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ABSTRACT

The increasing computational demand of Deep Neural Networks (DNNs) moti-
vates companies and organizations to outsource the training process. However,
outsourcing training process makes DNNs easy to be backdoor attacked. It is nec-
essary to defend against such attacks, i.e., to design a training strategy or postpro-
cess a trained suspicious model so that backdoor behavior of a model is mitigated
while normal prediction power on clean inputs is not affected. To remove the
abnormal backdoor behavior, existing methods mostly rely on additional labeled
clean samples. However, these samples are usually unavailable in the real world,
causing existing methods not applicable. In this paper, we argue that, to mitigate
backdoor, (1) labels of data may not be necessary (2) in-distribution data may
not be needed. Through a carefully designed layer-wise weight re-initialization
and knowledge distillation, our method can effectively remove backdoor behav-
iors of a suspicious network with negligible compromise in its normal behavior.
In experiments, we compare our framework with six backdoor defense methods
using labeled data against six state-of-the-art backdoor attacks. The experiments
show that our framework can achieve comparable results, even only with out-of-
distribution data.

1 INTRODUCTION

Deep Neural Networks (DNNs) have achieved impressive performance in many tasks, e.g., image
classification (Deng et al., 2009), 3D point cloud generation (Luo & Hu, 2021) and object track-
ing (Zheng et al., 2021). However, the success usually relies on a large amount of training data and
computational resources. Companies and organizations thus often outsource the training process to
cloud computing or utilize pretrained models from third-party platforms. Unfortunately, the untrust-
worthy providers may potentially introduce backdoor attacks to the externally trained DNNs (Gu
et al., 2019). During the training stage of a backdoor attack, the adversary stealthily injects a small
portion of poisoned training data to associate a particular trigger with target class labels. During
the inference stage, the backdoor models predict accurately on clean samples but misclassify sam-
ples with triggers to the target class. Common triggers include black-white checkerboard (Gu et al.,
2019), random noise pattern (Chen et al., 2017), physical object (Wenger et al., 2021), etc.

To defend against backdoor attacks, one needs to post-process a suspicious model so that its back-
door behavior is mitigated, and meanwhile, its normal prediction power on clean inputs remains
uncompromised. To remove the abnormal backdoor behavior, existing methods mostly rely on ad-
ditional labeled in-distribution clean samples (Li et al., 2021; Liu et al., 2018; Wu & Wang, 2021;
Xia et al., 2022; Zeng et al., 2021; Zhao et al., 2020). For example, Fine-Pruning (Liu et al., 2018)
first prunes the dormant neurons for clean samples and then finetunes the model using ground-truth
labels. Neural Attention Distillation (NAD) (Li et al., 2021), a knowledge distillation-based method,
uses labeled clean data to supervise the learning of a student model. Adversarial Neuron Pruning
(ANP) (Wu & Wang, 2021) learns a mask to prune sensitive neurons with labeled clean data. These
methods require 1% − 5% labeled clean training samples to effectively remove backdoor. Such re-
quirement, however, is unrealistic in practice as the training data are often unavailable to end-users.

In this paper, we investigate the possibility of circumventing such barrier with unlabeled data. We
propose a novel defense method that does not require training labels. Meanwhile, we explore the
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Figure 1: Proposed backdoor removing framework. The student model learns normal behavior from
the teacher model through knowledge distillation on unlabeled images. Backdoor behavior of the
teacher model is neglected.

ambitious goal of using only out-of-distribution data. These goals, if achieved, can make the pro-
posed defense method much more practical. End-users can be completely agnostic of the training
set. To run the defense algorithm, they only need to collect some unlabeled data that do not have to
resemble the training samples.

Inspired by knowledge distillation (Gou et al., 2021), we use a student model to acquire benign
knowledge from a suspicious teacher model through their predictions on the readily available un-
labeled data. Since the unlabeled data are usually clean images or images with slightly random
noise, they are distinct from poisoned images with triggers. Therefore, trigger-related behaviors
will not be evoked during the distillation. This effectively removes backdoor behaviors without
significantly compromising the model’s normal behavior. To ensure the student model focuses on
the benign knowledge, which can be layer dependent, we propose an adaptive layer-wise weight
re-initialization for the student model. Empirically, we demonstrate that even without labels, the
proposed method can still successfully defend against the backdoor attacks. We also observe very
promising defense results even with out-of-distribution unlabeled data that do not belong to the
original training classes.

Our contributions are summarized as follows:

1. For the first time, we propose to defend against backdoor attacks using unlabeled data. This
provides a practical solution to end-users under threat.

2. We devise a framework with knowledge distillation to transfer normal behavior of a sus-
picious backdoored teacher model to a student model while removing backdoor behav-
iors. Since the normal/backdoor knowledge can be layer-dependent, we design an adaptive
layer-wise initialization strategy for the student model is designed.

3. Extensive experiments are conducted on two benchmark datasets, CIFAR10 (Krizhevsky
et al., 2009) and GTSRB (Stallkamp et al., 2012). Our method, trained without labels, is
on-par with state-of-the-art defense methods trained with labels.

4. Meanwhile, we carry out an empirical study with out-of-distribution data. Our method
achieves satisfactory defense performance against a majority of attacks. This sheds lights
on a promising practical solution for end-users; they can use any collected images to re-
move a suspicious model.

2 METHOD

Our main idea is to directly use knowledge distillation to remove backdoor behaviors. The rationale
is three-folds. First, knowledge distillation directly transfers knowledge through the logits output,
which carries the rich posterior probability distribution information of a model. By approximating
the logits output on samples, the student model can naturally mimic the normal behavior of the
teacher model. Second, we argue that the backdoor behavior is an abnormal phenomenon forced
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into the teacher model. Knowledge distillation through clean samples will implicitly regularize the
transferred knowledge, and “smooth” out the abnormal behavior. Finally, prior study has observed
that backdoor behavior is embodied in certain neurons whose distribution is layer dependent (Lyu
et al., 2022). By designing an adaptive weight initialization, we can more effectively transfer normal
knowledge of the teacher model and filter out backdoor behavior. The framework of our method is
illustrated in Figure 1.

2.1 PRELIMINARY

Attack Setting. In backdoor attack for classification task, a DNN model fθ : X −→ Y is trained,
where X ⊂ Rd is the input space and Y = {1, 2, ...,K} is the label space. An image dataset
Dattack = {(xi, yi) ∈ X × Y}ni=1 is split by Dattack = Dclean

⋃
Dbackdoor, where Dbackdoor is

used to create backdoor images. The backdoor injection rate is defined as γ = |Dbackdoor|
|Dattack| . An image

transformation function Φ(·) transforms a clean image into a backdoor image, e.g., through stacking
a checkerboard pattern to the original image. η(·, ·) transforms its ground truth label into a target
label. The objective function for backdoor attack is

Lattack =E(x,y)∼Dclean
[ℓce(fθ(x), y)]

+ E(x,y)∼Dbackdoor
[ℓce(fθ(Φ(x)), η(x, y))]

(1)

where ℓce is the cross entropy loss function. With this loss function, the obtained backdoor model
is expected to behave normally on clean test images, while misclasify backdoor images to the target
class label.

Defense Setting. We assume that defenders download a backdoored model from an untrustworthy
platform and can not access the training process. Some clean images Ddefense are given for backdoor
defense. The goal of defense is to preserve the classification accuracy (ACC) on clean data and
decrease the classification accuracy on backdoor images i.e. attack success rate (ASR).

2.2 BACKDOOR REMOVAL VIA KNOWLEDGE DISTILLATION

Our motivation is to directly extract clean information (or knowledge) from a suspicious model.
Since a backdoor model usually behaves differently for clean and backdoor images, the trigger-
related behaviors will not be evoked when the model is fed with clean images. Inspired by response-
based knowledge distillation (Hinton et al., 2015), we adopt the teacher-student framework to dis-
tillate benign knowledge from a suspicious teacher model through its predictions on clean images.
As illustrated in Figure 1, the normal behaviors of the teacher model are transferred to the student
model, while the backdoor behaviors are neglected. This effectively removes backdoor behaviors
without significantly compromising the model’s performances on clean images.

Since we use the the logits output of the teacher model as the supervision, our proposed framework
does not need ground-truth labels. In fact, even when the input images are out-of-distribution data
that do not belong to the training classes, the student model can acquire useful knowledge from the
teacher model’s predicted probabilities.

Let zt and zs be the output logits of the teacher model and student model, respectively. Their temper-
ature scaled probability vectors can be obtained as ptT [k] =

exp(zt
k/T )∑

j exp(zt
j/T )

and psT [k] =
exp(zs

k/T )∑
j exp(zs

j/T ) .
T is a temperature hyper-parameter. Our defense objective function is

Ldefense = E(x,y)∼Dval
DKL[p

t
T ∥psT ] (2)

where DKL[·∥·] is the KL divergence.

2.3 ADAPTIVE LAYER-WISE INITIALIZATION

It is generally believed that backdoor behavior is embodied through “bad” neurons. By random
weight initialization and knowledge distillation on clean samples, we expect such neurons will be
naturally removed. Previous observations (Lyu et al., 2022) reveal that these “bad” neurons can be
distributed differently at different layers, and the distribution is architecture- and dataset-dependent.
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Algorithm 1 Backdoor Removal with Unlabeled Data

Input: Backdoor model f t with weights W t, random initialized student model fs with weights
W s, adaptive ratios δ, unlabeled clean data Ddefense, training epochs E, iterations per epoch I
and temperature T .

Output: Clean model f
1: for l = 0 to |W t| do
2: Sample R

shape(W t
l )

l ∼ Uniform(0, 1)
3: Obtain boolean weight mask ml = I[Rl < δl]
4: W s

l = (1−ml)⊙W t
l +ml ⊙W s

l
5: end for
6: for e = 0 to E do
7: for i = 0 to I do
8: Sample mini-batches Bval from Ddefense

9: Obtain temperature scaled probability ptT from f t, and psT from fs

10: Update student model weights W s with Ldefense = DKL[p
t
T ∥psT ]

11: end for
12: f ← fs

13: end for

In order to (1) break connection between triggers and target label and (2) preserve more normal
knowledge simultaneously, we propose an adaptive layer-wise initialization strategy to initialize the
student model.

Assuming the suspicious teacher model has L layers, the weights can be represented as W t =
{W t

l |1 ≤ l ≤ L} where W t
l ∈ RCout×Cin×K×K for a convolution layer and W t

l ∈ RCout×Cin for
a linear layer. We also have another random initialized student model, whose architecture is same
as teacher model. Similarly, the weights of random initialized student model can be represented
as W s = {W s

l |1 ≤ l ≤ L} where W s
l ∈ RCout×Cin×K×K for a convolution layer and W s

l ∈
RCout×Cin for a linear layer. Here, we consider a tuned hyperparameter δl for l-th layer. Then the
initialization mask is defined as

M = {ml|1 ≤ l ≤ L,ml ∈ {0, 1}shape(W
s
l ),

∑
ml = δl|ml|}

where |ml| is the size of initializing mask. Then, initialized student model W s∗ can be formulated
as follows:

ALI(W s∗, δ) =

L⋃
i=1

((1−ml)⊙W t
l +ml ⊙W s

l ) (3)

where δ = {δl|1 ≤ l ≤ L} is the ratio of random initializing weights per layer.

3 EXPERIMENTS

We conduct experiments on CIFAR10 and GTSRB, and train backdoored models with six classical
backdoor attack methods. Though we use unlabeled data, our method is on-par with six state-of-the-
art methods using labeled data. We also adopt Tiny-ImageNet and construct a larger dataset: Tiny-
ImageNet++ (a subset of ImageNet) as the out-of-distribution dataset. We also observe a promising
performance using out-of-distribution data. Please see more details in Appendix A.

4 CONCLUSION

In this paper, for the first time, we explore the possibility of using unlabeled data including in-
distribution and out-of-distribution data to remove backdoor from a backdoor model. A knowl-
edge distillation framework with a carefully designed adaptive layer-wise initialization strategy is
proposed. We conduct experiments on two datasets including CIFAR10 and GTSRB against six
representative backdoor attacks. Results show that our framework can successfully defend back-
door attacks with negligible clean accuracy decrease, compared with existing methods using labeled
in-distribution data.
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A EXPERIMENTS

A.1 EXPERIMENT SETTINGS

Datasets and Architecture. We conduct all backdoor models on two datasets include CI-
FAR10 (Krizhevsky et al., 2009) and GTSRB (Stallkamp et al., 2012). For CIFAR10 and GTSRB,
we split their original test datasets into defense dataset and test dataset. The total size of each de-
fense dataset is 5000. Tiny-ImageNet (Wu et al., 2017) is used as the out-of-distribution dataset. We
also construct another out-of-distribution dataset “Tiny-ImageNet++” from ImageNet (Deng et al.,
2009). Tiny-ImageNet++ contains 20,000 images distributed evenly in 1000 classes. Its image
resolution is the same as Tiny-ImageNet. ResNet-18 (He et al., 2016) is adopted as the model ar-
chitecture. From shallow to deep, ResNet-18 includes 1 convolution layer, 8 basic blocks and 1 FC
layer. Except for FC layer, the more shallow the layer is, the less the weights are. The ratios of first
convolution layer and FC layer are set 0.01 and 0.1. The ratios of eight basic blocks are 0.01, 0.01,
0.03, 0.03, 0.09, 0.09, 0.27 and 0.27.

Backdoor attacks setting. We evaluate all defenses on six representative backdoor attacks including
Badnets (Gu et al., 2019), Blended attack (Chen et al., 2017), Label-consistent backdoor attack
(LC) (Turner et al., 2019), Sinusoidal signal backdoor attack (SIG) (Barni et al., 2019), Input-aware
dynamic backdoor attack (IAB) (Nguyen & Tran, 2020) and WaNet (Nguyen & Tran, 2021). LC
and SIG represent two classic clean-label backdoor attacks. Badnets, Blended, IAB and WaNet are
representatives of label-poisoned backdoor attacks. Specifically, Badnets is a patch-based visible
backdoor attack. Blended is a noise-based invisible attack. IAB is a dynamic backdoor attack.
WaNet is an image-transformation-based invisible attack. For a fair comparison, the poison ratio for
label-poisoned attacks is set as 0.1. For label-poisoned attacks, we poison 80% samples of target
label. The all-to-one strategy is adopted for all backdoor attacks.

Backdoor defense setting. We compare our method with six state-of-the-art defense meth-
ods including standard finetuning, Fine-pruning (Liu et al., 2018), Mode Connectivity Repair
(MCR) (Zhao et al., 2020), Adversarial Neuron Pruning (ANP) (Wu & Wang, 2021), Neural
Attention Distillation (NAD) (Li et al., 2021) and Implicit Backdoor Adversarial Unlearning (I-
BAU) (Zeng et al., 2021).

For each attack, we train 14 backdoor models with different target labels and random seeds. We
conduct all defenses on 14 models and the average is the final results. For fair comparison, we train
100 epochs for all defense methods. We set the batch size as 256 and optimize our framework using
Stochastic Gradient Descent (SGD) with a momentum of 0.9, and a weight decay of 0.0005. The
adopted data augmentation techniques include random crop and random horizontal flipping. For
MCR, we get a benign model by finetuning the original backdoor model with 10 epochs.

A.2 COMPARISON WITH OTHER DEFENSE METHODS

Results using unlabeled in-distribution data. We compare with six state-of-the-art defenses with
regard to ACC and ASR. Other six defenses use labeled clean samples, while our framework uses
unlabeled samples. We assume that all defenses can access 2500 clean samples. For our method,
we also present results using 5000 unlabeled samples in the last two columns. Results on CI-
FAR10 (Krizhevsky et al., 2009) and GTSRB (Stallkamp et al., 2012) are shown in Table 1 and
Table 2, separately. Despite that our framework is trained without using ground-truth labels, its
performance is still comparative with other methods that require labels. For CIFAR10, due to the
usage of labels, existing works get the highest ACC of 92.25%. However, these works can not de-
crease ASRs largely while keep high ACC. Our method reduces ASR to 3.74% with negligible ACC
reduction of 1.15%. For GTSRB, since ground-truth labels are utilized, ACCs increase slightly in
five of six defenses. However, our framework obtains a robust model by reducing average ASR to
less than 1%, which is better than other label-based methods. Meanwhile, the ACC reduction of our
framework is only 0.86%. With 5000 unlabeled data, our ACC increases 0.25%.

For both datasets, ANP succeeds in dropping ASR of most attacks, but at the expense of lower ac-
curacies compared other methods. ANP aims to prune the bad neurons without re-training backdoor
model. However, the backdoor neurons are difficult to distinguish from normal neurons in reality.
Some neurons critical to ACC may be pruned by ANP, leading to degraded performances. Fine-
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Backdoor
Attacks

Original In-distribution Labeled In-distribution Unlabeled
Finetuning Fine-pruning MCR (t=0.3) ANP NAD I-BAU Ours Ours∗

ASR ACC ASR ACC ASR ACC ASR ACC ASR ACC ASR ACC ASR ACC ASR ACC ASR ACC
Badnets 99.93 92.76 9.70 92.55 32.36 92.57 1.68 86.41 2.56 88.58 4.67 92.35 10.16 91.98 3.00 92.15 3.00 92.75
Blended 100.00 94.48 5.20 93.44 20.62 93.70 6.39 87.51 0.87 92.85 5.06 93.24 6.19 92.71 4.90 93.16 5.10 93.65

IAB 91.35 87.46 9.46 86.91 2.45 86.89 1.35 85.29 0.60 85.37 2.17 86.76 7.57 85.64 1.96 86.42 1.90 86.85
LC 99.55 94.51 97.14 93.49 60.23 93.88 5.33 88.18 4.62 91.30 52.74 93.38 21.41 92.72 1.81 93.17 1.40 93.66
SIG 95.09 93.71 5.41 93.16 5.66 93.55 2.33 87.69 0.41 92.09 1.88 92.95 15.76 92.45 0.91 92.58 1.18 93.14

WaNet 97.15 93.53 0.98 92.34 13.99 92.92 1.14 91.08 0.31 90.61 1.03 92.22 1.73 91.62 9.86 92.05 16.67 92.64
Mean 97.18 92.74 21.31 91.98 22.55 92.25 3.04 87.69 1.56 90.14 11.26 91.82 10.47 91.19 3.74 91.59 4.87 92.11

Drop ↓ – – 75.86 0.76 74.63 0.49 94.14 5.05 95.62 2.61 85.92 0.92 86.71 1.56 93.44 1.15 92.30 0.63

Table 1: Defense results on backdoor models trained on CIFAR10. (∗Using double unlabeled data.)

Backdoor
Attacks

Original In-distribution Labeled In-distribution Unlabeled
Finetuning Fine-pruning MCR (t=0.3) ANP NAD I-BAU Ours Ours∗

ASR ACC ASR ACC ASR ACC ASR ACC ASR ACC ASR ACC ASR ACC ASR ACC ASR ACC
Badnets 100.0 97.22 99.99 99.80 97.71 99.54 61.26 99.51 19.00 89.47 9.22 99.79 0.00 99.66 0.02 96.75 0.00 97.88
Blended 100.0 98.89 5.45 99.81 5.80 99.73 1.69 99.71 0.14 98.47 0.38 99.84 1.00 99.77 0.50 97.32 0.37 98.90

IAB 98.74 98.01 58.91 99.79 2.23 99.80 3.94 99.79 0.08 96.39 46.94 99.88 0.02 99.80 0.15 96.91 0.07 98.07
LC 94.74 95.75 67.68 99.74 96.37 99.59 3.07 99.50 0.11 94.15 37.82 99.72 0.03 99.71 0.86 96.64 0.81 96.60
SIG 97.80 98.87 96.59 99.84 99.06 99.80 93.06 99.74 78.43 98.22 96.64 99.86 30.54 99.77 1.59 97.09 6.31 98.71

WaNet 93.58 98.69 0.61 99.84 9.73 99.84 0.12 99.85 0.00 98.36 0.01 99.88 0.01 99.81 0.11 97.59 0.02 98.80
Mean 97.48 97.91 54.87 99.81 51.82 99.72 27.19 99.68 16.29 95.84 31.83 99.83 5.27 99.75 0.54 97.05 1.26 98.16

Drop ↓ – – 42.60 -1.90 45.66 -1.81 70.29 -1.78 81.18 2.06 65.64 -1.92 92.21 -1.85 96.94 0.86 96.21 -0.25

Table 2: Defense results on backdoor models trained on GTSRB. (∗Using double unlabeled data.)

pruning gets a low average drop over ASR since Fine-pruning simply prunes the dormant neurons
in the last convolution layer. However, complex triggers activate neurons across different layers.
Since a finetuning stage follows the pruning process, Fine-pruning has a high ACC. We find that
finetuning, Fine-prunng and NAD perform badly on LC attack in reducing ASR. All of three de-
fenses include a finetuning stage. Though NAD distillates attention map knowledge from teacher
to student model, teacher model is obtained by finetuning backdoor model and student model is
supervised by CrossEntropy loss. One possible reason is that the PGD perturbations used in LC
hinder finetuning to associate normal images with target labels with limited clean samples. MCR
introduces a curve model to find a path connection between two backdoor models. With limited
data samples, MCR achieves low ACC compared other methods. In all six defenses, I-BAU perform
well on both datasets. I-BAU adopt implicit hypergradient to solve minmax optimization, leading to
strong generalizability of the robustness. Note that most defense methods can not defend SIG attack
on GTSRB because we improve sinusoidal signal to inject backdoor successfully (∆ is set 60 in our
experiments). This strong signal is not stealthy to GTSRB images, causing backdoor model learn
strong abnormal behaviors and difficult to defend.

Results using unlabeled out-of-distribution data. We conduct experiments on CIFAR10 by using
out-of-distribution unlabeled data. GTSRB, Tiny-ImageNet and Tiny-ImageNet++ are three out-of-
distribution unlabeled datasets. Table 3 reports the results. For GTSRB and Tiny-ImageNet, we
random sample 2500 images from our constructed defense dataset.

Compared to in-distribution data, GTSRB reduces ASRs largely in five of six attacks while per-
form badly on WaNet. The possible reason is that simple GTSRB images e.g. circle or triangular
signs, introduce warping-based backdoor behavior. Due to large domain gap between GTSRB and
CIFAR10, GTSRB decreases average ACC about 10%. With Tiny-ImageNet, our method can re-
duce ASRs largely especially for Badnets, IAB, LC and WaNet, with negligible ACC cost. However,
Tiny-ImageNet can not reduce ASR successfully on Blended Attack. Meanwhile, Tiny-ImageNet++

Backdoor
Attacks

In distribution Out-of-distribution
CIFAR10 GTSRB Tiny-IN Tiny-IN++

ASR ACC ASR ACC ASR ACC ASR ACC
Badnets 3.00 92.15 11.30 81.19 4.47 91.24 3.03 92.44
Blended 4.90 93.16 6.68 82.39 61.75 92.88 11.87 93.66

IAB 1.96 86.42 1.62 81.91 1.52 86.00 1.52 86.76
LC 1.81 93.17 3.49 84.47 1.95 92.83 1.46 93.67
SIG 0.91 92.58 0.98 81.49 14.58 91.85 17.79 92.86

WaNet 9.86 92.05 83.89 84.11 7.62 91.58 22.60 92.52
Mean 3.74 91.59 17.99 82.59 15.32 91.06 9.71 91.99

Table 3: Defense results on CIFAR10 using different unlabeled out-of-distribution data.
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Backdoor
Attacks

Uniform Adaptive
decreasing

Adaptive
increasing

ASR ACC ASR ACC ASR ACC
Badnets 4.88 92.08 2.38 86.75 3.00 92.15
Blended 4.54 93.01 3.32 88.33 4.90 93.16

IAB 1.72 86.25 2.68 81.51 1.96 86.42
LC 4.18 93.01 1.05 88.22 1.81 93.17
SIG 0.58 92.31 1.07 88.24 0.91 92.58

WaNet 7.35 91.69 2.17 84.76 9.86 92.05
Mean 3.87 91.39 2.11 86.30 3.74 91.59

Table 4: Comparison of weights initialization strategies for student model on CIFAR10 (in-
distribution).
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(a) In-distribution CIFAR10
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(b) Out-of-distribution Tiny-
ImageNet
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Figure 2: Defense results on CIFAR10 using different numbers of unlabeled samples.

reduces ASR to 11.87% on LC. Blended trigger is a random noise. Removing random noise trig-
ger needs more out-of-distribution natural clean images. Due to the large size and diversity, Tiny-
ImageNet++ performs better than GTSRB and Tiny-ImageNet. Tiny-ImageNet++ reduces average
ASR to less than 10%, while other two datasets reduce ASRs to more than 15%. Tiny-ImageNet++
can also keep ACC high after defense.

A.3 ANALYSIS

Size of unlabeled samples. We use CIFAR10 to analyze influence of the size of unlabeled samples.
Figure 2 (a–c) show the results using in-distribution CIFAR10, out-of-distribution Tiny-ImageNet
and Tiny-ImageNet++. For three datasets, we randomly sample 500, 1000, 2500, 5000 images, sepa-
rately. As the number of samples increases, ACCs increase and ASRs decrease for most cases. How-
ever, with the number of unlabeled Tiny-ImageNet and Tiny-ImageNet++ data increasing, ASRs
raise up on Blended, SIG and WaNet attacks. Blended attack injects backdoor by blending clean
images and random noise. The trigger of SIG is a sinusoidal signal. WaNet applies elastic warping
to design triggers. All three triggers are stealthy and cause slight change to images. Some images
in Tiny-ImageNet++ are downloaded from the internet and might include light noise similar to the
three triggers. Therefore, using more out-of-distribution unlabeled images from Tiny-ImageNet or
Tiny-ImageNet++ might cause ASRs increasing for the three attacks.

Adaptive layer-wise initialization. We analyze the effectiveness of different adaptive layer-wise
initialization strategies by conducting experiments on CIFAR10. Three strategies are designed in-
cluding random initialize weights of student model with uniform ratio, increasing ratio and decreas-
ing ratio. For fair comparison, the overall ratio of random initialization keeps around 0.2 for three
strategies. The results are presented in Table 4. All of three strategies can reduce ASRs to less
than 5%. However, adaptive decreasing layer-wise initialization performs bad on ACCs. The rea-
son is that random initializing two many weights in low layers causes student model dropping too
much information related to low-level features. It is difficult to recover effectively only by aligning
two probability distributions between student and teacher models. Compared to uniform initializing
strategy, adaptive increasing layer-wise initialization obtains lowest ASR and highest ACC.

Effectiveness of knowledge distillation. To evaluate the effectiveness of knowledge distillation,
we compare the performances using soft labels and hard labels. Hard labels are class labels with the
maximum probability of teacher model outputs. Soft labels are soft probability with temperature T
described in Section 2. Cross-Entropy loss function is employed for hard labels setting. The experi-
ments are conducted on CIFAR10 and out-of-distribution dataset is Tiny-ImagneNet. Table 5 shows
the results. It shows that hard and soft labels achieve comparative performance for in-distribution
unlabeled data. The reason is that backdoor teacher model predicts high ACC for in-distribution
images. Therefore, most hard labels are ground-truth labels. However, backdoor teacher model
can not predict correct hard labels for out-of-distribution data. Some classes of out-of-distribution
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Backdoor
Attacks

In-distribution Out-of-distribution (Tiny-IN)
Soft Hard Soft Hard

ASR ACC ASR ACC ASR ACC ASR ACC
Badnets 3.00 92.15 3.37 91.16 4.47 91.24 5.55 88.74
Blended 4.90 93.16 5.14 92.09 61.75 92.88 69.48 90.71

IAB 1.96 86.42 1.64 85.31 1.52 86.00 2.05 83.85
LC 1.81 93.17 1.86 92.05 1.95 92.83 1.40 90.61
SIG 0.91 92.58 1.42 91.61 14.58 91.85 16.11 89.69

WaNet 9.86 92.05 3.16 90.75 7.62 91.58 4.59 89.03
Mean 3.74 91.59 2.77 90.50 15.32 91.06 16.53 88.77

Table 5: Comparisons of using soft predictions and hard predictions of backdoor models for distil-
lation on CIFAR10.
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Figure 3: Defense results on CIFAR10 using Tiny-ImageNet++ created with different configura-
tions.

images even does not exist in the CIFAR10. Therefore, using soft labels is better than hard labels.
Specifically, ASR of using soft labels is 1.21% lower than ASR of using hard labels. ACC of using
soft labels is 2.29% higher than ACC of using hard labels.

Diversity of out-of-distribution data. To study how diversity of out-of-distribution data influ-
ences defense performance, we create several versions of Tiny-ImangeNet++ with different config-
urations of (number of class, number of samples per class). The total number of unlabeled images
is fixed to 2000. Then we apply them to remove backdoor models trained on CIFAR10. Figure 3
plots the curves of ACC and ASR. ACCs are close for different configurations. However, as the
unique number of classes in the training data increases, ASR has a tendency to decrease, showing
that backdoor behaviors are more effectively eliminated. In principle, increasing the diversity of
out-of-distribution unlabeled data is beneficial as more data modes are covered. It is more likely that
data similar to the training distribution are included. Also, the student model can learn more general
knowledge in making classification than specific ones.

B QUALITATIVE ANALYSIS

B.1 QUALITATIVE ANALYSIS FOR KNOWLEDGE DISTILLATION

To show the effectiveness of knowledge distillation, we visualize the penultimate feature representa-
tions of clean and backdoor images throughout the process of knowledge distillation, and plot in the
top row of Figure 4. The compactness and separability of clean image clusters reflect the model’s
prediction ability on normal data. Also, if backdoor behaviors are removed, the backdoor images
will fall into the corresponding clean clusters. In Fig. 4a, we can see that the clean images form 10
clusters, indicating a high ACC of the teacher model. The backdoor images are distant to the clean
images and form separate clusters. Hence the teacher model behaves abnormally on backdoor data.
For the student model after adaptive layer-wise initialization in Fig. 4b, clean images from the same
class are still close to each other, showing that some benign knowledge are preserved after initial-
ization. This provides a good starting point for the following knowledge distillation. Figures 4c-4e
show the results after training for some epochs. The normal behaviors are gradually transferred to
the student model. With this, clean images form tighter clusters and are better separated. Backdoor

10



Published at ICLR 2023 Workshop on Backdoor Attacks and Defenses in Machine Learning

0
1

2
3

4
5

6
7

8
9

(a) Teacher (b) Stu (adaptive init,
ep 0)

(c) Stu (adaptive init,
ep 1)

(d) Stu (adaptive init,
ep 2)

(e) Stu (adaptive init,
ep 11)

(f) Stu (uniform init,
ep 0)

(g) Stu (1st layer init,
ep 0)

(h) Stu (2nd layer
init, ep 0)

(i) Stu (3rd layer init,
ep 0)

(j) Stu (4th layer init,
ep 0)

Figure 4: t-SNE visualization of penultimate features on CIFAR10 from Badnets attack. Top: the
teacher model and student models at different training epochs with adaptive layer-wise initialization.
Bottom: student models at epoch 0 with different initialization strategies. Each color denotes a class.
‘◦’ are clean images and ‘+’ the corresponding backdoor ones. More discussions can be found in
Section 2.3.

images turn to overlap with the clean images with the same class labels, showing that the backdoor
behaviors are successfully removed.

B.2 QUALITATIVE ANALYSIS FOR ADAPTIVE LAYER-WISE INITIALIZATION

Similar to previous analysis in Sec. B.1, we study the effects of adaptive layer-wise initialization
for the student model through visualizing clean and backdoor sample features. The comparison
strategies include uniform initialization that uses a same random initialization ratio for every layer,
and single-layer initialization. To match our adaptive layer-wise initialization, we choose a specific
ratio for the uniform initialization so that the total number of randomized weights equals in the two
strategies. The same ratio is used for single-layer initialization.

Comparing Figure 4f with Figure 4b, we can find that uniform initialization breaks the connection
between trigger and target label. However, the benign information is also discarded as all clean
images clutter together in the figure. From Fig. 4g-4j, When randomly initialize shallow layers like
1st or 2nd layer, the connection between trigger and target label is not broken while the clustering
structure of clean images are destroyed. When randomly initialize deep layers like 3rd or 4th,
the clean information can be preserved. The backdoor information is also partially eliminated in
Fig. 4i, where backdoor images become more dispersed. Therefore, to make a balance between
preserving clean information and discarding backdoor information, it is better to use higher random
initialization ratios for deeper layers and smaller ratios for shallow ones. This justifies the motivation
of our adaptive layer-wise initialization.
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