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Abstract

Optimization modeling is one of the most crucial but technical parts of operations
research (OR). To automate the modeling process, existing works have leveraged
large language models (LLMs), prompting them to break down tasks into steps
for generating variables, constraints, and objectives. However, due to the highly
complex mathematical structures inherent in OR problems, standard fixed-step
decomposition often fails to achieve high performance. To address this challenge,
we introduce OptiTree, a novel tree search approach designed to enhance modeling
capabilities for complex problems through adaptive problem decomposition into
simpler subproblems. Specifically, we develop a modeling tree that organizes a
wide range of OR problems based on their hierarchical problem taxonomy and
complexity, with each node representing a problem category and containing relevant
high-level modeling thoughts. Given a problem to model, we recurrently search the
tree to identify a series of simpler subproblems and synthesize the global modeling
thoughts by adaptively integrating the hierarchical thoughts. Experiments show that
OptiTree significantly improves the modeling accuracy compared to the state-of-the-
art, achieving over 10% improvements on the challenging benchmarks. The code
is released at https://github.com/MIRALab-USTC/OptiTree/tree/mainl

1 Introduction

Optimization models are fundamental in operations research (OR) with a wide range of critical
applications in route planning [33]], production planning [4]], economics [23]], and so on. Typically,
real-world OR problems are presented as natural language descriptions that must be manually
converted into optimization models before developing solver codes (e.g., Gurobi [[14] and Pyomo
[6} 16]) to solve. However, the modeling process is highly technical and time-consuming, requiring
extensive human expertise and domain knowledge [28]]. Modeling experts often engage in thorough
discussions with clients to fully grasp the problem scenarios and context. This is followed by a
lengthy iterative process to refine and improve the models, enhancing their accuracy and efficiency.

To reduce the time and cost spent in optimization modeling, recent advances have leveraged large
language models (LLMs) to automate this process, leveraging the rich domain knowledge learnt by
LLMs [39} 11} 17]]. Given an OR problem, the LLMs take a natural language description as input
and generate both the optimization model and the corresponding solver code. Existing works on
LLM-based optimization modeling include the prompt-based modeling methods [39, |1} 2] and the
fine-tuned LLM modeling agents [17, 21]]. The prompt-based methods typically break down modeling
tasks into sequential steps for generating variables, constraints, and objectives [1, 2]. However, this
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Figure 1: The Upper: Existing prompt-based methods construct variables, constraints and objectives
sequentially. The Lower: Our OptiTree leverages tree search for subproblem decomposition and
uses the modeling thoughts of subproblems to enhance the modeling process.

rigid decomposition does not account for problem complexity, making it particularly challenging
for more complex problems and potentially leading to suboptimal modeling accuracy. Our analysis
of a challenging dataset reveals that a substantial portion of errors arises from incorrect variable
definitions, particularly in the hard modeling problems (please see Motivation 1 in Section [3).

Therefore, a natural question arises: how can we adaptively decompose a problem into simpler
subproblems? For each OR problem, we introduce the concept of modeling subproblem, which is
defined as parts of the original problem with reduced modeling complexity (please see Section
for a formal definition). For example, the standard vehicle routing problem (VRP) can serve as a
subproblem for more complex variants such as the capacitated VRP (CVRP) and the VRP with time
windows (VRPTW). From the perspective of OR, these subproblems share the same taxonomy as
the original problems and exhibit similar modeling structures, but their lower complexity makes
them easier to model. When modeling a VRP with time windows, we might begin by constructing
a standard VRP model and then incrementally integrate the time window constraints. We have
observed that these patterns of subproblem decomposition are prevalent across a wide range of
complex problems. While most complex problems do not fit neatly into standard OR categories,
they often encompass simpler standard OR subproblems (please see Motivation 2 in Section[3). For
further understanding, we provide several examples in Appendix [C]

In light of this, we propose a novel approach called OptiTree, designed to enhance modeling accuracy
by adaptively decomposing complex problems into a series of simpler subproblems. The core of
OptiTree is to distill prevalent decomposition patterns from various problems and apply the most
suitable ones for unseen complex problems. Specifically, as illustrated in Figure [T} we develop
a modeling tree that organizes a diverse range of OR problems according to their taxonomy and
complexity. Each node in the modeling tree represents an OR problem, with problems of parent
nodes corresponding to the subproblem of their children. We store relevant modeling thoughts in
each tree node to enhance the modeling accuracy for each subproblem. Given a problem to solve, we
1) recurrently search for suitable subproblems to decompose, 2) retrieve high-level modeling thoughts
for each subproblem, and 3) synthesize global modeling thoughts by adaptively integrating the
hierarchical thoughts. To ensure the scalability and reliability of the modeling tree, we dynamically
update and refine the subproblems and thoughts across a wide range of OR problems. The notable
feature of OptiTree is that it transfers the search into the highly structured subproblem space,
significantly reducing the search space while fully leveraging the modeling thoughts associated with
the subproblems. Experiments demonstrate that our method achieves state-of-the-art performance,
significantly improving modeling accuracy by over 10%.

2 Related Work

LLM-based Optimization Modeling LILM-based optimization modeling has emerged as a promis-
ing approach to reduce the time and expertise required during the modeling process [[7, 22]]. Existing
methods in this field can be categorized into prompt-based and fine-tuned methods. Prompt-based
methods involve the careful design of modeling prompts for pre-trained LLMs, such as GPT-40
and DeepSeek-V3. Notable works in this area include CoE [39] and OptiMUS [1]], which utilize



multi-agent cooperation workflows to iteratively construct models and solver codes. Additionally, [2]
employs Monte Carlo tree search to explore the space of variables, constraints, and objectives step by
step, identifying the best components for model construction. In contrast, another line of research
focuses on fine-tuning LLMs with extensive operations research and modeling knowledge. Examples
include ORLM [17], Evo-Step [37]], LLMOPT [21]], OptMATH [235]], and OptiBench [41}[35]]. These
methods typically generate large modeling datasets to train specialized modeling language models. In
this paper, we focus on the prompt-based methods and aim to fully exploit the reasoning capabilities
of pre-trained LLMs. Unlike existing approaches that decompose tasks into fixed steps for generating
variables, constraints, and objectives, we propose an incremental modeling strategy that involves
modeling simpler subproblems.

LLM Reasoning and Retrieval-Augmented Generation LLMs have shown promising perfor-
mance across various reasoning tasks [43]. However, they are prone to generating false, misleading,
or fabricated information—a phenomenon known as hallucination. Consequently, researchers have
explored several methods to mitigate these hallucinations [[18]]. Early approaches, such as Chain-of-
Thoughts (CoT) [36] and Tree-of-Thoughts (ToT) [42], break down complex problems and solve
them step-by-step. The Buffer-of-Thoughts (BoT) [40] method stores a meta-buffer of modeling
thoughts, instantiating relevant templates to construct reasoning processes. Recent advances in
reasoning LLMs such as OpenAl-ol [30] and DeepSeek-R1 [8] have gained significant popularity.
Additionally, researchers have focused on leveraging external knowledge to further reduce hallucina-
tions [44} (10l [13]]. Retrieval-augmented generation (RAG) involves querying vector or text databases
for relevant documents and integrating this retrieved information into the generation process, thereby
producing more accurate responses [[12,3]. In our work, we search for relevant modeling thoughts
for each subproblem and dynamically combine them to generate global modeling thoughts.

3 Motivated Observations

In this section, we present key observations that motivate our decomposition method. (1) The standard
fixed-step decomposition approach often fails in complex problems, as accurately identifying variables
remains a significant challenge. (2) Most complex OR problems contain subproblems of standard
OR problems. (3) The performance of LLMs can benefit from the subproblem decomposition. The
experiments in this part are conducted in the modeling dataset IndustryOR [[17]], which classifies
problems into three difficulty levels: Easy, Medium, and Hard.
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Figure 2: The observations. Left: We find most errors come from the incorrect variable definition in
the Medium and Hard problems. Middle: We find the most complex problems have subproblems of
standard OR problems, and LLMs are effective in identifying the subproblems. Right: We observe
an improvement in modeling accuracy using subproblem decomposition.

Motivation 1: The Drawbacks of Existing Methods We evaluate CoT [36] on this dataset,
breaking the problems down into steps involving variables, constraints, and objective generation. We
find that a significant portion of errors arise from incorrect variables, particularly in Medium and
Hard problems (over 70%, please see the left subfigure of Figure [2). This indicates that existing
decomposition methods are not well-suited for complex problems.

Motivation 2: Prevalent Subproblem Decomposition Patterns We first collect the optimization
models in the textbook [1] as a ground-truth model for the 50 standard problems. For a problem
in IndustryOR to formulate, we use LLM to identify whether the problem contains subproblems



in the 50 standard OR problems. If a subproblem is identified, we augment the LLM’s prompt for
optimization modeling by integrating the relevant ground-truth model of the subproblem as hints. As
shown in the middle subfigure of Figure[2] the LLM identifies subproblems for 69% of the problems.
Upon manual verification, we find that over 63% of problems are associated with correct subproblems.
These results underscore the prevalence of subproblem decomposition and demonstrate that LLMs
are effective in identifying relevant subproblems with high identification accuracy.

Motivation 3: LLMs Perform Better with Vanilla Subproblem Decomposition We leverage
the set of 50 standard OR problems as subproblem candidates to guide the modeling process. For
each problem in IndustryOR, we decompose the process into two steps. First, we use LLM to select
a suitable subproblem from the candidates. If a relevant subproblem is identified, we provide the
ground-truth models for that subproblem before proceeding to model the original problem based on
it. We evaluated the performance of LLMs using this two-step approach and present the results in the
right subfigure of Figure[2] Our findings indicate that modeling based on a subproblem reduces task
complexity and has the potential to enhance performance.

4 OptiTree: Hierarchical Thought Generation with Tree Search

The overall framework of OptiTree is illustrated in Figure 3] The core is to organize modeling
knowledge through a hierarchical tree structure that captures both prevalent decomposition patterns
and thoughts for various problems (Section [4.2)). We utilize tree search for efficient retrieval of
subproblems along with their hierarchical modeling thoughts, adaptively integrating these thoughts to
construct comprehensive global modeling thoughts (Section[4.3). To ensure scalability and reliability,
we construct the modeling tree using a real-world modeling dataset, dynamically managing both
subproblems and modeling thoughts. This enhances the tree’s capacity to distill more decomposition
patterns and thoughts, allowing it to generalize effectively to unseen complex problems (Section .4).

4.1 Subproblem Definition and Identification
Given an OR problem P, we specialize the corresponding optimization model as follows,
min f(x) st gi(x;6;) <0, fori=1,--- N, €))
x
where f denotes the objective function, « 1s the decision variables, g; represents the the i*" constraint
function, and 3; is the parameters in the i*" constraint. Suppose that we partition the variables into
two groups @ = (&1, &), the objective and constraints has the decomposition f(x) = fi(&1) +

fo(®2) + f3(@1, 2), and g; (i, B;) = gi1 (&1 Bi1) + gi2(2; B 2) + 9i,3(#1, T23 By 3). We define
another OR problem P as a subproblem of P, if the optimization model takes the following form,

minfl(:fvl) S.t. 9%,1@1%5@,1) < 0, for some i € {1,~ .- ,N}, 2)
&1

where 3;, ; is the parameter, and the optimization model (2) can be viewed as part of the original
optimization model (I)). However, we need to identify a subproblem through the natural language
descriptions, as the ground-truth optimization models are unavailable in practice. Directly comparing
two problem descriptions can lead to hallucination issues for LLMs, so we adopt a clear and
comprehensible format. We first use a LLM to distill and summarize the problem description into a
set of atomic high-level statements Cp = {c1,ca,- -+ , ¢, |, called statement thoughts, where each
thought ¢; summarize a feature or requirement related to optimization modeling. We then use the
LLM to identify a subproblem P of P, if statement thoughts of P are semantically contained within
those of P (denoted by Cz Cs Cp). With slight abuse of notation, we write P C Cs P to indicate that

Pisa subproblem of P. Due to the limited space, please see Appendlxn and. 2| for examples of
statement thoughts and detailed meta-prompts for subproblem identification.

Now we formulate the modeling process using subproblem decomposition as follows. We decompose
the OR problem as a series of subproblems [P(1) P(2) ... P(M)] where M is the subproblem
number and PV Cs PR Cg-- - CgPM ). We then build the optimization model incrementally.
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Figure 3: The overview of OptiTree. (1) OptiTree constructs a modeling tree for subproblem
decomposition and stores the modeling thoughts for subproblems in the tree nodes. (2) OptiTree
leverages tree search to identify the subproblems and construct modeling thoughts by integrating the
subproblems’ thoughts. (3) We update the modeling tree to ensure its scalability and reliability.

4.2 Modeling Tree for Problem Decomposition

We propose the concept of modeling tree for problem decomposition. We also utilize the modeling
thoughts, distilled from the real-world modeling process for each subproblem, to effectively guide
LLMs in accurately modeling these subproblems.

Modeling Thoughts for OR Problems Most complex OR problems involve conventional modeling
techniques, such as variable definition and constraint formulation, which can be implicit and pose
significant challenges for reasoning. Thus, we distill these modeling techniques into high-level
modeling thoughts, which serve as concise, step-by-step guidelines for the modeling process. When
faced with a similar optimization problem, we can utilize these informative thoughts to enhance
accuracy. Specifically, we design a comprehensible schema to efficiently retrieve and apply the
modeling thoughts (Please see the left of Figure[3|for the schema). Each schema contains three critical
elements: (1) the name of problem category, (2) statement thoughts Cp for problem identification,
and (3) modeling thoughts 7 (P) to guide the modeling process. These modeling thoughts include
concrete reasoning steps for variable definition, constraint formulation, objective formulation, and
Gurobi code templates. Unlike static examples, these thoughts are flexible and can generalize to
various complex problems with similar mathematical structures.

Modeling Tree of OR Problems While existing prompt-based and fine-tuned methods consider
each OR problem individually, our method fully recognizes the relationships between different OR
problems and organizes them into a taxonomy tree known as the modeling tree. In this structure,
each node represents an OR problem along with its corresponding schema of modeling thoughts. The
root node represents an abstract class of combinatorial optimization problems. Each parent node
is a subproblem of its child nodes; that is, if the node P; is a child of P}, then P; Cs P;. Child
nodes inherit fundamental constraints and variables from their parent nodes while adding specialized
components. For example, the VRP branch might split into dynamic VRP (DVRP) and VRP with
time windows. The top tier of the tree consists of simpler, foundational OR problems that are easier to
model, while deeper levels feature increasingly complex variations. This structure organizes similar
problems into the same branch and facilitates an efficient search for the subproblems. Please see the
left of Figure 3| for the structure of the modeling tree. We formally define this structure as follows.

Definition 4.1. The modeling tree is called subproblem order-preserving if for any problem P; that
is the ancestor of problem P;, it holds that P; Cs P;.



4.3 Modeling Thoughts Searching and Construction

Tree Search for the Subproblems and Modeling Thoughts Given an OR problem P to model,
we search the modeling tree for suitable subproblems for decomposition. We employ an LLM to
extract the statement thoughts Cp and compare C» with the statement thoughts at the tree node to
identify relevant subproblems. Starting from the root node, we search for the first subproblem in the

first tree level, i.e., ’Pl(o), 772(0), e ,P}O). We select the subproblem that best matches P based on the
highest similarity,

P = argmax I(’Pt(o) CsP)- SimLLM(CPm),Cp), 3)
PO (t=1,--,T) !

where I is the indication function with I(a) = 1 if the condition a is true and I(a) = —oo otherwise.
Simypy v represents the similarity score provided by the LLM, measuring the similarity between two
problems. We select the child problem (1) and continue the search process on the corresponding
tree node. If none of the children qualify as subproblems of P (with similarity score 0), we terminate
the search. If the search halts at the root node, we do not provide modeling thoughts. Please see
Appendix |J.2| for meta-prompts for the tree search.

Global Modeling Thought Construction We obtain a series of identified subproblems
PM PR ... PM) of increasing complexity. Notably, the modeling thoughts of the problem
P M) encompass those of the preceding subproblems. Thus, we call PM) the maximum subproblem.
We retrieve the corresponding modeling thoughts of P(M) ie., T(P(M )). Subsequently, we combine
these modeling thoughts with the problem description of P to synthesize the global modeling thoughts
T (P), thereby enhancing the modeling process (for meta-prompts, please see Appendix |J.3).

4.4 Construction of the Modeling Tree

Tree Construction The tree construction and updating process is fully automated and does not
require human curation. To ensure the problem coverage and reliability, we construct the modeling
tree from scratch using a dataset that includes problem descriptions and their corresponding ground-
truth optimization models. This allows us to distill decomposition patterns and modeling thoughts
effectively. In practice, we choose parts of the OR-Instruct 3K dataset, which is the training dataset
of ORLM [[17] covering a wide range of OR problems. We sequentially add tree nodes to enhance
the capacity of the modeling tree. For each problem in the dataset, we evaluate whether it should be
integrated into the tree. First, we conduct a tree search for subproblems and identify the maximum
subproblem P(*) | which has the greatest depth. We then construct global modeling thoughts using
T (PM)) to guide the modeling process and solve the model for the final answer. If this final answer
matches the ground-truth answer, no update to the tree is necessary, indicating that the modeling
tree can successfully handle this type of problem. Conversely, if the answers differ, it suggests the
emergence of new decomposition patterns or modeling thoughts, necessitating an update to the tree
using the failed problem P.

Node Expansion We aim to expand the tree node with the problem P by following carefully
designed rules to maintain the subproblem order-preserving structure. Due to the search process,
P should be a child node of P™) as P(M) is the maximum subproblem. We first distill the
modeling schema (problem type, Cp, T (P)) for the failed problem. Next, we verify the subproblem

relationships between P and the children of P(M), denoted as, PfM), éM), < Pr,, -

e If P Cs P,gM), we insert P as a child of P(M) and as a parent of P,iM).
¢ Otherwise, we insert P as a child of PM) and as a sibling of P,iM).

Proposition 4.2. The modeling tree remains subproblem order-preserving during the update process.

Please refer to Appendix [Ffor the proof. After adding a new node, we conduct the decomposition and
modeling process again to verify the correctness of the new nodes, continuing this until the problem
‘P can be correctly modeled.



Table 1: Comparison of modeling accuracy between our method and baselines across the benchmarks.
We mark the best results in bold the underline the second-best results.
MAMO  MAMO

Model Method NL4Opt EasyLP  ComplexLP ComplexOR  IndustryOR  OptiBench OptMATH
Fine-tuned Method
ORLM 85.7 823 374 63.2 38.0 51.1 2.6
Evo-Step 84.5 853 61.6 - 36.4 - -
OptMATH 95.9 89.9 54.1 - 31.0 66.1 347
LLMOPT 93.0 97.0 68.0 72.7 46.0 66.4 40.0
Prompt-based Methods
Reasoning DeepSeek-R1 86.1 79.5 57.3 68.4 38.0 70.2 33.1
LLMs OpenAl-ol 87.1 87.6 54.5 73.6 40.0 71.5 34.9
Standard 70.3 84.3 412 57.8 27.0 423 17.5
CoT 71.6 84.8 423 57.8 29.0 42.0 20.5
GPT-40 CoE 76.4 85.7 46.4 68.4 34.0 432 18.6
OptiMUS 82.0 85.1 473 79.0 34.0 45.8 20.2
MCTS 90.3 87.4 56.8 68.4 42.0 64.0 373
OptiTree 96.2 95.6 81.0 84.2 48.0 71.9 45.8
Standard 70.5 84.3 39.8 52.6 29.0 524 16.2
CoT 74.0 829 40.7 52.6 35.0 53.1 21.1
DeepSeek-V3  CoE 79.2 859 43.1 63.2 33.0 55.2 24.1
OptiMUS 80.6 87.1 452 79.0 36.0 58.8 325
MCTS 89.6 88.0 51.6 79.0 46.0 67.9 38.6
OptiTree 98.3 96.9 81.5 84.2 54.0 74.7 524

S Experiments

5.1 Experiment Setups

Dataset We consider seven modeling datasets to evaluate our method and the baselines. (1)
NLA4Opt [32] is from NL4Opt competition in NeurIPS 2022, composing 289 elementary-level linear
programming problems. (2) MAMO EasyLP [20] contains 652 easy linear programming problems.
(3) MAMO ComplexLP [20] consists of 211 more complex optimization problems. (4) ComplexOR
[39] has 19 challenging problems derived from academic papers, textbooks, and real-world industry
scenarios. (5) IndustryOR [[17] contains 100 real-world problems from eight industries with different
difficulty levels: Easy, Medium and Hard. Finally, (6) OptiBench [41] contains 605 problems, and (7)
OptMATH [25]] dataset has 166 challenging problems. The work OptMATH [25]] proposed a data
generation process for optimization modeling; OptMATH can be referred to both the testing dataset
and the model trained on the training set.

Baselines OptiTree is a prompt-based model for LLM-based optimization modeling. We compare
our method mainly with seven prompt-based baselines. The five prompt-based methods are as
follows. (1) Standard is the direct output of pre-trained LLMs. (2) Chain-of-Thoughts (CoT) breaks
the problem into reasoning steps. (3) Chain-of-Expert (CoE) [39] is a multi-agent workflow for
modeling, with agents focusing on interpreting the problems, formulating the problems, writing and
debugging the solver codes. (4) OptiMUS [[1] is an improved multi-agent workflow with structured
problem input. (5) MCTS [2] employs Monte Carlo tree search to search for variables, constraints and
objective sequentially in different search depths. We also compare our method with (6) DeepSeek-
R1 [8]] and (7) OpenAl-ol [30]. For completeness, we also report the results of fine-tuned OR
LLMs. The fine-tuned models, (8) ORLM [17] (using LLaMA-3-8B as backbone), (9) Evo-Step
[37] (using LLaMA-3-8B as backbone), (10) OptMATH [25] (using Qwen2.5-32B as backbone) and
(11) LLMOPT [21] (using Qwen1.5-14B as backbone). Notice that the trained model of OptMATH
and Evo-Step have not been released, the results of these two baselines follows those in the original
papers [37] and [25]].

Metric and Implementation Following existing works [39} 11}, [17, 2| 21]], we use solving accuracy
to evaluate the performance, i.e., whether the optimal objective of the generated optimization models
equals to ground-truth values. To demonstrate the generalization of our method, we conduct experi-
ments on GPT-40 [29] and DeepSeek-V3 [9]]. We construct the modeling tree using 400 randomly
selected problems in the OR-Instruct dataset [17], which is part of the training dataset for ORLM and
contains 3,000 problems. We run across problems in the dataset to update the modeling tree, where
the statistical information of the tree can be found in Appendix
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Figure 4: Left: OptiTree can identify subproblems for a wide range of problems, including the
challenging datasets. Right: We manually check the accuracy of the subproblem decomposition.

5.2 Main Results

We evaluate OptiTree against the competitive baselines on five modeling datasets using the DeepSeek-
V3 and GPT-40 models. The results, presented in Table[I} highlight three key findings. (1) High
Accuracy. Our method significantly outperforms the baselines, achieving approximately a 10%
improvement on the challenging datasets MAMO ComplexLP, ComplexOR, and IndustryOR. (2)
Strong Generalization. Using only 400 problems, the constructed OptiTree has shown strong
generalization ability across both easy and challenging benchmarks. (3) Adaptation to Different
LLMs. Built on top of different LLMs, OptiTree consistently adapts well and exhibits impressive
performance. Furthermore, it outperforms state-of-the-art reasoning LLMs, including DeepSeek-R1
and OpenAl-ol. OptiTree also outperforms the fine-tuned modeling LLMs. In Appendix [A.T] we
also report the proportion of codes generated by the methods that can be executed successfully.

5.3 Analysis on the Subproblem Decomposition

Coverage: Can we find a subproblem in the search process? We present the success rate of
identifying subproblems, excluding the root node, in the left subfigure of Figure @ The results
demonstrate that OptiTree can successfully identify subproblems for an average of 88% of the
problems. This observation suggests that, despite the diversity and complexity of OR problems,
there are prevalent decomposition patterns and modeling techniques that generalize effectively across
various problems. The modeling tree successfully captures these patterns.

Reliability: Does the obtained subproblem correctly match the original problem? We randomly
sample twenty problems from each dataset (nineteen from ComplexOR) where LLMs can identify at
least one subproblem. We manually verify whether the selected subproblems are suitable and relevant.
We compare OptiTree with its variant, OptiTree w/o Statement Thoughts, which relies solely on
problem descriptions for subproblem identification. The results in the right subfigure of Figure 4]
demonstrate that OptiTree achieves a high accuracy in subproblem identification, while OptiTree w/o
Statement Thoughts suffers from a severe drop in accuracy.

Efficiency: What about the time cost of the searching process? We analyze the average time
cost for each problem, comparing OptiTree with other prompt-based baselines in Table[2} We (1) use
tree search to find an appropriate problem and (2) perform optimization modeling, combining the
modeling thoughts from the problem. The two parts of time (Tree search and modeling) refer to these
two steps. We also provide the average time to solve all the problems across the benchmarks. For
the baselines, the time is just the average inference time, and for OptiTree, this is the average of the
one-time cost of the tree construction and inference time. Specifically, the one-time cost across the
benchmarks is under three hours. The execution time for the solver code is under a second, which
can be considered negligible. OptiTree exhibits the highest efficiency compared to baselines. While
the search and modeling time increases for more complex problems (such as MAMO ComplexLP,
ComplexOR, and IndustryOR), we find that the majority of the time is spent on modeling, indicating
that the search process itself is efficient.

To understand why OptiTree is more efficient, we analyze on the following two factors. First,
OptiTree explores a much smaller search space. OptiTree searches predefined candidate subproblems,
requiring only the identification of the most suitable subproblem within a finite set, instead of the



Table 2: Comparison of the total time (seconds) of prompt-based methods.

Method NL40Opt  MAMO EasyLP  MAMO ComplexLP ~ ComplexOR  IndustryOR
CoE 37.2 42.6 76.7 80.0 81.8
OptiMUS 26.4 22.5 53.2 68.3 57.8
CTS 103.2 110.8 1114 190.1 124.6
OptiTree (Tree Search) 8.9 49 4.2 11.2 8.4
OptiTree (Modeling) 5.0 44 9.1 19.8 11.5
OptiTree (Inference) 13.9 9.3 13.3 31.0 19.9

Table 3: Comparison of different search depths.

Model Method NL4Opt MAMO EasyLP MAMO ComplexLP  ComplexOR  IndustryOR
OptiTree (Depth=1) 93.8 93.3 75.4 68.4 40.0
GPT-40 OptiTree (Depth=3) 96.2 95.6 80.1 79.0 44.0
OptiTree 96.2 95.6 81.0 84.2 48.0
OptiTree (Depth=1) 97.2 95.3 754 68.4 48.0
DeepSeek-V3  OptiTree (Depth=3) 97.9 95.7 79.6 79.0 50.0
OptiTree 98.3 96.9 81.5 84.2 54.0

variable space or constraint space that can grow exponentially large for more complex problems.
Second, OptiTree has fewer iterations in the workflow. While the multi-agent-based baselines often
use a manager to automatically decide the agent calls, OptiTree avoids the useless agent calls with a
more streamlined workflow.

5.4 Ablation Studies

Impact of the Tree Search We first investigate the impact of the tree search on modeling perfor-
mance. The modeling tree organizes subproblems within its nodes. We compare this approach with a
method that does not utilize a tree structure or tree search for problem decomposition, referred to as
OptiTree w/o Tree Search. In this variant, LLMs directly select suitable subproblems from a pool
at each step, rather than utilizing a structured modeling tree. The subproblem pool is also collected
from the same dataset as the modeling tree. As shown in the left subfigure of Figure[5} OptiTree w/o
Tree Search exhibits a decline in modeling accuracy. This degradation occurs because the modeling
tree effectively reduces the search space and mitigates hallucinations for LLMs at each step.

Impact of the Modeling Thoughts We conduct ablation experiments on the impact of the modeling
thoughts. We implement a variant of OptiTree, called OptiTree w/o Modeling Thoughts, which
models the corresponding subproblems step by step without utilizing modeling thoughts. The results
are presented in the right subfigure of Figure[5] We observe a significant performance drop in this
method, particularly on the challenging datasets. This highlights the crucial role of modeling thoughts
in guiding the modeling of subproblems.

Impact of the Search Depth To better understand the tree search process, we also conduct
experiments on different depth limitations of the tree search process. The depth represents the
number of decomposed subproblems in the modeling process, with greater depth allowing for more
decomposition subproblems. OptiTree operates without depth restrictions, while we implement two
variants—OptiTree (depth=1) and OptiTree (depth=3)-which limit the tree search depths to 1 or 3,
respectively. The results in Table [3] demonstrate that a deeper search depth enables the identification
of more suitable subproblems for decomposition, resulting in improved modeling performance.
OptiTree (depth=3) still achieves promising results, underscoring the effectiveness of the tree search.

Impact of the Statement Thoughts The statement thoughts distilled from OR problems provide
a clear and comprehensible format for subproblem identification. To investigate the effects, we
implement a variant that disables statement thoughts for subproblem identification, instead relying on
the problem descriptions, referred to as OptiTree w/o Statement Thoughts. As shown in Table 4] we
observe a significant performance decline without statement thoughts, accompanied by an accuracy
drop in subproblem matching in the right subfigure of Figure [d] This decline occurs because the
statement thoughts summarize the modeling-related information to reduce hallucinations for LLMs.

6 Conclusion

This paper introduces a novel LLM-based optimization modeling method called OptiTree, which
decomposes complex problems into a series of simpler subproblems to enhance modeling accuracy.
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Figure 5: Ablation studies on the tree search (left) and modeling thoughts (right). The results
demonstrate the critical roles of these two components.

Table 4: Ablation studies on the statement thoughts.

Model Method NL40Opt MAMO EasyLP MAMO ComplexLP ComplexOR  IndustryOR
GPT-40 OptiTree w/o Statament Thoughts 91.0 91.5 69.2 72.7 42.0
OptiTree 96.2 95.6 81.0 84.2 48.0
OptiTree w/o Statament Thoughts 87.1 92.6 75.3 68.4 46.0
DeepSeek-V3 o tiTree 983 96.9 815 84.2 54.0

OptiTree dynamically updates a modeling tree to store decomposition patterns and modeling thoughts
for these subproblems, employing a tree search to identify suitable subproblems at each step. Experi-
mental results demonstrate the superiority of OptiTree, consistently outperforming baseline methods
across several challenging modeling datasets.
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NeurlIPS Paper Checklist

1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer:[Yes]
Justification: Please see Section[I]in the paper.
Guidelines:

e The answer NA means that the abstract and introduction do not include the claims
made in the paper.

* The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

* The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

* It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: Please see Appendix [G]in the paper.
Guidelines:

* The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

* The authors are encouraged to create a separate "Limitations" section in their paper.

The paper should point out any strong assumptions and how robust the results are to
violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

* The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

* The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

* The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

* While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [Yes]
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Justification: Please see Appendix [Fin the paper.

Guidelines:

The answer NA means that the paper does not include theoretical results.

All the theorems, formulas, and proofs in the paper should be numbered and cross-
referenced.

All assumptions should be clearly stated or referenced in the statement of any theorems.
The proofs can either appear in the main paper or the supplemental material, but if
they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: Please see Section[5.1]of the paper.

Guidelines:

The answer NA means that the paper does not include experiments.
If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.
If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.
Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

While NeurIPS does not require releasing code, the conference does require all submis-

sions to provide some reasonable avenue for reproducibility, which may depend on the

nature of the contribution. For example

(a) If the contribution is primarily a new algorithm, the paper should make it clear how
to reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code

Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
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Answer:
Justification: We wil release the code if the paper is accepted.
Guidelines:

* The answer NA means that paper does not include experiments requiring code.
* Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

* While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

¢ The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

* The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

 The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

* At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

* Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLSs to data and code is permitted.
6. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]
Justification: Please see Section[5.1]in the paper.
Guidelines:

* The answer NA means that the paper does not include experiments.

* The experimental setting should be presented in the core of the paper to a level of detail
that is necessary to appreciate the results and make sense of them.

¢ The full details can be provided either with the code, in appendix, or as supplemental
material.
7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]
Justification: Please see Section[5]in the paper.
Guidelines:

» The answer NA means that the paper does not include experiments.

* The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

* The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

* The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

* The assumptions made should be given (e.g., Normally distributed errors).

* It should be clear whether the error bar is the standard deviation or the standard error
of the mean.
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8.

10.

It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CIL, if the hypothesis
of Normality of errors is not verified.

» For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

o If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.
Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]
Justification: Please see Section[5]in the paper.
Guidelines:

» The answer NA means that the paper does not include experiments.

 The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

* The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

* The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

. Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines]?

Answer: [Yes]

Justification: The research conducted in the paper conforms, in every respect, with the
NeurIPS Code of Ethics.

Guidelines:

e The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

* If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

* The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).
Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]
Justification: Please see Appendix[I|in the paper.
Guidelines:

* The answer NA means that there is no societal impact of the work performed.

* If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

» Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.
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11.

12.

» The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

* The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

* If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]
Justification: The paper poses no such risks.
Guidelines:

» The answer NA means that the paper poses no such risks.

* Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

 Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

* We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]
Justification: We have cited the datasets in Section 3.1}
Guidelines:

* The answer NA means that the paper does not use existing assets.

* The authors should cite the original paper that produced the code package or dataset.

 The authors should state which version of the asset is used and, if possible, include a
URL.

* The name of the license (e.g., CC-BY 4.0) should be included for each asset.

 For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

 If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

* For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.
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* If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

New assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [NA]
Justification: The paper does not release new assets.
Guidelines:

* The answer NA means that the paper does not release new assets.

» Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

* The paper should discuss whether and how consent was obtained from people whose
asset is used.

* At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.
Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]
Justification: We do not include experiments with human subjects.
Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

* According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

Institutional review board (IRB) approvals or equivalent for research with human
subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

* We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

* For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

Declaration of LLM usage
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Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.

Answer: [Yes]
Justification: We have include the prompt of LLMs in Appendix [J]
Guidelines:

* The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

* Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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A Additional Experiments

A.1 The Code Pass Rate for Each Dataset

We present the code pass rates of various methods across the benchmarks. Following the definition
in [39], the code pass rate refers to the proportion of solver code that can be executed without
encountering any errors. The results in Table [5|demonstrate that our method achieves the highest code
pass rate across all datasets, demonstrating the high quality of the codes generated by our approach.

Table 5: Comparison of code pass rates between our method and baselines across the benchmarks.

MAMO MAMO
EasyLP  ComplexLP

Model Method NL4Opt ComplexOR  IndustryOR

Standard 95.7 98.9 97.0 84.2 84.0

CoT 99.6 99.7 97.5 84.2 91.0

GPT-40 CoE 98.6 99.6 99.8 89.4 96.0
OptiMUS 100.0 99.8 100.0 94.7 98.0

OptiTree 100.0 100.0 100.0 100.0 98.0

Standard 97.8 93.1 94.5 100.0 87.0

CoT 95.2 98.0 97.5 84.2 86.0

DeepSeek-V3  CoE 97.9 100.0 98.8 100.0 98.0
OptiMUS 99.6 98.4 99.5 100.0 94.0

OptiTree 100.0 100.0 100.0 100.0 99.0

A.2 The Greatest Search Depth

We report the greatest search depth across different datasets. For the harder datasets, the search depth
tends to increase, indicating that more complex problems feature more sophisticated subproblem
structures.

Table 6: The greatest search depth
NL40Opt MAMO EasyLP MAMO ComplexLP ComplexOR IndustryOR
Greatest Search Depth 4 4 10 9 10

A.3 More Evaluation Results

The objective metric is standard in the LLM-based optimization modeling literature [39,[1], and in
subsequent works ORLM, LLMOPT, OptMATH, OptiBench. However, defining a robust “partial
credit” metric is a significant challenge. Most existing benchmarks only contain labeled optimal value
and do not contain annotated ground-truth optimization model, making the partial credit metric
difficult to design. Even with ground-truth models, simple text-based or structural comparisons can be
unreliable. A model may have minor syntactic differences from the ground truth but be semantically
equivalent. Conversely, a model might be nearly identical yet contain a critical error, such as a
misplaced inequality sign.

For further evaluation, we find that the training set in OptMATH has annotated models. We use
100 problems for evaluation. As our method and the baselines were not trained on this dataset,
the comparison is safe and fair. We present the percentages of LLM-generated models that align
with the ground-truth models based on statistical information, including the number of variables,
binary variables, integer variables, constraints and objective values. Note that all the statistical
information is just a reference, as the mismatch of variables and constraints does not imply the
model is incorrect. Notably, OptiTree exhibits the highest matching ratio with the ground-truth
model, underscoring its reliability.
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Table 7: Evaluation of partial credit (in %)
OptMATH Var Bin Int Cons Obj

DeepSeek-R1  79.0 85.0 67.0 46.0 66.0
OpenAl-ol 83.0 87.0 93.0 50.0 68.0

ORLM 43.0 520 440 350 370
LLMOPT 56.0 65.0 57.0 37.0 41.0
CoE 67.0 78.0 850 46.0 58.0
OptiMUS 84.0 79.0 76.0 430 61.0
MCTS 75.0 80.0 81.0 46.0 63.0
Ours 90.0 92.0 83.0 68.0 71.0

A.4 Built OptiTree on More Models

We conduct experiments to build OptiTree on (1) stronger models, including GPT-ol and DeepSeek-
R1; (2) weaker models, including Qwen-2.5 7B and Llama3-8B. The results in Table[§]demonstrate
that OptiTree can significantly improve the performance of the LLMs.

Table 8: Improvement on more models.
NL4Opt MAMO EasyLP MAMO ComplexLP ComplexOR IndustryOR

DeepSeek-R1 86.1 79.5 57.3 68.4 38.0
Ours (DeepSeek-R1) 97.9 96.9 82.5 84.2 57.0
OpenAl-ol 87.1 87.6 54.5 73.6 40.0
Ours (OpenAl-ol) 96.5 95.1 83.9 84.2 53.0
Qwen2.5 14B 79.41 79.6 45.0 57.9 31.0
Ours (Qwen2.5 14B) 88.2 89.6 78.7 73.6 37.0
Llama3.1-8B 40.5 71.2 39.8 63.1 24.0
Ours (Llama3.1-8B) 55.0 75.9 64.4 73.7 28.0

A.5 Constructing Modeling Tree with Different Datasets

We investigate the robustness of the datasets for tree construction. (1) For the first variant, we use 100
problems from MAMO EasyLP and 100 from ComplexLP, which we refer to as OptiTree (MAMO).
(2) For the second variant, we use 100 problems from the OR-Instruct 3K dataset, representing only
25% of the problems used in our main experiments. We call this variant OptiTree (100 OR-Instruct).
We evaluate performance on three challenging benchmarks: MAMO ComplexLP, ComplexOR, and
IndustryOR. Unlike the OR-Instruct 3K dataset, the MAMO datasets do not include a ground-truth
modeling process for tree construction; we rely solely on the final answers for this purpose. The
results presented in Table[9]reveal two key findings. (1) Despite utilizing easier problems without a
ground-truth modeling process, OptiTree (MAMO) achieves high performance, with only a slight
drop compared to the original OptiTree. (2) OptiTree demonstrates data efficiency, as OptiTree (100
OR-Instruct) exhibits performance comparable to that of the full OptiTree. These findings suggest
that common decomposition patterns and modeling techniques are widely applicable across OR
problems, and the modeling tree effectively captures this general knowledge across different datasets.

Table 9: Constructing a modeling tree using different datasets.

Model Method MAMO ComplexLLP  ComplexOR  IndustryOR
GPT-40 OptiTree (MAMO) 84.4 79.0 44.0
OptiTree (100 OR-Instruct) 81.0 84.2 46.0
OptiTree 81.0 84.2 48.0
OptiTree (MAMO) 83.9 79.0 46.0
DeepSeek-V3  OptiTree (100 OR-Instruct) 81.5 84.2 54.0
OptiTree 81.5 84.2 54.0
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B Subproblem Identification Analysis

We analyze the structure of the modeling tree, where the statistical information of the tree is presented

in Table[T0] We also examine the problems represented within the modeling tree. We also analyze the

subproblem matching distribution in different datasets. We find significantly different distributions

of the sbuproblems on different datasets. The consistent superior performance of OptiTree across
the datasets demonstrates the strong generalization ability across different problems from various

scenarios and difficulty levels.

Table 10: Statistics of the modeling tree.

GPT-40

DeepSeek-V3

2.74
10

242
10

Average Degree
Depth
Node Number

285

320
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Figure 6: Subproblem distribution in NL4Opt.
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C Common Subproblem Decomposition Patterns

In combinatorial optimization, there are commonly subproblem decomposition patterns. Here, we
provide observations and examples to illustrate these patterns. First, we can expand a subproblem
into more complex problems using the following patterns.

* Constraint Addition introduces new constraints to model refined requirements.
* Variable Expansion incorporates new decision variables.

* Dimensional Replication replicates the problem structure across multiple items.

We provide the following examples to demonstrate the three decomposition patterns.

C.1 Analysis on CYPR and CVRPTW

The Capacitated Vehicle Routing Problem (CVRP) aims to determine optimal routes for a fleet of
vehicles to serve a set of customers from a central depot while minimizing total travel cost or distance.
The basic CVRP formulation includes constraints ensuring each customer is visited exactly once,
vehicles return to the depot, and the fleet size is respected. In contrast, the Capacitated Vehicle
Routing Problem with Time Windows (CVRPTW) extends the CVRP by adding temporal constraints,
requiring each customer to be served within a predefined time window. This introduces additional
complexity, as routes must now satisfy both spatial routing constraints and temporal synchronization.

The optimization model for CVRP is as follows. V' is the set of nodes (depot 0 and customers), c;; is
the travel cost from 4 to j. ;; is the binary decision variable for route inclusion. K is the fleet size.

Minimize Z Z CijTij
i€V jev

Subject to Z z;; =1, VieV\{0} (Customer visited once)
Jjev
inj =1, VjeV\{0} (Flow conservation)
eV
Z zo; < K (Fleet size)
jev
ZZQEU <IS]—1, VSCV\{0},S#0 (Subtourelimination)
€S jeSs
Tij € {0, 1}, Vi, jeVv

The optimization model for CVRPTW is as follows. ¢; is the service start time at node i. [a;, b;] is

the time window for node :. s; is the service duration at . d;; is the travel time from i to j. M is the
big-M number.

Minimize Z Z CijTij
i€V jeV
Subject to  All VRP constraints
a; <t; <b;, VieV\{0} (Time window)
ti>ti+s+di; —M(1—x;), Vi,jeV\{0} (Time consistency)
t; >0, VieV

Notice that CVRP is a subproblem of CVRPTW. We identify the following decomposition patterns.

e Variable Expansion. The introduction of new continuous variables ¢; tracks service times, adding
a temporal dimension to the original CVRP.

¢ Constraint Addition: CVRPTW introduces time windows a; < t; < b; and synchronization
constraints (time consistency), which refine feasible solutions by eliminating temporally infeasible
routes.
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C.2 Analysis on SCMCFP and MCNFP

The Single-Commodity Minimum-Cost Flow Problem (SCMCFP) optimizes the flow of a homo-
geneous good (e.g., water, electricity) through a network to meet supply/demand at nodes while
minimizing costs, subject to arc capacity constraints. Its linear programming formulation tracks flow
conservation and capacity limits for a single product type. In contrast, the Multi-Commodity Network
Flow Optimization Problem (MCNFP) generalizes this by handling multiple distinct commodities
(e.g., different goods in logistics, data streams in networks) sharing the same infrastructure. Each
commodity has unique sources, sinks, and demands, coupled through shared arc capacity constraints.

The optimization model for SCMCFP is as follows. Suppose that G = (V, E) is the network with
nodes V" and directed arcs E. b; is the net supply (> 0) or demand (< 0) at node 4. ¢;; is the cost per
unit flow on arc (4, §). w;; is the capacity of arc (¢, j). x;; is the flow decision variable on arc (3, j).

Minimize g CijTij

(i,5)€E
Subject to Z Tij — Z x5 =b;, VieV (Flow conservation)
J:(i,))€EE J:(G)EE

0 <@ <wuj, V(7)€ E (Capacity constraints)

The optimization model for MCNFP is as follows. Suppose that K is the set of commodities.
Sk, tx 1s the source/sink nodes for commodity k. dj is the demand for commodity k. cfj is the

commodity-specific arc cost. mf] is the flow of commodity k on arc (3, j).

e k k
Minimize E E CijTi;

kEK (i,j)EE
dk ifi = Sk
Subjectto Y af— > ahi=<S-dy ifi=t, , VieVikeK
J:(i,4)EE J:(GA)EE 0 otherwise
Z arfj <, V(i,j) € E (Shared capacity)
keK

xy; >0, V(i,j)€EkeK
Notice that SCMCFP is a subproblem of MCNFP, where we identify the following pattern.

* Dimensional Replication: Adds commodity dimension k € K to flow variables.
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D Algorithm of OptiTree

Algorithm 1 Tree Search for Subproblem Decomposition

Require: Target problem P, modeling tree T 3
Ensure: Hierarchical modeling thoughts 7 (), and the maximal subproblem P

1: function TREESEARCH(P, T)

2: Initialize current node N <— The root of the modeling tree T

3 Extract statement thoughts Cp

4: # Identified subproblems

5: while N has children do

6: Get the children of A/

7 # Prompt of Subproblem Identification in Appendix

8 Identify the subproblem of P among the children with similarity scores

9: if P has a subproblem among the children then
10: N < Subproblem with the max similarity score
11: The maximal subproblem P + A
12: else
13: N + None
14: end if

15: end while _
16: Synthesize T (P) from 7 (P)
17. return 7 (P), P

18: end function

Algorithm 2 Modeling Tree Update

Require: New problem P, modeling tree T
Ensure: Updated modeling tree

1: function UPDATETREE(P, T)

2 T(P), P + TreeSearch(P, T)

3 # Prompts Modeling with Modeling Thoughts in[J.3]

4: Model the problem P using the modeling thoughts and solve the model for optimal value y
5: if y does not equal to the ground-truth objective value then

6: # Prompts of Modeling Thoughts Distillation in Appendix [J.4]

7 Distill schema (problem type,Cp,T (P)) from P

8: Find the children of the maximal subproblem P

9: for child Py in the children do

10: # Prompt of Add New Tree Nodes in Appendix
11: if P Cs Py then B ~

12: Insert P as parent of Py, and children of P

13: else - .

14: Insert P as sibling of P}, and children of P

15: end if

16: end for

17: end if

18: return T

19: end function
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E More Related Works

E.1 Machine Learning for Accelerating Mathematical Optimization Solving

Mathematical optimization finds broad applications across critical domains such as chip design
[38] and optimization [31]]. Driven by advances in graph models [27] and generative models [26]],
machine learning techniques have been widely adopted to speed up combinatorial optimization
solving [5]. These efforts follow main directions: improving key modules in branch-and-bound
algorithms [[11}34], and predicting high-quality solutions to warm-start solvers [24}[15][19].

F Proof of Proposition 4.2]

Lemma F.1 (Transitivity of Cs). Given three problems Py, Po and Ps, if P1 Cs Pa and Py Cs Ps,
then P; Cs Ps.

Proof. We prove by induction. If the initial tree contains only the root node (abstract OR problem).
The property holds trivially. Assume the modeling tree is subproblem order-preserving after &
insertions. We show that the tree preserves the property when adding a new node P. We Identify the

maximum subproblem P*) for P. For each child Pt(M) of P, Pt(M) cannot be the subproblem

of P. Thus, P cannot be in the descendent of Pt(M). We have the following two situations.

Case 1 Analysis (P becomes parent of Pt(M)). By insertion rule, we have P(M) Cs P. By
assumption we have P Cg ’Pt(M). Finally, the transitivity ensures all ancestors of P(M) satisfy
P cs P,

Case 2 Analysis (P becomes sibling of Pt(M)). First, the operation maintains P(*) Cs P and

PM) Cg Pt(M). We notice that no new ancestor-descendant relationships are created between P
and siblings, and existing subproblem relations are preserved through shared parent P(M).

Thus, the modeling tree remains subproblem order-preserving. By induction, the proposition holds
for all tree updates. O

G Limitations and Failure Cases

Following OptiMUS [1]], the errors mainly come from three aspects: missing or wrong constraints,
incorrect modeling and coding errors. In [1]], almost half of the errors come from the incorrect
modeling (62.5% for ComplexOR), e.g., defining wrong binary variables in the model. We analyze
the failures of OptiTree and normalize the failure rates to sum to 1. We find that most errors are
from the missing constraints. OptiTree can significantly reduce the error of incorrect modeling,
which mainly comes from the wrong variable definitions. The constraint errors are the main error
for OptiTree. First, accurately formulating constraints requires a deep and nuanced understanding
of the specific problem scenario and its domain knowledge. For highly specialized or novel OR
problems, existing background knowledge may not fully capture the intricate details necessary for
precise constraint definitions. The second limitation is the intrinsic reasoning ability of the base
LLM. While OptiTree provides a structured framework and knowledge, the final synthesis depends
on the LLM’s inherent reasoning capabilities. This framework may struggle with problems requiring
significant logical or relational reasoning. For instance, in the staff rostering problem, the model must
allocate staff for 24-hour shifts to meet coverage constraints (with workers working 8-hour days). If
it fails to recognize that the demand period from 1:00 to 2:00 AM is covered by workers who began
their shifts at 8:00 PM, it will result in an incorrect constraint and ultimately a flawed model.
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Table 11: Failure cases information
ComplexOR  IndustryOR  OptMATH

Incorrect modeling 0 10.9 23.8
Missing constraints 66.7 82.6 61.9
Coding errors 333 6.5 14.3

H Case Analysis

H.1 Example: Inventory Problem

We provide a detailed analysis of an example from the IndustryOR dataset. This example demon-
strates that while OptiTree successfully corrects fundamental structural errors (what [[1]] terms
“Incorrect Modeling”), it still faces challenges with constraints that require deep, context-specific
logical reasoning.

Problem. A factory requires a specialized tool for n planning stages. r; specialized tools are needed.
At the end of this stage, all tools used within this stage must be sent for repair. There are two repair
methods: one is slow repair, which is cheaper (costs b per tool) but takes longer (p = 3 stages to
return); the other is fast repair, which costs ¢ per tool and requires ¢ = 1 stages to return. If the tools
cannot meet the needs, new ones must be purchased, with a cost of a per new tool. Determine an
optimal plan to minimize the cost.

The Errors of the Standard Output Model The standard output from DeepSeek-V3 produces a
structurally flawed model. It tries to fulfill demand by combining new purchases with tools returning
from repair, but it completely lacks any concept of inventory tools. The model given by the Standard
output of DeepSeek-V3 is as follows. Let z; > 0 be the new tools purchased at stage j, s; > 0 be
the tools sent to slow repair at stage 7, and f; > 0 be the tools sent to fast repair at stage j.

n

min Z (azj +bs; + cf;)

j=1
st. s;+fi=r; Vie{l,...,n} (Repair Requirement)
T+ Sp—p+ fuog=r; Vie{l,...,n} (Demand Fulfillment)

Following the errors described in OptiMUS [[1], the model output has the error type of Incorrect
modeling, which fails to define the Inventory variables I.

The Improvement of OptiTree OptiTree correctly identifies that this problem contains an Inven-
tory Problem subproblem. By applying the modeling thoughts, it generates a much-improved model
that correctly introduces inventory variables I and a proper inventory balance constraint. The model
given by OptiTree (DeepSeek-V3) is as follows. Let x; € Z_ be the new tools purchased at stage j,
sj € Z4 be the tools sent to slow repair at stage j, f; € Z be the tools sent to fast repair at stage j,
and I; € Z be the inventory of available tools at start of stage j. OptiTree finds a subproblem of
the Inventory Problem for the original problem.

n

min Z (axj +bs; + cf;)

j=1
st. I; =0 (Initial Inventory)
si+fi=r; Yie{l,...,n} (Repair Requirement)
Liyjw=Uj+xj—rj)+sj—p+ fieqg Vie{l,...,n} (Inventory Balance)
Ii+xz;>r; Vje{l,...,n} (Demand Fulfillment)

The Errors in the Model Given by OptiTree Despite the structural correction, the OptiTree model
still contains a subtle error that requires common-sense logical reasoning. The model does not
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account for the finite 10-stage horizon. A human modeler would reason that it is illogical to pay for
a repair that will finish after the tools are no longer needed. Slow repairs (taking p = 3 stages) are
disabled for the last 3 stages (j = 8, 9, 10) since tools sent for repair at these stages wouldn’t return
by stage 10, and fast repairs (taking ¢ = 1 stage) are disabled for the final stage (; = 10) for the same
reason. The repair requirement uses inequality

s; + f; <r; (Repair Requirement)

rather than equality s; + f; = r;, allowing flexibility to not repair tools when unnecessary—
particularly near the end of the horizon. Thus, the final corrected model should be

n

min Z (az; + bs; + cf;)

Jj=1

st. IT1=0 (Initial Inventory)
s+ fi<r; VYie{l,...,n} (Repair Requirement)
Liw=Uj+xj—1j)+sj—p+ fi—q Vie{l,....,n} (Inventory Balance)
Ii+z;>r; Vje{l,...,n} (Demand Fulfillment)

This demonstrates a limitation where OptiTree applies a general pattern correctly but misses a
nuanced, context-dependent constraint. The error stems not from a lack of OR knowledge patterns
but from a gap in the base LLM’s logical reasoning about the problem’s specific context. We believe
this limitation will diminish as the underlying reasoning capabilities of LLMs continue to improve.

I Broader Impacts

This paper focuses on the automatic optimization modeling in operations research. The traditional
modeling process often demands significant human effort and specialized domain knowledge, making
it both costly and time-consuming. Our work aims to enhance the efficiency and accuracy of this
process. We introduce a novel tree-based method for organizing operations research problem data.
Unlike existing approaches that treat each problem individually, our modeling tree leverages the
relationships between different problems. During the modeling process, we can retrieve and utilize
valuable modeling thoughts to improve overall effectiveness. Additionally, our research offers new
perspectives on organizing, utilizing, and managing knowledge within the field of operations research.
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J Prompts for LLMs

In this part, we present the meta-prompts we used in this paper.
J.1 Schema in OptiTree

Schema

Problem Type: Diet Problem with Integer Constraint,

Statement Thoughts: [
Statement Thoughts: The Diet Problem with Integer Constraint involves

determining the quantity of each food item that should be
consumed to meet nutritional requirements while minimizing cost.
The twist is that the quantities must be integers, representing
the whole number of servings or portions of each food item. The
problem is formulated to ensure nutritional constraints(such as
calories, protein, vitamins, etc.) are satisfied, and the total
cost is minimized.,

Nutritional Constraints: Ensure that the selected food items provide
at least the required amount of nutrients, such as calories,
proteins, fats, vitamins, and minerals.,

Cost Minimization: The total cost of the selected food items should
be minimized while meeting nutritional constraints.,

Integer Servings: The servings of food items must be integer values,
representing realistic portions of each food item.

i

Modeling Thoughts: [
[Define Decision Variables] Define decision variables that represent
the integer quantities of servings for each food item.,
[Define Objective Function] Minimize the total cost of the selected
food items.,
[Define Nutritional Constraints] Ensure that the nutrient intake
meets or exceeds the minimum required levels for each nutrient.,
[Implement Integer Constraints] Ensure integer constraints for the
serving sizes of each food item in the model.,
[Comprehensive Verification] Check the common errors in the
optimization model.,
[Write Gurobi Code] Write the Gurobi code to solve the problem.,
[Gurobi Code] \n‘°‘‘python\nimport json\nimport numpy as np\nimport
math\nimport gurobipy as gp\nfrom gurobipy import GRB\n\n# Create
a new model\nmodel = gp.Model (’model’)\n\n# define parameters\n\
n# define variables\n\n# define constraints\n\n# define objective
\n\n# Optimize the model\nmodel.optimize()\nstatus = model.
status\n\nobj_val = None\n# Check whether the model is infeasible,
has infinite solutions, or has an optimal solution\nif status ==
gp.GRB.INFEASIBLE:\n obj_val = \infeasible\\nelif status == gp.
GRB.UNBOUNDED:\n obj_val = \unbounded\\nelif status == gp.GRB.
OPTIMAL:\n obj_val = model.objVal\ntime = model.TimeLimit\nprint
(\Timecost\:,time) \nprint (\Objective Value:\, obj_val)\n‘‘¢,
[error_tips]
Ensure decision variables are defined as integers.,
Confirm that all nutritional requirements are modeled correctly
and constraints are set accurately.,
Review that cost coefficients are correctly assigned in the
objective function.,
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gurobi_example: Example not provided since specific problem data
is omitted; follow reasoning flow for formulation specifics.

J.2 Prompts for Subproblem Identification

Subproblem Identification

You are a mathematical formulator working with a team of optimization
experts. The objective is to tackle a complex optimization problem.

You are given a specific problem and its current basic problem type. You
are also provided with a list of subtypes for this basic problem type

Input problem: {input_problem}.
Its current basic problem type:{basic_typel}

You are given a list of defined subtypes and the statement thoughts of
subtypes: {statement_thought_info}.

Your task is to determine if the specific problem belongs to one of the
given subtypes. If it does, return the subtype directly. Importantly,
you must return the only subtype verbatim(don’t return the statement
thoughts), which is provided in the list. If it does not, return
subtype not found.

Also, return a boolean value indicating whether the input problem belongs
to the defined subtypes. Return only the final answer in the
following JSON format:

Cc¢¢

{H
matching_subtype: <matching_subtype>,
reasoning: <reasoning_process>
belongs_to_subtypes: <boolean_value>

1

(3

json

- Note that I’m going to use Python JSON.loads() function to parse the
JSON file, so please make sure the format is correct (don’t add ’,’
before enclosing ’}}’ or ’]’ characters.

- Generate the complete JSON file and don’t omit anything.

- Use ’¢“‘json’ and ’““‘’ to enclose the json file.

J.3 Modeling

Modeling with Modeling Thoughts

You are a mathematical formulator working with a team of optimization
experts. The objective is to tackle a complex optimization problem.
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You are an expert in problem analysis and can apply previous problem-
solving approaches to new issues. The user will provide a specific
task statement thoughts and a modeling thought. Your goal is to
analyze the user’s task and generate a specific solution based on the

modeling thought. If the instantiated solution involves Python code,
only provide the code and let the compiler handle it. If the
solution does not involve code, provide a final answer that is easy
to extract from the text.

It should be noted that all the Python code should be within one code
block; the answer should not include more than one code block! And
strictly follow the modeling thought to instantiate the Gurobi code,
but you should also adjust the input parameter according to the user
input!

User Input:
{user_input}
modeling thought:
{modeling thought}

Please analyze the above user task statement thoughts and modeling
thought, and generate a specific, detailed solution. If the solution
involves Python code, only provide the code. If not, provide a clear
and extractable final answer.

Code Correction

You are an excellent Python programming master who is proficient in
analyzing and editing Python code, and you are also good at
understanding real-world problems. Your task is:

1. Analyze the given Python code

2. Edit the input code to make sure the edited code is correct and can
run and solve the problem correctly.

Your response should follow the format below:

¢ ¢ ¢‘python

## Edited code here

cc¢

J.4 Tree Update
Statement Thoughts Distillation stopping at the root node

You are given a specific combinatorial optimization problem.

Your task is to summarize the industrial scene type of this specific
problem and provide a detailed statement thoughts of this type.

Importantly, you must classify the problem into more precise industrial
scenarios, such as the Traveling Salesman Problem (TSP), facility
location problem, Parallel Machine Scheduling, and so on. Avoid using

broad categories such as linear programming, mixed-integer
optimization, integer optimization, Integer Linear Programming
Problem, and so on.

- *xSpecific Problem*#*: {specific_problem}
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Please provide the following information in JSON format:

C¢¢

{H
"industrial_scene_type": "<industrial_scene_type>",
"statement thoughts_of_type":{{
"statement thoughts": "<the more precise of statement thoughts>",
"constraints":
28
"<get the Constraint 1>": "Detailed description of constraint 1",
"<get the Constraint 2>": "Detailed description of constraint 2"
3}
3}
1}

(3

json

Here is an output example:
{H

’industrial_scene_type’: ’Maximum Flow Problem’,

’statement thoughts_of_type’: {{

’statement thoughts’: ’The Maximum Flow Problem involves determining
the highest possible flow that can be routed through a directed
graph from a specified source node to a sink node, while adhering

to the capacity limits of the edges. This problem is
foundational in network flow theory and has applications in
transportation networks, communication systems, supply chain
logistics, and resource distribution. The solution must respect
edge capacities, flow directionality, and conservation laws at
intermediate nodes.’

’constraints’: {

’Directed Graph’: ’Flow can only travel in the direction
specified by the edges in the graph.’,

’Capacity Constraints’: "The flow on each edge must be non-
negative and cannot exceed the edge’s maximum capacity.",
’Flow Conservation’: ’For every node except the source and sink,

the total incoming flow must equal the total outgoing flow.’

11,

1}
3}

Statement Thoughts Distillation stopping at other node

You are a mathematical formulator working with a team of optimization
experts. The objective is to tackle a complex optimization problem.

You are given a specific problem, its current basic problem type, and the
statement thoughts of the basic problem type.

Your task is to determine the more specific subtype of the given basic
problem type that the specific problem belongs to, and provide a more
detailed statement thoughts of this subtype.

- *xSpecific Problem**: {specific_problem}

- *xCurrent Basic Problem Type**: {current_basic_problem_typel}

- *xstatement thoughts of Basic Problem Type**: {statement
thoughts_of_basic_problem_type}

Please provide the following information in JSON format:
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a8

‘json
current_basic_problem_type: {current_basic_problem_typel,
statement thoughts_of_basic_problem_type: {statement
thoughts_of_basic_problem_typel},
formulated_subtype: <subtype>,
statement thoughts_of_subtype:{{
statement thoughts: <the more precise of statement thoughts>,
constraints:
{{
<get the Constraint 1>: "Detailed description of constraint 1",
"<get the Constraint 2>": "Detailed description of constraint 2"

3}

Modeling Thoughts Distillation based on Statement Thoughts

You are a mathematical formulator working with a team of optimization

Pl

experts. The objective is to tackle a complex optimization problem.

ease list the steps to formulate a {problem_type} problem and use the
Gurobi code to solve it. You need to record some errors that are easy
to make during the formulation process. Please output a JSON format.

You are given a specific combinatorial optimization problem, its solution

process, and the problem type, along with its statement thoughts.

**Problem Type**: {problem_type}

x*statement thoughts of Problem Typex*: {statement thoughts}
*x*Specific Problem*x: {specific_problem}

x*Solution step of Specific Problem**: {solution_step}

Your task is to return a modeling thought for this problem type, which

[EE

includes the following five parts:

**problem_type**: The provided problem type.

**statement thoughts**: The provided statement thoughts of the problem
type.

**reason_flow**: A detailed step-by-step reasoning process for solving
a series of problems that belong to a problem type, according to the
provided solution process of the specific problem.

**example_application**: A detailed example application that matches

the specific problem and its solution process.

**increment**: a list.

Additionally, in the solution steps, the Gurobi code is included. You

must only use the fixed Gurobi code mentioned below in the solution
steps. This is the fixed Gurobi code ---- "### Gurobi Code:\n‘‘*¢
python\nimport json\nimport numpy as np\nimport math\nimport gurobipy
as gp\nfrom gurobipy import GRB\n\n# Create a new model\nmodel = gp.
Model (’model’)\n\n# define parameters\n\n# define variables\n\n#
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define constraints\n\n# define objective \n\n# Optimize the model\
nmodel.optimize () \nstatus = model.status\n\nobj_val = None\n# Check
whether the model is infeasible, has infinite solutions, or has an
optimal solution\nif status == gp.GRB.INFEASIBLE:\n obj_val = \"
infeasible\"\nelif status == gp.GRB.UNBOUNDED:\n obj_val = \"
unbounded\"\nelif status == gp.GRB.OPTIMAL:\n obj_val = model.objVal\
ntime = model.TimeLimit\nprint(\"Timecost\":,time)\nprint(\"Objective
Value:\", obj_val)\n‘‘‘"

Please provide the following information in JSON format:

Here is a modeling thought example:

{H
"Problem Type": "Travelling Sales Person Problem",
’statement thoughts’: {{
’statement thoughts’: "The Transportation Problem involves optimizing
the shipment of goods from multiple distribution centers to
various destinations to minimize total transportation costs while
meeting all destination demands. In this scenario, a company
with four distribution centers (A, B, C, D) must supply five
destinations (1, 2, 3, 4, 5) such that each destination’s demand
is fully satisfied. The key objective is to determine the optimal
shipment quantities from each center to each destination that
result in the lowest possible transportation costs. This problem
is a linear programming model where decision variables represent
the amount shipped from each center to each destination, subject
to supply and demand limitatioms.",
>constraints’: {{’Supply Constraints’: ’The total quantity of goods
transported from each distribution center to all destinations
must not exceed the available supply at that center.’, ’Demand
Constraints’: "The total quantity of goods received by each
destination from all distribution centers must exactly match the
destination’s specified demand.", ’Non-Negative Transportation’: ’
The amount of goods transported from any distribution center to a
destination must be non-negative (i.e., shipments cannot have
negative quantities).’}}
3}
"Modeling Thoughts": [
"[Define Decision Variables] Define decision variables for edges \\(
x_{{ij}} \\) and possibly auxiliary variables for MTZ \\( u_i \\)
n
"[Define Objective Function] Sum of distances multiplied by \\( x_{{
i3} \\O",
"[Define Degree Constraints] Each node entered and exited exactly
once",
"[Define Subtour Elimination Constraints] Subtour elimination via MTZ
or callbacks",
"[Comprehensive Verification] Check the common errors in the
optimization model",
"[Write Gurobi Code] Write the Gurobi code the solve the problem.",
"[Gurobi Code]\n‘°‘‘python\nimport json\nimport numpy as np\nimport
math\nimport gurobipy as gp\nfrom gurobipy import GRB\n\n# Create
a new model\nmodel = gp.Model(’model’)\n\n# define parameters\n\
n# define variables\n\n# define constraints\n\n# define objective
\n\n# Optimize the model\nmodel.optimize()\nstatus = model.
status\n\nobj_val = None\n# Check whether the model is infeasible,
has infinite solutions, or has an optimal solution\nif status ==
gp.GRB.INFEASIBLE:\n obj_val = \"infeasible\"\nelif status == gp.
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GRB.UNBOUNDED:\n obj_val = \"unbounded\"\nelif status == gp.GRB.
OPTIMAL:\n obj_val = model.objVal\ntime = model.TimeLimit\nprint
(\"Timecost\":,time) \nprint (\"Objective Value:\", obj_val)\n¢‘‘",

"[Common Errors to Avoid]\nl. #*Incorrect Subtour Eliminationx:
Ensure MTZ constraints exclude the starting city and are applied
to correct indices.\n2. **Indexing Mistakes**: Use consistent O-
based or 1-based indexing for cities.\n3. #*Self-Loops**:
Explicitly disable \\( x_{{ii}} \\) variables.\n4. **Bounds on
MTZ Variables**: Set \\( u_i \\) bounds correctly (A\\( 1 \\leq
u_i \\leq n-1 \\)).\n5. **0bjective Function*#*: Ensure distances
are correctly paired with \\( x_{{ij}} \\) and exclude \\( i = j
\\) .\n\nBy following these steps and avoiding common pitfalls,
you can effectively model and solve TSP using Gurobi."

1,
3}

Important:

- Use plain JSON without markdown syntax

- Ensure all quotes are properly escaped

- Include all required keys: problem_type, statement thoughts,
reason_flow, example_application,increment

Add New Tree Nodes

You are a mathematical formulator working with a team of optimization
experts. The objective is to tackle a complex optimization problem.

You are given a primary problem type and its statement thoughts. You are
also provided with a list of other problem types, each with its
statement thoughts.

According statement thoughts, your task is to determine which problem
types in the list are subtypes of the given primary problem type.
Return a list of problem types that are identified as subtypes of the

primary problem type. To be more specific, the subtype contains the
constraint form of the primary problem type.

Importantly, the returned subtypes must be provided in the list; if there

is any problem type that is a subtype of the given primary problem
type in the list, return an empty list.

- #xPrimary Problem Type**: \{primary_problem_type\}

- *xstatement thoughts of Primary Problem Type**: \{statement
thoughts_type\}

- *xList of Problem Types**: \{list_of_problem_types\}

Please provide the following information in JSON format:

CC¢

a8

json

"primary_problem_type": "{primary_problem_typel}",
"matching_subtypes": ["<problem_type>"]

1
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K Examples
To better understand OptiTree, we provide two examples of OptiTree for each of the five datasets.
K.1 NL4Opt

NL4Opt

Natural Language Description:

There is 1000 mg of gold available that is needed to make long and short cables. Long cables
require 10 mg of gold while short cables require 7 mg of gold. Because of their compact size, at
least 5 times the number of short cables are needed than the long cables. In addition, there needs to
be at least 10 long cables made. If each long cable sold results in a $12 profit and each short cable
sold results in a $5 profit, how many of each type of cable should be made to maximize profit?

Subproblem Identification Process:

{

"matching_problem_type": "Product Mix Optimization",

"reasoning": "The problem involves determining the optimal number of
long and short cables to produce given constraints on resource

availability (gold) and demand (minimum number of cables), with
the objective of maximizing profit. This aligns with the ’Product
Mix Optimization’ problem type, which deals with optimizing the
mix of products to produce under resource constraints to maximize
profit or minimize cost.",

"belongs_to_problem_types": true

X
{

"matching_subtype": "Sales and Inventory Optimization with Profit
Maximization",

"reasoning": "The problem involves determining the optimal number of
long and short cables to produce to maximize profit, considering
constraints on the available gold and the ratio of short to long
cables. This aligns with the ’Sales and Inventory Optimization

with Profit Maximization’ subtype, which focuses on maximizing
profit under given constraints, including storage (in this case,
gold availability) and integer constraints on production
quantities.",

"belongs_to_subtypes": true

X
{

"matching_subtype": "subtype not find",

"reasoning": "The input problem involves maximizing profit by
determining the number of long and short cables to produce,
considering gold availability and production constraints. It does

not involve inventory holding costs, selling prices, demand, or
warehouse capacity constraints, which are key features of the °’
Single-Period Inventory Optimization with Capacity Constraints’
subtype. Therefore, it does not match the provided subtype.",

"belongs_to_subtypes": false

X
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Get the Modeling Thoughts:

{

’Problem Type’: ’Sales and Inventory Optimization with Profit
Maximization’,

’Statement Thoughts’:

’This subtype of Product Mix Optimization focuses on determining the
optimal sales and inventory quantities for different products to
maximize total profit while considering inventory holding costs and
storage space limitations. The problem involves balancing the trade-
off between sales revenue and inventory costs under given
constraints.Storage Space Constraint-The total inventory quantity of

all products cannot exceed a specified limit (e.g., 1000 units in
this case).Integer Constraint-Sales and inventory quantities must be
integers due to the indivisibility of the products.’,
’Modeling Thoughts’: [
> [Define Decision Variables] Define integer decision variables for
sales and inventory quantities for each product.’,

> [Define Objective Function] Maximize total profit by considering
sales revenue and subtracting inventory holding costs.’,

> [Define Constraints] Add constraints for storage space limitations
and ensure non-negativity of variables.’,

> [Comprehensive Verification] Check for common errors such as
incorrect profit calculation or constraint formulation.’,

> [Write Gurobi Code] Write the Gurobi code to solve the problem.’,

> [Gurobi Code]:?, ’‘¢‘python’, ’import json’, ’import numpy as np’, °’
import math’, ’import gurobipy as gp’, ’from gurobipy import GRB
>, # Create a new model’, "model = gp.Model(’model’)", ’# define
parameters’, ’# define variables’, ’x = model.addVar(vtype=GRB.
INTEGER, name="x")’, ’y = model.addVar(vtype=GRB.INTEGER, name="y
")?, ’# define constraints’, ’model.addConstr(x + y <= 1000, name

="InventorySpaceConstraint")’, ’# define objective’, ’model.
setObjective(8*x + 7*xy, GRB.MAXIMIZE)’, ’# Optimize the model’, °
model.optimize()’, ’status = model.status’, ’obj_val = None’, ’#

Check whether the model is infeasible, has infinite solutions, or
has an optimal solution’, ’if status == gp.GRB.INFEASIBLE:’, °’

obj_val = "infeasible"’, ’elif status == gp.GRB.UNBOUNDED:’, °’
obj_val = "unbounded"’, ’elif status == gp.GRB.OPTIMAL:’, °?
obj_val = model.objVal’, ’time = model.Runtime’, ’print("Timecost
:", time)’, ’print("0Objective Value:", obj_val)’, *¢¢<¢?,

>[Common Errors to Avoid], ’1. **Incorrect Profit Calculationx*x:

Ensure the objective function correctly accounts for both sales
revenue and inventory costs.’, ’2. **Constraint Formulation*:
Verify that the storage space constraint is correctly formulated

and does not exceed the specified limit.’, ’3. **Variable Types
**: Ensure variables are defined as integers to comply with the
indivisibility of products.’, ’4. **xNon-Negativity**: Explicitly

enforce non-negativity constraints if not implicitly included.’,
’5. **Model Status Check**: Always check the model status to
handle infeasible or unbounded cases appropriately.’

Solver Code:
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import gurobipy as gp
from gurobipy import GRB

# Create a new model
model = gp.Model(’CableProduction’)

# Define decision variables
long_cables = model.addVar (vtype=GRB.INTEGER, name="long_cables")
short_cables = model.addVar (vtype=GRB.INTEGER, name="short_cables")

# Define objective function: maximize profit
model .setObjective(12 * long_cables + 5 * short_cables, GRB.MAXIMIZE)

# Define constraints

# Gold usage constraint: 10*long + 7*short <= 1000

model.addConstr (10 * long_cables + 7 * short_cables <= 1000, name="
GoldConstraint")

# Ratio constraint: short >= 5xlong
model.addConstr (short_cables >= 5 * long_cables, name="RatioConstraint")

# Minimum long cables constraint
model .addConstr(long_cables >= 10, name="MinLongCables")

# Optimize the model
model .optimize ()

# Check and display results

if model.status == GRB.OPTIMAL:
print (f"Optimal number of long cables: {long_cables.x}")
print(f"Optimal number of short cables: {short_cables.x}")
print (f"Maximum profit: ${model.objVall}")

elif model.status == GRB.INFEASIBLE:
print("Model is infeasible")

elif model.status == GRB.UNBOUNDED:
print("Model is unbounded")

NL40pt

Natural Language Description:

A patient can be hooked up to two machines to have medicine delivered, machine 1 and machine
2. Machine 1 delivers 0.5 units of medicine to the heart per minute and 0.8 units of medicine per
minute to the brain. Machine 2 delivers 0.3 units of medicine per minute to the heart and 1 unit
of medicine per minute to the brain. In addition however, machine 1 creates 0.3 units of waste
per minute while machine 2 creates 0.5 units of waste per minute. If at most 8 units of medicine
can be received by the heart and at least 4 units of medicine should be received by the brain, how
many minutes should each machine be used to minimize the total amount of waste produced?

Subproblem Identification Process:

"matching_problem_type": "Resource Allocation Problem",

"reasoning": "The problem involves allocating resources (time on
machines) to meet certain constraints (medicine delivery to heart
and brain) while minimizing waste, which fits the definition of
a Resource Allocation Problem.",
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"belongs_to_problem_types": true

"matching_subtype": "Cost-Minimizing Resource Allocation with
Capacity Constraints",

"reasoning": "The problem involves allocating resources (machine
usage time) to minimize total waste (cost) while meeting specific
medicine delivery requirements (capacity constraints) for the
heart and brain. This aligns with the subtype’s focus on
minimizing total cost under capacity constraints.",

"belongs_to_subtypes": true

"matching_subtype": "subtype not find",

"reasoning": "The given problem involves minimizing waste production
while meeting medicine delivery constraints to the heart and
brain. It does not fit any of the provided subtypes, which focus
on budget allocation, parallel project resource allocation,
revenue-maximizing load management, or supplier selection and
equipment allocation. The problem is a standard Mixed Integer
Linear Programming (MILP) problem with constraints on medicine
delivery and waste minimization, but it does not align with the
specific subtypes listed.",

"belongs_to_subtypes": false

Get the Modeling Thoughts:

{

’Problem Type’: ’Cost-Minimizing Resource Allocation with Capacity
Constraints’,

’Statement Thoughts’:

’This subtype of the Resource Allocation Problem focuses on minimizing
the total cost while allocating resources (sensor deployments and
data analysis teams) to meet specific requirements (data collection
and processing) under capacity and budget constraints. The goal is
to optimally assign sensors to plots and allocate data processing
tasks to teams such that all data collection requirements are met,
and the total cost is minimized.,

Data Balance Constraint:The data collection requirements for each plot
must be matched by the data processing capacity of the assigned team,

ensuring that all collected data is processed without exceeding
team capacities.,

Budget Constraint:The total cost of deploying sensors and utilizing data

analysis teams must not exceed the available budget, ensuring cost-
effective resource allocation.’,

’Modeling Thoughts’: [
> [Define Decision Variables] Define integer variables for the number

of times each team is used (e.g., \\( x_A \\), \\( x_B \\)).”,
> [Define Objective Function] Minimize the total cost, which
includes sensor deployment costs and data processing costs.’,
> [Define Data Balance Constraint] Ensure the total data processed
equals the sum of data collection requirements.’,
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> [Define Budget Constraint] Ensure the total cost does not exceed
the available budget.’,

> [Comprehensive Verification] Check for common errors such as
incorrect variable bounds, constraint formulation, and objective
function alignment.’,

>[Write Gurobi Code] Implement the model in Gurobi to solve the
problem.’],

> [Gurobi Code]: ‘¢ ‘python\nimport json\nimport numpy as np\nimport
math\nimport gurobipy as gp\nfrom gurobipy import GRB\n\n# Create
a new model\nmodel = gp.Model (\’model\’)\n\n# define parameters\
n\n# define variables\n\n# define constraints\n\n# define
objective \n\n# Optimize the model\nmodel.optimize()\nstatus =
model.status\n\nobj_val = None\n# Check whether the model is
infeasible, has infinite solutions, or has an optimal solution\
nif status == gp.GRB.INFEASIBLE:\n obj_val = "infeasible"\nelif
status == gp.GRB.UNBOUNDED:\n obj_val = "unbounded"\nelif status
== gp.GRB.OPTIMAL:\n obj_val = model.objVal\ntime = model.
TimeLimit\nprint ("Timecost":,time)\nprint("Objective Value:",
obj_val)\n‘¢‘’,

> [Common Errors to Avoid]:\nl. *xIncorrect Variable Types**: Ensure
variables are defined as integers if fractional allocations are
not allowed.\n2. **Constraint Formulation**: Verify that
constraints correctly represent the problem requirements (e.g.,
data balance must be exact).\n3. **0bjective Function Alignment
**: Ensure the objective function includes all relevant costs (e.
g., both sensor deployment and data processing costs).\nd. **
Budget Constraint Omission**: Do not forget to include the budget

constraint if applicable.\n5. **Indexing Errors**: Ensure all

indices and summations are correctly implemented in the code.’

Solver Code:

import gurobipy as gp
from gurobipy import GRB

# Create a new model
model = gp.Model(’MedicineDelivery’)

# Define decision variables: minutes each machine is used
x1 = model.addVar(1b=0, vtype=GRB.CONTINUQOUS, name="Machinel_minutes")
x2 = model.addVar (1b=0, vtype=GRB.CONTINUOUS, name="Machine2_minutes")

# Set objective: minimize total waste
model.setObjective(0.3 * x1 + 0.5 * x2, GRB.MINIMIZE)

# Add constraints

# Heart constraint: at most 8 units

model .addConstr (0.5 * x1 + 0.3 * x2 <= 8, "Heart_limit")

# Brain constraint: at least 4 units

model.addConstr(0.8 * x1 + 1.0 * x2 >= 4, "Brain_minimum")

# Optimize the model
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model .optimize ()

# Check solution status

status = model.status

if status == GRB.OPTIMAL:
print (f"Optimal solution found:")
print (f"Machine 1 minutes: {x1.x}")
print (f"Machine 2 minutes: {x2.x}")
print(f"Total waste produced: {model.objVall}")

elif status == GRB.INFEASIBLE:
print("Model is infeasible")

elif status == GRB.UNBOUNDED:
print("Model is unbounded")

K.2 MAMO EasyLP

MAMO EasyLP

Natural Language Description:

An environmental organization is planning to invest in two projects: Project X which involves
tree planting, and Project Y which focuses on waste management. The investment in each project
must be a whole number due to the indivisible nature of resources. The total combined investment
for both projects cannot exceed 20 units due to budget limitations. Additionally, the overall
environmental impact score, calculated as twice the investment in Project X plus the investment
in Project Y, should be at least 10 points to meet their objectives.Each unit of investment in
Projects X and Y has an associated cost of 4 and 5 units respectively, and the organization aims
to minimize this total cost while meeting all constraints.Given these conditions, what is the
minimum total cost required for this scenario? Please provide your answer rounded to the nearest
whole number.

Subproblem Identification Process:

"matching_problem_type": "Capital Budgeting Problem",

"reasoning": "The problem involves selecting investments in projects
(Project X and Project Y) with integer investment amounts,
budget constraints, and an objective to minimize total cost while
meeting environmental impact requirements. This aligns with the
Capital Budgeting Problem, which deals with allocating limited
resources among competing projects to maximize or minimize a
certain objective under constraints.",

"belongs_to_problem_types": true

"matching_subtype": "subtype not find",
"reasoning": "The input problem involves selecting investments in
two projects with integer constraints, budget limitations, and an
objective to minimize total cost while meeting an environmental
impact score. The provided subtypes focus on facility location
with service balance and capacity constraints, and multi-
objective optimization with weighted objectives, neither of which
align with the given problem’s characteristics.",
"belongs_to_subtypes": false
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Get the Modeling Thoughts:

{

’Problem Type’: ’Capital Budgeting Problem’,

’Statement Thoughts’:

’The Capital Budgeting Problem involves selecting a combination of
investments or purchases to maximize or minimize an objective (e.g.,

cost or profit) while adhering to budget constraints, operational
requirements, and other limitations. In this case, the airline must
choose between two aircraft models to minimize total costs while
meeting range, quantity, and operating cost constraints. This
problem is common in industries requiring strategic resource
allocation, such as transportation, manufacturing, and
infrastructure development.,

Range Requirement Constraint: The combined range of all purchased
aircraft must meet or exceed 40,000 kilometers to fulfill
operational needs.,

Aircraft Quantity Constraint: The total number of aircraft purchased
must be at least 8 to ensure flight safety and operational
redundancy.,

Operating Cost Constraint: The total hourly operating cost of all
aircraft must not exceed $150,000 USD to maintain financial
sustainability.’

3
’Modeling Thoughts’: [
> [Define Decision Variables] Define integer decision variables for
the number of each type of aircraft to purchase.’,
> [Define Objective Function] Formulate the objective to minimize
total cost, including purchase and operating costs.’,
> [Define Range Constraint] Ensure the combined range of all aircraft
meets or exceeds the required range.’,
> [Define Quantity Constraint] Ensure the total number of aircraft
purchased meets the minimum requirement.’,
[Define Operating Cost Constraint] Ensure the total hourly operating
cost does not exceed the specified limit.’,
> [Comprehensive Verification] Check for common errors such as
incorrect cost calculations or constraint formulations.’,
>[Write Gurobi Code] Implement the model in Gurobi to solve the
problem.’],

>[ Gurobi Code], ’¢‘¢‘python’, ’import json’, ’import numpy as np’, °’
import math’, ’import gurobipy as gp’, ’from gurobipy import GRB
>, ’# Create a new model’, "model = gp.Model(’model’)", ’# define
parameters’, ’# define variables’, ’# define constraints’, ’#
define objective ’, ’# Optimize the model’, ’model.optimize()’, ?’
status = model.status’, ’obj_val = None’, ’# Check whether the
model is infeasible, has infinite solutions, or has an optimal
solution’, ’if status == gp.GRB.INFEASIBLE:’, ’ obj_val = "
infeasible"’, ’elif status == gp.GRB.UNBOUNDED:’, ’ obj_val = "
unbounded"’, ’elif status == gp.GRB.OPTIMAL:’, ’ obj_val = model.
objVal’, ’time = model.TimeLimit’, ’print("Timecost":,time)’, °
print("Objective Value:", obj_val)’, *¢¢¢’,
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> [Common Errors to Avoid]’, ’1. **Incorrect Cost Calculation*x*:
Ensure the operating cost is correctly included in the objective
function.’, ’2. **Constraint Formulation**: Verify that

constraints are correctly formulated (e.g., >= vs <=).’, 23. **
Integer Variables**: Ensure decision variables are defined as
integers.’, ’4. **Units Consistency**: Ensure all costs and
ranges are in consistent units.’, ’5. **Solver Status Check*x*:
Always check the solver status to confirm an optimal solution was
found.’]

b

Solver Code:

import gurobipy as gp
from gurobipy import GRB

# Create a new model
model = gp.Model(’Environmental_Projects?’)

Define decision variables (integer variables for investment units)
= model.addVar (vtype=GRB.INTEGER, name="Project_X_Investment")
= model.addVar (vtype=GRB.INTEGER, name="Project_Y_Investment")

< M OH

# Set objective function: minimize total cost (4*X + 5xY)
model .setObjective (4*x + 5%y, GRB.MINIMIZE)

# Add constraints
# Budget comstraint: X + Y <= 20
model .addConstr(x + y <= 20, "Budget_Constraint")

# Environmental impact constraint: 2X + Y >= 10
model.addConstr(2*x + y >= 10, "Environmental_Impact_Constraint")

# Non-negativity constraints
model.addConstr(x >= 0, "Non_Negativity_X")
model .addConstr(y >= 0, "Non_Negativity_Y")

# Optimize the model
model .optimize ()

# Check solution status
if model.status == GRB.OPTIMAL:

print ("Minimum Total Cost:", round(model.objVal))
else:

print ("No optimal solution found")

MAMO EasyLP

Natural Language Description:

A tourism company is planning to allocate resources between two major services: X represents
local sightseeing tours and Y represents adventure activities. The total number of services that
can be offered in a month cannot exceed 200 due to resource constraints. The minimum number
of local sightseeing tours (X) they need to offer is at least 50, and for adventure activities (Y), it
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cannot be less than 30. Each service has associated operational costs, with each local sightseeing
tour costing $300 and each adventure activity costing $500. The company aims to minimize the
total cost while meeting all the constraints(X, Y are integers). What is the minimum possible
monthly operational cost (in dollars) for the company? Round your answer to the nearest dollar.

Subproblem Identification Process:

"matching_problem_type": "Resource Allocation Problem",
"reasoning": "The problem involves allocating limited resources (
total services <= 200) between two services (X and Y) with

specific constraints (minimum requirements for X and Y) and an

objective to minimize costs. This fits the definition of a

Resource Allocation Problem, where the goal is to optimally

distribute resources under given constraints.",
"belongs_to_problem_types": true

"matching_subtype": "Cost-Minimizing Resource Allocation with
Capacity Constraints",

"reasoning": "The problem involves allocating resources (local
sightseeing tours and adventure activities) to minimize total
operational costs while adhering to capacity constraints (total
services <= 200, minimum services for X >= 50 and Y >= 30). This
matches the subtype ’Cost-Minimizing Resource Allocation with
Capacity Constraints’, which focuses on minimizing costs under
capacity and other constraints.",

"belongs_to_subtypes": true

"matching_subtype": "Integer Linear Programming for Budget
Allocation",

"reasoning": "The problem involves allocating resources (local
sightseeing tours and adventure activities) with integer
constraints to minimize total operational costs while satisfying
various linear constraints (total services, minimum requirements)

This matches the description of ’Integer Linear Programming for
Budget Allocation’ where the goal is to minimize total cost
under integer constraints and linear constraints.",

"belongs_to_subtypes": true

"matching_subtype": "Integer Linear Programming for Resource
Allocation with Multiple Constraints",

"reasoning": "The input problem involves allocating resources (local

sightseeing tours and adventure activities) to minimize total

cost while meeting specific constraints (minimum number of
services, total service limit). The decision variables (X and Y)
must be integers, similar to the subtype which involves integer
allocations to meet constraints and minimize costs.",

"belongs_to_subtypes": true
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"matching_subtype": "Integer Linear Programming for Resource
Allocation with Proportional and Range Constraints",

"reasoning": "The input problem involves allocating resources
between two services (local sightseeing tours and adventure
activities) with integer constraints, aiming to minimize the
total cost while satisfying combined resource limits and range
constraints (minimum number of services for each type). This
matches the description of the subtype ’Integer Linear
Programming for Resource Allocation with Proportional and Range
Constraints’, which also involves allocating resources between
two services with integer constraints and similar types of
constraints.",

"belongs_to_subtypes": true

"matching_subtype": "Integer Linear Programming for Service
Allocation with Demand and Staffing Constraints",

"reasoning": "The input problem involves allocating resources (
services) between two types (local sightseeing tours and
adventure activities) with integer constraints. The goal is to
minimize total cost while satisfying minimum demand requirements
(at least 50 local tours and 30 adventure activities) and a
resource limitation (total services cannot exceed 200). This
matches the subtype ’Integer Linear Programming for Service
Allocation with Demand and Staffing Constraints’, which also
involves allocating services with integer constraints, minimizing

cost, and satisfying demand and resource constraints.",

"belongs_to_subtypes": true

"matching_subtype": "Integer Linear Programming for Staff Allocation

with Service Capacity and Cost Constraints",

"reasoning": "The input problem involves allocating integer
resources (services) between two types (local sightseeing tours
and adventure activities) with the goal of minimizing total
operational costs while meeting minimum service requirements and
adhering to a total service limit. This closely matches the
subtype description, which involves allocating integer staff
members between two service types to minimize costs while meeting

demand and staffing constraints. Both problems involve integer
decision variables, cost minimization, and similar constraint
structures.",

"belongs_to_subtypes": true

Get the Modeling Thoughts:

{

"Problem Type": "Integer Linear Programming for Staff Allocation with
Service Capacity and Cost Constraints",

"Statement Thoughts":
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"This problem involves allocating integer numbers of staff members
between two types of after-sales services (phone support and on-site
service) with the goal of minimizing total employment costs while
meeting daily service demand requirements and adhering to a total
staffing limit. The decision variables represent the number of staff
allocated to each service type, and all allocations must be
integers.,
Service Demand Constraint: Each phone support staff member can handle 50
phone consultations and 20 remote technical support sessions per
day, while each on-site service staff member can provide 10 on-site
repairs and 5 equipment replacements per day. The total service
capacity must meet or exceed the daily demand for each service type.,

Staffing Constraint: The total number of phone support and on-site
service staff members cannot exceed 100."

"Modeling Thoughts": [

"[Define Decision Variables] Define integer decision variables for

the number of phone support staff members (x) and on-site service
staff members (y).",

"[Define Objective Function] Minimize the total employment cost: 200
x + 300y.",

"[Define Service Demand Constraints] Ensure the total service
capacity meets or exceeds the daily demand for each service type

n

"[Define Staffing Constraint] Ensure the total number of staff
members does not exceed 100.",

"[Comprehensive Verification] Check for common errors such as
incorrect constraint formulation, non-integer solutions, and
infeasible demand requirements.",

"[Write Gurobi Code] Write the Gurobi code to solve the problem."

],

>[ Gurobi Code], ’¢‘‘python’, ’import json’, ’import numpy as np’, °’
import math’, ’import gurobipy as gp’, ’from gurobipy import GRB
>, ’# Create a new model’, "model = gp.Model(’model’)", ’#
define parameters’, ’# define variables’, ’# define constraints
>, ’# define objective ’, ’# Optimize the model’, ’model.
optimize()’, ’status = model.status’, ’obj_val = None’, ’# Check
whether the model is infeasible, has infinite solutions, or has
an optimal solution’, ’if status == gp.GRB.INFEASIBLE:’, ’
obj_val = "infeasible"’, ’elif status == gp.GRB.UNBOUNDED:’, °’
obj_val = "unbounded"’, ’elif status == gp.GRB.OPTIMAL:’, ’
obj_val = model.objVal’, ’time = model.TimeLimit’, ’print("
Timecost":,time)’, ’print("Objective Value:", obj_val)’, 2>¢¢¢’,

"[Common Errors to Avoid:]",

"1. *xIncorrect Demand Constraints**: Ensure the service capacity
constraints are correctly formulated .",
"2. *xNon-Integer Solutions**: Ensure variables are defined as
integers (vtype=GRB.INTEGER).",
"3. **xInfeasible Demand**: Check if the demand values are too
high to be met with the staffing limit.",
"4. *x0bjective Function**: Ensure the cost coefficients are
correctly applied .",
"5. *xIndexing Mistakes**: Ensure all constraints use the correct
variables."
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Solver Code:

import gurobipy as gp
from gurobipy import GRB

# Create a new model
model = gp.Model (’TourismResourceAllocation’)

# Define variables
X = model.addVar(vtype=GRB.INTEGER, name="X") # Local sightseeing tours
Y = model.addVar(vtype=GRB.INTEGER, name="Y") # Adventure activities

# Define constraints

model.addConstr(X + Y <= 200, name="TotalServicesLimit")
model .addConstr (X >= 50, name="MinLocalTours")

model .addConstr(Y >= 30, name="MinAdventureActivities")

# Define objective: minimize total cost (300X + 500Y)
model .setObjective (300 * X + 500 * Y, sense=GRB.MINIMIZE)

# Optimize the model
model .optimize ()

# Check solution status and output results
if model.status == GRB.OPTIMAL:

print ("Minimum monthly operational cost: $", round(model.objVal))
else:

print ("No optimal solution found")

K.3 MAMO ComplexLP

MAMO ComplexLP

Natural Language Description:

Natural Languange description: Imagine you’re a college student aiming to balance your diet
and budget. You have identified nine different food items from your local grocery store that you
can include in your menu: Chicken, Rice, Apples, Steak, Lentils, Fish, Tofu, Cheese, and Bread.
Each of these foods provides varying amounts of protein, carbohydrates, and calories, and each
comes with its own price. Here is the detailed nutritional content and cost for each food item: -
Chicken: Gives you 15 grams of protein, 18 grams of carbohydrates, and 300 calories for $4. -
Rice: Offers 1 gram of protein, 25 grams of carbohydrates, and 267 calories for $2. - Apples:
Provide 1 gram of protein, 21 grams of carbohydrates, and 266 calories for $5. - Steak: Contains
6 grams of protein, 3 grams of carbohydrates, and 119 calories for a higher cost of $10. - Lentils:
These give 3 grams of protein, 7 grams of carbohydrates, and 166 calories for just$2. - Fish:
Delivers 17 grams of protein, 13 grams of carbohydrates, and 129 calories for $8. - Tofu: Offers
a substantial 18 grams of protein, 27 grams of carbohydrates, and 216 calories for $10. - Cheese:
Gives 12 grams of protein, 17 grams of carbohydrates, and 76 calories for $9. - Bread: Provides
2 grams of protein, a massive 30 grams of carbohydrates, and 258 calories for $4. Your daily
dietary goal is to consume at least 90 grams of protein, 105 grams of carbohydrates, and 1805
calories. Your challenge is to figure out how to meet these nutritional requirements from the
food options mentioned above while spending the least amount of money. So, what is the least
amount of money you need to spend to meet your daily dietary requirements? Please note that
the response should be a single answer, asking for only the optimal value.
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Subproblem Identification Process:

"matching_problem_type": "Diet Problem",

"reasoning": "The given problem involves selecting a mix of food
items that meet specific nutritional requirements while
minimizing cost, which is characteristic of the Diet Problem, a
standard form of linear programming introduced by George Stigler.

The aim is to decide quantities of food to meet nutritional
constraints within constraints, similar to the Diet Problem
listed.",

"belongs_to_problem_types": true

"matching_subtype": "Diet Problem with Integer Constraint",
"reasoning": "The given problem involves determining the quantity of
each food item to meet nutritional requirements while minimizing
cost. The quantities must be integers, representing whole
servings of each food item. This aligns with the ’Diet Problem
with Integer Constraint’ subtype, which includes nutritional
constraints, cost minimization, and integer servings.",
"belongs_to_subtypes": true

Get the Modeling Thoughts:

{
"Problem Type": "Diet Problem with Integer Constraint",
"Statement Thoughts":

"The Diet Problem with Integer Constraint involves determining the
quantity of each food item that should be consumed to meet
nutritional requirements while minimizing cost. The twist is that
the quantities must be integers, representing the whole number of
servings or portions of each food item. The problem is formulated
to ensure nutritional constraints (such as calories, protein,
vitamins, etc.) are satisfied, and the total cost is minimized.,

Nutritional Constraints: Ensure that the selected food items provide at
least the required amount of nutrients, such as calories, proteins,
fats, vitamins, and minerals.,

Cost Minimization: The total cost of the selected food items should be
minimized while meeting nutritional constraints.,

Integer Servings: The servings of food items must be integer values,
representing realistic portions of each food item.",

"Modeling Thoughts": [

"[Define Decision Variables] Define decision variables that
represent the integer quantities of servings for each food item
n
. 3
"[Define Objective Function] Minimize the total cost of the selected
food items.",
"[Define Nutritional Constraints] Ensure that the nutrient intake
meets or exceeds the minimum required levels for each nutrient.",
"[Implement Integer Constraints] Ensure integer constraints for the
serving sizes of each food item in the model.",
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"[Comprehensive Verification] Check the common errors in the
optimization model.",
"[Write Gurobi Code] Write the Gurobi code to solve the problem.",

"[Gurobi Code]:\n‘‘‘python\nimport json\nimport numpy as np\nimport
math\nimport gurobipy as gp\nfrom gurobipy import GRB\n\n# Create
a new model\nmodel = gp.Model(’model’)\n\n# define parameters\n\
n# define variables\n\n# define constraints\n\n# define objective
\n\n# Optimize the model\nmodel.optimize()\nstatus = model.
status\n\nobj_val = None\n# Check whether the model is infeasible
, has infinite solutions, or has an optimal solution\nif status
== gp.GRB.INFEASIBLE:\n obj_val = \"infeasible\"\nelif status ==
gp.GRB.UNBOUNDED: \n obj_val = \"unbounded\"\nelif status == gp.
GRB.OPTIMAL:\n obj_val = model.objVal\ntime = model.TimeLimit\
nprint (\"Timecost\":,time) \nprint (\"Objective Value:\", obj_val)\

(1
n n

s
"[error_tips]":
"Ensure decision variables are defined as integers.",
"Confirm that all nutritional requirements are modeled correctly
and constraints are set accurately.",
"Review that cost coefficients are correctly assigned in the
objective function.",

"gurobi_example": "Example not provided since specific problem
data is omitted; follow reasoning flow for formulation
specifics."

]
}
Solver Code:

import gurobipy as gp
from gurobipy import GRB

# Create a new model
model = gp.Model(’DietProblem’)

# Define the food items and their nutritional content and cost

foods = [’Chicken’, ’Rice’, ’Apples’, ’Steak’, ’Lentils’, ’Fish’, ’Tofu
>, Cheese’, ’Bread’]

protein = [15, 1, 1, 6, 3, 17, 18, 12, 2]

carbs = [18, 25, 21, 3, 7, 13, 27, 17, 30]

calories = [300, 267, 266, 119, 166, 129, 216, 76, 258]

cost = [4, 2, 5, 10, 2, 8, 10, 9, 4]

# Define the nutritional requirements
required_protein = 90

required_carbs = 105
required_calories = 1805

# Define decision variables for the servings of each food item
x = model.addVars(foods, vtype=GRB.INTEGER, name="x"

# Define the objective function: Minimize the total cost
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model .setObjective(gp.quicksum(cost[i] * x[foods[i]] for i in range(len(
foods))), GRB.MINIMIZE)

# Define nutritional constraints

model.addConstr(gp.quicksum(protein[i] * x[foods[i]] for i in range(len(
foods))) >= required_protein, "ProteinConstraint")

model.addConstr(gp.quicksum(carbs[i] * x[foods[i]] for i in range(len(
foods))) >= required_carbs, "CarbsConstraint")

model.addConstr(gp.quicksum(calories[i] * x[foods[i]] for i in range(len
(foods))) >= required_calories, "CaloriesConstraint")

# Optimize the model
model .optimize ()

# Extract the optimal value
if model.status == GRB.OPTIMAL:
print("Objective Value:", model.objVal)
else:
print("No optimal solution found.")

MAMO ComplexLLP

Natural Language Description:

Consider a courier company that needs to deliver packages to five distinct cities, denoted as E, F,
G, H, and I. The courier can start from any city, but they must visit each city only once and then
return to the starting point. The aim is to find a route that would minimize the total delivery
cost. The cost might include factors like distance, fuel expenses, or traffic conditions. Here’s an
outline of the delivery cost between these cities: The cost to deliver from City E to F is 50 units,
to G is 48 units, to H is 99 units, and to I is 91 units. From City F, it costs 50 units to deliver to E,
57 units to deliver to G, 84 units to H, and 72 units to I. For City G, the delivery costs are 48
units to E, 57 units to F, 46 units to H, and 86 units to L. If the package starts from City H, it costs
99 units to deliver to E, 84 units to F, 46 units to G, and 29 units to . Lastly, from City I, it costs
91 units to deliver to E, 72 units to F, 86 units to G, and 29 units to H. What is the least total
delivery cost for the courier to visit each city exactly once and then return to the starting point?

Subproblem Identification Process:

"matching_problem_type": "TSP Problem",

"reasoning": "The specific problem described involves finding the
least cost route for a courier to visit each city once before
returning to the starting point, which aligns with the Travelling

Salesman Problem (TSP). The objective of minimizing the total
delivery cost fits the criteria for a TSP, one of the defined
problem types.",

"belongs_to_problem_types": true

Get the Modeling Thoughts:
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"Problem Type": "TSP Problem",
"Statement Thoughts":
"The Traveling Salesman Problem (TSP) involves finding the shortest
possible route that visits each city exactly once and returns to the
original city. The problem is represented as a matrix of distances
between cities. It is an NP-hard problem in combinatorial
optimization, important for logistics, planning, and routing.,
Tour Constraints: Each city must be visited exactly once, forming a
single continuous tour.",
Subtour Elimination: Constraints are necessary to prevent the formation
of disconnected subtours (mini-tours not connected to the main tour)
n
"Modeling Thoughts": [

"[Define Decision Variables] Define binary decision variables for
each edge \\( x_{ij} \\) indicating if the edge is used in the
tour.",

"[Define Objective Function] Minimize the sum of distances for
chosen edges.",

"[Define Degree Constraints] Ensure each city is entered and exited
exactly once.",

"[Define Subtour Elimination Constraints] Implement constraints,
such as MTZ constraints, to enforce single tour formation.",

"[Comprehensive Verification] Check the model for common errors such

as incorrect indexing or missing constraints.",

"[Write Gurobi Code] Implement the model using Gurobi to solve the
TSP."

>[ Gurobi Code], ’¢‘‘python’, ’import json’, ’import numpy as np’, °’
import math’, ’import gurobipy as gp’, ’from gurobipy import GRB
>, ’# Create a new model’, "model = gp.Model(’model’)", ’#

define parameters’, ’# define variables’, ’# define constraints
>, ’# define objective ’, ’# Optimize the model’, ’model.
optimize()’, ’status = model.status’, ’obj_val = None’, ’# Check

whether the model is infeasible, has infinite solutions, or has
an optimal solution’, ’if status == gp.GRB.INFEASIBLE:’, °’
obj_val = "infeasible"’, ’elif status == gp.GRB.UNBOUNDED:’, ’

obj_val = "unbounded"’, ’elif status == gp.GRB.OPTIMAL:’, °’
obj_val = model.objVal’, ’time = model.TimeLimit’, Jprint ("
Timecost":,time)’, ’print("Objective Value:", obj_val)?’, 2¢¢¢’,

"[Common Errors to Avoid]: \nl. Incorrect Subtour Elimination:

Ensure MTZ constraints exclude the starting city and are applied
to correct indices. \n2. Indexing Mistakes: Use consistent O-

based or 1-based indexing for cities. \n3. Self-Loops: Explicitly
disable \\( x_{ii} \\) variables. \n4. Bounds on MTZ Variables:
Set \\( u_i \\) bounds correctly (\\( 1 \\leq u_i \\leq n-1 \\)).
\n5. Objective Function: Ensure distances are correctly paired

with \\( x_{ij} \\) and exclude \\( i = j \\)."

Solver Code:

import gurobipy as gp
from gurobipy import GRB

55



# Number of cities
n=>5

# Distance matrix

dist = [
[0, 50, 48, 99, 91], # From City E
[50, 0, 57, 84, 72], # From City F
[48, 57, 0, 46, 86], # From City G
[99, 84, 46, 0, 29], # From City H
[91, 72, 86, 29, 0] # From City I

]

# Create model
m = gp.Model (’TSP?)

# Variables: x[i,j] = 1 if edge i->j is used
x = m.addVars(n, n, vtype=GRB.BINARY, name=’x’)
for i in range(n):

x[i,i].UB = O # Disable self-loops

# Assignment constraints
for i in range(n):
m.addConstr(gp.quicksum(x[i,j] for j in range(n) if j != i) == 1,
name=f"out_{i}")
m.addConstr(gp.quicksum(x[j,i] for j in range(n) if j != i) == 1,
name=f"in_{i}")

# MTZ variables and constraints for subtour elimination
u = m.addVars(range(1, n), 1b=1, ub=n-1, vtype=GRB.CONTINUQUS, name=’u’)

for i in range(l, n):
for j in range(1l, n):

if i 1= j:
m.addConstr(uli]l - ulj] + n * x[i,j] <= n - 1, name=f"mtz_{i}
i

# Objective function: Minimize the total delivery cost

obj = gp.quicksum(x[i,j] * dist[i][j] for i in range(n) for j in range(n
) if i !'= 3)

m.setObjective(obj, GRB.MINIMIZE)

# Solve the model
m.optimize ()

# Extract and print the optimal tour and its cost
if m.status == GRB.OPTIMAL:
print (’Optimal tour:’)
current = 0
tour = [current]
visited = set([current])
while len(visited) < n:
for j in range(n):
if j != current and x[current,j].X > 0.5:
tour.append(j)
current = j
visited.add(current)
break
tour.append(0) # Return to start
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print(’ -> ’.join(map(str, tour)))

print(f’Total delivery cost: {m.0bjVal}’)
else:

print (°No solution found.’)

K.4 IndustryOR

IndustryOR

Natural Language Description:

The number of salespeople required at a 24-hour convenience store in different time periods is as
follows: 2:00-6:00 - 10 people, 6:00-10:00 - 15 people, 10:00-14:00 - 25 people, 14:00-18:00 -
20 people, 18:00-22:00 - 18 people, 22:00-2:00 - 12 people. Salespeople start their shifts at 2:00,
6:00, 10:00, 14:00, 18:00, and 22:00, working continuously for 8 hours. Determine the minimum
number of salespeople needed to meet the requirements.

Subproblem Identification Process:

"matching_problem_type": "Staff Rostering Problem",
"reasoning": "The problem involves determining the minimum number of
salespeople needed to meet varying demand across different time

periods, with specific shift start times and durations. This
aligns with the ’Staff Rostering Problem’, which deals with
scheduling staff to meet demand while minimizing costs or the
number of staff.",

"belongs_to_problem_types": true

Get the Modeling Thoughts:

{

"Problem Type": "Staff Rostering Problem",

"Statement Thoughts": {

"Assign shifts to employees over a scheduling period while satisfying
labor regulations, employee availability, and operational coverage
requirements. This problem is common in industries such as
healthcare, retail, and hospitality, where shift-based workforces
are essential. Key features include handling multiple shift types (
e.g., morning, evening, night), accommodating employee preferences
and time-off requests, ensuring adequate staffing levels, and
complying with legal and contractual obligations. The goal is to
create a feasible and equitable schedule that balances
organizational needs with employee well-being.,

Labor Regulations Compliance: Shifts must comply with labor laws,
including maximum consecutive working days, mandatory rest periods
between shifts, and weekly working hour limits.,

Employee Availability:"Employees cannot be assigned to shifts during
their declared unavailability (e.g., time-off, preferred days off)
or overlapping with existing assignments.",
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Operational Coverage Requirements: Each shift must meet a minimum
staffing level, which may vary by shift type, day, or role (e.g.,
peak hours require more employees).,

Shift Sequence Restrictions: Employees must have sufficient rest between

consecutive shifts (e.g., a minimum gap of 12 hours after a night
shift).,

Contractual Work Hours: Assignments must respect employment contracts,
including part-time/full-time distinctions and maximum allowable
hours per pay period.",

Fair Shift Distribution: Shifts must be distributed equitably among
employees to avoid overburdening individuals, considering
preferences, seniority, and historical assignments.",

Skill and Role Matching: Employees must possess required certifications
or qualifications for specialized shifts (e.g., a licensed
pharmacist for medication dispensing shifts).",

"Modeling Thoughts": [

"[Define Decision Variables] Create binary variables for employee-
shift-day assignments",
"[Define Objective Function] Minimize understaffing/overstaffing
penalties or maximize employee preference satisfaction",
"[Define Coverage Constraints] Ensure minimum required staff per
shift",

"[Define Availability Constraints] Respect employee unavailability
days",

"[Define Legal Constraints] Enforce maximum consecutive shifts and
minimum rest periods",

"[Define Pattern Constraints] Prevent prohibited shift sequences",

"[Comprehensive Verification] Validate constraint logic and variable

indexing",
"[Write Gurobi Code] Implement model using Gurobi API"
"[ Gurobi Codel], ’‘‘‘python’, ’import json’, ’import numpy as np’, ’

import math’, ’import gurobipy as gp’, ’from gurobipy import GRB

>, ’# Create a new model’, "model = gp.Model(’model’)", ’# define

parameters’, ’# define variables’, ’# define constraints’, ’#

define objective ’, ’# Optimize the model’, ’model.optimize()’, ’

status = model.status’, ’obj_val = None’, ’# Check whether the

model is infeasible, has infinite solutions, or has an optimal

solution’, ’if status == gp.GRB.INFEASIBLE:’, ’ obj_val = "

infeasible"’, ’elif status == gp.GRB.UNBOUNDED:’, ’ obj_val = "

unbounded"’, ’elif status == gp.GRB.OPTIMAL:’, ’ obj_val = model.

objVal’, ’time = model.TimeLimit’, ’print("Timecost":,time)’, °

print("Objective Value:", obj_val)’, 2¢¢<>",

"[Common Errors to Avoid:]",

"1. x*Incorrect Indexing**: Mixing up employee/day/shift
dimensions in variables",

"2. *xMissed Constraints**: Forgetting to enforce minimum rest
periods between shifts",

"3. *x0verlooking Part-Time Rules**: Not accounting for maximum
weekly hours",

"4, xxInefficient Modeling**: Creating excessive variables for
simple patterns",

"5. *xData Mismatches**: Alignment between availability data and
variable indices",

"6. xx0bjective Imbalance**: Not properly scaling understaffing/
overstaffing penalties"
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Solver Code:

import gurobipy as gp
from gurobipy import GRB

# Create a new model
model = gp.Model(’ShiftScheduling’)

# Time periods and their requirements

time_periods = [?2:00-6:00’, ’6:00-10:00’, ’10:00-14:00’, ’14:00-18:00’,
’18:00-22:007, ’22:00-2:00°]

requirements = [10, 15, 25, 20, 18, 12]

shift_starts = [0, 1, 2, 3, 4, 5] # 0:2:00, 1:6:00, etc.

# Decision variables: number of people starting at each shift
x = model.addVars(6, vtype=GRB.INTEGER, name="x")

# Objective: minimize total number of employees
model .setObjective(gp.quicksum(x[i] for i in range(6)), GRB.MINIMIZE)

# Coverage constraints

# Each time period must be covered by people who started in the current
or previous 3 shifts

# (since each shift covers 4 time periods)

model.addConstr (x[0] + x[5] >= requirements[0], "Coverage_0")

model.addConstr(x[0] + x[1] >= requirements[1], "Coverage_1")

model.addConstr(x[1] + x[2] >= requirements[2], "Coverage_2")

model.addConstr(x[2] + x[3] >= requirements[3], "Coverage_3")

model .addConstr(x[3] + x[4] >= requirements[4], "Coverage_4")

model .addConstr(x[4] + x[5] >= requirements([5], "Coverage_5")

# Optimize the model
model .optimize ()

# Output the solution
if model.status == GRB.OPTIMAL:
print (f"Minimum number of salespeople needed: {int(model.objVal)l}")
print("Shift assignments:")
for i in range(6):
print(f"Start at {time_periods[i].split(’-’)[0]}: {int(x[i].x)}
people")
else:
print ("No optimal solution found")

IndustryOR

Natural Language Description:

A wealthy noble passed away, leaving the following inheritance:

- A painting by Caillebotte: $25000

- A bust of Diocletian: $5000

- A Yuan dynasty Chinese vase: $20000

- A 911 Porsche: $40000

- Three diamonds: each $12000

- A Louis XV sofa: $3000

- Two very precious Jack Russell racing dogs: each $3000 (will stipulates they must not be
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separated)

- A sculpture from 200 AD: $10000

- A sailing boat: $15000

- A Harley Davidson motorcycle: $10000

- A piece of furniture once belonging to Cavour: $13000

which must be shared between two sons. How to formulate a mathematical program
and solve it using COPTPY to minimize the difference in value between the two parts?

Subproblem Identification Process:

{

"matching_problem_type": "Knapsack Problem",

"reasoning": "The problem involves dividing a set of items (
inheritance) into two parts (sons) with the objective of
minimizing the difference in value between the two parts. This is

a classic example of the Knapsack Problem, specifically a
partition problem which is a variant of the Knapsack Problem
where the goal is to divide items into two subsets with equal or
as equal as possible sums.",

"belongs_to_problem_types": true

X
{

"matching_subtype": "subtype not find",

"reasoning": "The input problem is about dividing inheritance items
between two sons to minimize the difference in value, which is a
form of the Partition Problem, a special case of the Knapsack
Problem. The provided subtype ’Integer Linear Programming (ILP)
with Knapsack Constraints’ is about selecting optimal numbers of
AT representatives to meet demand constraints, which is not
relevant to the inheritance division problem.",

"belongs_to_subtypes": false

X

Get the Modeling Thoughts:

{

"Problem Type": "Knapsack Problem",

"Statement Thoughts":

"The city’s planning department aims to maximize the total capacity
increase of 4 major traffic intersections (A, B, C, D) by selecting
expansion projects under a given budget. Each intersection has
specific expansion options with associated costs and capacity
increases. The problem is modeled as a 0-1 Knapsack Problem, where
each expansion is treated as an item with a weight (cost) and value
(capacity increase), and the goal is to select a subset of items to
maximize the total value without exceeding the budget.,

Budget Limitation: The total cost of all selected expansions must not
exceed the allocated budget.",

Binary Selection: Each expansion project for an intersection is either
fully selected or not selected; partial or fractional expansions are

not allowed,
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Non-negative Costs and Capacities: The cost and capacity increase
associated with each expansion must be non-negative values.,
Mutual Exclusivity per Intersection: At most one expansion project can
be selected per intersection (if multiple options exist for a single
intersection).",
"Modeling Thoughts": [

"[Define Decision Variables] Integer variables for the number of
expansions for each intersection.",

"[Define Objective Function] Maximize the total capacity increase:
200x_A + 300x_B + 400x_C + 500x_D.",

"[Define Constraints] Budget constraint: 100x_A + 150x_B + 200x_C +
250x_D \u2264 500. Total capacity requirement: 200x_A + 300x_B +
400x_C + 500x_D \u2265 1000.",

"[Comprehensive Verification] Check variable bounds, constraint
coefficients, and objective direction.",

"[Write Gurobi Code] Implement model using Gurobi’s Python API."

"### Gurobi Code:\n‘‘‘python\nimport json\nimport numpy as np\
nimport math\nimport gurobipy as gp\nfrom gurobipy import GRB\n\n
# Create a new model\nmodel = gp.Model(’model’)\n\n# define
parameters\n\n# define variables\n\n# define constraints\n\n#
define objective \n\n# Optimize the model\nmodel.optimize()\
nstatus = model.status\n\nobj_val = None\n# Check whether the
model is infeasible, has infinite solutions, or has an optimal
solution\nif status == gp.GRB.INFEASIBLE:\n obj_val = \"
infeasible\"\nelif status == gp.GRB.UNBOUNDED:\n obj_val = \"
unbounded\"\nelif status == gp.GRB.OPTIMAL:\n obj_val = model.
objVal\ntime = model.TimeLimit\nprint(\"Timecost\":,time)\nprint
(\"Objective Value:\", obj_val)\n¢‘‘",

"### Common Errors to Avoid:\nl. **Incorrect Variable Type**: Using
CONTINUQUS instead of INTEGER for the number of expansions.\n2.
*xMissing Constraints**: Forgetting to add the budget constraint
or the capacity requirement.\n3. **0bjective Directionxx*:
Minimizing instead of maximizing the total capacity increase.\n4.

**Constraint Formulation**: Incorrectly formulating the budget
or capacity constraints.\nb5. **Non-negativity**: Forgetting to
set lower bounds on variables."

Solver Code:

import gurobipy as gp
from gurobipy import GRB

# Create a new model
model = gp.Model(’inheritance_division’)

# Items and their values (must keep dogs together)
items = [

("Painting", 25000),

("Bust", 5000),

("Vase", 20000),

("Porsche", 40000),

("Diamondl", 12000),
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("Diamond2", 12000),
("Diamond3", 12000),
("Sofa", 3000),
("Dogs", 6000), # Combined value since they must stay together
("Sculpture", 10000),
("Boat", 15000),
("Motorcycle", 10000),
("Furniture", 13000)
]

# Binary variables for each item (1 if assigned to sonl, 0 if to son2)
x = model.addVars(len(items), vtype=GRB.BINARY, name="assign")

# Difference variable to minimize
diff = model.addVar(1lb=0, vtype=GRB.CONTINUOUS, name="difference")

# Objective: minimize the difference
model.setObjective(diff, GRB.MINIMIZE)

# Calculate total values for each son

sonl_value = gp.quicksum(x[i] * items[i] [1] for i in range(len(items)))

son2_value = gp.quicksum((1 - x[i]) * items[i] [1] for i in range(len(
items)))

# Constraint: difference is >= absolute difference between son values
model .addConstr(diff >= sonl_value - son2_value)
model.addConstr(diff >= son2_value - sonl_value)

# Optimize the model
model .optimize ()

# Check solution status
if model.status == GRB.OPTIMAL:
print("Optimal solution found")
print (f"Minimum difference: ${model.objVal:.2f}")

print("\nSon 1 receives:")
sonl_total = 0O
for i in range(len(items)):
if x[i].X > 0.5:
print(f"- {items[i] [0]}: ${items[i] [1]1}")
sonl_total += items[i][1]

print ("\nSon 2 receives:")
son2_total = 0
for i in range(len(items)):
if x[i].X < 0.5:
print(f"- {items[i] [0]}: ${items[i] [11}")
son2_total += items[i] [1]

print(£"\nSon 1 total: ${soni_totall}")
print(f"Son 2 total: ${son2_totall}")
elif model.status == GRB.INFEASIBLE:
print("Model is infeasible")
elif model.status == GRB.UNBOUNDED:
print("Model is unbounded")
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K.5 ComplexOR

ComplexOR

Natural Language Description:

This problem involves optimizing the number of raw rolls cut from a stock roll to meet specific
width orders using various cutting patterns. This is a cutting stock problem. Given a roll of
width RollWidth and a set of NumWidths widths Widths to be cut. Each width ¢ has a certain
number of orders Orders_i. There are NumPatterns patterns and each pattern j has a certain
number of rolls of each width « NumRollsWidthPattern{:, j}. The problem aims to minimize
the total number of raw rolls cut. It is constrained that for each width 7, the total number of
rolls cut meets the total orders. The decision to be made concerns how to decide the number
of rolls cut using each pattern 7. The number of widths to be cut is 5. The total number of
patterns is 2. The set of widths to be cut from the roll is [2, 3, 5]. The width of the raw roll is
10. The number of orders for each width is [4, 2, 2]. The number of rolls of each width ¢ in
each pattern j is [[1, 2, 0], [0, 0, 1]]. Number of rolls cut for each width is non-negative. Total
number of rolls cut for each width ¢ must meet or exceed Orders_i. Number of rolls cut using
each pattern 7 must be non-negative. Minimize the total number of raw rolls cut to meet the orders.

Subproblem Identification Process:

"matching_problem_type": "Cutting Stock Problem",

"reasoning": "The specific problem described involves optimizing the
cutting of raw rolls to meet specific width orders using various
cutting patterns. This is a classic example of a Cutting Stock

Problem, which is explicitly listed in the provided problem types
. The objective and constraints of minimizing raw material usage
while satisfying order requirements align directly with the
characteristics of the Cutting Stock Problem.",

"belongs_to_problem_types": true

Get the Modeling Thoughts:

{

"Problem Type": "Cutting Stock Problem",

"Statement Thoughts":

"The Cutting Stock Problem is a combinatorial optimization problem
commonly encountered in manufacturing and logistics. It involves
determining the optimal way to cut raw material rolls of fixed
length into smaller pieces of specified lengths and quantities
required by customers, with the objective of minimizing the total
number of rolls used and thereby reducing waste. The challenge lies

in efficiently allocating the cuts to satisfy all customer demands
while adhering to the physical limitations of the raw material
rolls,

Roll Capacity: Each raw material roll has a fixed length, and the total
length of all pieces cut from a single roll must not exceed this
length.,

Demand Satisfaction: The total number of each type of piece produced
across all rolls must exactly match the customer’s specified demand
for that type.,
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Integrality Constraint: The number of pieces of each type cut from a
roll and the number of rolls used must be non-negative integers, as
partial pieces or partial rolls are not feasible.",

"Modeling Thoughts": [

"[Define Decision Variables] Define integer variables for the number

of times each cutting pattern is used.",

"[Define Objective Function] Minimize the total number of raw
material rolls used.",

"[Define Demand Constraints] Ensure each customer’s demand is met by

the sum of pieces from all patterms.",

"[Define Pattern Validity] Ensure each cutting pattern does not
exceed the raw material length.",

" [Comprehensive Verification] Check for valid patterns, correct
demand calculations, and integer constraints.",

"[Write Gurobi Code] Implement the model using Gurobi with column
generation or predefined patterns."

"### Gurobi Code:\n‘‘‘python\nimport json\nimport numpy as np\
nimport math\nimport gurobipy as gp\nfrom gurobipy import GRB\n\n
# Create a new model\nmodel = gp.Model(’model’)\n\n# define
parameters\n\n# define variables\n\n# define constraints\n\n#
define objective \n\n# Optimize the model\nmodel.optimize()\
nstatus = model.status\n\nobj_val = None\n# Check whether the
model is infeasible, has infinite solutions, or has an optimal
solution\nif status == gp.GRB.INFEASIBLE:\n obj_val = \"
infeasible\"\nelif status == gp.GRB.UNBOUNDED:\n obj_val = \"
unbounded\"\nelif status == gp.GRB.OPTIMAL:\n obj_val = model.
objVal\ntime = model.TimeLimit\nprint(\"Timecost\":,time)\nprint
(\"Objective Value:\", obj_val)\n¢‘‘",

"### Common Errors to Avoid:\nl. **Invalid Patterns**: Ensure each
pattern’s total length does not exceed the raw material length.\
n2. *xNon-Integer Variables**: Use integer variables for the
number of rolls.\n3. **Incorrect Demand Calculation**: Verify
that each pattern’s contribution to demand is correctly
multiplied by the number of rolls.\n4. *xInsufficient Patterns*x*:

Predefined patterns may not cover optimal solutions; consider
column generation for better results.\n5. **Indexing Mistakes*x*:
Align pattern indices correctly with sizes in constraints."

Solver Code:

import gurobipy as gp
from gurobipy import GRB

# Define data

roll_width = 10

widths = [2, 3, 5]

orders = [4, 2, 2]

num_patterns = 2

patterns = [[1, 2, 0], [0, O, 1]]
num_widths = len(widths)

# Create a new model
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model = gp.Model(’CuttingStock’)

# Define variables

# Integer variable y_j representing the number of times pattern j is
used

y = model.addVars(num_patterns, vtype=GRB.INTEGER, name="y")

# Set objective

# Minimize the total number of raw rolls used

model .setObjective(gp.quicksum(y[j] for j in range(num_patterns)), GRB.
MINIMIZE)

# Define constraints
# Demand satisfaction constraint
for i in range(num_widths):
model .addConstr (
gp.quicksum(patterns[j][i] * y[j] for j in range(num_patterns))
>= orders[i],
name=f"demand_{i}"

)
# Pattern validity is inherent in the input and problem formulation

# Optimize the model
model .optimize ()

# Check the solution status and print the result
if model.status == GRB.OPTIMAL:
print("Optimal Total Number 0f Raw Rolls Cut:", model.objVal)
for j in range(num_patterns):
print (f"Number of times pattern {j} is used: {y[jl.x}")
elif model.status == GRB.INFEASIBLE:
print("Model is infeasible")
elif model.status == GRB.UNBOUNDED:
print("Model is unbounded")
else:
print ("Optimization was stopped with status", model.status)

ComplexOR

Natural Language Description:

Capacitated facility location problems focus on determining the optimal placement of a
certain number of facilities to serve a set number of customers in a way that minimizes
the total cost, considering fixed costs, capacities, customer demands, and transport costs.
Capacitated facility location problems deal with locating NumberOfFacilities facilities to serve
NumberOfCustomers customers, at minimum total cost. Considering potential facility locations
and customer zones as fixed points in a network, each facility has a fixed FacilityFixedCost and a
FacilityCapacity. Furthermore, there exists a CustomerDemand for each customer zone, and
a FacilityToCustomerTransportCost representing the cost of transport between facilities and
customer zones. The number of potential facilities that can be established is 10. The number
of customer zones to be served is 20. The fixed cost associated with establishing a facility is
[8517, 5068, 9433, 6127, 6033, 5966, 7762, 9406, 6602, 7040]. The cost of transporting goods
from each facility to each customer zone is [[80, 94, 44, 51, 190, 44, 129, 178, 129, 91, 172,
119, 177, 150, 90, 51, 53, 97, 184, 87], [139, 33, 104, 135, 50, 176, 97, 121, 47, 29, 186, 163,
149, 108, 156, 169, 100, 160, 153, 85], [153, 36, 18, 170, 18, 181, 178, 68, 171, 106, 159,
110, 21, 106, 91, 29, 144, 140, 155, 116], [103, 59, 78, 125, 14, 11, 152, 95, 76, 173, 36, 148,
75, 132, 59, 153, 113, 74, 185, 71], [193, 186, 130, 145, 114, 150, 33, 154, 20, 75, 103, 30
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137, 131, 167, 32, 53, 150, 176, 166], [159, 130, 156, 65, 36, 59, 199, 124, 104, 72, 180, 73,
43, 152, 143, 90, 161, 65, 172, 141], [173, 121, 110, 127, 22, 159, 195, 137, 47, 10, 87, 11,
154, 66, 126, 60, 152, 54, 20, 25], [181, 34, 186, 152, 109, 195, 133, 198, 30, 65, 69, 19, 109,
143, 108, 196, 59, 133, 10, 123], [82, 113, 147, 21, 88, 24, 38, 16, 70, 122, 148, 192, 116,
108, 18, 20, 143, 18, 116, 142], [176, 170, 87, 91, 195, 183, 124, 89, 72, 97, 89, 23, 45, 196,
97, 27, 83, 81, 171, 148]]. The capacity of each facility, which limits the amount of goods
the facility can handle or produce is [301, 291, 453, 472, 492, 375, 493, 297, 331, 246]. The
demand of each customer zone that must be met by the facilities is [117, 86, 69, 53, 110, 74,
136, 140, 126, 79, 54, 86, 114, 76, 136, 73, 144, 51, 53, 120]. Each facility has a maximum
capacity of FacilityCapacity. Total number of facilities to be located is NumberOfFacilities. Each
customer zone is served by at least one facility and its demand must be met. Total output for
each facility cannot exceed its capacity. The number of facilities and customers is fixed and non-
negative. Minimize the total cost of locating facilities and transporting goods to customer zones.

Subproblem Identification Process:

"matching_problem_type": "Facility Location-Allocation Problem",

"reasoning": "The specific problem described is a capacitated
facility location problem, which involves determining the optimal
placement of facilities to serve customers while minimizing
costs. This aligns with the ’Facility Location-Allocation Problem
> from the provided list, as it involves decisions about where to
locate facilities and how to allocate resources to meet customer
demands.",

"belongs_to_problem_types": true

"matching_subtype": "Capacitated Facility Location Problem",

"reasoning": "The input problem matches the description of the ’
Capacitated Facility Location Problem’ as it involves minimizing
the total costs including fixed costs and transportation costs
while considering the capacities of facilities and customer
demands. It meets the constraints of Demand Satisfaction,
Facility Capacity Constraint, Binary Facility Opening, Non-
Negative Allocation, and City Demand Allocation, which align
closely with those described under the ’Capacitated Facility
Location Problem’.",

"belongs_to_subtypes": true

"matching_subtype": "Capacitated Facility Location Problem with
Distances",

"reasoning": "The input problem involves determining the optimal
placement of facilities to serve customer zones while minimizing
total costs, including fixed facility costs and transportation
costs between facilities and customer zones. This aligns with the

description of the ’Capacitated Facility Location Problem with
Distances’ subtype, which focuses on minimizing transportation
costs proportional to distances between facilities and regions,
while respecting capacity constraints.",

"belongs_to_subtypes": true
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Get the Modeling Thoughts:

{

"Problem Type": "Capacitated Facility Location Problem with Distances",

"Statement Thoughts":

"The Capacitated Facility Location Problem with Distances is a
specialized version of the Facility Location-Allocation Problem
where each facility has a limited capacity for service, and the
allocation of customers to facilities involves transportation costs
proportional to the distance between them. The goal is to determine
the optimal set of facilities to open and the allocation of customer

demands to these facilities in a way that minimizes the total cost,
which includes the construction costs of facilities and the
transportation costs associated with the distance, while respecting
capacity constraints.,

Demand Satisfaction with Distance Costs: Each region’s population demand

must be fully met with the consideration of minimizing
transportation costs, which are proportional to the distance between
facilities and regions.",

Facility Capacity with Population Limits: The sum of the populations
allocated to a facility must not exceed its maximum response
capacity.,

Facility Activation: Facilities must either be open or closed. Only open

facilities incur construction costs and can be used for serving
regions.,

Exclusive Assignment: Each region must be fully served by one open
facility to prevent splitting of demand across multiple facilities.",

"Moldeing Thoughts": [

"[Define Decision Variables] Define binary decision variables to
determine if a facility is opened and continuous variables to
represent the population served by facilities.",

"[Define Objective Function] Minimize total cost by summing
construction costs and distance-based response time costs.",
"[Define Demand Constraints] Each region’s population demand must be

fully met.",

"[Define Capacity Constraints] Ensure each facility does not exceed
its capacity, using binary variables to enforce activation.",

"[Comprehensive Verification] Check common errors in the
optimization model, such as incorrect indexing or capacity
constraints.",

"[Write Gurobi Code] Write the Gurobi code to solve the problem."

"[Gurobi Code]:\n‘°‘‘python\nimport json\nimport numpy as np\nimport
math\nimport gurobipy as gp\nfrom gurobipy import GRB\n\n# Create

a new model\nmodel = gp.Model(’model’)\n\n# define parameters\n\
n# define variables\n\n# define constraints\n\n# define objective
\n\n# Optimize the model\nmodel.optimize()\nstatus = model.status
\n\nobj_val = None\n# Check whether the model is infeasible, has
infinite solutions, or has an optimal solution\nif status == gp.
GRB.INFEASIBLE:\n obj_val = ’infeasible’\nelif status == gp.GRB.
UNBOUNDED:\n obj_val = ’unbounded’\nelif status == gp.GRB.OPTIMAL
:\n obj_val = model.objVal\ntime = model.TimeLimit\nprint(’
Timecost:’, time)\nprint(’0bjective Value:’, obj_val)\n‘¢‘",

"[ommon Errors to Avoid]:\nl. #*Incorrect Constraints#**: Ensure
population demand constraints align with assigned populations.\n2

**Capacity Constraints Misapplication**: Apply constraints
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correctly with binary variables enforcing activation.\n3. **
Parameter Indexing**: Accurately align index references for
facilities, distances, and regions.\n4. **Objective Calculation
Mistakes**: Properly associate distances with population served

by facilities.\n5. **Binary Activation Variables**: Ensure binary
variables correctly regulate facility activation."

Solver Code:

import gurobipy as gp
from gurobipy import GRB

# Parameters
num_facilities = 10
num_customers = 20
facility_fixed_cost = [8517, 5068, 9433, 6127, 6033, 5966, 7762, 9406,
6602, 7040]
transport_cost = [
[80, 94, 44, 51, 190, 44, 129, 178, 129, 91, 172, 119, 177, 150, 90,
51, 53, 97, 184, 871,
[139, 33, 104, 135, 50, 176, 97, 121, 47, 29, 186, 163, 149, 108,
156, 169, 100, 160, 153, 85],
[153, 36, 18, 170, 18, 181, 178, 68, 171, 106, 159, 110, 21, 106, 91,
29, 144, 140, 155, 116],
[103, 59, 78, 125, 14, 11, 152, 95, 76, 173, 36, 148, 75, 132, 59,
153, 113, 74, 185, 71],
[193, 186, 130, 145, 114, 150, 33, 154, 20, 75, 103, 30, 137, 131,
167, 32, 53, 150, 176, 166],
[159, 130, 156, 65, 36, 59, 199, 124, 104, 72, 180, 73, 43, 152, 143,
90, 161, 65, 172, 1417,
[173, 121, 110, 127, 22, 159, 195, 137, 47, 10, 87, 11, 154, 66, 126,
60, 152, 54, 20, 25],
[181, 34, 186, 152, 109, 195, 133, 198, 30, 65, 69, 19, 109, 143,
108, 196, 59, 133, 10, 123],
[82, 113, 147, 21, 88, 24, 38, 16, 70, 122, 148, 192, 116, 108, 18,
20, 143, 18, 116, 142],
[176, 170, 87, 91, 195, 183, 124, 89, 72, 97, 89, 23, 45, 196, 97,
27, 83, 81, 171, 148]
]
facility_capacity = [301, 291, 453, 472, 492, 375, 493, 297, 331, 246]
customer_demand = [117, 86, 69, 53, 110, 74, 136, 140, 126, 79, 54, 86,
114, 76, 136, 73, 144, 51, 53, 120]

# Create a new model
model = gp.Model(’Capacitated Facility Location’)

# Decision Variables
x = model.addVars(num_facilities, num_customers, vtype=GRB.CONTINUQOUS,
name=’x’)

y = model.addVars(num_facilities, vtype=GRB.BINARY, name=’y’)

# Objective Function: Minimize total cost
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model .setObjective(
gp.quicksum(facility_fixed_cost[i] * y[i] for i in range(
num_facilities)) +
gp.quicksum(transport_cost[i] [j] * x[i, j] for i in range(
num_facilities) for j in range(num_customers)),
GRB.MINIMIZE
)

# Constraints
# Demand Satisfaction
for j in range(num_customers) :
model.addConstr(gp.quicksum(x[i, j] for i in range(num_facilities))
== customer_demand[j])

# Capacity Limits
for i in range(num_facilities):
model.addConstr(gp.quicksum(x[i, j] for j in range(num_customers))
<= facility_capacityl[i] * y[i])

# Non-negativity
for i in range(num_facilities):
for j in range(num_customers) :
model.addConstr(x[i, jl >= 0)

# Optimize the model
model .optimize ()

# Output
if model.status == GRB.OPTIMAL:
print (°Optimal Objective Value:’, model.objVal)
selected_facilities = [i for i in range(num_facilities) if y[i].x >
0.5]
allocation = {(i, j): x[i, jl.x for i in range(num_facilities) for j
in range(num_customers) if x[i, j]l.x > 0}
print(’Selected Facilities:’, selected_facilities)
print(’Allocation:’, allocation)
else:
print (°’No optimal solution found.’)
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