quantization of large pre-trained models, and those that are related to our work.

GPTQ. Inspired by the Optimal Brain Surgeon (OBS) framework for pruning [LeCun et al., 1989],
Optimal Brain Quantization (OBQ) [Frantar and Alistarh, 2022] emerged as a promising post-training
quantization (PTQ) technique. However, OBQ remains computationally expensive and struggles to
scale effectively to large language models (LLMs). This is because of a complicated step involved in
OBQ which requires updating all the unquantized coordinates in each step (see Equation 2 in Frantar
et al. [2022]). Implementing this step in GPUs is extremely slow because of the sheer number of
gathers/scatters that need to be performed at each step. Frantar et al. [2022] subsequently introduced
GPTQ, which employs heuristics to accelerate the OBQ algorithm. Specifically, GPTQ updates
coordinates once in a cyclic manner rather than the greedy approach used in OBQ. This modification
significantly speeds up the algorithm but comes at the cost of reduced quality. In our work, we
address this performance drop by proposing greedy coordinate descent algorithms that are both
straightforward and easy to implement.

Other Weight-only Quantization Techniques. Recent works on post-training quantization have
sought to improve upon GPTQ. One popular strategy here is to identify and isolate problematic
weights before applying GPTQ. For example, SpQR [Dettmers et al., 2023] isolates outlier weights
and keeps them at full precision, quantizing only the remaining values using GPTQ. Similarly,
OWQ [Lee et al., 2023] identifies weights that are highly sensitive to small perturbations and excludes
them from the GPTQ quantization process. Another promising direction involves transforming
the weights into a different basis before quantization. Both QuIP [Chee et al., 2024], and Frame-
Quant [Adepu et al., 2024] take this route and perform quantization in the transformed space using
GPTQ. In all these approaches, we could potentially substitute GPTQ with CDQuant and expect
to see further improvements in performance (see Section 4 for empirical evidence). Other promis-
ing methods such as AWQ [Lin et al., 2023], AffineQuant [Ma et al., 2024], suppress the effect
of outliers in input activations by adjusting their scale and transferring it to weights. They then
perform the standard MinMax quantization on the rescaled weights. One could replace MinMax with
GPTQ, CDQuant to improve the performance of these techniques (see Table 2 for a comparison of
CDQuant with AWQ). For further discussion on related works, please refer to Appendix C.

3 CDQuant

Notation. Throughout the paper, we denote vectors by bold faced letters (a), and matrices by capital
letters (A). ‖a‖2 =

√∑
i a

2
i is the Euclidean norm and ‖A‖F =

√∑
i,j A

2
ij is the Frobenius

norm of a matrix. diag(a) represents a diagonal matrix with a as its diagonal entries. din, dout
denote the input, output dimensions of a layer. W ∈ Rdin×dout is the weight matrix of the layer, and

2

X = [x1,x2 . . .xn] ∈ Rn×din is the matrix containing n datapoints that are sent as input to the layer.
H = XTX is the Hessian matrix for our objective in Equation (1). c denotes the number of bits
of precision used in quantization. In quantization, we aim to represent W as Q × diag(a) + 1bT ,
where a,b ∈ Rdout represent the scale and bias parameters and Q ∈ {0, 1, . . . 2c − 1}din×dout is the
quantized matrix.

Many existing PTQ techniques, including GPTQ, aim to solve the following layer-wise optimization
objective: mina,b,Q ‖X(W −Q× diag(a)− 1bT)‖2F . Observe that this problem breaks down into
dout independent problems across the output dimension. So, in the sequel, we focus on the following
problem of quantizing a din-dimensional vector

min
a,b,q
‖X(w − aq− b)‖22. (1)

For a fixed (a, b), this problem is called Integer Linear Regression problem. It turns out, finding
optimal solutions to this problem is NP-hard [Chrétien and Corset, 2009, Park and Boyd, 2018]. So,
several works have designed heuristics to solve this problem [Nagel et al., 2020, Li et al., 2021, Frantar
and Alistarh, 2022, Frantar et al., 2022, Hubara et al., 2021]. Within the context of LLMs, GPTQ is
perhaps the most popular among these techniques, as it scales efficiently to models with billions of
parameters [Frantar et al., 2022]. In this work, we aim to improve upon GPTQ by designing better
heuristics, while maintaining its scalability aspect. To this end, we rely on performing coordinate
descent on objective (1), which we describe below.

3.1 Greedy Coordinate Descent

In this section, we assume we have suitable values for scale (a) and bias (b) parameters already at
hand, and focus on optimizing q. For a more in-depth discussion of how we determine these values,
please refer to the final part of the section. As the name suggests, in greedy coordinate descent, at
each round, we find the coordinate that leads to the biggest reduction in the objective and descend
along that coordinate. Letting L(q) := ‖X(w− aq− b)‖22 be the objective in Equation (1), we try to
find a coordinate i and value r, such that updating the ith coordinate to r gives the biggest reduction
in loss

min
i,r
L(q + (r − qi)ei)− L(q),

where qi is the ith element of q, and ei is the standard basis vector with 1 in i position and 0
everywhere else. Luckily for us, this can be implemented extremely efficiently as we have analytical
expressions for the objective. In particular, one can easily show that

L(q + (r − qi)ei)− L(q) = (r − qi)2Hi,i + (r − qi)gi,

where H,g are the Hessian and gradient of L evaluated at q; this follows from the fact that L is
a quadratic function in q. Algorithm 1 describes this procedure. Observe that line 5 is the only
computationally non-trivial step of the algorithm. It requires finding the minimum value among
din × 2c possibilities, a task that is well-suited for parallelization on GPUs.

Extension to Block Coordinate Descent. A natural extension to Algorithm 1 is block coordinate
descent (BCD), where multiple coordinates are updated simultaneously in each iteration. While a
greedy approach to BCD could, in principle, optimize the objective much better, the computational
cost becomes prohibitive. Specifically, updating k coordinates at a time necessitates evaluating
(din × 2c)k possible combinations of coordinates and their corresponding values. To address this, we
propose a randomized BCD strategy (see Algorithm 2 in Appendix), which partitions the coordinates
into random din/k blocks and searches only over these blocks. This significantly reduces the search
space to a more manageable din/k × 2kc possibilities, making the algorithm practical for larger
models. In our experiments, we primarily use k = 2 and c ∈ {2, 3, 4}.
Initializing a, b,q. To initialize a, b,q in Algorithms 1, 2, we introduce a technique called Optimal
Weight Clipping (OWC), which draws inspiration from the Learnable Weight Clipping (LWC)
mechanism used in OmniQuant [Shao et al., 2023]. In OWC, we quantize weight w as follows

q = clamp
(⌊

w − b
a

⌉
, 0, 2c − 1

)
, a =

γ(max(w)−min(w))

2c − 1
, b = min(w). (2)

3

Algorithm 1 Greedy Coordinate Descent (CD)
1: Input: T - coordinate descent steps, X - input data matrix, w - vector to be quantized, a - scale,
b - bias, q0 - initial estimate

2: Compute Hessian H as: H ← XTX
3: Compute gradient g as: g← 2H(q0 − a−1(w − b))
4: for t ∈ [1 : T] do
5: Find the coordinate that leads to the largest reduction in loss

i∗, r∗ = arg min
i∈{0,1,...din−1},r∈{0,1,...2c−1}

(r − qt−1,i)
2Hi,i + (r − qt−1,i)gi

6: Update gradient g as
g← g + 2(r∗ − qt−1,i∗)Hi∗,·,

where Hi∗,· is the i∗ column of H
7: Update qt−1 as

qt ← qt−1 + (r∗ − qt−1,i∗)ei∗ ,

where ei∗ is the standard basis vector with 1 in i∗ position and 0 everywhere else
8: end for

Here, γ ∈ [0, 1] represents the clipping strength. We determine the optimal γ by minimizing the
following layer-wise loss:

min
γ∈[0,1]

‖X(w − aq− b)‖22.

Note that while not explicitly stated, both q, a in the above objective are implicitly dependent on
γ. This optimization can be efficiently solved using a simple grid search. In contrast, LWC [Shao
et al., 2023] optimizes a different objective function, focusing on end-to-end quantization of entire
transformer block using gradient-based techniques. It is worth noting that setting γ = 1 in OWC re-
covers the widely used MinMax quantization scheme, which is used in many existing quantization
methods, including GPTQ [Frantar et al., 2022], SmoothQuant[Xiao et al., 2023]. However, MinMax
quantization is susceptible to outlier weights, and a smaller γ often yields superior results. In our
experiments, we observed that OWC provides a much better initialization compared to MinMax
quantization, for both GPTQ and CDQuant, suggesting its broader applicability.

3.2 Extension to Sub-channel Quantization

In this section, we consider sub-channel (or group) quantization, which is a more fine-grained
quantization that divides the weight vector w into multiple groups and assigns a quantization scale
to each group [Dettmers et al., 2021, Dettmers and Zettlemoyer, 2023]. Letting g be the group size,
we divide weight w into din/g groups {w(0),w(1), . . .w(din/g−1)} each of size g, and quantize w(i)

as a(i)q(i) + b(i). To learn the optimal parameters for this sub-channel quantization, we solve the
following optimization problem:

min
{a(i),b(i),q(i)}din/g−1

i=0

∣∣∣∣∑
i=0

X(i)(w(i) − a(i)q(i) − b(i))
∣∣∣∣2

2
. (3)

Here, X(i) represents the columns of X corresponding to the indices within group i. To solve this
optimization problem, we employ a coordinate descent approach, similar to Algorithms 1 and 2
described earlier. That is, given initial values for the scaling and bias parameters, we iteratively
optimize the quantized representation q using coordinate descent. Due to space constraints, we
present the resulting algorithms in Appendix F (see Algorithms 3, 4).

Initialization. Next, we tackle the initialization of parameters {a(i), b(i),q(i)}din/g−1
i=0 for our coor-

dinate descent procedure. Our approach draws inspiration from the OWC algorithm described above,
adapting its core idea to this problem. In essence, we reframe the initialization problem as one of
selecting optimal clipping strengths {γ(i)}din/g−1

i=0 for groups {0, . . . din/g − 1}. This leads us to the
following problem

min
γ(0),...γ(din/g−1)

∣∣∣∣∑
i=0

X(i)(w(i) − a(i)q(i) − b(i))
∣∣∣∣2

2
, (4)

4

where

q(i) = clamp
(⌊

w(i) − b(i)

a(i)

⌉
, 0, 2c − 1

)
, a(i) =

γ(i)(max(w(i))−min(w(i)))

2c − 1
, b(i) = min(w(i)).

While not explicitly stated, both q(i), a(i) implicitly depend on the clipping strength γ(i). We use
greedy coordinate descent to optimize Equation (4). In each iteration, we update the γ(i) that leads
to biggest drop in loss (lines 10-14 of Algorithm 5). This procedure, which we call OWC-CD, is
described in Algorithm 5 in Appendix.

4 Experiments

In this section, we first establish that CDQuant achieves superior quantization quality compared to
GPTQ. Subsequently, we show its versatility by successfully integrating it as a drop-in replacement
for GPTQ within existing PTQ methods such as AWQ [Lin et al., 2023], QuIP [Chee et al., 2024],
FrameQuant [Adepu et al., 2024].

Setup. We first present the experimental setup and then move on to our results. In all the experiments
in this section, the attention layers are quantized to INT8 using MinMax quantization, and low-bit
(2-4 bits) quantization schemes are only applied to the feed-forward layers (FFN). See Appendix H.3
for experiments with quantized attention and FFN layers. Our experiments leverage two families of
language models: the open-source Gemma models [Mesnard et al., 2024] and the proprietary PaLM
2 models [Anil et al., 2023].

Baselines. Since our primary goal is to demonstrate that CDQuant gets improved performance over
GPTQ, we have chosen it as the primary baseline in most of our experiments. To further demonstrate
the our technique can be used as a plug-and-play replacement for GPTQ, we also include comparisons
with AWQ, QuIP, FrameQuant. For all our experiments, we initialize GPTQ with OWC, and run
GPTQ for T = din steps. To ensure stability and generalization, GPTQ regularizes its Hessian matrix
by adding a scaled identity matrix (λI). Tuning this λ for every (model, layer) pair is infeasible. So,
we determine a single optimal value using the PaLM2-Gecko model, and apply it universally.

CDQuant. We evaluate both the coordinate descent variants described in Section 3.1: CD (Al-
gorithm 1), BCD (Algorithm 2). For per-channel quantization, we initialize CD with OWC, and
for sub-channel quantization, we additionally include initialization with OWC-CD. BCD is always
initialized with CD in our experiments. Unless otherwise stated, both CD and BCD are run for
T = din iterations, OWC-CD is run for din/g iterations, where g is the group size. Similar to GPTQ,
we regularize the Hessian matrix used in CD, BCD by adding λI . We determine a reasonable value
for λ using the PaLM2-Gecko model, and use it in all our experiments.

Evaluation. Following recent works [Frantar et al., 2022, Ma et al., 2024], we evaluate all algorithms
using two key metrics: perplexity and downstream task performance. For Gemma models, follow-
ing Frantar et al. [2022], we calculate perplexity on C4’s [Raffel et al., 2019] validation set. For
PaLM2 models, we calculate perplexity using a 100 million token subset derived from the PaLM2
training mixture. Please refer to Appendix H.2 for further details on the downstream evaluations.

Training. All techniques are calibrated using 1280 data points, where each data point has 2048
tokens. For OWC, we use a grid size of 50 to find the most optimal γ. We used 8 Nvidia H100 GPUs
for quantizing the models.

4.1 Results

Comparison with GPTQ. Table 1 presents the INT2 perplexity numbers for different quantization
techniques applied to FFN layers. It can be seen that both our CD and BCD methods have a clear
advantage over GPTQ, leading to lower perplexity scores for all models and quantization levels. For
example, on PaLM-2 Otter, we see almost 10% improvement in perplexity over GPTQ. For results
on 3,4 bit quantization and downstream evaluations, please refer to Appendix H.1, H.2, H.3. We
also observe that coordinate descent techniques are better at optimizing the layer-wise objective in
Equation (1), than GPTQ. For instance, the average objective value (relative to all 0’s solution) for the
GPTQ solution for the 1st feed-forward layer is 0.164, whereas for CD it is 0.158, and for BCD(k=2)
it is 0.157.

5

Table 1: Table presents the perplexity evaluations for GPTQ, CD, BCD for INT2 quantization of FFN weights.
wx, ay, gz in the config column corresponds to x-bit weights, y-bit activations and group/sub-channel size of z.

Method Epochs Gemma-1 7B Gemma-2 9B Gemma-2 27B PaLM2-Otter PaLM2-Bison

w16a16 10.384 10.683 8.682 5.984 5.298

w2a16g128

GPTQ - 375.153 13.785 12.181 10.816 7.230

CD 1 75.55 13.709 11.966 9.917 7.123
BCD(k=2) 1 68.732 13.662 11.873 9.822 7.094

Table 2: Table presents the perplexity evaluations for GPTQ, CD, BCD for INT3 quantization of FFN layers
with AWQ.

Method Gemma-1 7B Gemma-2 9B PaLM2-Otter

w3a16 w3a16g128 w3a16 w3a16g128 w3a16 w3a16g128

GPTQ + AWQ 25.695 14.539 11.331 11.158 7.381 6.519
CD + AWQ 19.703 13.254 11.255 11.123 7.244 6.475
BCD(k=2) + AWQ 18.137 13.205 11.265 11.119 7.211 6.474

Versatility of CDQuant. A major strength of our algorithm is its versatility. It seamlessly replaces
GPTQ in any quantization technique that relies on it. To illustrate this, we focus on the AWQ,
QuIP and FrameQuant (the latter two are state-of-the-art PTQ techniques). We demonstrate that
our algorithm, when layered on top of the aforementioned algorithms, surpasses the performance of
GPTQ layered on top of them. Tables 2, 3 present the result from this experiment. It can be seen that
both CD and BCD provide 5% boost in performance for QuIP and FrameQuant.

Table 4: Runtime comparison of CDQuant, GPTQ
for Gemma-2 27B. Note that FFN1 and FFN1-Gate
have the exact same runtimes for all compared meth-
ods, hence we report only FFN1’s runtime.

Config Method 8 H100s

FFN1
(mins.)

FFN2
(mins.)

Attn.
(mins.)

w3a16
GPTQ 0.3 7.37 1.18

CD 1.23 14.1 0.51
BCD(k=2) 6.03 54.94 2.11

w4a16
GPTQ 0.3 7.35 1.18

CD 1.65 17.87 0.64
BCD(k=2) 14.54 133.34 4.64

Runtime. Table 4 shows the quantization runtime
of GPTQ, CD and BCD on Gemma-2 27B model
using 8 H100s. For attention weight quantization,
CD is comparable to GPTQ in speed, while BCD
is 2× slower. For FFN1 (FFN2) quantization, CD
is 5× (2×) slower than GPTQ, whereas BCD is
an order of magnitude slower than GPTQ. For
quantization of the entire model, CD is 2× slower
than GPTQ (because quantizing FFN2 takes up
most of the time). In Appendix H.4, we provide
simple strategies to speed up both CD and BCD.

5 Conclusion and Future Work

In this work, we developed a coordinate descent framework (CDQuant) for quantization of LLMs.
CDQuant is a simple and effective alternative to GPTQ, that consistently outperformed it on PaLM2
models. The simplicity of our algorithm makes it a seamless substitute for GPTQ in various
algorithmic contexts where GPTQ currently functions as a sub-routine. Our future work aims to
further improve the performance of CDQuant. In particular, we aim to speed up our BCD algorithm,
and make it as fast as CD. Furthermore, we will focus on developing layer-wise loss functions
that are more closely aligned with end-to-end loss, thereby reducing the performance gap between
full-precision and quantized models.

Table 3: Table presents the perplexity evaluations for INT2 per-channel quantization of FFN weights with QuIP
and FrameQuant where GPTQ, CD and BCD and used as subroutines.

Method Gemma-1 7B Gemma-2 9B Gemma-2 27B

w16a16 10.384 10.683 8.682

QuIP
GPTQ 25.941 13.695 11.909

CD 24.025 13.172 11.479
BCD(k=2) 19.167 13.144 11.547

FrameQuant
GPTQ 26.262 12.941 10.958

CD 19.726 12.748 10.785
BCD(k=2) 18.242 12.674 10.608

6

References
Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier Martinet, Marie-Anne Lachaux, Timothée

Lacroix, Baptiste Rozière, Naman Goyal, Eric Hambro, Faisal Azhar, Aurelien Rodriguez, Armand
Joulin, Edouard Grave, and Guillaume Lample. Llama: Open and efficient foundation language
models. arXiv preprint arXiv:2302.13971, 2023.

OpenAI. Gpt-4 technical report. Technical report, 2023. URL https://cdn.openai.com/papers/
gpt-4.pdf.

Gemini Team Google. Gemini: A family of highly capable multimodal models. arXiv preprint
arXiv:2312.11805, 2023.

Xupeng Miao, Gabriele Oliaro, Zhihao Zhang, Xinhao Cheng, Hongyi Jin, Tianqi Chen, and Zhihao
Jia. Towards efficient generative large language model serving: A survey from algorithms to
systems. arXiv preprint arXiv:2312.15234, 2023.

Elias Frantar, Saleh Ashkboos, Torsten Hoefler, and Dan Alistarh. Gptq: Accurate post-training
quantization for generative pre-trained transformers. arXiv preprint arXiv:2210.17323, 2022.

Tim Dettmers, Ruslan Svirschevski, Vage Egiazarian, Denis Kuznedelev, Elias Frantar, Saleh Ashk-
boos, Alexander Borzunov, Torsten Hoefler, and Dan Alistarh. Spqr: A sparse-quantized represen-
tation for near-lossless llm weight compression. arXiv preprint arXiv:2306.03078, 2023.

Changhun Lee, Jungyu Jin, Taesu Kim, Hyungjun Kim, and Eunhyeok Park. Owq: Lessons
learned from activation outliers for weight quantization in large language models. arXiv preprint
arXiv:2306.02272, 2023.

Jerry Chee, Yaohui Cai, Volodymyr Kuleshov, and Christopher M De Sa. Quip: 2-bit quantization of
large language models with guarantees. Advances in Neural Information Processing Systems, 36,
2024.

Harshavardhan Adepu, Zhanpeng Zeng, Li Zhang, and Vikas Singh. Framequant: Flexible low-bit
quantization for transformers. arXiv preprint arXiv:2403.06082, 2024.

Ji Lin, Jiaming Tang, Haotian Tang, Shang Yang, Xingyu Dang, and Song Han. Awq: Activation-
aware weight quantization for llm compression and acceleration. arXiv preprint arXiv:2306.00978,
2023.

Guangxuan Xiao, Ji Lin, Mickael Seznec, Hao Wu, Julien Demouth, and Song Han. Smoothquant:
Accurate and efficient post-training quantization for large language models. In International
Conference on Machine Learning, pages 38087–38099. PMLR, 2023.

Tim Dettmers, Mike Lewis, Sam Shleifer, and Luke Zettlemoyer. 8-bit optimizers via block-wise
quantization. arXiv preprint arXiv:2110.02861, 2021.

Tim Dettmers and Luke Zettlemoyer. The case for 4-bit precision: k-bit inference scaling laws. In
International Conference on Machine Learning, pages 7750–7774. PMLR, 2023.

Thomas Mesnard, Cassidy Hardin, Robert Dadashi, Surya Bhupatiraju, Shreya Pathak, Laurent Sifre,
Morgane Rivière, Mihir Sanjay Kale, Juliette Love, Pouya Tafti, Léonard Hussenot, Aakanksha
Chowdhery, Adam Roberts, Aditya Barua, Alex Botev, Alex Castro-Ros, Ambrose Slone, Amélie
Héliou, Andrea Tacchetti, Anna Bulanova, Antonia Paterson, Beth Tsai, Bobak Shahriari, Char-
line Le Lan, Christopher A. Choquette-Choo, Clément Crepy, Daniel Cer, Daphne Ippolito, David
Reid, Elena Buchatskaya, Eric Ni, Eric Noland, Geng Yan, George Tucker, George-Cristian
Muraru, Grigory Rozhdestvenskiy, Henryk Michalewski, Ian Tenney, Ivan Grishchenko, Jacob
Austin, James Keeling, Jane Labanowski, Jean-Baptiste Lespiau, Jeff Stanway, Jenny Brennan,
Jeremy Chen, Johan Ferret, Justin Chiu, and et al. Gemma: Open models based on gemini
research and technology. CoRR, abs/2403.08295, 2024. doi: 10.48550/ARXIV.2403.08295. URL
https://doi.org/10.48550/arXiv.2403.08295.

Rohan Anil, Andrew M Dai, Orhan Firat, Melvin Johnson, Dmitry Lepikhin, Alexandre Passos,
Siamak Shakeri, Emanuel Taropa, Paige Bailey, Zhifeng Chen, et al. Palm 2 technical report. arXiv
preprint arXiv:2305.10403, 2023.

7

https://cdn.openai.com/papers/gpt-4.pdf
https://cdn.openai.com/papers/gpt-4.pdf
https://doi.org/10.48550/arXiv.2403.08295

Yann LeCun, John Denker, and Sara Solla. Optimal brain damage. Advances in neural information
processing systems, 2, 1989.

Elias Frantar and Dan Alistarh. Optimal brain compression: A framework for accurate post-training
quantization and pruning. Advances in Neural Information Processing Systems, 35:4475–4488,
2022.

Yuexiao Ma, Huixia Li, Xiawu Zheng, Feng Ling, Xuefeng Xiao, Rui Wang, Shilei Wen, Fei Chao,
and Rongrong Ji. Affinequant: Affine transformation quantization for large language models.
arXiv preprint arXiv:2403.12544, 2024.

Stéphane Chrétien and Franck Corset. Using the eigenvalue relaxation for binary least-squares
estimation problems. Signal processing, 89(11):2079–2091, 2009.

Jaehyun Park and Stephen Boyd. A semidefinite programming method for integer convex quadratic
minimization. Optimization Letters, 12:499–518, 2018.

Markus Nagel, Rana Ali Amjad, Mart Van Baalen, Christos Louizos, and Tijmen Blankevoort. Up or
down? adaptive rounding for post-training quantization. In International Conference on Machine
Learning, pages 7197–7206. PMLR, 2020.

Yuhang Li, Ruihao Gong, Xu Tan, Yang Yang, Peng Hu, Qi Zhang, Fengwei Yu, Wei Wang, and Shi
Gu. Brecq: Pushing the limit of post-training quantization by block reconstruction. arXiv preprint
arXiv:2102.05426, 2021.

Itay Hubara, Yury Nahshan, Yair Hanani, Ron Banner, and Daniel Soudry. Accurate post training
quantization with small calibration sets. In International Conference on Machine Learning, pages
4466–4475. PMLR, 2021.

Wenqi Shao, Mengzhao Chen, Zhaoyang Zhang, Peng Xu, Lirui Zhao, Zhiqian Li, Kaipeng Zhang,
Peng Gao, Yu Qiao, and Ping Luo. Omniquant: Omnidirectionally calibrated quantization for large
language models. arXiv preprint arXiv:2308.13137, 2023.

Colin Raffel, Noam Shazeer, Adam Roberts, Katherine Lee, Sharan Narang, Michael Matena, Yanqi
Zhou, Wei Li, and Peter J. Liu. Exploring the limits of transfer learning with a unified text-to-text
transformer. arXiv e-prints, 2019.

Kayhan Behdin, Ayan Acharya, Aman Gupta, Qingquan Song, Siyu Zhu, Sathiya Keerthi, and Rahul
Mazumder. Quantease: Optimization-based quantization for language models. arXiv preprint
arXiv:2309.01885, 2023.

Xiuying Wei, Yunchen Zhang, Yuhang Li, Xiangguo Zhang, Ruihao Gong, Jinyang Guo, and
Xianglong Liu. Outlier suppression+: Accurate quantization of large language models by equivalent
and optimal shifting and scaling. arXiv preprint arXiv:2304.09145, 2023.

Xiuying Wei, Yunchen Zhang, Xiangguo Zhang, Ruihao Gong, Shanghang Zhang, Qi Zhang, Fengwei
Yu, and Xianglong Liu. Outlier suppression: Pushing the limit of low-bit transformer language
models. Advances in Neural Information Processing Systems, 35:17402–17414, 2022.

Jing Liu, Ruihao Gong, Xiuying Wei, Zhiwei Dong, Jianfei Cai, and Bohan Zhuang. Qllm:
Accurate and efficient low-bitwidth quantization for large language models. arXiv preprint
arXiv:2310.08041, 2023.

Tim Dettmers, Mike Lewis, Younes Belkada, and Luke Zettlemoyer. Gpt3. int8 (): 8-bit matrix
multiplication for transformers at scale. Advances in Neural Information Processing Systems, 35:
30318–30332, 2022.

Mandar Joshi, Eunsol Choi, Daniel S. Weld, and Luke Zettlemoyer. Triviaqa: A large scale distantly
supervised challenge dataset for reading comprehension. In Regina Barzilay and Min-Yen Kan,
editors, Proceedings of the 55th Annual Meeting of the Association for Computational Linguistics,
ACL 2017, Vancouver, Canada, July 30 - August 4, Volume 1: Long Papers, pages 1601–1611.
Association for Computational Linguistics, 2017. doi: 10.18653/V1/P17-1147. URL https:
//doi.org/10.18653/v1/P17-1147.

8

https://doi.org/10.18653/v1/P17-1147
https://doi.org/10.18653/v1/P17-1147

Pranav Rajpurkar, Robin Jia, and Percy Liang. Know what you don’t know: Unanswerable questions
for squad. In Iryna Gurevych and Yusuke Miyao, editors, Proceedings of the 56th Annual Meeting
of the Association for Computational Linguistics, ACL 2018, Melbourne, Australia, July 15-20,
2018, Volume 2: Short Papers, pages 784–789. Association for Computational Linguistics, 2018.
doi: 10.18653/V1/P18-2124. URL https://aclanthology.org/P18-2124/.

Tom Kwiatkowski, Jennimaria Palomaki, Olivia Redfield, Michael Collins, Ankur P. Parikh, Chris
Alberti, Danielle Epstein, Illia Polosukhin, Jacob Devlin, Kenton Lee, Kristina Toutanova, Llion
Jones, Matthew Kelcey, Ming-Wei Chang, Andrew M. Dai, Jakob Uszkoreit, Quoc Le, and Slav
Petrov. Natural questions: a benchmark for question answering research. Trans. Assoc. Comput.
Linguistics, 7:452–466, 2019. doi: 10.1162/TACL_A_00276. URL https://doi.org/10.
1162/tacl_a_00276.

Jonathan Berant, Andrew Chou, Roy Frostig, and Percy Liang. Semantic parsing on freebase
from question-answer pairs. In Proceedings of the 2013 Conference on Empirical Methods in
Natural Language Processing, EMNLP 2013, 18-21 October 2013, Grand Hyatt Seattle, Seattle,
Washington, USA, A meeting of SIGDAT, a Special Interest Group of the ACL, pages 1533–1544.
ACL, 2013. URL https://aclanthology.org/D13-1160/.

Peter Clark, Isaac Cowhey, Oren Etzioni, Tushar Khot, Ashish Sabharwal, Carissa Schoenick, and
Oyvind Tafjord. Think you have solved question answering? try arc, the AI2 reasoning challenge.
CoRR, abs/1803.05457, 2018. URL http://arxiv.org/abs/1803.05457.

Rowan Zellers, Ari Holtzman, Yonatan Bisk, Ali Farhadi, and Yejin Choi. Hellaswag: Can a
machine really finish your sentence? In Anna Korhonen, David R. Traum, and Lluís Màrquez,
editors, Proceedings of the 57th Conference of the Association for Computational Linguistics,
ACL 2019, Florence, Italy, July 28- August 2, 2019, Volume 1: Long Papers, pages 4791–4800.
Association for Computational Linguistics, 2019. doi: 10.18653/V1/P19-1472. URL https:
//doi.org/10.18653/v1/p19-1472.

Christopher Clark, Kenton Lee, Ming-Wei Chang, Tom Kwiatkowski, Michael Collins, and Kristina
Toutanova. Boolq: Exploring the surprising difficulty of natural yes/no questions. In Jill Burstein,
Christy Doran, and Thamar Solorio, editors, Proceedings of the 2019 Conference of the North Amer-
ican Chapter of the Association for Computational Linguistics: Human Language Technologies,
NAACL-HLT 2019, Minneapolis, MN, USA, June 2-7, 2019, Volume 1 (Long and Short Papers),
pages 2924–2936. Association for Computational Linguistics, 2019. doi: 10.18653/V1/N19-1300.
URL https://doi.org/10.18653/v1/n19-1300.

Yonatan Bisk, Rowan Zellers, Ronan Le Bras, Jianfeng Gao, and Yejin Choi. PIQA: reasoning about
physical commonsense in natural language. In The Thirty-Fourth AAAI Conference on Artificial
Intelligence, AAAI 2020, The Thirty-Second Innovative Applications of Artificial Intelligence Con-
ference, IAAI 2020, The Tenth AAAI Symposium on Educational Advances in Artificial Intelligence,
EAAI 2020, New York, NY, USA, February 7-12, 2020, pages 7432–7439. AAAI Press, 2020. doi:
10.1609/AAAI.V34I05.6239. URL https://doi.org/10.1609/aaai.v34i05.6239.

Keisuke Sakaguchi, Ronan Le Bras, Chandra Bhagavatula, and Yejin Choi. Winogrande: An adver-
sarial winograd schema challenge at scale. In The Thirty-Fourth AAAI Conference on Artificial
Intelligence, AAAI 2020, The Thirty-Second Innovative Applications of Artificial Intelligence Con-
ference, IAAI 2020, The Tenth AAAI Symposium on Educational Advances in Artificial Intelligence,
EAAI 2020, New York, NY, USA, February 7-12, 2020, pages 8732–8740. AAAI Press, 2020. doi:
10.1609/AAAI.V34I05.6399. URL https://doi.org/10.1609/aaai.v34i05.6399.

9

https://aclanthology.org/P18-2124/
https://doi.org/10.1162/tacl_a_00276
https://doi.org/10.1162/tacl_a_00276
https://aclanthology.org/D13-1160/
http://arxiv.org/abs/1803.05457
https://doi.org/10.18653/v1/p19-1472
https://doi.org/10.18653/v1/p19-1472
https://doi.org/10.18653/v1/n19-1300
https://doi.org/10.1609/aaai.v34i05.6239
https://doi.org/10.1609/aaai.v34i05.6399

A Broader Impact

We introduce a Coordinate Descent based approach, CDQuant, for compressing Large Language
Models. Our method uses only a small amount of data for calibration. We do not foresee any ethical
implications arising from the technical aspects of our approach. However, compressing LLMs may
give rise to bias effects, a study of which seems essential given the extensive use of LLMs. Our work
may be of assistance to such studies. Also, since quantization allows for easier deployment of LLMs,
it could have potential societal implications which seem difficult to predict.

B Limitations

• While both CD and BCD outperformed GPTQ in our experiments, BCD achieves slightly
better performance than CD. However, BCD is not as fast as CD and can be expensive for
large models. In future, we aim to develop techniques to speed up BCD.

• Our algorithms still don’t bridge the gap between QAT and PTQ, especially on smaller
models. To bridge this gap, we believe one should move away from the `22 surrogate loss
that is being considered by most of the existing work. Instead, we should design surrogate
losses that are more closely aligned with end-to-end loss.

C Related Work

Detailed comparison with OBQ. At a high level, both OBQ, and our technique use greedy strate-
gies to quantize the weights. However, OBQ is extremely slow and doesn’t even scale to models with
a few million parameters. The primary reason for this unreasonable slowness is because of a more
complicated step involved in OBQ which requires updating all the unquantized coordinates in each
step (please refer to equation 2 in Frantar and Alistarh [2022]). Implementing this step in GPUs is
extremely slow because of the sheer number of gathers/scatters that need to be performed at each
step. In contrast, CDQuant doesn’t have this step. At each step of coordinate descent, we only update
the single coordinate that leads to the biggest drop in performance. As a result, CDQuant is orders of
magnitude faster than OBQ. To quantify this last statement, note that GPTQ paper only ran OBQ for
models with a few hundred millions of parameters and showed that OBQ is almost 120x slower than
GPTQ (note that this difference will only grow with larger models because OBQ will require even
more gathers/scatters). In fact, in the OBQ paper [Frantar and Alistarh, 2022], in Table 6, OBQ takes
65 minutes to quantize a ResNet50 model with 25M parameters. That being said, scaling it to models
with billions of parameters seems extremely difficult. In contrast, CD is only 5x slower than GPTQ,
and gives improved performance (see our results for INT2 quantization on PaLM2 and Gemma).
While BCD is 28x slower than GPTQ, its slowness mainly comes from FFN2. To overcome this, one
could use CD for FFN2 and use BCD for the rest of the layers.

Detailed comparison with GPTQ. GPTQ, as discussed in Section 2, is a heuristic designed to
accelerate OBQ by replacing its greedy strategy with a single, predetermined cycle through all
coordinates. While this approach improves speed, it often sacrifices accuracy. Although multiple
cycles could potentially mitigate this performance drop, our experiments revealed no significant
improvement. In contrast, we propose a simple yet effective greedy coordinate descent strategy that
achieves superior accuracy while maintaining the computational efficiency of GPTQ.

QuantEase: While working on our paper, we came across QuantEase [Behdin et al., 2023], a parallel
research effort sharing similar goals as ours for improving GPTQ. While both methods leverage the
concept of coordinate descent, QuantEase adopts a cyclic approach for weight updates, whereas
our work employs a greedy strategy. Although our experiments (Appendix D) indicate comparable
performance between the two methods, our work extends beyond QuantEase by introducing special-
ized algorithms for group/sub-channel quantization, not just full-channel quantization. Additionally,
we develop novel block coordinate descent algorithms that further improve the performance, and
integrate CDQuantinto SOTA methods like AWQ, QuIP and FrameQuant. That being said, both these
works (QuantEase and ours) collectively highlight the potential of coordinate descent algorithms in
outperforming GPTQ.

Weight+Activation Quantization. SmoothQuant [Xiao et al., 2023], OS+[Wei et al., 2023, 2022]
have a similar flavour as AWQ, but quantize both weights and activations after scaling them ap-

10

propriately. OmniQuant [Shao et al., 2023] performs quantization of the entire transformer block
in a single shot. This encompasses both activation and weight quantization. Furthermore, it sub-
sumes SmoothQuant, OS+ by using both feature scaling and outlier suppression. QLLM [Liu
et al., 2023] tackles the issue of outliers in the activations by splitting the outlier features into mul-
tiple sub-channels and then recombining them, effectively reducing their influence. QLLM also
incorporates a fine-tuning step at the end, introducing low-rank weights into each layer of the LLM.
LLM.int8() [Dettmers et al., 2022] quantizes both acativations and weights to 8-bits and also identifies
outliers and stores them in full precision.

D Comparison to QuantEase

In this section, we compare our per-channel quantization results with those of QuantEase, a parallel
study to ours. It’s important to note that QuantEase does not have a publicly available implementation.
So, we implemented the cyclic coordinate descent strategy used by QuantEase, and used the same
initialization and regularization strength as our algorithms (although the QuantEase paper doesn’t
provide these details). We then ran QuantEase for the recommended number of iterations specified in
the paper (20 epochs or T = 20din iterations). The findings are presented in Table 5. On PaLM2-
Gecko, PaLM2-Otter, and PaLM2-Bison, both these approaches have similar performance. These
results collectively highlight the potential of coordinate descent algorithms in outperforming GPTQ,
especially for low bit quantization.

Table 5: Comparison of QuantEase with CD and BCD for FFN quantization.

Config Method PaLM2-Gecko PaLM2-Otter PaLM2-Bison

w3a16
GPTQ 11.347 7.176 5.774

QuantEase (epochs=20) 10.731 6.996 5.741
CD 10.920 7.002 5.739

BCD(k=2) 10.898 6.979 5.733

w4a16
GPTQ 8.764 6.249 5.417

QuantEase (epochs=20) 8.670 6.197 5.408
CD 8.694 6.195 5.407

BCD(k=2) 8.691 6.192 5.405

E CDQuant for per-channel quantization

In this section, we present the block coordinate descent algorithm for per-channel quantization.

Algorithm 2 Block Coordinate Descent with Random Blocks (BCD)
1: Input: T - coordinate descent steps, k - block size, X - input data matrix, w - vector to be

quantized, a - scale, b - bias, q0 - initial estimate
2: Compute Hessian H as: H ← XTX
3: Compute gradient g as: g← 2H(q0 − a−1(w − b))
4: for t ∈ [1 : T] do
5: Randomly partition the set {0, 1, . . . din − 1} into din/k blocks, each of size k
6: Find the block that leads to the largest reduction in loss

i∗, r∗ = arg min
i∈{0,1,...din/k−1},
r∈{0,1,...2c−1}k

(r − qt−1,i)
THi,i(r − qt−1,i) + (r − qt−1,i)

Tgi,

where qt−1,i, Hi,i are the sub-vector, sub-matrix of qt−1, H corresponding to block i.
7: Update gradient g as

g← g + 2Hi∗,·(r
∗ − qt−1,i∗),

8: Update qt−1 as
qt−1,i∗ ← r∗, qt ← qt−1,

9: end for

11

F CDQuant for sub-channel quantization

In this section, we extend CDQuant to sub-channel quantization. To simplify the explanation in
this section, we introduce a slightly modified notation. Given a weight vector w, we represent it’s
sub-channel quantization as a� q + b, where � is the elementwise multiplication, and a,b ∈ Rdin

are the scale, and bias parameters that satisfy the following constraints: ak = al,bk = bl, for any
two indices k, l that fall in the same group. With this notation, for any given a,b, the optimization
problem in Equation (3) can be rewritten as

min
q
‖X(w − a� q− b)‖22. (5)

Letting Da = diag(a), X̃ = XDa, w̃ = D−1
a w, b̃ = D−1

a b, the above problem can be further
rewritten as

min
q
‖X̃(w̃ − q− b̃)‖22. (6)

Observe that this problem is the same as the per-channel quantization problem described in Equa-
tion (1), but with modified parameters X̃, w̃, b̃. So extending CDQuant to sub-channel quantization
simply involves running Algorithms 1, 2 with these modified parameters. Algorithms 3, 4 present the
resulting algorithms.

Algorithm 3 Greedy Coordinate Descent (CD)
1: Input: T - coordinate descent steps, X - input data matrix, w - vector to be quantized, a - scale,
b - bias, q0 - initial estimate

2: X̃ ← Xdiag(a), w̃ = diag(a)−1w, b̃ = diag(a)b

3: Compute Hessian H as: H ← X̃T X̃
4: Compute gradient g as: g← 2H(q0 − (w̃ − b̃))
5: for t ∈ [1 : T] do
6: Find the coordinate that leads to the largest reduction in loss

i∗, r∗ = arg min
i∈{0,1,...din−1},r∈{0,1,...2c−1}

(r − qt−1,i)
2Hi,i + (r − qt−1,i)gi

7: Update gradient g as
g← g + 2(r∗ − qt−1,i∗)Hi∗,·,

where Hi∗,· is the i∗ column of H
8: Update qt−1 as

qt ← qt−1 + (r∗ − qt−1,i∗)ei∗ ,

where ei∗ is the standard basis vector with 1 in i∗ position and 0 everywhere else
9: end for

G Coordinate Descent for Optimal Weight Clipping

In this section, we present the OWC based initialization for initializing CD, BCD for sub-channel
quantization.

12

Algorithm 4 Block Coordinate Descent with Random Blocks (BCD)
1: Input: T - coordinate descent steps, k - block size, X - input data matrix, w - vector to be

quantized, a - scale, b - bias, q0 - initial estimate
2: X̃ ← Xdiag(a), w̃ = diag(a)−1w, b̃ = diag(a)b

3: Compute Hessian H as: H ← X̃T X̃
4: Compute gradient g as: g← 2H(q0 − (w̃ − b̃))
5: for t ∈ [1 : T] do
6: Randomly partition the set {0, 1, . . . din − 1} into din/k blocks, each of size k
7: Find the block that leads to the largest reduction in loss

i∗, r∗ = arg min
i∈{0,1,...din/k−1},
r∈{0,1,...2c−1}k

(r − qt−1,i)
THi,i(r − qt−1,i) + (r − qt−1,i)

Tgi,

where qt−1,i, Hi,i are the sub-vector, sub-matrix of qt−1, H corresponding to block i.
8: Update gradient g as

g← g + 2Hi∗,·(r
∗ − qt−1,i∗),

9: Update qt−1 as
qt−1,i∗ ← r∗, qt ← qt−1,

10: end for

Algorithm 5 Coordinate Descent for Optimal Weight Clipping (OWC-CD)
1: Input: T - coordinate descent steps, g - group size, X - input data matrix, w - weight vector, Γ-

grid of possible values for clipping strength
2: for β ∈ Γ do
3: for i ∈ [0 : din/g − 1] do
4: Compute quantization residual ∆(i, β) for group i with clipping strength β as:

∆(i, β)← w(i) − a(i)(β)q(i)(β)− b(i)(β)

. where a(i)(β), b(i)(β),q(i)(β) are as defined in Equation (2).
5: end for
6: end for
7: Initialize clipping strengths for each group γ(0), . . . γ(din/g−1)

8: Compute Hessian H as: H ← XTX
9: vi ← −2Hi(aq + b− w) where Hi is the sub-matrix of H corresponding to the columns of

group i.
10: for t ∈ [1 : T] do
11: Find the group that leads to the largest reduction in loss

i∗, β∗ = arg min
i∈{0,1,...din/g−1},

β∈Γ

(∆(i, γ(i))−∆(i, β))THi,i(∆(i, γ(i))−∆(i, β))

+ vTi (∆(i, γ(i))−∆(i, β))

where Hi,i is the block diagonal element of H corresponding to group i.
12: Update v← v + 2(∆(i∗, γ(i∗))−∆(i∗, β∗))THi∗

13: Update γ(i∗) ← β∗

14: end for

H Additional Experimental Results

This section presents additional experimental results:

1. In Appendix H.1, we present results for 3,4 bit quantization with comparisons of various
techniques on evaluation perplexity .

13

2. In Appendix H.2, we present downstream evaluation results on various datasets. In partic-
ular, we use TriviaQA [Joshi et al., 2017], SQuAD [Rajpurkar et al., 2018], NaturalQues-
tions [Kwiatkowski et al., 2019] and WebQuestions [Berant et al., 2013] to evaluate genera-
tion capabilities of the quantized models, and to evaluate their reasoning capabilities, we
test on ARC-c, ARC-e [Clark et al., 2018], HellaSwag [Zellers et al., 2019], BoolQ [Clark
et al., 2019], PIQA [Bisk et al., 2020] and WinoGrande [Sakaguchi et al., 2020].

3. In Appendix H.3, we present results for the setting where we quantize both attention and
FFN layers.

4. In Appendix H.4, we present runtime numbers for CD and BCD algorithms

H.1 3, 4 bit FFN Quantization

We use the same experimental setup as described in Section 4. Table 6 present the eval perplexity
numbers of various techniques for 3, 4 bit quantization of FFN weights. It can be seen that both our
CD and BCD methods have a clear advantage over GPTQ, leading to lower perplexity scores for
all models and quantization levels. In particular, we achieve significant quality improvements for
quantization of smaller models such as Gemma-1 7B, and PaLM2 Gecko.

Table 6: Table presents the perplexity evaluations for GPTQ, CD, BCD for INT3, INT4 quantization
of FFN weights.

Config Method Gemma-1 Gemma-2 Gemma-2 PaLM2 PaLM2 PaLM2
7B 9B 27B Gecko Otter Bison

w16a16 - 10.348 10.683 8.682 7.948 5.984 5.298

w3a16 OWC 2.885e4 11.666 11.823 12.570 17.928 6.169
GPTQ 48.157 11.382 9.681 11.347 7.176 5.774

CD 19.614 11.301 9.551 10.920 7.002 5.739
BCD(k=2) 18.552 11.284 9.526 10.898 6.979 5.733

w3a16g128 OWC 21.815 11.338 9.655 11.597 8.342 5.847
GPTQ 15.561 11.193 9.260 10.414 6.635 5.677

CD 13.496 11.182 9.237 10.273 6.655 5.656
BCD(k=2) 13.501 11.180 9.214 10.259 6.545 5.654
OWC-CD 14.827 11.220 9.290 10.706 6.635 5.686

OWC-CD + CD 13.042 11.131 9.194 10.143 6.528 5.650
OWC-CD + BCD(k=2) 13.004 11.131 9.199 10.138 6.527 5.647

w4a16 OWC 26.438 10.929 9.252 8.946 6.693 5.475
GPTQ 13.355 10.896 8.923 8.764 6.249 5.417

CD 12.142 10.860 8.910 8.694 6.195 5.407
BCD(k=2) 12.048 10.863 8.899 8.691 6.192 5.405

w4a16g128 OWC 11.598 10.82 8.870 8.613 6.264 5.401
GPTQ 11.086 10.784 8.786 8.498 6.112 5.377

CD 10.838 10.777 8.781 8.456 6.097 5.373
BCD(k=2) 10.797 10.775 8.786 8.454 6.097 5.372
OWC-CD 10.981 10.786 8.802 8.519 6.106 5.377

OWC-CD + CD 10.766 10.776 8.778 8.436 6.092 5.371
OWC-CD + BCD(k=2) 10.760 10.780 8.774 8.434 6.091 5.371

H.2 Detailed Downstream Evaluation Results

In this section, we present the downstream evaluation numbers for various quantization techniques.
For this evaluation, we use TriviaQA [Joshi et al., 2017], SQuAD [Rajpurkar et al., 2018], Natu-
ralQuestions [Kwiatkowski et al., 2019] and WebQuestions [Berant et al., 2013] to evaluate generation
capabilities of the quantized models, and to evaluate their reasoning capabilities, we test on ARC-
c, ARC-e [Clark et al., 2018], HellaSwag [Zellers et al., 2019], BoolQ [Clark et al., 2019], PIQA [Bisk
et al., 2020] and WinoGrande [Sakaguchi et al., 2020]. We run the aforementioned evaluations in the
zero-shot setting.

Results for the PaLM 2 and Gemma model families are presented in Tables 7 and 8, respectively.
These tables report the average performance across generation and ranking tasks. For a detailed

14

per-task breakdown of the results please refer to Tables 9-14. These results demonstrate that our
models achieve comparable, if not superior, performance to GPTQ across all tasks. Notably, our
techniques exhibit significant improvements over GPTQ for smaller models like PaLM2-Gecko and
Gemma-1 7B.

Table 7: Table presents downstream evaluation (zero-shot) numbers for GPTQ, CD, BCD for INT3,
INT4 quantization of FFN weights for the PaLM2 family of models. Gen, Rank columns correspond
to generation and ranking tasks.

Config Method PaLM2-Gecko PaLM2-Otter PaLM2-Bison

Gen. Rank Avg. Gen. Rank Avg. Gen. Rank Avg.

w16a16 - 20.1 63.02 43.84 36.23 79.51 58.57 44.29 85.44 64.55

w3a16 OWC 15.45 55.73 39.62 15.06 59.29 41.60 39.58 75.45 61.10
GPTQ 13.08 56.92 39.39 31.80 71.94 55.88 41.42 76.70 62.58

CD 15.82 58.19 41.24 32.34 72.03 56.16 41.66 76.71 62.69
BCD(k=2) 16.16 57.85 41.17 32.04 72.22 56.15 41.37 76.78 62.62

w3a16g128 OWC 18.54 56.95 41.59 26.62 68.09 51.50 41.54 76.51 62.52
GPTQ 17.96 58.30 42.16 33.43 72.98 57.16 43.47 76.65 63.38

CD 16.81 58.10 41.58 32.73 72.62 56.66 42.95 77.03 63.4
BCD(k=2) 16.33 57.81 41.22 32.13 72.67 56.46 42.67 76.85 63.18
OWC-CD 16.73 57.74 41.34 32.90 72.40 56.60 42.23 77.02 63.11

OWC-CD + CD 16.37 58.22 41.48 33.53 72.64 56.99 43.09 76.91 63.38
OWC-CD + BCD(k=2) 16.47 58.45 41.66 33.71 72.73 57.12 43.07 76.70 63.25

w4a16 OWC 16.07 59.42 42.08 33.76 72.22 56.83 43.59 77.13 63.71
GPTQ 18.77 59.5 43.21 34.03 73.53 57.73 44.16 77.54 64.19

CD 18.20 59.95 43.25 35.01 73.42 58.06 43.97 77.55 64.12
BCD(k=2) 17.89 59.64 42.94 35.10 73.31 58.02 43.95 77.77 64.24

w4a16g128 OWC 19.00 60.42 43.85 34.52 72.83 57.5 44.45 77.71 64.41
GPTQ 19.07 60.40 43.87 35.34 73.60 58.29 44.25 77.65 64.29

CD 20.35 60.94 44.70 36.20 73.67 58.68 44.21 77.72 64.31
BCD(k=2) 20.44 60.69 44.59 36.11 73.54 58.57 44.17 77.56 64.2
OWC-CD 19.80 60.39 44.15 36.33 73.62 58.71 44.75 77.70 64.52

OWC-CD + CD 20.47 60.85 44.70 35.98 73.59 58.54 44.77 77.52 64.42
OWC-CD + BCD(k=2) 20.15 60.49 44.36 36.00 73.62 58.57 44.70 77.70 64.50

15

Table 8: Table presents downstream evaluation (zero-shot) numbers for GPTQ, CD, BCD for INT3,
INT4 quantization of FFN weights for both, Gemma-1 and Gemma-2 models. Gen, Rank columns
correspond to generation and ranking tasks.

Config Method Gemma-1 7B Gemma-2 9B Gemma-2 27B

Gen. Rank Avg. Gen. Rank Avg. Gen. Rank Avg.

w16a16 40.6 76.96 58.35 49.34 82.6 64.36 52.57 77.53 67.55

w316 OWC 0.76 43.95 26.6 45.84 73.51 62.44 47.29 75.21 64.04
GPTQ 19.58 58.33 40.87 45.82 73.11 62.19 49.91 75.53 65.28

CD 27.83 69.75 50.2 46.48 73.4 62.63 50.09 75.98 65.62
BCD(k=2) 28.21 70.08 50.51 46.23 73.34 62.49 50.34 76.03 65.75

w3a16g128 OWC 28.47 66.85 48.65 46.9 73.35 62.77 50.77 76.81 66.39
GPTQ 32.94 73.23 53.82 46.62 73.52 62.76 51.26 76.49 66.4

CD 34.22 73.03 54.08 46.59 73.34 62.64 51.32 77.1 66.78
BCD(k=2) 34.52 73.82 54.65 46.65 73.35 62.67 51.22 77.22 66.82
OWC-CD 32.76 72.61 53.39 46.64 73.03 62.48 50.99 76.97 66.57

OWC-CD + CD 34.3 73.8 54.57 46.7 73.46 62.75 51.55 77.07 66.86
OWC-CD + BCD(k=2) 34.59 74.21 54.9 46.7 73.47 62.76 51.49 77.12 66.87

w4a16 OWC 30.69 68.82 50.5 48.49 74.1 63.85 51.63 76.9 66.79
GPTQ 35.95 74.94 55.75 48.5 74.39 64.03 52.12 76.98 67.04

CD 37.95 75.6 56.74 48.74 74.27 64.05 51.85 77.2 67.06
BCD(k=2) 38.11 75.95 57 48.72 74.3 64.06 51.9 77.11 67.03

w4a16g128 OWC 38.51 75.35 56.76 49.22 73.98 64.08 52.05 77.6 67.38
GPTQ 39.85 76.68 57.96 48.9 73.98 63.95 52.12 77.63 67.43

CD 40.01 76.79 58.08 48.9 74.05 63.99 52.29 77.6 67.47
BCD(k=2) 40.14 76.61 58.01 49.02 73.98 64 52.22 77.65 67.48
OWC-CD 39.44 75.99 57.43 49.26 74.21 64.23 52.15 77.75 67.51

OWC-CD + CD 40.19 76.89 58.19 49.06 74.13 64.1 52.24 77.71 67.52
OWC-CD + BCD(k=2) 39.94 76.52 57.89 49.1 74.17 64.14 52.14 77.69 67.47

Table 9: Table presents downstream evaluation (zero-shot) numbers of PaLM2-Gecko - for GPTQ,
CD, BCD for INT3, INT4 quantization of FFN weights.

Config Method PaLM2-Gecko

NatualQ. SQuAD TriviaQA WebQ ARC-c ARC-e BoolQ HellaSwag PIQA WinoGrande

w16a16 - 4.68 43.17 27.46 5.07 35.24 65.66 60.24 60.69 74.7 61.48

w3a16 OWC 2.55 47.57 9.81 1.87 29.69 56.73 64.8 53.28 69.59 60.3
GPTQ 3.35 44.13 3.97 0.89 30.2 62.12 63.79 56.33 71.22 57.85

CD 3.55 45.71 11.32 2.71 30.63 60.56 66.45 57.2 71.87 62.43
BCD(k=2) 3.63 47.04 11.22 2.76 30.29 60.52 65.32 57.33 71.82 61.8

w3a16g128 OWC 3.68 55.38 12.5 2.61 31.66 60.14 66.12 53.19 71.71 58.88
GPTQ 4.02 50.04 14.64 3.15 32.42 61.91 66.64 56.05 73.01 59.75

CD 3.38 52.01 9.62 2.21 31.23 63.13 65.9 55.98 72.47 59.91
BCD(k=2) 3.1 50.95 9.36 1.92 31.14 62.25 65.41 56.16 72.91 58.96
OWC-CD 3.6 51.69 9.33 2.31 31.83 61.74 65.02 56.23 72.2 59.43

OWC-CD + CD 3.82 50.39 9.5 1.77 32.51 62.25 66.33 56.91 71.27 60.06
OWC-CD + BCD(k=2) 3.63 49.87 10.26 2.12 32.76 62.88 66.24 56.79 71.82 60.22

w4a16 OWC 4.02 46.96 10.63 2.66 33.19 61.99 66.7 59.26 73.67 61.72
GPTQ 4.46 48.69 18.84 3.1 34.47 62.96 64.77 60.09 73.61 61.09

CD 4.13 48.88 16.64 3.15 33.53 63.89 66.79 60.31 73.78 61.4
BCD(k=2) 4.24 48.31 15.73 3.3 33.28 63.34 66.39 60.26 73.56 61.01

w4a16g128 OWC 4.99 46.1 20.62 4.28 34.73 64.48 67.83 59.91 74.32 61.25
GPTQ 5.18 49.79 18.17 3.15 35.15 64.6 66.24 60.21 74.32 61.88

CD 5.73 46.96 24.17 4.53 36.18 66.04 67.8 60.7 73.67 61.25
BCD(k=2) 5.79 47.28 24.11 4.58 36.01 65.7 67.06 60.73 73.61 61.01
OWC-CD 5.54 47.24 21.71 4.72 34.3 64.73 68.01 60.72 73.56 61.01

OWC-CD + CD 5.62 47.6 24 4.68 35.49 66.16 67.06 60.78 74.1 61.48
OWC-CD + BCD(k=2) 5.57 47.17 23.05 4.82 35.24 65.82 66.02 60.9 73.23 61.72

16

Table 10: Table presents downstream evaluation (zero-shot) numbers of PaLM2-Otter - for GPTQ,
CD, BCD for INT3, INT4 quantization of FFN weights.

Config Method PaLM2-Otter

NatualQ. SQuAD TriviaQA WebQ ARC-c ARC-e BoolQ HellaSwag PIQA WinoGrande

w16a16 - 12.85 65.27 58.34 8.46 51.79 76.09 81.8 79.3 79.6 72.22

w3a16 OWC 2.27 49.45 8.02 0.49 41.98 60.14 48.78 66.91 71.87 66.06
GPTQ 9.09 64.53 46.38 7.19 49.83 73.99 81.96 76.87 78.89 70.09

CD 10.72 64.01 48.03 6.59 50.77 76.6 81.01 75.77 77.97 70.09
BCD(k=2) 10.55 64.31 47.25 6.05 50.85 76.43 81.41 75.91 78.45 70.24

w3a16g128 OWC 6.18 66.37 30.48 3.44 47.44 70.16 69.63 74.61 76.88 69.85
GPTQ 10.17 66.53 49.29 7.73 51.37 75.93 82.35 77 79.11 72.14

CD 7.17 68.73 49.42 5.61 50.26 76.18 82.39 76.79 78.13 71.98
BCD(k=2) 6.68 68.18 48.39 5.27 50.26 75.93 81.41 76.84 79 72.61
OWC-CD 8.98 68.37 48.33 5.91 50.51 75.46 81.35 76.83 78.18 72.06

OWC-CD + CD 9.72 67.87 49.87 6.64 51.37 76.68 81.59 76.78 77.91 71.51
OWC-CD + BCD(k=2) 9.94 68.26 49.91 6.74 50.85 76.22 81.68 76.99 78.89 71.74

w4a16 OWC 11.19 66.67 49.56 7.63 50 73.91 80 77.36 79.11 72.93
GPTQ 12.27 66.65 48.72 8.46 51.71 75.84 82.02 78.2 80.09 73.32

CD 12.52 66.85 53.16 7.53 52.3 76.43 81.28 78.3 79.6 72.61
BCD(k=2) 12.33 67 53.45 7.63 51.96 75.97 80.92 78.47 80.47 72.06

w4a16g128 OWC 11.33 65.98 53.57 7.19 49.66 74.92 82.17 78.22 79.54 72.45
GPTQ 11.5 65.81 56.36 7.68 51.71 76.52 82.08 78.86 79.27 73.16

CD 11.72 66.85 57.63 8.61 51.19 76.6 82.51 78.89 79.49 73.32
BCD(k=2) 11.66 66.73 57.5 8.56 51.19 76.3 82.29 78.88 79.27 73.32
OWC-CD 12.27 66.28 58.21 8.56 51.62 76.85 82.32 78.85 79.49 72.61

OWC-CD + CD 11.63 66.28 58.06 7.92 51.62 76.94 82.45 78.72 79.11 72.69
OWC-CD + BCD(k=2) 11.72 65.96 58.29 8.02 51.79 76.77 82.17 78.8 79.49 72.69

Table 11: Table presents downstream evaluation (zero-shot) numbers of PaLM2-Bison - for GPTQ,
CD, BCD for INT3, INT4 quantization of FFN weights.

Config Method PaLM2-Bison

NatualQ. SQuAD TriviaQA WebQ ARC-c ARC-e BoolQ HellaSwag PIQA WinoGrande

w16a16 - 21.36 72.92 70 12.89 55.38 81.27 87.86 82.72 82.97 78.14

w3a16 OWC 15.87 73.01 58.86 10.58 52.47 76.43 86.91 79.76 81.01 76.09
GPTQ 17.31 71.25 65.53 11.56 54.44 79.25 87.22 80.78 81.61 76.87

CD 17.84 71.24 64.76 12.8 54.44 79.17 87.58 80.79 82.1 76.16
BCD(k=2) 17.81 71.3 64.29 12.06 53.5 79.08 87.65 80.91 82.21 77.35

w3a16g128 OWC 15.98 71.28 68.02 10.88 53.58 79.55 86.73 80.9 81.61 76.72
GPTQ 18.95 71.49 69.67 13.78 53.24 79.84 86.79 81.05 82.05 76.95

CD 18.31 71.81 68.56 13.14 53.41 79.8 87.55 81.31 82.43 77.66
BCD(k=2) 18.53 71.55 67.62 12.99 53.58 79.59 87.49 81.14 82.81 76.48
OWC-CD 17.26 71.79 67.53 12.35 54.69 80.85 85.72 81.02 81.88 77.98

OWC-CD + CD 18.75 72.05 68.35 13.19 54.1 80.18 86.36 80.86 82.48 77.51
OWC-CD + BCD(k=2) 19.36 71.47 68.45 12.99 53.58 80.47 86.02 81.15 82.26 76.72

w4a16 OWC 20 72.51 69.34 12.5 54.61 80.39 87.06 81.5 82.05 77.19
GPTQ 21.25 72.39 70.6 12.4 55.2 80.64 87.58 81.98 82.26 77.58

CD 21.5 71.57 70.04 12.8 55.29 80.56 88.07 81.78 82.59 77.03
BCD(k=2) 21.16 71.92 70.01 12.7 55.63 81.19 87.77 81.82 82.81 77.43

w4a16g128 OWC 21.22 73.06 70.07 13.44 55.8 80.47 87.77 82.08 82.64 77.51
GPTQ 20.72 73.17 70.12 12.99 55.38 80.89 87.55 82.14 82.59 77.35

CD 21.8 73.37 69.06 12.6 54.78 80.72 87.25 82.16 83.19 78.22
BCD(k=2) 21.5 73.06 69.34 12.8 55.29 80.98 87.31 82.14 82.54 77.11
OWC-CD 21.36 73.85 70.07 13.73 55.12 81.23 87.71 82.27 82.59 77.27

OWC-CD + CD 21.41 73.32 71.46 12.89 54.18 81.4 87.28 82.17 82.37 77.74
OWC-CD + BCD(k=2) 21.19 73.24 71.64 12.75 55.03 81.52 87.28 82.06 82.64 77.66

17

Table 12: Table presents downstream evaluation (zero-shot) numbers of Gemma-1 7B - for GPTQ,
CD, BCD for INT3, INT4 quantization of FFN weights.

Config Method Gemma-1 7B

NaturalQ SQuAD TriviaQA WebQ ARC-c ARC-e BoolQ HellaSwag PIQA WinoGrande

w16a16 15.04 71.94 62.38 13.04 43.69 65.53 80.43 78.55 80.79 72.14

w316 OWC 0.03 2.87 0.15 0 30.55 38.8 63.09 29 52.61 48.86
GPTQ 2.24 58.68 14.35 3.05 35.15 53.16 63.76 53.84 64.58 59.91

CD 6.04 68.77 32.22 4.28 41.04 62.37 76.51 68.95 74.76 67.01
BCD(k=2) 6.76 69.03 33.32 3.74 40.7 62.21 76.91 69.1 75.24 68.11

w3a16g128 OWC 6.51 71.04 30.86 5.46 38.14 60.1 70.7 64.51 75.3 63.85
GPTQ 10.03 71.66 42.25 7.82 41.64 64.06 80.83 72.37 78.18 69.38

CD 10.08 71.94 46.39 8.46 40.7 62.75 80.43 73.88 78.56 67.64
BCD(k=2) 10.78 71.99 46.65 8.66 42.32 63.01 81.25 74.17 78.18 69.46
OWC-CD 9.7 71.62 41.44 8.27 41.47 64.44 79.94 72.19 77.53 67.32

OWC-CD + CD 10.66 71.78 46.73 8.02 42.41 64.73 80.46 74.29 78.94 67.64
OWC-CD + BCD(k=2) 10.69 71.84 47.05 8.76 42.41 65.36 80.03 74.47 79.49 68.9

w4a16 OWC 7.09 63.51 44.98 7.19 41.38 59.34 77.06 67.29 73.29 63.85
GPTQ 10.66 70.95 52.63 9.55 44.11 64.56 79.39 75.9 79.16 70.56

CD 12.71 70.41 57.39 11.27 43.69 65.11 79.66 77.02 79.98 70.17
BCD(k=2) 12.44 70.5 57.55 11.96 45.14 65.4 79.79 76.66 79.54 71.03

w4a16g128 OWC 13.55 71.61 56.09 12.8 42.49 63.85 80.92 76.77 79.22 70.32
GPTQ 13.88 71.94 59.45 14.12 43.52 66.12 81.96 77.54 79.98 71.11

CD 15.26 71.73 59.81 13.24 45.05 65.45 81.25 77.52 80.58 70.88
BCD(k=2) 15.54 71.94 59.83 13.24 43.69 64.6 80.89 77.68 81.23 71.43
OWC-CD 14.43 72.08 58.69 12.55 43.52 64.94 80.46 77.46 79.49 70.64

OWC-CD + CD 14.82 72.32 59.98 13.63 45.05 65.82 80.43 77.46 80.96 71.43
OWC-CD + BCD(k=2) 14.93 72.39 59.49 12.94 44.45 66.08 80.21 77.6 80.03 70.8

Table 13: Table presents downstream evaluation (zero-shot) numbers of Gemma-2 9B - for GPTQ,
CD, BCD for INT3, INT4 quantization of FFN weights.

Config Method Gemma-2 9B

NaturalQ SQuAD TriviaQA WebQ ARC-c ARC-e BoolQ HellaSwag PIQA WinoGrande

w16a16 26.76 72.06 76.83 21.7 58.96 77.57 83.33 77.31 81.12 67.96

w316 OWC 21.02 74.18 69.76 18.41 56.23 76.52 84.37 75.24 80.79 67.88
GPTQ 21.22 74 69.99 18.06 57 77.19 82.35 74.96 80.69 66.46

CD 22.24 73.41 70.67 19.59 56.91 77.74 84.13 75.21 79.82 66.61
BCD(k=2) 21.77 73.33 71 18.8 57.08 77.69 83.18 75.04 80.03 67.01

w3a16g128 OWC 23.1 73.42 71.79 19.29 56.31 76.6 83.94 75.28 80.74 67.25
GPTQ 22.33 72.77 71.68 19.69 56.66 77.44 83.46 75.19 80.74 67.64

CD 22.8 71.94 72.24 19.39 56.74 77.36 84.13 75.27 80.14 66.38
BCD(k=2) 23.02 72.3 71.99 19.29 56.57 77.06 84.37 75.36 80.3 66.46
OWC-CD 22.55 72.69 72.13 19.19 55.46 76.85 82.81 75.36 80.79 66.93

OWC-CD + CD 22.99 72.42 72.28 19.09 56.91 77.36 82.75 75.48 80.52 67.72
OWC-CD + BCD(k=2) 23.27 72.39 72.23 18.9 57 77.31 83.27 75.49 80.41 67.32

w4a16 OWC 25.48 73.21 74.93 20.32 58.45 76.81 83.94 76.58 80.69 68.11
GPTQ 25.29 72.9 74.65 21.16 58.7 77.27 83.55 76.6 81.23 68.98

CD 25.57 73.03 75.42 20.92 58.36 77.61 83.79 76.75 80.41 68.67
BCD(k=2) 25.6 72.86 75.35 21.06 58.62 77.4 83.73 76.74 80.69 68.59

w4a16g128 OWC 26.26 73.33 75.73 21.56 58.7 77.4 83.33 76.76 80.85 66.85
GPTQ 26.12 72.53 75.75 21.21 58.53 77.65 83.06 76.72 81.28 66.61

CD 26.23 72.57 75.83 20.96 58.28 77.53 83.15 76.83 81.12 67.4
BCD(k=2) 26.4 72.62 75.94 21.11 58.36 77.4 83.09 76.72 80.85 67.48
OWC-CD 26.15 73.46 75.88 21.56 59.3 77.74 82.81 76.72 80.96 67.72

OWC-CD + CD 26.15 72.7 75.98 21.41 58.62 77.78 82.94 76.86 81.07 67.48
OWC-CD + BCD(k=2) 26.32 72.75 76.13 21.21 59.13 77.48 83 76.92 81.01 67.48

18

Table 14: Table presents downstream evaluation (zero-shot) numbers of Gemma-2 27B - for GPTQ,
CD, BCD for INT3, INT4 quantization of FFN weights.

Config Method Gemma-2 27B

NaturalQ SQuAD TriviaQA WebQ ARC-c ARC-e BoolQ HellaSwag PIQA WinoGrande

w16a16 30.42 75.04 81.5 23.33 60.49 78.96 83.18 82.24 84.6 75.69

w316 OWC 23.3 73.28 73.2 19.39 56.66 77.53 81.01 79.82 83.24 73.01
GPTQ 26.09 75.08 76.62 21.85 57.51 78.96 77.4 80.57 83.73 74.98

CD 26.51 75.57 77.21 21.06 59.13 79.76 78.29 80.1 83.95 74.66
BCD(k=2) 26.7 75.67 77.34 21.65 58.45 79.34 78.47 79.93 83.41 76.56

w3a16g128 OWC 26.7 75.95 78.61 21.8 58.45 79.63 83.55 80.49 82.75 76.01
GPTQ 27.48 75.97 78.72 22.88 59.56 80.05 80.28 81.03 83.68 74.35

CD 27.98 76.15 78.59 22.54 59.73 79.88 81.77 80.99 84.11 76.09
BCD(k=2) 27.78 75.99 78.62 22.49 59.56 80.01 81.99 81.08 84.11 76.56
OWC-CD 26.87 76.03 79 22.05 58.96 80.18 81.28 80.94 83.79 76.64

OWC-CD + CD 27.87 76.36 79.62 22.34 59.3 80.05 81.59 80.97 83.79 76.72
OWC-CD + BCD(k=2) 27.7 76.45 79.38 22.44 59.73 80.05 81.83 80.98 83.57 76.56

w4a16 OWC 29 75.51 80.05 21.95 59.39 79.04 81.13 81.93 84.39 75.53
GPTQ 29.5 75.7 80.41 22.88 59.47 78.7 81.62 81.91 84.33 75.85

CD 29.36 75.23 80.23 22.59 59.9 79.67 81.53 81.84 84.49 75.77
BCD(k=2) 29.42 75.34 80.31 22.54 59.3 79.46 81.83 81.72 84.44 75.93

w4a16g128 OWC 29.25 75.41 80.91 22.64 59.98 79.46 83.76 82.14 84.22 76.01
GPTQ 29.53 75.61 80.85 22.49 60.41 79.59 83.61 82.14 84.66 75.37

CD 29.58 75.38 81.05 23.13 59.98 79.42 83.73 82.08 84.44 75.93
BCD(k=2) 29.61 75.44 80.91 22.93 60.32 79.71 83.85 82.06 84.44 75.53
OWC-CD 29.11 75.93 80.85 22.69 60.75 79.67 83.33 82.2 84.87 75.69

OWC-CD + CD 29.36 75.66 80.96 22.98 59.9 79.59 83.82 82.05 85.15 75.77
OWC-CD + BCD(k=2) 29.34 75.41 80.86 22.93 59.9 79.84 83.94 82.14 84.93 75.37

H.3 Attention + FFN Quantization

Before presenting the results for quantization of both attention and FFN layers, we first explain why
quantizing the attention weights does not yield inference latency gains.

H.3.1 Attention Quantization doesn’t yield Latency Gains

In Table 15, we present the end-to-end prefix and decode latency for Gemma-2 27B with three
different prefix lengths. The latencies are obtained by running Gemma-2 27B on 4 TPUv5 chips with
a per TPU batch size of 4 and no model parallelism.

Prefix phase. During the prefix phase, neither FFN nor attention quantization yielded significant
latency improvements, likely due to the compute-bound nature of the prefix.

Decode phase. In the decode phase, quantizing attention weights from 16 bits to 8 bits provided
marginal gains, as attention compute is primarily memory-bound by the KV cache size, which
typically exceeds attention weight size for moderate-to-large context lengths. Further reduction to
4-bit quantization offered negligible latency improvement while incurring a non-trivial drop in quality
(Table 16 and Table 6), thus questioning the utility of attention weight quantization. Conversely,
FFN layers, processing only a single token activation during decoding, are memory-bound by the
significantly larger FFN weights (9x the size of attention weights in Gemma-2 27B). Consequently,
FFN weight quantization effectively reduces memory transfers and improves latency. We observed
a 32% − 35% latency reduction when quantizing from 16 bits to 8 bits, with an additional 10%
reduction when using 4-bit quantization.

These results clearly highlight that quantization of attention weights doesn’t yield any inference
latency gains.

19

Table 15: Table presents the prefix and decode time inference latency of Gemma-2 27B with three different
prefix lengths. In the Attention-only setting, only the attention parameters are quantized and rest of the model is
in 16 bits. Similarly, in the FFN-only setting, only the FFN parameters are quantized.

Quantization Prefix Config Prefix Decode
Setting Length time (ms) per step time (ms)

Attention-only

1024
w16a16 299.958 26.178
w8a16 302.199 25.710
w4a16 301.899 25.595

2048
w16a16 616.460 26.532
w8a16 616.080 26.117
w4a16 615.601 25.964

4096
w16a16 1296.000 27.254
w8a16 1290.000 26.685
w4a16 1286.000 26.653

FFN-only

1024
w16a16 299.958 26.178
w8a16 292.630 17.410
w4a16 284.680 15.635

2048
w16a16 616.460 26.532
w8a16 604.941 17.868
w4a16 602.306 16.006

4096
w16a16 1296.000 27.254
w8a16 1276.000 18.521
w4a16 1273.000 16.626

H.3.2 Results for Attention + FFN quantization

We now perform FFN + Attention weight quantization, results for which are presented in Table 16.
We use the same experimental setting as the one described in Section 4. In our experiments we
noticed that the inputs to the attention layer are often aligned in a handful of directions. Consequently,
performing quantization using such a data leads to a huge drop in performance, as the algorithms
would primarily focus on a few directions and ignore the rest. To mitigate this, we clip the largest
eigenvalues of the Hessian to ensure a more balanced Hessian. This technique, reminiscent of the
weight clipping in OmniQuant [Shao et al., 2023], improves the performance of both GPTQ and
CDQuant1. For instance, for PaLM2-Gecko, the perplexity for w3a16-GPTQ improves from 34.872
to 24.054 with clipping, and for w4a16-GPTQ, it improves from 10.966 to 10.005. Table 16 presents
the results from this experiment, where we run all the algorithms on the clipped Hessian. We once
again notice that in almost all the settings, our coordinate descent algorithms outperform GPTQ. For
instance, we see 5− 10% improvement in perplexity for 3-bit per-channel quantization of Gemma-2,
and PaLM2 Gecko models.

1One could also rely on existing techniques such as AWQ and SmoothQuant to reduce the effect of outliers.
But in our experiments we noticed that both AWQ and SmoothQuant performed poorly compared to the simple
eigenvalue clipping technique.

20

Table 16: Table presents the perplexity evaluations for GPTQ, CD, BCD for INT3, INT4 quantization
of both FFN and attention weights.

Config Method Gemma-1 Gemma-2 Gemma-2 PaLM2 PaLM2 PaLM2
7B 9B 27B Gecko Otter Bison

w16a16 - 10.348 10.683 8.682 7.948 5.984 5.298

w3a16 OWC 1.89e6 12.558 15.736 41.751 54.499 6.446
GPTQ 91.586 11.849 11.423 24.054 11.384 5.801

CD 36.102 11.808 10.941 19.692 11.542 5.770
BCD(k=2) 32.850 11.784 10.926 19.312 11.392 5.762

w3a16g128 OWC 33.710 11.792 10.486 20.301 9.785 5.973
GPTQ 20.045 11.491 9.766 15.042 7.501 5.698

CD 15.850 11.500 9.689 14.757 7.454 5.679
BCD(k=2) 15.466 11.487 9.657 14.691 7.438 5.673
OWC-CD 18.599 11.583 9.820 16.268 7.617 5.746

OWC-CD + CD 15.792 11.465 9.559 14.285 7.466 5.675
OWC-CD + BCD(k=2) 15.777 11.463 9.564 14.242 7.458 5.670

w4a16 OWC 40.563 11.100 9.706 10.683 7.194 5.508
GPTQ 15.805 11.021 9.217 10.005 6.645 5.425

CD 14.379 10.979 9.177 9.991 6.627 5.415
BCD(k=2) 14.056 10.982 9.167 9.965 6.621 5.413

w4a16g128 OWC 12.222 10.919 9.027 9.402 6.415 5.420
GPTQ 11.548 10.863 8.888 9.160 6.241 5.381

CD 11.306 10.856 8.890 9.124 6.226 5.377
BCD(k=2) 11.105 10.853 8.892 9.120 6.225 5.376
OWC-CD 11.342 10.876 8.924 9.241 6.261 5.387

OWC-CD + CD 11.149 10.863 8.873 9.094 6.244 5.375
OWC-CD + BCD(k=2) 11.140 10.866 8.873 9.093 6.242 5.374

H.4 Runtime Analysis

In Tables 17 18, we present the quantization runtime of GPTQ, CD and BCD on Gemma models using
H100s (in one setting we used 1 H100 and in another we used 8H100s). In particular, in Table 17, we
present runtime for quantizing all the attention and FFN layers (which includes FFN1, FFN1-gate,
FFN2) in the model. Table 18 presents a more detailed breakdown; we present the per-layer runtime
for quantizing FFN1 and FFN2 layers.

Runtime on 8 H100’s. With 8 H100s, CD is as fast as GPTQ for quantizing attention weights,
whereas BCD is 2× slower. However, for FFN1 (FFN2) quantization, CD is 5× (2×) slower than
GPTQ, whereas BCD is an order of magnitude slower than GPTQ. For quantization of the entire
model, CD is 2× slower than GPTQ (because quantizing FFN2 takes up most of the time). We
attribute the slowness of CD and BCD to the numerous scatters and gathers involved in finding the
most optimal coodrinate/block of coordinate to update, and then eventually updating it. Since ML
accelerators are slow with gather and scatter operations, we are bound by the time it takes to do them.
Performing these operations on the CPU should help speed up CD and BCD.

Runtime on 1 H100. With a single H100, GPTQ is 2x-3.8x faster than CD for the smaller, attention
weights, and is an order of magnitude faster than BCD. For the larger, FFN weights, GPTQ is an
order of magnitude faster than CD, and in most cases is two orders of magnitude faster than BCD. As
stated previously, both CD and BCD are bound by the time it takes to do gathers and scatters.

Speeding up BCD. To algorithmically speed up BCD, we propose to use CD for FFN2 quantization,
and use BCD for the rest of the layers. We find that BCD spends most of its time quantizing the
FFN2 weight matrix (as can be seen in Table 18) where the quantization axis is of size dhidden. In
most cases, the time it takes to FFN2 is 10x the time it takes to quantize FFN1. Thus, to speed up
BCD, we quantize FFN2 with CD, and FFN1 and FFN1-gate with BCD (where the quantization axis
is of size dmodel. Results for this setting can be found in Table 19. It can be seen that quantizing FFN2
with CD leads to negligible to no drop in performance especially for the larger, and better Gemma-2
9B. In fact, it improves the performance of BCD for w3a16g128. With this setup, BCD’s runtime is
reduced significantly and is comparable to that of CD.

21

Speeding up CD. We find that CD converges to an optimal solution significantly before din iterations.
Based on this finding, we run CD for lesser number of iterations. In Table 20, one can see that there
is negligible quality drop for CD, and even with din/8 iterations, CD outperforms GPTQ. With lesser
number of iterations, CD’s runtime can be made faster than/comparable to that of GPTQ.

Table 17: Table presents the per-channel quantization runtime (in minutes) of GPTQ, CD, BCD (where each
run is for din iterations). FFN includes the combined runtime of quantizing FFN1, FFN1-gate and FFN2 layers.

Config Method 8 H100s 1 H100

Gemma-1 7B Gemma-2 9B Gemma-2 27B Gemma-1 7B Gemma-2 9B Gemma-2 27B

FFN
(mins.)

Attn.
(mins.)

FFN
(mins.)

Attn.
(mins.)

FFN
(mins.)

Attn.
(mins.)

FFN
(mins.)

Attn.
(mins.)

FFN
(mins.)

Attn.
(mins.)

FFN
(mins.)

Attn.
(mins.)

w3a16
GPTQ 1.68 0.67 1.15 1.05 7.98 1.18 2.13 0.65 1.36 1.04 10.31 1.32

CD 3.03 0.19 2 0.31 16.55 0.51 22.3 1.2 13.31 1.87 122.35 3.2
BCD(k=2) 8.52 0.71 5.95 1.18 66.97 2.11 88.14 3.85 61.5 7.24 541.03 13.62

w4a16
GPTQ 1.69 0.77 1.15 1.06 7.95 1.18 2.1 0.63 1.36 0.98 10.16 1.12

CD 3.9 0.22 2.53 0.36 21.16 0.64 29.27 1.47 17.66 2.25 163.78 4.27
BCD(k=2) 26.2 1.76 18.51 2.66 162.43 4.64 218.25 12.89 163.64 20.12 1296.36 36.68

Table 18: Table presents the per-layer, per-channel quantization runtime (in seconds) of GPTQ, CD, BCD
(where each run is for din iterations) for the FFN layer. Note that FFN1 and FFN1-Gate have the exact same
runtimes for all compared methods, hence we report only FFN1’s runtime.

Config Method 8 H100s 1 H100

Gemma-1 7B Gemma-2 9B Gemma-2 27B Gemma-1 7B Gemma-2 9B Gemma-2 27B

FFN1
(sec.)

FFN2
(sec.)

FFN1
(sec.)

FFN2
(sec.)

FFN1
(sec.)

FFN2
(sec.)

FFN1
(sec.)

FFN2.
(sec.)

FFN1
(sec.)

FFN2
(sec.)

FFN1
(sec.)

FFN2
(sec.)

w3a16
GPTQ 0.34 2.93 0.35 0.94 0.39 9.61 0.43 3.69 0.39 1.16 0.81 11.64

CD 0.46 5.57 0.41 2.04 1.6 18.38 3.34 41.11 2.86 13.31 12.24 135.11
BCD(k=2) 1.4 15.46 1.27 5.96 7.86 71.67 12.55 163.74 11.95 63.95 57.38 590.89

w4a16
GPTQ 0.35 2.93 0.36 0.94 0.4 9.58 0.42 3.68 0.39 1.14 0.81 11.63

CD 0.53 7.28 0.46 2.71 2.15 23.31 3.94 54.85 3.22 18.81 17.24 179.15
BCD(k=2) 4.54 47.07 3.71 19.02 18.97 173.92 35.95 395.78 30.34 173.09 151.36 1388.19

Table 19: Table presents the perplexity evaluations for INT3 quantization with BCD wherein the FFN2 may be
quantized either with CD or BCD, while rest of the FFN parameters are quantized with BCD.

Config Method Gemma-1 7B Gemma-2 9B

w16a16 10.384 10.683

w3a16 CD, FFN2 19.709 11.288
BCD(k=2), FFN2 18.552 11.284

w3a16g128 CD, FFN2 13.512 11.179
BCD(k=2), FFN2 13.501 11.180

Table 20: Table presents the perplexity evaluations for INT3 quantization with CD, wherein instead of running
CD for din iterations, we run it for din/2, din/4, and din/8 iterations.

Config Method Epochs Gemma-1 7B Gemma-2 9B

w16a16 10.384 10.683

w3a16

GPTQ - 48.157 11.382

CD

1 19.614 11.301
1/2 19.614 11.301
1/4 19.621 11.301
1/8 19.597 11.305

w3a16g128

GPTQ - 15.561 11.193

CD

1 13.496 11.182
1/2 13.488 11.189
1/4 13.480 11.189
1/8 13.560 11.188

22

	Introduction
	Related Work
	CDQuant
	Greedy Coordinate Descent
	Extension to Sub-channel Quantization

	Experiments
	Results

	Conclusion and Future Work
	Broader Impact
	Limitations
	Related Work
	Comparison to QuantEase
	CDQuant for per-channel quantization
	CDQuant for sub-channel quantization
	Coordinate Descent for Optimal Weight Clipping
	Additional Experimental Results
	3,4 bit FFN Quantization
	Detailed Downstream Evaluation Results
	Attention + FFN Quantization
	Attention Quantization doesn't yield Latency Gains
	Results for Attention + FFN quantization

	Runtime Analysis

