
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

NOLOCO: NO-ALL-REDUCE LOW COMMUNICATION
TRAINING METHOD FOR LARGE LANGUAGE MODELS

Anonymous authors
Paper under double-blind review

ABSTRACT

Training large language models is generally done via optimization methods on
clusters containing tens of thousands of accelerators, communicating over a high-
bandwidth interconnect. Scaling up these clusters is expensive and can become
impractical, imposing limits on the size of models that can be trained. Several recent
studies have proposed training methods that are less communication intensive,
avoiding the need for a highly connected compute cluster. These state-of-the-art
low communication training methods still employ a synchronization step for model
parameters, which, when performed over all model replicas, can become costly on
a low-bandwidth network.
In this work, we propose a novel optimization method, NoLoCo, that does not
explicitly synchronize all model parameters during training and, as a result, does
not require any collective communication. NoLoCo implicitly synchronizes model
weights via a novel variant of the Nesterov momentum optimizer by partially
averaging model weights with a randomly selected other one. We provide both a
theoretical convergence analysis for our proposed optimizer as well as empirical
results from language model training. We benchmark NoLoCo on a wide range
of accelerator counts and model sizes, between 125M to 6.8B parameters. Our
method requires significantly less communication overhead than fully sharded data
parallel training or even widely used low communication training method, DiLoCo.
The synchronization step itself is estimated to be one magnitude faster than the
all-reduce used in DiLoCo for few hundred accelerators training over the internet.
We also do not have any global blocking communication that reduces accelerator
idling time. Compared to DiLoCo, we also observe up to 4% faster convergence
rate with wide range of model sizes and accelerator counts.

1 INTRODUCTION

Large language models (LLMs) have recently shown impressive performance on a wide variety
of tasks, including natural language understanding (Liu et al., 2024; Team et al., 2023; Touvron
et al., 2023; Zhang et al., 2022); image related tasks (Zhang et al., 2025; Gao et al., 2024; Zhu
et al., 2023; Lin et al., 2023); or speech recognition and generation (Maiti et al., 2024; Gourav
et al., 2024; Rubenstein et al., 2023; Xu et al., 2025). These large models are usually trained by a
combination of different distributed training methods such as data parallelism (Rasley et al., 2020),
pipeline parallelism (Huang et al., 2019; Narayanan et al., 2021; Sun et al., 2024), and others (Shoeybi
et al., 2019; Rasley et al., 2020; Liu et al., 2023; Shyam et al., 2024; Fujii et al., 2024; Liu et al.,
2024; Cai et al., 2024). The aforementioned training methods are bandwidth intensive and require a
high-bandwidth interconnection fabric available between individual compute nodes that is generally
only available in dedicated machine learning clusters (Team et al., 2023; Grattafiori et al., 2024; Duan
et al., 2024; Intelligence, 2024). This requirement increases the cost of training and poses a limit on
the training scale as highly connected computer clusters cannot be scaled easily beyond a data center.

Recently, a number of studies have aimed to address this issue by proposing algorithms that scale better
than traditional distributed training algorithms in low-bandwidth and high latency network (Douillard
et al., 2023; 2024; Ryabinin et al., 2023; Li et al., 2022; Biswas et al., 2024; Kale et al., 2025; Charles
et al., 2025). Most of these methods use an explicit step to synchronize the data parallel instances
of the model during training, typically using all-reduce operations. This synchronization step can

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

take several minutes in highly distributed network and lead to poor overall scaling efficiency of the
training algorithm (Jaghouar et al., 2024; Yuan et al., 2022).

The main contribution of the paper is a novel optimization method, NoLoCo, for training LLMs that
does not use any explicit all-to-all communication. NoLoCo is built upon the inner-outer optimizer
paradigm together with the idea of epidemic learning where averaging is done among subset of
accelerators instead of all. Specifically, in NoLoCo, outer synchronization is done via only pairs of
the accelerators, rather than all of them. Moreover, each inner optimizer step is done via random
pipeline routing of accelerators which implicitly helps different pipelines to converge with less
synchronisation. Furthermore, we modify the Nesterov momentum optimizer to prevent the weights
of the same stage from diverging. We also provide a convergence proof for our modified optimizer.

We test our method with a state of the art low communication method, DiLoCo, and with a traditional
distributed model training in the language modeling task with two datasets (Pushshift Reddit and
C4) and several model sizes (125M, 1.3B and 6.8B parameters). Our experimental results show that
our method is more communication efficient and also converges up to 4% faster than DiLoCo for
wide range worker counts, and model sizes. The speed-up from omitting the all-to-all communication
increases with increasing number of workers and network latency variance. Source code for running
the experiments is available in GitHub.

2 RELATED WORK

2.1 DECENTRALIZED TRAINING METHODS

The common data-parallel optimization algorithm keeps all model parameters synchronized across
data-parallel workers by always performing an all-reduction on the gradients before the optimizer
step (Rasley et al., 2020). Decentralized training methods such as DiLoCo have relaxed this assump-
tion by allowing the model parameters to diverge during local steps and only synchronizing them at
the outer optimizer steps, performed less frequently (Douillard et al., 2023). Specifically, DiLoCo
and its variations (Douillard et al., 2024; Li et al., 2022; Biswas et al., 2024; Kale et al., 2025; Peng
et al., 2024; Charles et al., 2025; Qi et al., 2025) divide the optimization process into inner and outer
optimizer steps similar to Lookahead optimizer (Zhang et al., 2019). During the inner optimizer
steps, only local weights are updated, and different copies of the model can have different weights.
The outer optimization step uses local weights to compute an outer gradient that is applied to update
global weights shared between all copies of the model (Douillard et al., 2023).

DiLoCo greatly reduces the frequency of all-reduces compared with regular data parallel training
as they are only performed during the outer optimizer steps as opposed to every optimizer step.
When accelerator connections are slow or there are enormous number of accelerators, the DiLoCo
outer optimizer steps can consume a significant amount of time (Jaghouar et al., 2024; Yuan et al.,
2022). Recent studies have aimed to address this by staggering the all-reduce communication with
compute (Kale et al., 2025; Qi et al., 2025; Douillard et al., 2025) or only synchronizing a subset of
model parameters (Biswas et al., 2024). Both of these ideas can be extended to NoLoCo to further
reduce the communication overhead.

Methods using outer optimizer steps (Douillard et al., 2023; Kale et al., 2025; Biswas et al., 2024)
still require all-to-all communication during the outer optimizer steps. To overcome this, several
studies in the federated learning paradigm (Hegedűs et al., 2019; De Vos et al., 2023; Du et al., 2024;
Dhasade et al., 2025; Sad et al., 2025) have proposed various training methods that aim to avoid
explicit all-to-all communication by replacing it with local communication. For example, epidemic
learning (De Vos et al., 2023) proposed the use of local averaging to synchronize the subset of weights
during training instead of all weights to avoid all-reduces.

2.2 DYNAMIC PIPELINE ROUTING

Pipeline parallelism (Huang et al., 2019; Narayanan et al., 2021; Sun et al., 2024) is a popular
choice for model parallelism in a low bandwidth environment as it requires less network bandwidth
and involves less blocking communication than the fully sharded data parallel training with ZeRO-
3 (Rasley et al., 2020) or the tensor parallelism (Shoeybi et al., 2019). In pipeline parallel training,
model is split to consecutive stages where each stage passes it’s compute outputs to the next stage and

2

https://anonymous.4open.science/r/noloco-FA62/README.md

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

receive inputs from the prior stage (Huang et al., 2019). During forward pass model stages have to
wait for inputs from the prior stage and during backward pass for gradients from the subsequent stage.
This leads to formation of the computation bubble where certain devices will be inherently idle.

Swarm (Ryabinin et al., 2023) is one of the earliest works allowing pipeline stages receive inputs
from arbitrary replicas of the prior model stage and vice-versa. In this setting, a model stage can start
computing immediately once inputs are available from any replica of the prior stage as opposed to
waiting for a dedicated model replica, which is the case for regular pipeline parallelism. The approach
effectively reduces blocking communication and renders itself well for load balancing (Ryabinin
et al., 2023). In SWARM, pipeline routing is done based on the load balancing using a message
queue like setup. For equal workers and uniform network topology, this becomes essentially random
routing. In this study, we will employ random routing as it is a good proxy for the SWARM routing
process from optimizer convergence point of view.

Later DiPaCo (Douillard et al., 2024) proposed similar setup to SWARM, but used an explicit routing
model loosely related to mixture-of-expert (MoE) parallelism (Liu et al., 2024; Cai et al., 2024). The
main difference to between DiPaCo and the MoE parallelism is that in DiPaCo the routing is done
at the sample level while MoE parallelism is generally done at the token level; and that the routing
model in DiPaCo is a separate model while in MoE models it is part of the model itself (Cai et al.,
2024). The routing model in DiPaCo also need to be trained before the actual training.

DiPaCo can theoretically produce less correlated outer gradients due to the router, which is desirable
for estimating the expected value using sample means. However, it can also lead to load balancing
issues similar to standard MoE parallelism (Cai et al., 2024). In addition, having different token
counts used within the inner optimizer steps by different workers can degrade outer gradient estimates.
DiPaCo aimed to address this by using weighted averaging where the weights are given as the ratio
of tokens used by the worker and all tokens used by all workers.

3 NOLOCO

NoLoCo utilizes Data Parallelism (DP) and Pipeline Parallelism (PP) methods with the following
modifications: (i) for inner optimization step of PP, at each iteration, different pipeline paths are
chosen among the accelerators rather than having a fixed path, (ii) for outer optimization step of DP,
only pairs of accelerators are synchronized rather than all. To prevent the weights of the same stage
from diverging, we modify the Nesterov momentum optimizer step.

3.1 INNER OPTIMIZER STEP VIA DYNAMIC PIPELINE ROUTING

NoLoCo uses dynamic PP where an accelerator can receive inputs from any instance of the prior
pipeline stage and forwards outputs to any instance of next pipeline stage. We use random permuta-
tions to group workers, and perform the routing based on the random groups that guarantees good
load balancing. This is illustrated in Fig. 1A. During the backward pass, gradients follow the same
path that was chosen during the forward pass.

The random routing allows mixture of the weights of different DP components as their inputs and
outputs might be used by the same model pipeline stages. We hypothesize this creates an implicit
effect to drive the weights of different DP models closer without requiring frequent synchronization.

3.2 OUTER OPTIMIZER STEP WITH MODIFIED NESTEROV MOMENTUM

We aim to relax the outer synchronisation even further by synchronizing the model parameters with a
smaller local group, rather than the all-to-all reduction performed in DiLoCo-like methods.

Let us assume there are N model instances in the whole network, and we synchronize among a
randomly chosen local subgroup of n instances where N ≫ n. For each iteration we update the
local subgroup to obtain information from different workers. In the local subgroup, we have n model
instances at step t, ϕt,i, where i < n indicates the model instance. We will refer to ϕt,i as slow
weights as in the Lookahead optimizer (Zhang et al., 2019). To progress to the next step, we perform
m local optimizer steps on ϕt,i to obtain fast model weights θt+1,i. This step is the same to the inner
optimizer steps in DiLoCo and similar to Lookahead optimizer inner steps. We use the fast model

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

(A) (B)

Figure 1: (A): Illustration of dynamic PP routing with DP. Model is split to consecutive pipeline
stages (shown vertically), and each stage is replicated to process data in parallel (shown horizontally).
(B): Illustration of different terms of the outer momentum term for group consisting of two workers.
Red dots show the current slow weights. Yellow dot shows the average of the slow weights.

weights to compute a local outer gradient:

∆t,i = θt+1,i − ϕt,i. (1)

We modify the expression for Nesterov momentum by computing it over a local group as opposed to
all data parallel workers and introduce a term to account for difference in the local slow weights:

δt,i = αδt−1,i −
β

n

∑
j

∆t,j

− γ

ϕt,i −
1

n

∑
j

ϕt,j

 , (2)

where α is Nesterov momentum parameter; β is the outer learning rate; γ is a local weight averaging
parameter. The expected values are taken over a random sub groups of size n. If the sub group
consists of all model instances, Eq. 2 simplifies to regular DiLoCo outer optimizer momentum and
the last term diminishes: δt = αδt−1 − β

n

(∑
j ∆t,j

)
. The third term can also be viewed as a rolling

average over weight differences between the worker and random workers.

Finally, local weights are updated by the momentum δt,i in the same way as in Lookahead optimizer:

ϕt+1,i = ϕt,i + δt,i. (3)

Fig. 1B illustrates relationship between different terms in the method for outer gradient computation
involving two workers.

In our experiments, we use the minimum group size for random subgroups, which is n = 2. During
the outer optimizer step, workers have to share their outer gradients (Eq. 1) and prior slow weights
ϕt,i. The prior slow weights can be communicated already at the end of the prior outer step. This
allows overlapping communication of the slow weights with the computation for the next fast weights.

Intuitively, the method should have convergence properties very similar to those of DiLoCo as the
mean term in Eq. 2 is a rolling average of the slow weights over the duration of training. We prove
this by showing that the modified Nesterov optimizer given by Eq. 2 converges to the optima θ = 0
for a quadratic loss of the form L(θ) = 1

2 (θ − c)TA(θ − c), where c ∼ N (0,Σ) with a constant
covariance matrix Σ, and A is a positive definite symmetric matrix (Schaul et al., 2013; Wu et al.,
2018; Zhang et al., 2019). We also assume that the inner optimizer uses stochastic gradient descent
with a constant learning rate ω. With these assumptions following theorem hold:

Theorem 1 When the outer iteration step count t → ∞, the expected value of the slow weights
E(ϕt,i) → 0, and the variance V(ϕt,i) ∝ ω2.

Proof of the above theorem is given in Appendix A. The variance part of the theorem also hints that
the inner learning rate - learning rate schedules in particular - can be an effective way to control

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

Parameter Name Small Medium Large
Hidden size 768 2048 4096
Layers 12 24 32
Intermediate size 3072 8192 16, 384
Attention heads 16 32 32
(Inner) Learning-rate 0.0006 0.0002 0.00012
Global batch size 0.5M 1M 2M
Transformer Parameters 125M 1.3B 6.8B

Table 1: Summary of model hyper-parameters. Batch sizes are expressed in tokens.

the divergence of the weights during the training. One can initiate the training with a large learning
rate and decay it towards end of the training to essentially obtain a very tight cluster of models. We
present empirical evidence for this in Section 5.

4 EXPERIMENTAL SETUP

We study the optimization methods in the context of next token prediction task. We use two datasets,
pushshift reddit data (Baumgartner et al., 2020) and C4 (Dodge et al., 2021) to probe the training
approaches. For benchmarking, we use 10 million tokens hold out from training data for reddit and
the validation partition for C4. All data is tokenized by the Llama sentencepiece tokenizer with a
vocabulary size of 128, 000 tokens and formatted to sequences of 1024 tokens.

Global batch size and learning rate are taken from studies Shuai et al. (2024); Zhang et al. (2022).
Each run has a linear warm-up of 1000 steps and cosine learning rate schedule applied after the
warm-up period to reduce the learning rate by one magnitude compared to the maximum learning rate.
All training runs are done over 25, 000 optimizer steps. We explore 3 model sizes: small, medium
and large Llama models with 125M, 1.3B and 6.8B parameters respectively, and all models have the
same vocabulary size of 128, 000 tokens. Model hyper-parameters are outlined in Table 1.

We use Adam as the (inner) optimizer for all experiments and applied gradient clipping for gradients
larger than unity. Both methods use the same outer learning rate, β = 0.7. For DiLoCo we use a
momentum value of α = 0.3 that was found to produce better results in our setting than standard
α = 0.9; and we apply the outer optimizer step at every 100 steps. For NoLoCo, we use a higher
momentum value of α = 0.5; the group size of two workers; and employ the optimizer step every
at 50 steps. It’s note worthy that with the doubled frequency of outer optimizer steps, NoLoCo still
requires much less communication than DiLoCo since N ≫ 2 · n := 4. All computations are done in
bfloat16 numerical precision and multi-head attentions are computed using the flash-attention (Dao
et al., 2022). Finally, the source for running the experiments is available in GitHub.

5 RESULTS AND DISCUSSION

5.1 TRAINING RESULTS

Validation perplexities at the end of the training are shown in Table 2 for both Reddit and C4 datasets.
We observe that both methods are slightly worse than fully sharded data parallel (FSDP) training
for all the cases considered, typically few percent worse, but in some cases even 30% (C4, Small
model, 16 data parallel world size). The perplexity gap is generally larger with smaller models and
large data parallel world sizes; and decreases when the model size becomes larger or the data parallel
world size becomes smaller. This finding is consistent with the findings of recent study in DiLoCo
scaling (Charles et al., 2025). In this regard, both NoLoCo and DiLoCo convergence scale similarly
respect to data parallel world size and model size.

The perplexity numbers presented here are subject to the training hyperparameters. In particular,
the batch size and learning rate were chosen from a study optimized for FSDP and hence are likely
sub-optimal for both DiLoCo and NoLoCo. We found that increasing the batch size improved the
training method performance (see Appendix C). However, extensive hyper parameter search for all

5

https://anonymous.4open.science/r/noloco-FA62/README.md

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

Pushshift Reddit C4
Model Total DP PP FSDP DiLoCo NoLoCo FSDP DiLoCo NoLoCo

Small

8 8 1 25.5 27.6 27.3 29.1 35.4 34.5
8 4 2 25.7 26.8 26.4 29.1 32.1 31.3
16 8 2 25.5 27.6 27.2 29.1 34.0 33.1
32 16 2 25.5 29.7 29.1 29.1 39.1 37.7

Medium
16 8 2 19.6 21.0 20.5 18.8 21.8 21.1
32 16 2 19.6 21.2 20.7 18.8 23.2 23.4
64 16 4 19.6 21.0 20.9 18.8 22.6 22.9

Large 64 16 4 16.1 18.0 17.5 15.7 17.3 16.6

Table 2: Validation perplexity values for different world sizes and models at the end of the training.
DP stands for the data parallel world size and PP for the number of pipeline stages. FSDP stands for
fully sharded data parallel training. Best perplexity results are highlighted with a bold font.

the methods and model sizes is beyond scope of this study and we report most of the results using
hyper-parameters from the study of Zhang et al. (2022).

Comparing our method with DiLoCo, we observe that NiLoCo is slightly better than DiLoCo in most
experiments (all reddit experiments, and most experiments in C4). This seems counterintuitive, as
one would expect the variations in model weights during the training to slow the convergence, not
improve it. We hypothesize that this could be due to small perturbations in model weights having a
regularization effect on training. All training data batches in this study were within the first epoch, but
larger datasets have been shown to contain similar text sequences that can cause slight over-training
already within the first epoch. This could also explain why we observe better performance in the
pushshift reddit data as opposed to C4 which has more variety of topics and hence less likely to
experience some level of over-fitting within the first epoch.

We also compared the methods in a pure data parallel setting without the PP and the random routing.
We observe that for NoLoCo there was a minor degradation in the final perplexity and the convergence
rate was slightly slower compared with the PP case. For DiLoCo, the opposite was true: perplexity
was unchanged but we did note a negligible increase in the convergence rate (not shown). We
conclude that the random routing has a minor impact on the convergence rate.

0 5000 10000 15000 20000 25000

Steps

15

20

25

30

35

40

45

50

PP
L

(A) FSDP
DiLoCo
NoLoCo

0 5000 10000 15000 20000 25000

Steps

(B) FSDP
DiLoCo
NoLoCo

0 5000 10000 15000 20000 25000

Steps

(C) FSDP
DiLoCo
NoLoCo

Figure 2: Reddit validation perplexity of different training methods at different optimizer step counts.
Solid blue curve is NoLoCo, dashed red curve show FSDP, and dashed green curve is DiLoCo. (A):
Small model with DP world size of 8 and two pipeline stages; (B): Medium model with DP world
size of 8 and two pipeline stages. (C): Large model with DP world size of 16 and four pipeline stages.

Fig. 2 show validation perplexity over the course of training for all model sizes (see Appendix D for
corresponding training loss). We can observe that the gap between the FSDP and the decentralized
methods becomes less with model size and that NoLoCo has slightly lower perplexity towards the
end of the training. This can be easily observed in Fig. 3A that shows the convergence of the relative
validation perplexity difference between DiLoCo and NoLoCo for Reddit data. The shown relative
perplexity difference is computed by

Rel. PPL Diff =
DiLoCo Perplexity − NoLoCo Perplexity

FSDP Perplexity
. (4)

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

0 5000 10000 15000 20000 25000

Steps

0

2

4

6

8
R

el
. P

PL
 D

iff
 (%

)

(A)

23000 24000 25000

1.5

2.0

2.5

3.0

0 5000 10000 15000 20000 25000

Steps

0.0

0.2

0.4

0.6

0.8

1.0

σ/
σ m

ax

(B)
Small DP=4 PP=2
Small DP=8 PP=2
Small DP=16 PP=2
Medium DP=8 PP=2
Medium DP=16 PP=2
Large DP=16 PP=4

Figure 3: (A): Relative validation perplexity difference between DiLoCo and NoLoCo. Perplexity
numbers are normalized by the FSDP perplexity at the same optimizer step count. Positive number
indicate faster convergence compared to DiLoCo. (B): Standard deviation of the model weights
across the data parallel world size normalized by the largest value within the training run.

We find that NoLoCo has typically a few percent lower perplexity during the beginning and the end
of the training while they are fairly close in the intermediate stage of training. The difference in
the late stage perplexity depended on the dataset. For pushshift reddit, we observe that NoLoCo is
converging faster at the late stage while for C4 the results are varying and depended on the model
size and the data parallel world size.

Finally, Fig. 3B shows convergence of the different model replicas during the training. We observe
that the standard deviation between different data parallel model replicas peaks after the warm-up
and converges throughout the training. Theorem 1 suggests that the model instance variance is
proportional to the square of the inner learning rate once convergence is reached. We find empirically
that the Pearson correlation coefficient of the standard deviation and the learning rate ranges indeed
between 0.91 and 0.97 suggesting that the weight variance across different instances is controlled to
a high degree by the inner learning rate as predicted by the theorem. Hence, learning rate scheduler
can be used effectively to obtain eventual consistency of the weights in NoLoCo.

5.2 LATENCY ANALYSIS

We will derive theoretical speed-up for the NoLoCo local averaging compared with a tree all-reduce.
We consider n workers with each having a message send time of tc to any other worker. Tree
all-reduce is composed of two stages: a reduce to the root of the tree followed by a broadcast from
the root of the tree to all leave nodes. The total time that it takes to do this will: tall ≈ 2tc log2(n).

For the local averaging with groups of two, the overall time is simply 2tc and hence the ratio will
be ∼ log2(n). This equation ignores the fact that not all communication takes the same time and
in practice the communication time follows a distribution. We model this by assuming that the
communication time t follows a log-normal distribution t ∼ LogNormal(µ, σ2). The time it takes
for a parent node to receive message from it’s children is the maximum of the children nodes’ sending
time: tlocal = max(t1, t2). If t1 and t2 are independent identically distributed log-normal random
variables, the expected value of tlocal is given by:

E(tlocal) =
(
1 + erf(

σ

2
)
)
exp

(
µ+

σ2

2

)
. (5)

Also, 2E(tlocal) is the mean time it takes for the local averaging. Fig. 4A show the ratio of tree-reduce
expected time to local averaging expected time in terms of different world sizes and message sending
time variances. We can see that the tree-reduce slows significantly when the message sending time
standard deviation increases, which is a typical case for public networks. This effect becomes larger
for the larger world sizes as expected.

The above analysis also assumes that all the workers call the all-reduce operation at the same time,
but this is in practice not true and workers would arrive to the communication call at different

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

0.0 0.5 1.0 1.5 2.0 2.5

std(t)/tc

5

10

15

20

25

30

35

40


(t a

ll)/

(t l

oc
al
)

(A)
n=4
n=16
n=64
n=256
n=1024

0 20 40 60 80 100 120

Inner Steps in Outer Step

1.0

1.2

1.4

1.6

1.8

2.0

2.2

2.4


(t D

iL
oC

o)/

(t N

oL
oC

o)

(B)

Figure 4: (A): Simulated ratio tree-reduce expected time to local averaging expected time. n denotes
here a world size and tc = exp(µ + σ2/2) is the expected time for sending single message. (B):
Simulated ratio of total training times between DiLoCo and NoLoCo without explicit communication
overhead. Each training run consisted of 500 outer optimizer steps and variable number of inner
optimizer steps. The inner optimizer step latency is modeled as log-normal distribution with µ = 1
and σ2 = 0.5. All-reduce and local-reduce communication times are assumed to be negligible.

Method 100Mb/s 1Gb/s 100Gb/s
FSDP 5368.41 s 548.97 s 41.39 s
DiLoCo 61.80 s 6.55 s 1.70 s
NoLoCo 15.26 s 2.80 s 1.64 s

Table 3: Average time for (inner) training steps for all methods with varying GPU interlink bandwidths.
All results are obtained from using 32 GPUs; medium model size; and no PP. Bandwidths limits are
applied for both download and upload speeds, and are expressed in bits per second. Averaging is
taken over two outer steps; and outer steps consisted of hundred inner steps.

times. We performed similar analysis by modeling the time each inner optimizer step takes as log-
normal distribution and observed how long it will take for all processes to finish 250 outer iterations.
We omitted the local averaging and all-reduce time to highlight the effect of the global blocking
communication present in DiLoCo (and it’s variations), but not in NoLoCo. Results are shown in
Fig. 4B. One can observe that the difference between NoLoCo and DiLoCo increases with increasing
world size and is ∼ 20% for 100 inner steps within an outer step using 1024 accelerators. Performing
outer optimizer steps more often increases the overhead. This overhead originating from the blocking
communication is present in addition to the overhead originating from all-reduce latency.

To give reader a better understanding how these effects manifest in actual training, we limited network
bandwidths between different workers and executed two (outer) training steps in a network consisting
of 32 workers for all methods. We used the medium size model with pure DP and three different
interlink speeds in out experiments. The slowest interlink speed (100Mb/s) was characteristic for
regular consumer grade internet; the middle speed (1Gb/s) can be found from high grade consumer
internet connections; and 100Gb/s represents interlink speeds found in data centers.

Table 3 shows the results from these experiments for different methods. We can see significant
difference between regular DP training speed and decentralized methods even with 100Gb/s interlink
speed. The ratio of NoLoCo and DiLoCo training step times approaches the theoretical limit of
log2(32) = 5 as the network speed is reduced. This is expected with the lower network speeds since
the all-reduce becomes dominant part of the overall training time.

5.3 EFFECTS OF RANDOM PIPELINE ROUTING

To analyze the effect of random routing in the PP communication, we perform an ablation study
comparing random routing with fixed routing. For the fixed routing, nodes only send and receive
values from a fixed prior and subsequent model stage, as in typical setups Huang et al. (2019);

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

0 2000 4000 6000 8000 10000 12000

Steps

55

60

65

70

75

80

85

90

95

σ/
σ b

as
e

(%
)

(A)

0 2000 4000 6000 8000 10000 12000

Steps

96

98

100

102

104

L/
L b

as
e

(%
)

(B)

Small, DP=4
Medium, DP=8

Figure 5: Results from training without any outer optimizer steps. The baseline loss and model
replica variance is computed from DP number of independent runs. The combined training is only
using the random pipeline routing. Figures shows the ratio of weight standard deviations (A) and
validation perplexities (B) between the random pipeline routing and without it.

Narayanan et al. (2021); Sun et al. (2024). We also remove the outer optimizer synchronization (for
both routing methods), thus nodes in the same stage never exchange information directly. Thus,
without random routing the setup is the same as running separate training jobs without DP. Using this
setup we repeat experiments for Reddit using the small and medium model sizes.

We present the results in Fig. 5. We observe that for small model the standard deviation is ∼ 15%
lower than in the same run without random routing between different PP pipelines. This effect
becomes less pronounced for the medium model with larger DP world size, namely ∼ 10% lower
standard deviation. Thus we observe that through the PP training, nodes in the same stage implicitly
exchange information about their weights, without directly synchronizing. We attribute the faster
convergence observed in Fig. 2 to this fact.

6 SUMMARY

We proposed a novel low communication decentralized training method, NoLoCo, that requires only
subgroup synchronization in outer optimizer steps and avoids collective all-to-all communication.
While reducing the synchronisation group, to prevent diverge of the model weights, we introduced a
modification on the Nesterov optimizer used in the outer step. We provide a convergence proof of
NoLoCo as well as show that its convergence rate is comparable with fully synchronized DP methods.

We also compared NoLoCo with a less frequently synchronizing method (DiLoCo) via various model
sizes ranging from 125M to 6.8B parameters; two different language modeling datasets (C4 and
pushshift reddit); and a number of parallel worker counts. We found that NoLoCo converges up to 4%
faster than DiLoCo in our experiments while not using any all-to-all communication. We hypothesize
that this is because of the regularization effect coming from slight variations in different instances.

Speed-up from removing the all-to-all communication outer optimizer steps depends on the standard
deviation of the message sending latency and logarithmically on the DP worker count. We confirmed
this behavior in our experiments where we observed two and four times faster training step times
with NoLoCo compared with DiLoCo using 1Gb/s and 100Mb/s interlink speeds, respectively.

NoLoCo - unlike DiLoCo - produces an ensemble of models as the weights are not explicitly
synchronized. We found that the standard deviation of the model weights across different instances is
controlled to a high degree by the inner learning rate. Hence, a learning rate scheduler can be used
effectively to obtain eventual consistency of different model instances.

We have demonstrated that local averaging is a viable option for training models with low bandwidth
and high latency networks. Future work is needed to establish optimal hyper-parameters for NoLoCo
and to explore how it can be combined with stale gradient methods or other asynchronous approaches
to further reduce the communication overhead.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

7 REPRODUCIBILITY STATEMENT

All of our experimental results are reproducible. We use only public datasets, models and tokenizers
in the paper. We also report all training hyper-parameters and details needed for reproducing the
results in Section 4. Source code is also anonymously published in GitHub.

8 ETHICAL STATEMENT

We conform to the ICLR code of ethics. Also, we do not make use of LLMs for ideating or writing.
LLMs were used for the purposes of this work to train models and evaluate their performance and
training time.

REFERENCES

Jason Baumgartner, Savvas Zannettou, Brian Keegan, Megan Squire, and Jeremy Blackburn. The
pushshift reddit dataset. In Proceedings of the international AAAI conference on web and social
media, volume 14, pp. 830–839, 2020.

Sayan Biswas, Anne-Marie Kermarrec, Alexis Marouani, Rafael Pires, Rishi Sharma, and Martijn
De Vos. Boosting asynchronous decentralized learning with model fragmentation. arXiv preprint
arXiv:2410.12918, 2024.

Weilin Cai, Juyong Jiang, Fan Wang, Jing Tang, Sunghun Kim, and Jiayi Huang. A survey on mixture
of experts. arXiv preprint arXiv:2407.06204, 2024.

Zachary Charles, Gabriel Teston, Lucio Dery, Keith Rush, Nova Fallen, Zachary Garrett, Arthur
Szlam, and Arthur Douillard. Communication-efficient language model training scales reliably
and robustly: Scaling laws for diloco. arXiv preprint arXiv:2503.09799, 2025.

Tri Dao, Dan Fu, Stefano Ermon, Atri Rudra, and Christopher Ré. Flashattention: Fast and memory-
efficient exact attention with io-awareness. Advances in neural information processing systems, 35:
16344–16359, 2022.

Martijn De Vos, Sadegh Farhadkhani, Rachid Guerraoui, Anne-Marie Kermarrec, Rafael Pires, and
Rishi Sharma. Epidemic learning: Boosting decentralized learning with randomized communica-
tion. Advances in Neural Information Processing Systems, 36:36132–36164, 2023.

Akash Dhasade, Anne-Marie Kermarrec, Erick Lavoie, Johan Pouwelse, Rishi Sharma, and Martijn
de Vos. Practical federated learning without a server. In Proceedings of the 5th Workshop on
Machine Learning and Systems, pp. 1–11, 2025.

Jesse Dodge, Maarten Sap, Ana Marasović, William Agnew, Gabriel Ilharco, Dirk Groeneveld,
Margaret Mitchell, and Matt Gardner. Documenting large webtext corpora: A case study on the
colossal clean crawled corpus. arXiv preprint arXiv:2104.08758, 2021.

Arthur Douillard, Qixuan Feng, Andrei A Rusu, Rachita Chhaparia, Yani Donchev, Adhiguna
Kuncoro, Marc’Aurelio Ranzato, Arthur Szlam, and Jiajun Shen. Diloco: Distributed low-
communication training of language models. arXiv preprint arXiv:2311.08105, 2023.

Arthur Douillard, Qixuan Feng, Andrei A Rusu, Adhiguna Kuncoro, Yani Donchev, Rachita Chha-
paria, Ionel Gog, Marc’Aurelio Ranzato, Jiajun Shen, and Arthur Szlam. Dipaco: Distributed path
composition. arXiv preprint arXiv:2403.10616, 2024.

Arthur Douillard, Yanislav Donchev, Keith Rush, Satyen Kale, Zachary Charles, Zachary Garrett,
Gabriel Teston, Dave Lacey, Ross McIlroy, Jiajun Shen, et al. Streaming diloco with overlapping
communication: Towards a distributed free lunch. arXiv preprint arXiv:2501.18512, 2025.

Haizhou Du, Yijian Chen, Ryan Yang, Yuchen Li, and Linghe Kong. Hyperprism: An adaptive non-
linear aggregation framework for distributed machine learning over non-iid data and time-varying
communication links. Advances in Neural Information Processing Systems, 37:11814–11836,
2024.

10

https://anonymous.4open.science/r/noloco-FA62/README.md

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

Jiangfei Duan, Shuo Zhang, Zerui Wang, Lijuan Jiang, Wenwen Qu, Qinghao Hu, Guoteng Wang,
Qizhen Weng, Hang Yan, Xingcheng Zhang, et al. Efficient training of large language models on
distributed infrastructures: a survey. arXiv preprint arXiv:2407.20018, 2024.

Kazuki Fujii, Kohei Watanabe, and Rio Yokota. Accelerating large language model training with 4d
parallelism and memory consumption estimator. arXiv preprint arXiv:2411.06465, 2024.

Peng Gao, Shijie Geng, Renrui Zhang, Teli Ma, Rongyao Fang, Yongfeng Zhang, Hongsheng Li, and
Yu Qiao. Clip-adapter: Better vision-language models with feature adapters. International Journal
of Computer Vision, 132(2):581–595, 2024.

Aditya Gourav, Jari Kolehmainen, Prashanth Shivakumar, Yile Gu, Grant Strimel, Ankur Gandhe,
Ariya Rastrow, and Ivan Bulyko. Multi-modal retrieval for large language model based speech
recognition. In Findings of the Association for Computational Linguistics ACL 2024, pp. 4435–
4446, 2024.

Aaron Grattafiori, Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey, Abhishek Kadian, Ahmad
Al-Dahle, Aiesha Letman, Akhil Mathur, Alan Schelten, Alex Vaughan, et al. The llama 3 herd of
models. arXiv preprint arXiv:2407.21783, 2024.

István Hegedűs, Gábor Danner, and Márk Jelasity. Gossip learning as a decentralized alternative
to federated learning. In Distributed Applications and Interoperable Systems: 19th IFIP WG 6.1
International Conference, DAIS 2019, Held as Part of the 14th International Federated Conference
on Distributed Computing Techniques, DisCoTec 2019, Kongens Lyngby, Denmark, June 17–21,
2019, Proceedings 19, pp. 74–90. Springer, 2019.

Yanping Huang, Youlong Cheng, Ankur Bapna, Orhan Firat, Dehao Chen, Mia Chen, HyoukJoong
Lee, Jiquan Ngiam, Quoc V Le, Yonghui Wu, et al. Gpipe: Efficient training of giant neural
networks using pipeline parallelism. Advances in neural information processing systems, 32, 2019.

Amazon Artificial General Intelligence. The amazon nova family of models: Technical report and
model card. 2024.

Sami Jaghouar, Jack Min Ong, Manveer Basra, Fares Obeid, Jannik Straube, Michael Keiblinger,
Elie Bakouch, Lucas Atkins, Maziyar Panahi, Charles Goddard, et al. Intellect-1 technical report.
arXiv preprint arXiv:2412.01152, 2024.

Satyen Kale, Arthur Douillard, and Yanislav Donchev. Eager updates for overlapped communication
and computation in diloco. arXiv preprint arXiv:2502.12996, 2025.

Margaret Li, Suchin Gururangan, Tim Dettmers, Mike Lewis, Tim Althoff, Noah A Smith, and Luke
Zettlemoyer. Branch-train-merge: Embarrassingly parallel training of expert language models.
arXiv preprint arXiv:2208.03306, 2022.

Bin Lin, Yang Ye, Bin Zhu, Jiaxi Cui, Munan Ning, Peng Jin, and Li Yuan. Video-llava: Learning
united visual representation by alignment before projection. arXiv preprint arXiv:2311.10122,
2023.

Aixin Liu, Bei Feng, Bin Wang, Bingxuan Wang, Bo Liu, Chenggang Zhao, Chengqi Dengr, Chong
Ruan, Damai Dai, Daya Guo, et al. Deepseek-v2: A strong, economical, and efficient mixture-of-
experts language model. arXiv preprint arXiv:2405.04434, 2024.

Hao Liu, Matei Zaharia, and Pieter Abbeel. Ring attention with blockwise transformers for near-
infinite context. arXiv preprint arXiv:2310.01889, 2023.

Soumi Maiti, Yifan Peng, Shukjae Choi, Jee-weon Jung, Xuankai Chang, and Shinji Watanabe.
Voxtlm: Unified decoder-only models for consolidating speech recognition, synthesis and speech,
text continuation tasks. In ICASSP 2024-2024 IEEE International Conference on Acoustics, Speech
and Signal Processing (ICASSP), pp. 13326–13330. IEEE, 2024.

Deepak Narayanan, Mohammad Shoeybi, Jared Casper, Patrick LeGresley, Mostofa Patwary, Vijay
Korthikanti, Dmitri Vainbrand, Prethvi Kashinkunti, Julie Bernauer, Bryan Catanzaro, et al.
Efficient large-scale language model training on gpu clusters using megatron-lm. In Proceedings
of the international conference for high performance computing, networking, storage and analysis,
pp. 1–15, 2021.

11

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Bowen Peng, Jeffrey Quesnelle, and Diederik P Kingma. Decoupled momentum optimization. arXiv
preprint arXiv:2411.19870, 2024.

Ji Qi, WenPeng Zhu, Li Li, Ming Wu, YingJun Wu, Wu He, Xun Gao, Jason Zeng, and Michael
Heinrich. Dilocox: A low-communication large-scale training framework for decentralized cluster.
arXiv preprint arXiv:2506.21263, 2025.

Jeff Rasley, Samyam Rajbhandari, Olatunji Ruwase, and Yuxiong He. Deepspeed: System opti-
mizations enable training deep learning models with over 100 billion parameters. In Proceedings
of the 26th ACM SIGKDD international conference on knowledge discovery & data mining, pp.
3505–3506, 2020.

Paul K Rubenstein, Chulayuth Asawaroengchai, Duc Dung Nguyen, Ankur Bapna, Zalán Borsos,
Félix de Chaumont Quitry, Peter Chen, Dalia El Badawy, Wei Han, Eugene Kharitonov, et al.
Audiopalm: A large language model that can speak and listen. arXiv preprint arXiv:2306.12925,
2023.

Max Ryabinin, Tim Dettmers, Michael Diskin, and Alexander Borzunov. Swarm parallelism: Training
large models can be surprisingly communication-efficient. In International Conference on Machine
Learning, pp. 29416–29440. PMLR, 2023.

Christos Sad, George Retsinas, Dimitrios Soudris, Kostas Siozios, and Dimosthenis Masouros.
Towards asynchronous peer-to-peer federated learning for heterogeneous systems. In Proceedings
of the 5th Workshop on Machine Learning and Systems, pp. 261–268, 2025.

Tom Schaul, Sixin Zhang, and Yann LeCun. No more pesky learning rates. In International
conference on machine learning, pp. 343–351. PMLR, 2013.

Mohammad Shoeybi, Mostofa Patwary, Raul Puri, Patrick LeGresley, Jared Casper, and Bryan Catan-
zaro. Megatron-lm: Training multi-billion parameter language models using model parallelism.
arXiv preprint arXiv:1909.08053, 2019.

Xian Shuai, Yiding Wang, Yimeng Wu, Xin Jiang, and Xiaozhe Ren. Scaling law for language
models training considering batch size. arXiv preprint arXiv:2412.01505, 2024.

Vasudev Shyam, Jonathan Pilault, Emily Shepperd, Quentin Anthony, and Beren Millidge. Tree
attention: Topology-aware decoding for long-context attention on gpu clusters. arXiv preprint
arXiv:2408.04093, 2024.

Ao Sun, Weilin Zhao, Xu Han, Cheng Yang, Xinrong Zhang, Zhiyuan Liu, Chuan Shi, and Maosong
Sun. Seq1f1b: Efficient sequence-level pipeline parallelism for large language model training.
arXiv preprint arXiv:2406.03488, 2024.

Gemini Team, Rohan Anil, Sebastian Borgeaud, Jean-Baptiste Alayrac, Jiahui Yu, Radu Soricut,
Johan Schalkwyk, Andrew M Dai, Anja Hauth, Katie Millican, et al. Gemini: a family of highly
capable multimodal models. arXiv preprint arXiv:2312.11805, 2023.

Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier Martinet, Marie-Anne Lachaux, Timothée
Lacroix, Baptiste Rozière, Naman Goyal, Eric Hambro, Faisal Azhar, et al. Llama: Open and
efficient foundation language models. arXiv preprint arXiv:2302.13971, 2023.

Yuhuai Wu, Mengye Ren, Renjie Liao, and Roger Grosse. Understanding short-horizon bias in
stochastic meta-optimization. arXiv preprint arXiv:1803.02021, 2018.

Jin Xu, Zhifang Guo, Jinzheng He, Hangrui Hu, Ting He, Shuai Bai, Keqin Chen, Jialin Wang, Yang
Fan, Kai Dang, et al. Qwen2. 5-omni technical report. arXiv preprint arXiv:2503.20215, 2025.

Binhang Yuan, Yongjun He, Jared Davis, Tianyi Zhang, Tri Dao, Beidi Chen, Percy S Liang,
Christopher Re, and Ce Zhang. Decentralized training of foundation models in heterogeneous
environments. Advances in Neural Information Processing Systems, 35:25464–25477, 2022.

Michael Zhang, James Lucas, Jimmy Ba, and Geoffrey E Hinton. Lookahead optimizer: k steps
forward, 1 step back. Advances in neural information processing systems, 32, 2019.

12

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

Shaolei Zhang, Qingkai Fang, Zhe Yang, and Yang Feng. Llava-mini: Efficient image and video
large multimodal models with one vision token. arXiv preprint arXiv:2501.03895, 2025.

Susan Zhang, Stephen Roller, Naman Goyal, Mikel Artetxe, Moya Chen, Shuohui Chen, Christopher
Dewan, Mona Diab, Xian Li, Xi Victoria Lin, et al. Opt: Open pre-trained transformer language
models. arXiv preprint arXiv:2205.01068, 2022.

Deyao Zhu, Jun Chen, Xiaoqian Shen, Xiang Li, and Mohamed Elhoseiny. Minigpt-4: En-
hancing vision-language understanding with advanced large language models. arXiv preprint
arXiv:2304.10592, 2023.

A CONVERGENCE ANALYSIS

A.1 EXPECTED VALUE AND VARIANCE OF INNER ITERATION

The proposed method in this study aims to lower the communication overhead of data parallel training
via the modified Nesterov momentum expression given by Eq. 2. This appendix shows proof that the
modified version converges to the vicinity of the real optima when the hyperparameters are chosen
appropriately. We structure the proof as follows: this section gives background context and derives
expected value and variance for the inner iterations weights; Section A.2 provides convergence proof
for the expected value of slow weights; and finally A.3 shows proof for the variance of the slow
weights.

To show this we assume a stochastic loss from prior studies Schaul et al. (2013); Wu et al. (2018);
Zhang et al. (2019):

L(θ) = 1

2
(θ − c)TA(θ − c), (6)

where c ∼ N (0,Σ) is a vector valued random variable; A is a positive definite symmetric matrix; and
the covariance matrix Σ is a constant Zhang et al. (2019). With the above loss function, the minimum
value is obtained at θ = 0. Gradient of the loss function is given by:

∇θL(θ) = A(θ − c) ∼ N (Aθ,AΣA). (7)

For this analysis, we assume that the inner optimizer is using the stochastic gradient descent with a
constant learning rate. Stochastic gradient descent updates the (fast) weights according to following
rule:

θ
(k+1)
t,i = (I− ωA) θ

(k)
t,i + ωAc, (8)

where (k) denotes the (inner) iteration index and ω is the inner learning rate. With these assumptions,
expected value and variance of the fast model weights after one inner iteration are Wu et al. (2018):

E(θ(j+1)
t+1,i) = (I− ωA)E(θ(j)t+1,i), (9)

V(θ(j+1)
t+1,i) = (I− ωA)V(θ(j)t+1,i) (I− ωA) + ω2AΣA, (10)

where I is the identity matrix, and θ
(0)
t+1,i = ϕt,i. To simplify the notation, we define following

shorthands:

B = I− ωA, (11)
U = ω2AΣA. (12)

Solving Eqs. 9 and 10 for expected value and variance, we obtain:

E(θ(j+1)
t+1,i) = BjE(θ(0)t+1,i), (13)

V(θ(j+1)
t+1,i) = BjV(θ(0)t+1,i)B

j + F−1
(
U− BjUBj

)
, (14)

where F is a linear function given by:

F (X) = X− BXB. (15)

F is invertible when ω > 0 and F (X) ≡ 0 when ω = 0.

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

From Eqs. 13 and 14 we can solve for the outer gradient:

E(∆t,i) = E(θ(m)
t+1,i − ϕt,i) (16)

= (I− ωA)
m E(ϕt,i)− E(ϕt,i) (17)

= ((I− ωA)
m − I)E(ϕt,i), (18)

where m is the number of inner optimizer steps in one outer optimizer step. Similarly for variance,

V(∆t,i) = V

(
m∑

k=1

θ
(k)
t+1,i − θ

(k−1)
t+1,i

)
= V(−ω

m−1∑
k=0

∇θL(θ(k)t+1,i)) (19)

≈ ω2
m−1∑
k=0

V(∇θL(θ(k)t+1,i)) (20)

= ω2A
m−1∑
k=0

(
V(θ(k)t+1,i) + Σ

)
A (21)

= ω2A

(
m−1∑
k=0

Bk−1V(θ(0)t+1,i)B
k−1 + F−1

(
U− Bk−1UBk−1

))
A+mU (22)

= ω2A

(
m−1∑
k=0

BkV(θ(0)t+1,i)B
k

)
A+R′ (23)

= ω2AF−1
(
V(θ(0)t+1,i)− BkV(θ(0)t+1,i)B

k
)
A+R′, (24)

where R′ is a constant matrix depending on ω, Σ, A, and m. In Eq. 24 we neglected covariance of
non-consecutive fast weights similar to study Zhang et al. (2019). Eq. 24 can be simplified by writing
the variance matrix as a vector using following notation:

U(θ) ≡ vec(V(θ)) = [V(θ)1,V(θ)2, · · ·], (25)

where V(θ)1 and V(θ)2 are column vectors of the covariance matrix V(θ); and vec(·) denotes
converting a matrix to a vector by concatenating all the column vectors. With this notation we obtain:

U(∆t,i) = vec
(
ω2AF−1

(
V(θ(0)t+1,i)− BkV(θ(0)t+1,i)B

k
)
A+R′

)
(26)

= ω2A⊗A(I− B⊗ B)
−1 (

I− Bk ⊗ Bk
)
U(θ(0)t+1,i) + vec(R′), (27)

where ⊗ denotes Kronecker product. We also define:

BV = ω2A⊗A(I− B⊗ B)
−1 (

I− Bk ⊗ Bk
)
. (28)

A.2 EXPECTED VALUE OF OUTER ITERATION

We proceed to show following:

Theorem 2 When the outer iteration step count t → ∞, the expected value of the slow weights
E(ϕt,i) → 0.

We remind the reader that the modified Nesterov momentum used in this study is given by:

δt,i = αδt−1,i −
β

n

∑
j

∆t,j

− γ

ϕt,i −
1

n

∑
j

ϕt,j

 , (29)

where n is the group size used for the sample means.

The different realizations of the slow weights, ϕt,j , are generally not independent due to the path
decomposition mechanism and due to the previous outer iterations. However, we will assume that

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

they would be independent for convergence analysis, which introduces an error in the expected value
and variance expressions. This error will become smaller when the data parallel world size becomes
larger as the coupling between slow weights becomes weaker.

The optimization method will start from the same instance of slow model weights; hence ϕ0,i ≡ ϕ0

as the first starting point. All instances of slow weights are updated by the same algorithm and hence
the value of ϕt,i depends on two things: (1) what data is used to compute the inner gradients; and (2)
what other instances are used in the sample averages. Both of these processes are identically random
regarding different instances, and hence we assume that the slow weights have identical distributions.
This has following corollaries.

Lemma 1 The expected values of the slow weights ϕt,i satisfy: E(ϕt,i − 1
n

∑
j ϕt,j) = 0.

We present a formal proof Lemma 1 in Appendix B. For the variances situation is more complex, and
we assume following conjecture based on the above informal reasoning:

Conjecture 1 The variances of the slow weights ϕt,i satisfy: V(ϕt,i − 1
n

∑
j ϕt,j) ≈

2
(
n−1
n

)2 V(ϕt,i).

The outer gradients are fundamentally dependent on the current slow weights. We neglect the
dependency of the instances outer gradients on other gradients slow weights as before, which will
introduce another error in the approximation. This error should diminish as the data parallel world size
becomes larger and the coupling between different instances of slow weights becomes weaker. Similar
to reasoning with the slow weights, we assume that the outer gradients have identical distributions.
With these assumptions, the expected value of δt,i becomes:

E(δt,i) = αE(δt−1,i) + βE(∆t,i), (30)

= β

t∑
k=0

αt−kE(∆k,i) (31)

= β

t∑
k=0

αt−k (Bm − I)E(ϕk,i) (32)

that is the same expression as for regular Nesterov momentum. Expected value of the next iteration
slow weights becomes:

E(ϕt+1,i) = E(ϕt,i) + E(δt,i) (33)

= E(ϕt,i) + β

t∑
k=0

αt−k (Bm − I)E(ϕk,i) (34)

= E(ϕt,i) + βαt (Bm − I)

t∑
k=0

α−kE(ϕk,i) (35)

= E(ϕt,i) + βαt (Bm − I)

(
α−tE(ϕt,i) +

t−1∑
k=0

α−kE(ϕk,i)

)
(36)

= (I + β(Bm − I))E(ϕt,i) (37)

+α

(
−E(ϕt−1,i) + E(ϕt−1,i) + βαt−1 (Bm − I)

t−1∑
k=0

α−kE(ϕk,i)

)
(38)

= (I + β(Bm − I))E(ϕt,i) + α (E(ϕt,i)− E(ϕt−1,i)) (39)
= (I + αI + β(Bm − I))E(ϕt,i)− αE(ϕt−1,i) (40)
= DE(ϕt,i)− αE(ϕt−1,i), (41)

where D = I+ αI + β(Bm − I). Solving E(ϕt,i) from the above recursive equation using method of
characteristics yields:

E(ϕt,i) = C1r
t
1 +C2r

t
2, (42)

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

where C1 and C2 are constants independent of t; r1 and r2 are the matrix roots of the characteristic
polynomial given by:

r1 =
1

2

(
D+

√
D2 − 4αI

)
, (43)

r2 =
1

2

(
D−

√
D2 − 4αI

)
. (44)

We note that 0 < r2 ≤ r1 ≤ D when 0 ≤ α < 1, hence it is sufficient to show that Dt → 0 that
happens if and only if all eigen values of D, Di, have less than unit absolute value. Recall, that A is
symmetric and positive definite and hence has eigen value decomposition: A = QΛQT where Q is
an orthogonal matrix and Λ is a diagonal matrix with positive non-zero elements at diagonal. This
yields:

Bm =
(
I− ωQΛQT

)m
(45)

=
(
Q(I− ωΛ)QT

)m
(46)

= Q(I− ωΛ)
m
QT. (47)

Substituting Eq. 47 to definition of D gives:

D = I + αI + β(Bm − I) (48)

= I + αI + βQ((I− ωΛ)
m − I)QT (49)

= Q(I + (α− β)I + β (I− ωΛ)
m
)QT, (50)

where we can identify that the eigen values are:

Di = 1 + α− (1− (1− ωΛi)
m)β, (51)

where Λi > 0 is the ith eigen value of A. Convergence of the expected value depends on the
hyper-parameters α, β, ω, and m. When m is sufficiently large and inner learning rate is chosen to
satisfy 0 < ωΛi ≤ 1, sufficient condition is β > α and E(ϕt,i) → 0 when t → ∞. Thus the method
converges to optimal solution.

A.3 VARIANCE OF OUTER ITERATION

Finally, we will show following:

Theorem 3 When the outer iteration step count t → ∞, the expected value of the slow weights
V(ϕt,i) ∝ ω2.

The variance of slow weights is given by:

V(ϕt+1,i) = V(ϕt,i) + V(δt,i) + 2Cov(ϕt,i, δt,i) (52)

We only consider direct dependencies of slow weights ϕt,i for the covariance term that becomes:

Cov(ϕt,i, δt,i) ≈ −γ2n− 1

n
V(ϕt,i), (53)

where we omitted the covariance between the outer gradients and corresponding slow weights. The
variance of the momentum term becomes:

U(δt,i) ≈ α2U(δt−1,i) +
β2

n
U(∆t,i) + 2γ2

(
n− 1

n

)2

U(ϕt,i) (54)

= α2U(δt−1,i) +

(
β2BV

n
+ 2γ2

(
n− 1

n

)2
)
U(ϕt,i) +

β2

n
vec(R′) (55)

=

t−1∑
k=0

α2(t−1−k)

((
β2BV

n
+ 2γ2

(
n− 1

n

)2
)
U(ϕk,i) +

β2

n
vec(R′)

)
(56)

= α2t−2
t−1∑
k=0

α−2k(CVU(ϕk,i) + R′′), (57)

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

where we assumed that initial momentum is V(δ0,i) ≡ 0, and used shorthands:

CV =
β2BV

n
+ 2γ2

(
n− 1

n

)2

, (58)

R′′ =
β2

n
vec(R′). (59)

Substituting Eqs. 53 and 57 into Eq. 52 yields:

U(ϕt+1,i) = U(ϕt,i)− 2γ2n− 1

n
U(ϕt,i) + α2t−2

t−1∑
k=0

α−2k(CVU(ϕk,i) + R′′) (60)

=

(
1− 2γ2n− 1

n

)
U(ϕt,i) + α2t−2

t−1∑
k=0

α−2k(CVU(ϕk,i) + R′′). (61)

The last sum-term can be rearranged as follows:

α2t−2
t−1∑
k=0

α−2k(CVU(ϕk,i) + R′′) (62)

= CVU(ϕt−1,i) + R′′ + α2

(
α2(t−2)

t−2∑
k=0

α−2k(CVU(ϕk,i) + R′′)

)
(63)

= CVU(ϕt−1,i) + R′′ + α2

(
U(ϕt,i)−

(
1− 2γ2n− 1

n

)
U(ϕt−1,i)

)
(64)

= α2U(ϕt,i) +

(
CV − α2

(
1− 2γ2n− 1

n

)
I

)
U(ϕt−1,i) + R′′. (65)

Substituting Eq. 65 to Eq. 61 gives:

U(ϕt+1,i) = dVU(ϕt,i) + EVU(ϕt−1,i) + R′′, (66)

where dV and EU are given by:

dV = 1 + α2 − 2γ2n− 1

n
, (67)

EV = CV − α2

(
1− 2γ2n− 1

n

)
I. (68)

Solving U(ϕt,i) by method of characteristics gives following solution:

U(ϕt,i) = C′
1v

t
1 +C′

2v
t
2 +R′′, (69)

where C′
1 and C′

2 are constants independent of t; v1 and v2 are the matrix roots of the characteristic
polynomial given by:

v1 =
1

2

(
dVI +

√
d2VI− 4EV

)
, (70)

v2 =
1

2

(
dVI−

√
d2VI− 4EV

)
. (71)

For real roots, we have following bounds: 0 ≤ ∥v2∥2 ≤ ∥v1∥2 ≤ |dV|. For the variance to remain
bounded as t → ∞ we must have |dV| < 1. Solving for γ we arrive at condition:√

n

2(n− 1)
α < γ <

√
n

2(n− 1)
(2 + α2). (72)

When hyper-parameters satisfy Eq. 72, U(ϕt,i) → R′′ when t → ∞. The leading order term of R′′

in terms of inner learning rate is ∝ ω2. Hence, the variance ∥U(ϕt,i)∥2 ∝ ω2 when ω → 0 which
proofs that the method converges to the correct optima and the variance of the optima is proportional
to square of inner learning rate.

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

B PROOF FOR IDENTICAL MODEL EXPECTED VALUES

Reminder that after k + 1 steps, the expected fast weights are:

E[θk+1
t+1,i] = BkE[ϕt,i], (73)

where B = I−ωA. We prove that for any arbitrary step t the expected difference between an arbitrary
ϕt,i and the average of several other 1

n

∑n
j ϕt,j is 0:

E[ϕt,i −
1

n

n∑
j

ϕt,j] = E[ϕt,i]−
1

n

n∑
j

E[ϕt,j] = 0. (74)

Reminder about some of the variables:

∆t,i = θk+1
t+1,i − ϕt,i (75)

ϕt+1,i = ϕt,i + δt,i (76)

δt,i = αδt−1,i −
β

n

n∑
j

∆t,j − γ

ϕt,i −
1

n

n∑
j

ϕt,j

 . (77)

It is trivial to see that at step 1 the property holds:

ϕ0,i = ϕ0 (78)
δ0,i = 0 (79)

δ1,i = −β

n

n∑
j

(
θk+1
t+1,i − ϕ0

)
E[δ1,i] (80)

= −β

n

n∑
j

(
BkE[ϕ0]− E[ϕ0]

)
(81)

= −β(Bk − I)E[ϕ0], and (82)

E[ϕ1,i] = E[ϕ0]− β(Bk − I)E[ϕ0]. (83)

Since the value does not depend on i, then the value will be identical across all replicas, thus
E[ϕ1,i]− 1

n

∑n
j E[ϕ1,j] = 0.

We proceed next to show that if the property holds for an arbitrary step T and for all steps prior to
that t ∈ [0, T], then it also holds for T + 1.

At step T + 1 we have:

δT+1,i = αδt,i −
β

n

n∑
j

∆T,j − γ

ϕT,i −
1

n

n∑
j

ϕT,j

 . (84)

Taking expected value of Eq. 84 yield:

E[δT+1,i] = αE[δT,i]−
β

n

n∑
j

E[∆T,j]− γ

E[ϕT,i]−
1

n

n∑
j

E[ϕT,j]

 . (85)

The right term reduces to 0 and thus we are left with:

E[δT+1,i] = αE[δT,i]−
β

n
(Bk − I)

n∑
j

E[ϕT] (86)

= αE[δT,i]− β(Bk − I)E[ϕT], (87)

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

Method 1M 2M
FSDP 19.6 18.0
DiLoCo 21.0 19.7
NoLoCo 20.9 19.3

Table 4: Summary of final perplexity numbers from Reddit data with varying global batch size. All
results are from the medium model size, 64 accelerators, four pipeline stages, and data parallel world
size of sixteen.

and
E[ϕT+1,i] = E[ϕT,i] + αE[δt,i]− β(Bk − I)E[ϕT]. (88)

Finally,

E[ϕT+1,i]−
1

n

n∑
j

E[ϕT+1,j] = E[ϕT,i] + αE[δT,i]− β(Bk − I)E[ϕT] (89)

− 1

n

n∑
j

(
E[ϕT,j] + αE[δT,j]− β(Bk − I)E[ϕT]

)
(90)

= αE[δT,i]−
1

n

n∑
j

(αE[δT,j]) (91)

= E[ϕT−1,i]−
1

n

n∑
j

(E[ϕT−1,j]) (92)

−E[ϕT,i] +
1

n

n∑
j

(E[ϕT−1,j]) = 0. (93)

Thus the property holds for step T +1, and by proof by induction it holds for all T since the first step
holds.

C HYPER-PARAMETER ABLATIONS

DiLoCo and NoLoCo are sensitive to the used batch size. Table 4 present how increasing the batch
size affects the results. Increasing the batch size will also increase the number of tokens models
observe during training as well as linearly increase the training cost.

D TRAINING LOSSES

Figure 6 shows training data cross-entropy for all methods and model sizes on Reddit data. Training
cross-entropy is averaged over consecutive 200 (inner) training steps to reduce noise in the data.

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2026

0 5000 10000 15000 20000 25000

Steps

2.5

3.0

3.5

4.0

4.5

5.0

5.5

6.0

C
ro
ss
-e
nt
ro
py

(A) FSDP
DiLoCo
NoLoCo

0 5000 10000 15000 20000 25000

Steps

(B) FSDP
DiLoCo
NoLoCo

0 5000 10000 15000 20000 25000

Steps

(C) FSDP
DiLoCo
NoLoCo

Figure 6: Reddit training cross-entropy of different training methods at different optimizer step counts.
Solid blue curve is NoLoCo, dashed red curve show FSDP, and dashed green curve is DiLoCo. (A):
Small model with data parallel world size of 8 and two pipeline stages; (B): Medium model with data
parallel world size of 8 and two pipeline stages. (C): Large model with data parallel world size of 16
and four pipeline stages.

20

	Introduction
	Related Work
	Decentralized Training Methods
	Dynamic Pipeline Routing

	NoLoCo
	Inner optimizer step via dynamic pipeline routing
	Outer optimizer step with modified Nesterov momentum

	Experimental Setup
	Results and Discussion
	Training results
	Latency Analysis
	Effects of Random Pipeline Routing

	Summary
	Reproducibility statement
	Ethical Statement
	Convergence Analysis
	Expected Value and Variance of Inner Iteration
	Expected Value of Outer Iteration
	Variance of Outer Iteration

	Proof for Identical Model Expected Values
	Hyper-parameter Ablations
	Training Losses

