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Abstract 
 
During perceptual decision-making tasks, centroparietal EEG potentials report an evidence 
accumulation-to-bound process that is time locked to trial onset. However, decisions in real-world 
environments are rarely confined to discrete trials; they instead unfold continuously, with 
accumulation of time-varying evidence being recency-weighted towards its immediate past. The 
neural mechanisms supporting recency-weighted continuous decision making remain unclear. Here, 
we use a novel continuous task design to study how the Centroparietal Positivity (CPP) adapts to 
different environments that place different constraints on evidence accumulation. We show that 
adaptations in evidence weighting to these different environments are reflected in changes in the 
CPP. The CPP becomes more sensitive to fluctuations in sensory evidence when large shifts in 
evidence are less frequent, and the potential is primarily sensitive to fluctuations in decision-
relevant (not decision-irrelevant) sensory input. A complementary triphasic component over 
occipito-parietal cortex encodes the sum of recently accumulated sensory evidence, and its 
magnitude covaries with parameters describing how different individuals integrate sensory 
evidence over time. A computational model based on leaky evidence accumulation suggests these 
findings can be accounted for by a shift in decision threshold between different environments, 
which is also reflected in the magnitude of pre-decision EEG activity. Our findings reveal how 
adaptations in EEG responses reflect flexibility in evidence accumulation to the statistics of dynamic 
sensory environments.  
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Introduction 
 

Unlike in most experiments, the choices that we make in daily life rarely occur in discrete 
trials. Naturalistic decisions instead arise organically and continuously in dynamic environments that 
evolve over time (Huk et al., 2018; Hunt et al., 2021), leading to uncertainty regarding the onset of 
decision-relevant changes in the environment (Orsolic et al., 2021; Shinn et al., 2022). When making 
decisions in such dynamic environments, more recently presented evidence should therefore usually 
be given greater weight and more historical evidence gradually discounted – a strategy known as 
‘leaky’ evidence accumulation. Optimising leaky evidence accumulation involves adapting one’s 
behaviour to the overall statistics of the environment. This can be achieved by changing the rate at 
which previous evidence is leaked (the ‘decay’) and the amount of cumulative evidence required 
before a categorical decision is made (the ‘decision threshold’) (Glaze et al., 2015; Kilpatrick et al., 
2019; Veliz-Cuba et al., 2016).  

While it is known that humans (Ganupuru et al., 2019; Glaze et al., 2018; Harun et al., 2020; 
Ossmy et al., 2013) and other animals (Levi et al., 2018; Piet et al., 2018) can adapt the decay and 
decision threshold of sensory evidence accumulation to different dynamic environments, the neural 
mechanisms that underlie this adaptation remain unclear. In conventional trial-based paradigms, 
neurophysiological correlates of perceptual decision-making have been well characterised, 
particularly signals that resemble an evidence accumulation-to-bound process (Gold and Shadlen, 
2007; Hanks and Summerfield, 2017; O’Connell and Kelly, 2021). Two of the best-studied human 
electroencephalographic (EEG) correlates of decision formation are an effector-independent 
centroparietal positivity (CPP) that shows accumulator-like dynamics during decision formation (Kelly 
and O’Connell, 2013; O’Connell et al., 2012; Pisauro et al., 2017; Twomey et al., 2015), and motor 
preparation signals that emerge prior to a response (Donner et al., 2009; Steinemann et al., 2018; 
Wyart et al., 2012). Both signals can adapt their properties according to the overall statistics of a task. 
For example, CPP amplitude at the time of making a response is increased by emphasising speed over 
accuracy (Steinemann et al., 2018), while pre-trial motor lateralisation can reflect the prior 
expectation of a leftward or rightward action in the upcoming trial (de Lange et al., 2013; Kelly et al., 
2021). Yet it remains unclear whether and how these signals reflect the ability to behaviourally adapt 
the decay of past information in continuous (dynamic) environments, which are more akin to many 
decisions faced in naturalistic settings. 

Perhaps one reason why decision making in dynamic environments has been less studied than 
trial-based choice is the uncertainty concerning how best to analyse the time-varying neural data. For 
example, without clearly defined discrete trials, it appears unclear to which timepoint data should be 
epoched. As the stimulus is continuously changing, it is also ambiguous how to disentangle responses 
to previous versus current sensory evidence, which may be overlapping in time. However, recent 
innovations in trial-based task design (Brunton et al., 2013; Cheadle et al., 2014; Orsolic et al., 2021) 
and unmixing of overlapping EEG responses (Crosse et al., 2016; Ehinger and Dimigen, 2019; Hassall 
et al., 2021; Smith and Kutas, 2015) have suggested potential solutions to some of these challenges. 
By tightly controlling how sensory evidence fluctuates over time, it becomes possible to relate 
moment-to-moment stimulus fluctuations to subsequent behavioural and neural responses. In 
addition, by using data analysis techniques that explicitly target overlapping neural responses, it is 
also possible to establish the Temporal Response Function (TRF) to each new fluctuation in a 
continuous sensory evidence stream (Gonçalves et al., 2014). By combining these two approaches, we 
hypothesised that we would be able to characterise decision-related EEG responses in a continuous 
and dynamic setting, even in the absence of repeated experimental trials. 

In this study, we examine how the EEG response to evidence fluctuations during a continuous 
perceptual decision task is affected by the overall statistics of the sensory environment. Participants 
were trained to attend to a continuously changing sensory evidence stream, in which brief “response 
periods” were embedded that were reported via button-press.  We demonstrate a CPP-like potential 
that is sensitive to each fluctuation in the stream of continuous sensory evidence, a motor preparation 
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signal prior to button-press, and a triphasic occipito-parietal component that reflects the integrated 
sum of recently presented evidence. We then show that subjects’ behaviour adapts appropriately to 
different sensory environments, and that changes in centroparietal and motor preparation prior to 
button press signals reflect adaptation of leaky sensory evidence integration to different 
environments. This is not a simple feature of adaptation to sensory surprise, as the CPP-like potential 
largely responds to decision-relevant, not decision-irrelevant, evidence fluctuations.  

We also show substantial between-subject variability in the decay time constant of the 
‘integration kernel’, a measure that reflects the structure of evidence that is presented prior to a 
participant’s response. This behavioural measure correlates across subjects with a neural measure of 
evidence accumulation: it predicts the amplitude of the triphasic centroparietal TRF to absolute recent 
sensory evidence. We show via computational modelling that these changes in integration kernels are 
most likely explained via a change in the decision threshold of a leaky evidence accumulator. 
Collectively, these results provide a neural characterisation of human decision-making in a dynamic, 
continuously evolving perceptual environment and how this can adapt to the overall statistics of the 
environment. 
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Results 
 
A novel task for exploring behavioural and EEG adaptations to the statistics of dynamic sensory 
environments 

To study evidence accumulation in a continuous setting, we designed a novel variant of the 
classic random dot kinematogram (RDK) paradigm (Britten et al., 1992; Donner et al., 2009; Kelly and 
O’Connell, 2013; Newsome and Pare, 1988). Subjects continuously monitored a stream of time-
varying sensory evidence (hereafter referred to as ‘motion coherence’) for blocks of five minutes 
(Figure 1a). During extended “baseline periods” (grey shaded area in Figure 1b), the average level of 
motion coherence (black line) in the stimulus was zero, whereas during shorter intermittent “response 
periods” (green shaded area), the mean level of motion coherence became non-zero (either 30, 40, 
or 50% motion coherence). The participants’ task was to report whenever they detected such a period 
of coherent motion using a left or right button press. Importantly, the onset of response periods was 
not explicitly signalled to the participant. If they responded accurately (during a response period or 
within 500ms of it ending), they received a reward (+3 points); if they failed to report a response 
period (‘missed response period’), or they responded during a baseline period (‘false alarm’), they 
received a small punishment (-1.5 points). Participants also received a larger punishment (-3 points) if 
they reported the incorrect motion direction during a response period; in practice, such errors were 
very rare. Feedback was presented by changing the colour of the central fixation point for 500ms 
(Figure 1a), and they were trained on the meaning of these colours as part of extensive pre-
experiment training (see methods). The accumulated total points were then converted into a 
monetary pay-out at the end of the task. Participants completed six runs, each consisting of four 5-
minute blocks; they were given a short break between each block and a longer break between runs. 
 

 
 

Figure 1 – A novel, continuous version of the random dot kinematogram (RDK) paradigm allows 
empirical measurement of participants’ leaky evidence integration kernels in dynamic environments. 

(a) Task design. Participants continuously attend to a centrally presented RDK stimulus, for 5 minutes at a 
time. They aim to successfully report motion direction during ‘response periods’ (when coherent motion 

signal is on average non-zero) and withhold responding during ‘baseline periods’ (when signal is on 
average zero). (b) Task structure (example block; response periods are ‘rare’). During both baseline (grey) 
and response periods (green), the signal (black line) is corrupted with experimenter-controlled noise (grey 
line). The noise fluctuations that precede each response (arrows) can be averaged to obtain the evidence 

integration kernel. (c) The resulting evidence integration kernel for false alarms is well described by an 
exponential decay function, whose decay time constant in seconds is controlled by the free parameter 𝜏. 

The equation for this kernel is in the main text, and details of kernel fitting are provided in Methods. 
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Crucially, the net motion presented to the participant on each frame of the stimulus was not 
the average level of motion coherence (black line in Figure 1b), but instead was a noisy sample from 
a Gaussian distribution about this mean (grey line). This noisy sample was resampled on average every 
280ms (inter-sample interval drawn from an exponential distribution, truncated at 1000ms). This 
“experimenter-controlled sensory noise” confers several benefits. 

First, the injection of sensory noise places a stronger demand on temporal evidence 
integration than a classical RDK task. This is because any individual period of strong motion coherence 
could be driven by a noisy sample during a baseline period, rather than necessarily signalling the onset 
of a response period (Figure 1b). As such, continuous and temporally extended integration is essential 
to successfully disambiguate changes in the mean from noisy samples around the baseline. Indeed, 
participants would occasionally make ‘false alarms’ during baseline periods in which the structure of 
the preceding noise stream mistakenly convinced them they were in a response period (see Figure 3, 
below). Indeed, this means that a ‘false alarm’ in our paradigm has a slightly different meaning than 
in most psychophysics experiments; rather than it referring to participants responding when a 
stimulus was not present, we use the term to refer to participants responding when there was no shift 
in the mean signal from baseline.  

Second, the noise fluctuations allow a “reverse correlation” approach to studying subjects’ 
evidence integration. Simply by averaging the noisy stimulus that was presented prior to each 
response, we could extract an ‘integration kernel’ that empirically reveals how far back in time the 
motion coherence is being integrated – in other words, how quickly previous motion is decaying in the 
participant’s mind – and how strong this motion coherence needed to be on average to support a 
choice. We performed this reverse correlation for both false alarm responses (example shown in 
Figure 1c; these responses are well described by an exponential decay function detailed below) and 
correct responses. The fact that integration kernels naturally arise from false alarms, in the same 
manner as from correct responses, demonstrates that false alarms were not due to motor noise or 
other spurious causes. Instead, false alarms were driven by participants treating noise fluctuations 
during baseline periods as sensory evidence to be integrated across time, and the motion coherence 
that preceded ‘false alarms’ need not even distinguish targets from non-targets. 

Finally, and perhaps most importantly, the experimenter-controlled sensory noise allows us 
to characterise how continuous sensory evidence fluctuations cause changes in the simultaneously 
recorded continuous EEG signal. To study this, we used a deconvolutional general linear model (GLM) 
approach (Crosse et al., 2016; Ehinger and Dimigen, 2019; Gonçalves et al., 2014; Hassall et al., 2021) 
to estimate temporal response functions (TRFs) to various events relating to the time-varying sensory 
evidence. We describe this approach and the resulting TRFs in more detail below. 

 
Behavioural adaptations to environments with different statistical properties 
 We used this paradigm to investigate whether and how participants adapted their evidence 
integration behaviour to the overall statistics of the sensory environment. To test this, we manipulated 
both the duration and frequency of ‘response periods’ in the task. We hypothesised that this would 
affect the decay of past sensory evidence and/or the decision threshold used to commit to a response. 
Importantly for our subsequent analyses, we kept the generative statistics of the gaussian noise during 
‘baseline periods’ consistent across conditions. This allowed us to directly compare behavioural 
evidence integration kernels for false alarms and EEG TRFs across conditions without any potential 
confound from how the noise was structured.   

Within each 20-minute run, participants completed four pseudorandomly ordered 5-minute 
blocks drawn from a 2*2 factorial design (Figure 2a). Response periods were either LONG (5 seconds) 
or SHORT (3 seconds), and either FREQUENT (baseline periods between 3-8 seconds in duration) or 
RARE (baseline periods between 5-40 seconds). Participants were extensively trained on these trial 
statistics prior to completing the task, and were then explicitly cued which environment they were 
currently in. As a consequence, participants neither had to learn nor infer the higher-order statistics 
of the sensory environment during the task; instead, they had to adapt their decision behaviour 
according to the pre-learnt statistics of the cued environment. 
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Figure 2 – Variations in response period structure across different environments elicit behavioural 
adaptations in decision making. (a) Structure of response periods (signal only, before noise was added to 

the stimulus stream) across the different environments. This was manipulated in a 2*2 design, where 
response periods were either FREQUENT or RARE, and LONG or SHORT. Participants were extensively 

trained on these statistics prior to the task, and the current environment was explicitly cued to the 
participant. (b) Correct detection rate for all response periods. Participants successfully detected more 

response periods when they were LONG than SHORT (as would be expected, because the response period 
is longer), but also detected more when they were FREQUENT than RARE. (c) Median reaction time (time 
taken to respond after start of response period) for successfully reported response periods across the four 
conditions. Participants took longer in RARE vs FREQUENT conditions, and in LONG vs SHORT conditions. 

(d) Integration kernels for ‘response periods’ shows a main effect of FREQUENT vs. RARE response periods, 
but unexpectedly no effect of LONG vs. SHORT response periods. See main text for further discussion of 

this analysis. All plots in (b), (c) and (d) show mean +/- s.e. across participants. Note that to make reaction 
times and integration kernels comparable between the four conditions, we only include those responses 

that were shorter than 3.5s in analyses for (c) and (d) (that is, the maximum response time in SHORT 
response periods).  

Response periods. We first tested whether participants adjusted their behaviour across the 
four conditions by analysing detection behaviour for response periods. We used a three-way repeated 
measures ANOVA to test for effects of motion coherence, response period length, and response 
period frequency.  
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As expected, participants were faster (F(2,46)=29.51, p=7.45*10-9) and more accurate 
(F(2,46)= 17.6, p= 0.00035) at detecting response periods with a higher level of average motion 
coherence (Figure 2b/c).  

Examining the effects of response period frequency, participants were less likely 
(F(1,23)=41.99, p=1.30*10-6) and slower (F(1,23)=83.24, p=6.23*10-9) to detect response periods when 
these were RARE (blue lines in Figure 2b/c) than when they were FREQUENT (red lines in Figure 2b/c). 
We hypothesised that this could be explained by participants requiring a stronger overall level of 
recently accumulated evidence before committing to a response when response periods were rare. 
Indeed, when we examined the ‘integration kernel’ of average sensory evidence for successful 
responses, significantly more cumulative evidence was required for RARE than FREQUENT response 
periods, stretching back up to 3.5s prior to the commitment to a response (Figure 2d; F-test with 
permutation-based correction for multiple comparisons, p<0.05). 
 We also found that participants detected response periods more frequently when these were 
LONG than when they were SHORT (Figure 2b; F(1,23)=178.52, p=2.51*10-12). This is unsurprising, as 
there was simply more time to detect the change in motion during these response periods. In fact, 
participants were slightly more conservative in their responding when trials were LONG, as shown by 
a longer average reaction time for LONG response periods relative to SHORT (even when restricting 
this analysis to focus on LONG responses that were less than 3.5s, the maximum possible SHORT 
response duration including 500ms response tolerance period; Figure 2c; F(1,23)=70.00, p=2.78*10-8). 
This was also reflected in their false alarm frequency, as shown below. Surprisingly, the sensory 
evidence integration properties (i.e. the ‘integration kernels’, calculated by averaging the signal prior 
to the decision, collapsing across all levels of mean motion coherence) were not affected by length of 
response periods (Figure 2d). This ran contrary to our initial hypothesis that participants would 
integrate evidence for longer when response periods were LONG. We suggest that this may result 
from the manipulation of response period duration being relatively small (3s vs. 5s) compared to the 
manipulation of response period frequency. We also note that the significant difference between 
FREQUENT and RARE trials in Figure 2d should not be over-interpreted, as it could be influenced by RT 
differences (Figure 2c) and the associated shift in the onset of the signal contribution, and/or the 
difference in average coherence detection across conditions (Figure 2b). Importantly, we control for 
these confounds below, by examining the integration kernels to false alarms (in the absence of 
changes in mean signal). 
 We also considered an alternative stimulus detection strategy, of changes in stimulus variance 
across time rather than changes in stimulus mean. This hypothesis relied upon the fact that response 
periods had smaller standard deviations in the gaussian noise distribution than baseline periods – a 
stimulus feature that we introduced to avoid excessive samples of ‘maximal’ (100%) motion coherence 
when the mean was non-zero. To test whether the variance of the stimulus might also affect 
participants’ detection, we performed a logistic mixed effects model on participants’ responses 
(Figure 2 - figure supplement  1). Detection probability was the dependent variable, and mean motion 
coherence, variance of motion coherence, response period frequency and length were independent 
variables, along with interaction terms. We found that stimulus variance during response periods did 
indeed impact detection probability; response periods with a higher variance in motion coherence 
were less likely to be detected. Crucially, however, the main effects of mean motion coherence, trial 
frequency and trial length (equivalent to the effects plotted in main Figure 2b) were left unaffected 
by the inclusion of this coregressor. 

False alarms. We then examined whether false alarms differed across conditions, testing for 
effects of response period frequency and length on false alarm rate using a two-way repeated 
measures ANOVA. We found that despite the structure of the noise stream being identical across the 
four conditions, there was a lower overall frequency of false alarms in LONG versus SHORT conditions 
(Figure 3a; F(1,23)=58.67, p=8.98*10-8). This provides further evidence that participants were overall 
more conservative in their responses in LONG conditions than SHORT. (In other words, for an 
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equivalent level of sensory evidence, the participants were less likely to make a response.) There was 
no effect of response period frequency on false alarm rate (F(1,23)=0.37, p=0.55). 

We then examined what caused participants to false alarm during baseline periods. Were 
participants still integrating evidence continuously during these periods of the task, or might false 
alarms be driven by other spurious factors, such as motor noise? We tested this by calculating 
integration kernels derived from these responses. We found the recovered evidence integration 
kernels showed exponential decay weighting, implying that participants were indeed performing 
continuous evidence integration throughout baseline periods as well as response periods, and that 
evidence accumulation was more temporally extended when response periods were RARE rather than 
FREQUENT (Figure 3b). The slight differences in integration kernels between Figure 3b and Figure 2d 
(shorter duration, and return to baseline close to the response) are due to the inclusion of the average 
motion signal in Figure 3b, rather than just the noise. 

 

	
	

Figure 2 - figure supplement  1 - Logistic mixed model of subjects choices during response periods, with 
regressors of mean motion coherence (avgCoh), variance of motion coherence (cohVar), response period 
Frequency (trlFrq), response period length (trlLen), and interaction terms between these regressors. The 
results indicate that both the mean motion coherence and varaiance of the motion coherence influenced 

participants’ choice, suggesting that participants used a strategy of detecting shifts in both mean and 
variance to detect response periods. * denotes p<0.05 significant effect across participants. 
 
Between-participant variation in evidence integration. We then sought to characterise the 

time constant of leaky evidence integration within each individual participant. To do this, we fit an 
exponential decay model (Figure 1c) to the empirical integration kernel from false alarm responses: 
 

𝑘(𝑡) = 𝐴𝑒
!"
#   

 

where k(t) is the height of the integration kernel t seconds before its peak; A is the peak amplitude of 
the integration kernel (in units that denote the fraction of dots moving towards the chosen response 
direction), and 𝜏 is the decay time constant (in units of seconds). We note that this exponential decay 
model is theoretically motivated by the leaky evidence accumulation model, which implies that past 
evidence will leak from the accumulator with an exponential decay (Bogacz et al., 2006).  
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Our exponential decay model provided a good fit to data at a single subject level (median 
R2=0.82, 95% confidence intervals for R2 = [0.42,0.93]; see Figure 3 - figure supplement 1 for example 
fits), as demonstrated by the strong reliability across conditions for both A and 𝜏 (Figure 3c and Figure 
3 - figure supplement 1a; Pearson’s correlation between SHORT and LONG conditions:	𝜏: R(23) = 0.71; 
A: R(23) = 0.72; Pearson’s correlation between RARE and FREQUENT conditions :	𝜏: R(23) = 0.87; A: 
R(23) = 0.81; all p<0.0001). Indeed, a striking feature of these integration kernels was that variation 
across individuals exceeded the variation observed across conditions (see Figure 3c, for example).   

Consistent with our earlier analyses (Figure 2d, Figure 3b), we found that by fitting this single-
subject model, 𝜏 was significantly longer when response periods were RARE than FREQUENT (paired 
T(23)=3.62, p=0.0014; Figure 3c) but A did not differ between these conditions (paired T(23)=0.03, 
p=0.97; Figure 3 - figure supplement 1a). Again consistent with our analyses of behaviour during 
response periods (Figure 2d), there was no difference between these parameters for LONG versus 
SHORT response periods (𝜏: paired T(23)=0.82, p=0.42; A: paired T(23)=-0.97, p=0.34; Figure 3 - figure 
supplement 1a). 

In summary, these results indicate that participants adapted to response periods being rarer 
by accumulating sensory evidence with a longer time constant of integration, but that there was also 
substantial between-subject variability in evidence accumulation across participants.  

 
 

 
Figure 3 – Changes in false alarm response frequency and evidence integration kernels across 

environments with different statistical structure. (a) False alarm rates (responses during baseline 
periods) showed a main effect of response period duration – participants showed significantly lower false 

alarm rates when response periods were LONG versus SHORT (F(1,23)=58.67, p=8.98*10-8). This is 
consistent with having a more cautious response threshold (also evidenced by longer reaction times 

during response periods, see Figure 2c), although could also be interpreted as shorter response periods 
inducing more confusion between signal and noise.  (b) Integration kernels calculated for false alarms 
across the four conditions. (c) Exponential decay model fitted to individual participants’ kernels during 
false alarms shows a significantly longer decay time constant when response periods were RARE versus 

FREQUENT. The data points show the time constant,	𝜏 , for each participant after fitting a model of 
exponential decay to the integration kernel. The equation for this kernel is in the main text, and details of 

kernel fitting are provided in Methods. 



 11 

 
Figure 3 - figure supplement 1 – Between-subject variability in evidence integration kernels exceeds 

between-condition variability. (a) Left panel: Unlike for RARE versus FREQUENT (Figure 3c), there was no 
significant difference in decay time constant for integration kernels for LONG versus SHORT. Similarly, 

there was no difference in amplitude parameter A for either of these comparisons (middle/right panels). 
(b) Variability across individuals, and comparative consistency across conditions, of integration kernels. 

This figure shows integration kernels from three example subjects in the experiment across the four 
conditions. Although our experiment primarily aimed to test whether integration kernels would be 

adapted to different environmental statistics (columns of figure), we found (unexpectedly) that different 
individuals had very different integration kernels (rows); some would integrate evidence over longer 

durations (e.g. top row), and others over far shorter durations (e.g. bottom row). All analyses are from 
false alarm responses only. 

 
Computational modelling of leaky evidence accumulation 
 We next considered what adjustments within a computational model of leaky evidence 
accumulation might account for the behavioural adaptation across different environments, and the 
variability across participants. We simulated a well-established model of leaky evidence accumulation, 
the Ornstein-Uhlenbeck process (Bogacz et al., 2006; Brunton et al., 2013; Ossmy et al., 2013). Here, 
evidence is accumulated over time according to: 
 

𝑋! = (1 + l)𝑋!"# + 𝑔𝑀! +	e! 
 
Where l is a parameter that (when constrained to be negative) determines the leak of past sensory 
evidence in the decision variable; 𝑔 is a parameter that determines the gain applied to the momentary 
sensory evidence at each timepoint 𝑀!; and e! denotes gaussian-distributed white noise with mean 0 
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and variance s. The model emits a response every time that a decision threshold ±𝜃 is exceeded, at 
which point 𝑋!$# is reset to 0. Note that if l were set to 0 rather than negative, this model would be 
equivalent to the widely used Drift Diffusion Model, in which previously accumulated evidence is 
perfectly retained in the decision variable 𝑋!. Such a model would be inappropriate in the current 
paradigm, as the structure of the task demands that past sensory evidence should gradually be 
discounted.  
 We first considered what adjustments of the model parameters governing leak and decision 
threshold,l and 𝜃, would lead to optimal performance in terms of points gained across the entire 
block (Figure 4). We simulated model behaviour using a range of possible values of these parameters, 
while holding 𝑔 constant and assuming s is primarily a property of low-level sensory processing and 
so also remains constant).  The optimal parameterisation of the Ornstein-Uhlenbeck process 
depended upon the number of correct responses/missed trials in response periods versus the number 
of false alarms during baseline periods (Figure 4 - figure supplement 1). For example, setting the 
response threshold 𝜃 to a low value (e.g. <1 in Figure 4 - figure supplement 1) leads to the model 
correctly detecting virtually all response periods, but also emitting so many false alarms that the total 
points obtained would be negative. By contrast, setting the threshold slightly higher still allows for 
correct responses, but they now outnumber false alarms, meaning that the model accumulates points 
across the block.  

Figure 4a shows the area of model performance that performs in the top 10% of all 
parameterisations that we considered, and Figure 4b shows the best parameterisations for 30 streams 
of evidence that were presented to participants in the task. Notably, the optimal decision threshold 𝜃 
was traded off against the optimal setting for leak l (Figure 4a; Figure 4 - figure supplement 2). In 
other words, a model in which past  
 

 
Figure 4 – Optimal leak and threshold for a leaky accumulator model differs as a function of task 

condition. (a) We performed a grid search over the parameters l and 𝜃 to evaluate the performance 
(points won) for different parameterisations (Figure 4 - figure supplement 1). The shaded area denotes the 

areas of model performance that lay in the top 10% of all models considered. The optimal area differs 
across conditions, and the optimal setting for leak and threshold co-vary with one another. (b) We used 

the evidence stream presented to each participant (each dot = one 5-minute block), to identify the model 
parameterisation that would maximise total reward gained for each subject in each condition (see also 

Figure 4 - figure supplement 2). 
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Figure 4 - figure supplement 1 – Grid search across parameter space for Ornstein-Uhlenbeck Process. 
We considered a plausible range of settings for the leak and threshold parameters that might maximise 
the total points won (left-hand column; top 10% of models enclosed in black line (see also main Figure 

4a)). The optimal model parameterisation depended upon a trade-off between the frequency of correct 
responses during response periods (second column) against the number of false alarms (third column) and 
missed trials (fourth column). As in human behaviour, the total number of ‘incorrect responses’ made (i.e. 

wrong response emitted during response window) were negligible. 

 

 
 

Figure 4 - figure supplement 2 – The optimal model parameters for leak and threshold correlate with 
each other. The four graphs show the optimal model parameterisations for each individual subjects’ 

sensory evidence stream, for each of the four conditions (i.e. each dot = one 5-minute stream of evidence , 
cf. main Figure 4b). In all four conditions, a model that is ‘less leaky’ (i.e.  l is closer to 0) is typically 

compensated by setting the decision threshold 𝜃 to be higher to achieve optimal performance (as also 
seen in Figure 4 - figure supplement 1).  
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sensory evidence leaked more rapidly (i.e. l	was more negative) could be compensated by a decrease 
in 𝜃, to retain a high level of overall points gained. This led to a ‘ridge’ in parameter space where a 
given set of values for l and 𝜃 would provide high task performance. The location of this ridge differed 
across the four environments, implying that participants would indeed need to adapt these 
parameters across conditions. 

We confirmed the optimal settings for l and 𝜃 by presenting the actual stimulus streams that 
were presented to our participants, and identifying the values of these two parameters that 
maximised total points won (Figure 4b). This demonstrated that when response periods were LONG 
rather than SHORT, the optimal adjustment was to reduce the amount of leak in the model, so that 
incoming sensory evidence persisted for longer within the decision variable. When response periods 
were RARE rather than FREQUENT, the model could be optimised by increasing the decision threshold. 
This, in turn, would make the model more conservative, consistent with the reduced detection rates 
and accuracy shown in Figure 2b/c. (We note, however, that this is slightly inconsistent with the 
pattern of behavioural false alarm rates shown in Figure 3a. We suggest that this may be under the 
control of further factors such as time-varying urgency (Geuzebroek et al., 2022), something we do 
not consider in the current model). 
  If changes in 𝜃 are primarily driven by the frequency of response periods, and changes in l 
are primarily driven by their length, then how can we explain the fact that the decay time constant 𝜏 
of integration kernels is affected by frequency but not length? To answer this, we performed an 
equivalent analysis of integration kernels on our model simulations. We epoched and averaged the 
sensory evidence that preceded each response made by the decision model, and examined the effects 
of l and 𝜃 on the recovered integration kernels (Figure 5). Surprisingly, we found that 𝜃, not l, was  
 

 
Figure 5 – Variation in model threshold primarily determines decay time constant of integration 

kernels. We performed an integration kernel analysis on false alarms emitted by the Ornstein-Uhlenbeck 
process with different settings for leak (l, left column) and threshold (𝜃, right column) while holding 

the other parameter constant. Variation in 𝜃 would invariably affect the requirement for temporally 
sustained evidence to emit a false alarm (a higher threshold requiring sustained evidence); variation 

in l primarily affect the amplitude of the eventual kernel. 
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primarily responsible for the recovered decay time constant 𝜏 . At first sight, this appears 
counterintuitive, because l is directly responsible for the decay of past sensory evidence in the model 
of leaky accumulation. However, this is counteracted by the fact that the only data that enters this 
analysis is when the model has passed decision threshold, and a response is emitted – if the threshold 
is set higher, then a consistent stream of positive evidence is required before threshold will be 
reached, producing the effect shown in Figure 5. By contrast, we found that the amplitude of the 
integration kernel A was affected by manipulations of both 𝜃 and l. 
 In summary, our conclusions from the computational modelling are threefold: (i) our 
manipulations of response period frequency and length elicited different settings for model threshold 
and leak respectively to maximise reward (Figure 4b); (ii) the ‘ridge’ in parameter space that 
performed well (top 10%) for each condition showed a trade-off between threshold and leak (Figure 
4a, Figure 4 - figure supplement 1), and may explain how different participants could show very 
different integration kernels (Figure 3 - figure supplement 1) while still performing well on the task; 
(iii) the between-condition and between-subject variation in integration kernel time constants 𝜏 is 
principally driven by variation in response threshold, 𝜃 (Figure 5). 
 
EEG correlates of continuous sensory evidence integration 

Having established behavioural differences in evidence integration across individuals and 
across environments with different statistical structures, we then examined how participants’ EEG 
responses reflected these differences. To test this, we examined the effects of the noise fluctuations 
on the EEG signal during baseline periods. We focussed on this time period for three reasons: (i) the 
generative statistics of the noise were identically matched across all four task conditions; (ii) 
behavioural evidence from ‘false alarms’ clearly indicated that participants were still integrating 
sensory evidence during baseline (Figure 3, Figure 3 - figure supplement 1); (iii) the large number of 
noise fluctuations embedded in the stimulus (>1000 per 5-minute block) meant that we had many 
events of interest to recover EEG temporal response functions (TRFs) with a high signal-to-noise ratio 
(Gonçalves et al., 2014; Lalor et al., 2006). 

We therefore built a deconvolutional GLM to estimate TRFs to various events relating to the 
time-varying noise fluctuations during baseline periods. In particular, this GLM included regressors 
that described (Figure 6): (a) “jump events” in the experimenter-controlled noise (‘stick functions’ that 
were 1 whenever the motion coherence changed, and 0 elsewhere); (b) the “change in evidence” 
associated with each jump event (stick functions with a parametric modulator of |Devidence|, i.e. 
absolute difference between previous and current motion coherence); (c) the current |evidence| (a 
continuous regressor, reflecting the absolute difference from 0 across time; note that this regressor is 
absoluted to look for effector-independent signals processing current motion strength, as opposed to 
those signed towards leftward/rightward motion). We also included several further regressors to 
capture EEG correlates of the onset of response periods, the level of motion coherence, correct and 
false alarm button-presses (see methods for full details). 
 Using this approach, we found a set of consistent TRFs that reliably reflected the continuous 
updates in the time-evolving sensory evidence during baseline (Figure 6). In particular, the two 
regressors that reflected changes in the sensory evidence (‘jump events’) and the magnitude of 
|Devidence| both elicited positive-going scalp topographies over centroparietal electrodes, peaking 
~300ms after this change occurred (Figure 6a/b). This scalp topography, timecourse and reporting of 
|Devidence| is consistent with the P300 component (Donchin, 1981; Duncan-Johnson and Donchin, 
1977; Mars et al., 2008; Squires et al., 1976). The scalp topography is also consistent with the 
centroparietal positivity (CPP) (Kelly and O’Connell, 2013; O’Connell et al., 2012; O’Connell and Kelly, 
2021), whose ramp-to-threshold dynamics have been proposed to account for many established 
effects in the P300 literature (Twomey et al., 2015). In addition, the continuous |evidence| regressor 
elicited a triphasic potential over centroparietal electrodes (Figure 6c). This triphasic potential is 
notably similar to EEG potentials reflecting ‘decision update’ signals during trial-based tasks that 
require integration of multiple, discrete pieces of evidence (Wyart et al., 2012).  
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Figure 6 – Deconvolutional general linear model to estimate EEG temporal response functions to 
continuous, time-varying decision regressors. The left-hand side of the figure shows an example evidence 
stream during the baseline period (note that inter-sample intervals are shown as fixed duration for clarity, 
rather than Poisson distributed as in the real experiment). Three example regressors are shown: (a) ‘jump 
event’, when there was a change in the noise coherence level; (b) '|D evidence|’, reflecting the magnitude 

of the jump update at each jump event; (c) continuous |evidence|, reflecting the continuous absolute 
motion strength. For each of these regressors, a lagged version of the regressor timeseries is created to 
estimate the TRF at each peri-event timepoint. This is then included in a large design matrix X, which is 
regressed onto continuous data Y at each sensor. This leads to a set of temporal response functions for 

each regressor at each sensor, shown on the right-hand side of the figure. The timecourse for each 
regressor shows the average regression weights at the three sensors highlighted with triangles on the 
scalp topography. Full details of the design matrix used in our analysis of the EEG data are provided in 

methods.  

 
Increased CPP responses to Devidence and response thresholds when response periods are rare 

We then examined whether these TRFs to noise fluctuations were adapting across the 
different sensory environments. Given our behavioural findings concerning integration kernels 
(Figures 2d and 3b), we reasoned that we would most likely identify differences as a function of 
response period frequency rather than length. Indeed, we found that the centroparietal response to 
the same change in sensory evidence was larger when response periods were RARE than when they 
were FREQUENT (Figure 7a and Figure 7 - figure supplement 2; p=0.017, cluster-based permutation 
test). As large changes in mean evidence are less frequent in the RARE condition, the increased neural 
response to |Devidence| may reflect the increased statistical surprise associated with the same 
magnitude of change in evidence in this condition. In addition, when making a correct response, 
preparatory motor activity over central electrodes reached a larger decision threshold for RARE vs. 
FREQUENT response periods (Figure 7b; p=0.041, cluster-based permutation test). We found similar 
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effects in beta-band desynchronisation prior, averaged over the same electrodes; beta 
desynchronisation was greater in RARE than FREQUENT response periods. As discussed in the 
computational modelling section above, this is consistent with the changes in integration kernels 
between these conditions as it may reflect a change in decision threshold. It is also consistent with the 
lower detection rates and slower reaction times when response periods are RARE (Figure 2 b/c), which 
also imply a higher response threshold. By contrast, we found no statistically significant difference for 
either of these regressors between SHORT vs. LONG response periods (Figure 7 - figure supplement 1 
and Figure 7 - figure supplement 2). We also found qualitatively similar results for false alarm 
responses. 
 

 
 

Figure 7 – Adaptations of EEG responses to sensory environments where response periods are RARE 
versus FREQUENT. (a) Centroparietal electrodes (see triangles in scalp topography) showed a significantly 
greater response to Devidence during ‘jump events’ in the noise stream when response periods were RARE 
than when they were FREQUENT. (b) Central and centroparietal electrodes showed a significantly greater 
negative-going potential immediately prior to a button press during response periods. Lines and error bars 
show mean +/- s.e.m. across participants. * (solid black line at top of figure) denotes significant difference 
between FREQUENT and RARE (p<0.05, cluster corrected for multiple comparisons across time). Details of 

the permutation testing used for multiple-comparisons correction are provided in methods. 
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Figure 7 - figure supplement 1 – No significant differences in EEG responses between conditions where 
response periods were SHORT versus LONG. Panels arranged as in main Figure 7; permutation tests were 

performed as in main Figure 7 (and described in methods). 

 
 

Figure 7 - figure supplement 2 – Individual subject EEG effects for the Δevidence regressor over 
centroparietal electrodes from 200-400ms after the change in evidence. The left-hand panel shows 

the individual effects for the Δevidence regressor over centroparietal electrodes (see triangles in main 
Figure 7), averaged within-participant for both FREQUENT and RARE conditions (each dot = 1 
participant). The plot shows the significantly increased response to this regressor in RARE vs. 

FREQUENT (T(23) = 2.83, p=0.0095). No such difference is seen for the equivalent plot comparing 
SHORT and LONG conditions (right-hand panel). 

 
Responses to |Devidence| reflect decision-relevant, not decision-irrelevant, statistics of stimulus  

Given the potential role of |Devidence| in surprise detection, we next asked whether the 
centroparietal response to |Devidence| reflected low-level sensory properties of changes in the 
motion stimulus, or higher-level signals relevant to decision making. To test this, we collected an 
additional control dataset where the stimulus contained both horizontal motion (decision-relevant) 
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that subjects had to integrate, as in the main experiment, but also vertical motion (decision-irrelevant) 
that had the same low-level sensory statistics. As in the main experiment, we found that centroparietal 
responses reflected both ‘jump events’ and their associated |Devidence| for decision-relevant 
motion, but these were substantially reduced for regressors that reflected changes in decision-
irrelevant evidence (Figure 8). This implies that low-level sensory surprise alone does not account for 
the centroparietal responses to |Devidence| in our continuous paradigm. Instead, the neural 
response is better described as reporting change detection that is relevant to signal detection and 
discrimination. It is possible that such change detection would be useful to indicate when a response 
period is more likely to arise in the task (Shinn et al., 2022).  

 
Figure 8 – Control experiment demonstrates that response to |Devidence| is primarily found to 
decision-relevant horizontal motion, but not decision-irrelevant vertical motion (with identical 
generative statistics). * denotes timepoints where the response to |Devidence| is significantly greater for 
decision-relevant motion than decision-irrelevant motion, while controlling for multiple-comparisons 
across time (see methods). 
 
Behavioural-neural correlation between evidence integration kernels and TRFs to continuous 
sensory evidence 

 Finally, given the consistency and between-subject variability in integration time constants 
shown in Figure 3c and Figure 3 - figure supplement 1, we explored whether any components relating 
to processing of sensory evidence might reflect cross-subject variation in evidence integration. We 
therefore performed a behavioural-neural correlation between participants’ integration time 
constants 𝜏 and their TRFs to sensory noise fluctuations. (Note that the integration time constants 
were fit using the equation described above, fit (using the approach described in methods) separately 
to the empirical integration kernels from each of the four conditions). 

We found such a correlation for the triphasic potential elicited by the continuous “absoluted 
sensory evidence” regressor (see Figure 6c). From approximately 420ms onwards, the amplitude of 
the final, negative component of this component showed a negative correlation with 𝜏  across 
participants (Figure 9). In other words, this negative-going component was larger in amplitude (i.e. 
more negative) in participants who would integrate sensory evidence over longer durations (i.e. had 
a higher value of 𝜏). We suggest that this may be consistent with variation in the encoding strength of 
previously studied correlates of continuous decision evidence. For example, Wyart et al. found a 
positive centroparietal potential 500ms after decision information that positively encoded the current 
sample, but negatively encoded adjacent samples (Wyart et al., 2012); our finding extends this work 
to explore variation in the response across participants. 

Although this across-subject correlation was discovered via exploratory analyses, it replicated 
across all four independent conditions, substantially increasing the likelihood of it being a true positive 
result (Response periods FREQUENT and SHORT: Spearman’s 𝜌 = -0.45, p = 0.027; FREQUENT and 
LONG: 𝜌= -0.52, p = 0.0099; RARE and SHORT: 𝜌 = -0.53, p = 0.0080; RARE and LONG: 𝜌 = -0.46, p = 
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0.025). By contrast, we found no evidence for an across-subject correlation between fitted integration 
decay time constants and EEG regressors encoding evidence updates at jump events (Devidence), nor 
between fitted amplitude parameters (A) and any EEG regressors. 
 

 
 

Figure 9 – Behavioural-neural correlation (across subjects) of integration decay time constant and 
response to absolute sensory evidence in stimulus (see Figure 6c). Top panel shows Spearman’s rank 

correlation between the time-varying EEG beta for absolute sensory evidence and individual subjects’ 𝜏 
parameter, separately for each of the four conditions. The negative-going correlation found in all four 

conditions from ~420ms onwards coincides with the third, negative-going limb of the triphasic response to 
absolute sensory evidence shown in Figure 6c. Bottom panels shows the correlation plotted separately for 
each of the four conditions. We plot the average EEG effect size against log(𝜏) to allow for a straight-line 

fit (lines show mean +/- 95% confidence intervals of a first-order polynomial fit between these two 
variables); we used Spearman’s rho to calculate the relationship, as it does not assume linearity.  
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Discussion 
 

Real-world decisions typically demand continuous integration of incoming evidence in 
dynamic environments, without external cues as to when evidence integration should be initiated or 
responses made. This contrasts with a longstanding tradition in decision making and psychophysics 
research to confine decisions to discrete trials, which are typically externally cued to the participant. 
In the current work, we developed an approach to measure how participants weighed their recent 
history of sensory evidence when performing a continuous perceptual decision task. We found that 
participants' behaviour was well described by an exponentially decaying integration kernel, and that 
participants adapted the properties of this process to the overall statistics of the sensory environment 
(Ossmy et al., 2013) across four different experimental conditions. We also found that there was 
substantive inter-individual variability in leaky evidence integration, with some participants rapidly 
discounting past evidence and others integrating over several seconds. We then demonstrated that 
both sources of variability (between-condition and between-subject) were reflected by changes in 
centroparietal EEG responses to time-varying fluctuations in sensory evidence. 

Understanding the neural mechanisms supporting simple perceptual decision making remains 
a key goal for the neurosciences, and the scalp topographies and signals that we have identified in the 
current study match well with known findings in the literature on changepoint detection and sensory 
evidence accumulation. In particular, the well-known P300 component has long been argued to be 
associated with detection of statistical surprise (Donchin, 1981; Duncan-Johnson and Donchin, 1977; 
Mars et al., 2008; Squires et al., 1976) or, more recently, a correlate of a continuous time-evolving 
decision variable (Twomey et al., 2015) that is equivalent to the centroparietal positivity (Kelly and 
O’Connell, 2013; O’Connell et al., 2012). Our centroparietal responses to |Devidence| (Figure 6b) are 
consistent with a changepoint detection account of continuous decision making (Booras et al., 2021), 
in which decision-relevant input (Figure 8) is evaluated for a change in latent state from a baseline 
period to a response period (Nassar et al., 2019). This account would also explain why these signals 
are enhanced when response periods are rarer, as a large |Devidence| is more statistically surprising 
when response periods are rare than when they are common. Such changepoint detection may be 
useful to transiently suppress neuronal activity and attend to salient incoming sensory evidence to 
guide choices (Shinn et al., 2022). Alongside this, we also identify a triphasic potential that is similar in 
timecourse and scalp topography to previous studies of evidence accumulation (Wyart et al., 2012), 
sensitive to the continuous incoming sensory evidence (Figure 6c). Although we did not find variation 
in this potential across conditions, we did find that its amplitude reliably predicted the time-constant 
of leaky evidence accumulation across participants (Figure 9). This suggests a key role for this 
component in translating incoming sensory evidence into a continuous representation of the decision 
variable across time, but further work is needed to understand how this variable then supports the 
sensorimotor transformation into a final commitment to making a choice (Steinemann et al., 2018).  

Our work sits within a broader trend in recent research of moving away from trial-based 
designs towards continuous decision paradigms (Huk et al., 2018). In addition to being more 
naturalistic, a key advantage of such paradigms is that it is possible to relate time-varying properties 
of the continuous input to continuous output variables. In ‘tracking’ paradigms, for example, not only 
is the sensory input continuous and time-varying but also the behavioural responses made by 
participants. This approach has been used to dramatically reduce the length of time needed from 
individual participants, meaning that experiments that previously required many thousands of trials 
over several hours  to recover psychophysical functions can now be completed in a matter of minutes 
(Bonnen et al., 2015; Knöll et al., 2018; Straub and Rothkopf, 2021). In our paradigm, the behavioural 
responses remained discrete and sparse (as participants were completing a signal 
detection/discrimination task, rather than a tracking task), but the EEG data is continuous and time-
varying, and our analysis approach similarly benefits from being able to relate continuous variations 
in sensory input to this continuous neural signal. This has been shown in previous work to yield 
considerable improvements in signal-to-noise ratio compared to traditional trial-based event related 
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potentials (Dimigen and Ehinger, 2021; Gonçalves et al., 2014; Lalor et al., 2006), meaning that our 
approach should allow us to characterise the neural response to sensory evidence integration in less 
recording time than in previous work. Indeed, when we examined neural responses from individual 
participants in the present study, we found a high degree of individual-subject reliability. This 
efficiency is due to the high density of events in the continuous task design (>1000 jump events in 
each 5-minute block), limiting the amount of ‘dead time’ present in the experimental design (Henson, 
2007). In sum, this leads to a more efficient experimental design than in conventional trial-based 
experiments, and may potentially allow for more rapid and reliable estimation of single-subject 
responses. 

An intriguing finding in the present work is the substantive variability in integration decay time 
constants across individuals. Indeed, such inter-individual variability exceeded the between-condition 
variability that was observed due to our experimental manipulations. We consider two possible 
explanations of this inter-individual variability. The first is that it is a stable, trait-like feature of sensory 
evidence integration that is not unique to our task, but instead reflects true variability in perceptual 
evidence integration across individuals. Such a hypothesis would imply that it would predict variability 
in integration time-constants in other domains (for example, auditory evidence integration (Brunton 
et al., 2013; Keung et al., 2019; McWalter and McDermott, 2018) or more broadly cognitive tasks that 
involve continuous maintenance and manipulation of information across time in working memory). If 
so, it may also be possible to relate variability in behavioural time constants to underlying 
neurobiological causes by measuring the resting autocorrelation structure of neural activity, for 
example in MEG or fMRI data (Cavanagh et al., 2020; Manea et al., 2022; Raut et al., 2020).  

An alternative hypothesis is that the individual variability we observe may be a consequence 
of the prior expectations that our participants have about the overall task structure, combined with 
learning over the course of training. One result in support of this hypothesis comes from the modelling 
shown in Figure 4. Not only does the result in Figure 4a show that behaviour should be adapted across 
different conditions, but it also shows that different individuals might potentially achieve similar 
performance by ending up at very different locations in this parameter space. This could in turn explain 
why between-subject variability in these kernels exceeded between-condition variability (Figure 3c; 
Figure 3 - figure supplement 1). During training, different participants could have optimised their 
parameters to maximise points gained, but in doing so ended up at different locations on the ‘ridge’ 
of parameters shown in Figure 4a. To adapt behaviour between conditions, they may have then made 
a small adjustment in these parameters to optimise performance for each environment. 

Further work will be needed to distinguish these explanations of between-subject variability 
in integration kernels, and to test competing models of participant behaviour. Although the Ornstein-
Uhlenbeck process that we use is an appropriate and widely used model of the task, alternative 
models might also consider a dynamically changing threshold as a function of progress through the 
inter-trial interval (Geuzebroek et al., 2022); or consider tracking the mean and variance of the 
stimulus over time, rather than just the mean (Bill et al., 2022).  In the current work, we also did not 
directly fit parameters of the Ornstein-Uhlenbeck process to participant behaviour. Although progress 
has recently been made in model fitting for decision making in continuous decision-making paradigms 
(Geuzebroek et al., 2022), a key feature of our paradigm is that many responses result from the 
structured noise that we inject into the sensory evidence stream, which complicates the use of 
aggregate measures such as reaction time quantiles for model fitting. Model estimation could 
potentially be improved by having continuous behavioural output, as recently demonstrated in 
tracking paradigms (Huk et al., 2018; Straub and Rothkopf, 2021). 

Our findings of behavioural adaptations according to the overall statistics of the sensory 
environment are consistent with findings from previous research that have examined the same 
question in the absence of neural measures (Ossmy et al., 2013; Piet et al., 2018). Ossmy et al. (2013) 
used a trial-based paradigm with similarities to ours, involving unpredictable signal detection in the 
context of time-varying background noise in combination with a manipulation of signal-period 
duration. They used this to show that participants adapted the time constants of evidence integration 
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in different environments. In our paradigm, we benefitted from being able to directly recover 
empirical integration kernels as opposed to estimating them in a model, and we also found 
behavioural differences that resulted from varying response period duration. However, we 
surprisingly found little effect on integration kernels from this manipulation; we instead found that 
our manipulation of response period frequency had a greater effect on the weighting of past sensory 
evidence. We hypothesise that this difference between our results and those of Ossmy et al. may 
simply result from our manipulation of response period duration not being sufficiently large (3s vs. 5s) 
to require a substantial change in evidence weighting to optimise rewards. This is also consistent with 
our neural results, where the between-condition variation in responses to time-varying evidence was 
primarily found as a function of response period frequency, rather than duration. 

In conclusion, our work demonstrates that it is possible to accurately measure the time-course 
and neural correlates of sensory evidence integration in continuous tasks, and how this adapts to the 
overall properties of the environment. This work provides a framework for future work to investigate 
how evidence integration is adapted to other features of decision tasks, and how this may vary across 
individual participants. Our approach will also be useful for future work to investigate how the 
properties of evidence integration change in clinical populations, and how they are affected by various 
interventions (e.g. pharmacological, electrical/magnetic stimulation, cognitive training).  
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Methods  
 
Task Design  

In the continuous task, participants observed a stream of randomly moving dots in a circular 
aperture (Figure 1). A fraction of these dots move coherently to the left or to the right; the motion 
coherence is the proportion of dots moving in the same direction, whereas the other dots move 
randomly. In this study, the coherence varied between -1 (all dots move to the left) and 1 (all dots 
move to the right). At 0 coherence, all dots move randomly. 

Unlike in trial-based versions of the task, and even previous RDM tasks where motion is 
continuous (e.g., (Kelly and O’Connell, 2013)), during the present task the coherence changed 
constantly. During ‘baseline’ periods, the average of these constantly changing values remains 0. 
Within this stream of constantly changing coherence, there were response periods in which the 
average coherence was either to the left or to the right (see Figure 1b, 2a). The aim of the subject 
performing this task was to detect these stable periods of predominantly leftward or rightward motion 
(response periods). For participants, this means that they should not respond as soon as they think 
they know in which direction the dots are moving coherently, as is the case for a discrete trial version 
of the RDM task. Instead, participants must weigh the recent history of motion directions to detect 
periods where the average motion direction of the dots was consistently leftwards or rightwards.  

Participants indicated their decision about the average motion direction by pressing keyboard 
button ‘L’ to report a response period with average rightward motion and ‘A’ to report a response 
period with average leftward motion. Every time a button was pressed, a change in colour of the 
central fixation point provided feedback: correct responses were indicated by a green fixation point, 
a red fixation point followed an incorrect response during the response period, and false alarms (i.e., 
button presses during baseline periods) were indicated by a yellow fixation point. Whenever a 
response period was missed (no response made), the fixation point turned blue after 500ms (note 
that a button press within these 500ms was still counted as a correct response, to account for non-
decision time and allow participants to integrate over the entire length of the response period). 
Following correct or incorrect responses made during a ‘response period’, the response period was 
terminated immediately, and the stimulus returned to baseline. 

Participants were rewarded for correct responses but lost points for any other response. They 
received 3 points for correct responses, punished with -3 points for incorrect responses, and missed 
response periods or false alarms were both punished with -1.5 points. A reward bar was shown at the 
end of each 5-minute block to indicate how many points participants have won in total (the reward 
bar was shown continuously onscreen during training, but not during task performance to avoid 
distraction). As participants won more points, their reward increased to the right until they hit the 
right border of the reward bar (equivalent to a net gain of 15 points), the bar was reset to the middle 
of the screen and they received £0.50 bonus to take at the end of the experiment. In rare cases where 
participants were performing poorly and losing points on average, they hit the left border of the 
reward bar (-15 points) and had £0.50 deducted from their take-home bonus.  
 
Structure of the noise 

An essential feature of this task paradigm was the noise structure, which leads to continuously 
varying coherence levels. Notably, the noise was placed under experimental control rather than 
randomly generated, meaning that we could examine how fluctuations in the noise impact 
participants’ behavioural and neural data. More generally, the noise can be described as a series of 
short intervals that vary in duration and coherence (Figure 1b). The interval duration was sampled 
from an exponential distribution with a mean duration of 270ms. This distribution was then truncated, 
with a minimum duration of 10ms and a maximum duration of 1000ms for each step. The level of 
motion coherence at each step was sampled randomly from a normal distribution. The mean of this 
normal distribution depends on whether the step occurred during baseline or a response period. 
During a baseline period, the mean of the normal distribution was 0. That means it was equally likely 
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that negative or positive coherences were drawn. During response periods, the mean of the normal 
distribution was sampled uniformly from the set [-0.5, -0.4, -0.3, 0.3, 0.4, 0.5].  Any samples that 
exceeded 100% motion were set to be [+1,-1]. To limit the number of times this occurred, we set the 
standard deviation of the distribution to 0.3 for response periods and 0.5 for baseline periods. (We 
note that this could allow a strategy of tracking changes in the variance in the stimulus as well as the 
mean, something that we address in the supplementary note).  
 
Design of the random dot motion stimulus  

The task was coded in Psychtoolbox (Brainard, 1997; Kleiner et al., 2007; Pelli, 1997) and 
parameters were chosen similar to (Shadlen and Newsome, 2001). Participants were seated 87 cm in 
front of the screen. Moving dots were displayed in a circular aperture subtending with a radius of 5 
visual degrees on a Dell monitor with a refresh rate of 100Hz. Dots had a size of 0.1 visual degrees and 
were displayed with a density of 2.5 dots per squared visual degree. The fixation point in the centre 
of the screen had a size of 0.3 visual degrees. All dots were black and displayed on a mid-grey 
background (rgb: 0.5, 0.5, 0.5). 

Dots were equally divided in 3 sets. These sets were shown sequentially, meaning only one 
set per frame was shown. Each time a set reappeared on the screen the coherence on that frame 
dictated, the likelihood of that dot either being displaced randomly or in the direction of the 
coherence. Randomly displayed dots moved like Brownian motion particles, with no particular speed. 
Dots that moved coherently were displaced according to a speed of 7 degrees per second (Shadlen 
and Newsome, 2001). This approach means that subjects were forced to integrate across the entire 
field of moving dots to establish the motion direction; tracking a single dot is not reliable because it 
only reappears on every third frame and does not necessarily move coherently for more than 2 frames. 
 
Conditions 

To understand whether participants can flexibly adapt their integration kernel, we tested the 
continuous evidence integration task under different conditions following a within-subject 2x2 design. 
In different 5-minute blocks, participants were told that they would either have long (5 seconds) or 
short (3 seconds) response periods, and either frequent (baseline period range 3s-8s) or rare (baseline 
period range 5s-40s) response periods. Subjects received extensive training (see below) so that these 
environmental statistics were well learnt prior to the experimental session. During the experiment, 
they were cued as to which condition they were currently in, by: (i) displaying in text at the beginning 
of each block (e.g. “response periods are LONG and FREQUENT”); (ii) having a different shape of 
fixation point (triangle, square, circle, star) for each of the four blocks. This meant that there was no 
inference nor memory required from the subjects to know which condition they were currently in. 
 
Training  

Our training protocol was designed to overtrain participants to reach a high level of 
performance on the task and to minimize learning effects during the main testing session. Our training 
taught participants about the structure of the long/short and rare/frequent trial periods, how to 
discriminate such trial periods from background noise fluctuations, and crucially incentivised 
participants to maximise their overall reward rate. 

Training consisted of a sequence of different tasks that incrementally trained participants on 
the random dot motion stimulus and the continuous nature of the task. First, participants were 
introduced to the conventional RDM task based on discrete trials (Shadlen and Newsome, 2001), 
initially with very strong motion coherences (-0.9, 0.9), and then progressively with motion coherences 
resembling those found in the main experiment [-0.5, -0.4, -0.3, 0.3, 0.4, 0.5].   

Next, participants completed intermediate task versions that still consisted of discrete trials, 
but had features of the continuous task: in particular, noise fluctuations was superimposed on the 
mean motion coherence, as in the final continuous task version coherences would fluctuate 
throughout the trial. This meant that participants had to estimate the average motion direction across 
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the entire trial, but respond before the trial ended. Trial lengths were 5s (length of long response 
periods) or 3s (length of short response periods) and the fixation point shrank over the course of the 
trial so that participants would have an idea of how much time they had to respond. Trials with a mean 
coherence of 0% were also included, to simulate baseline periods of the continuous task that 
participants had to contrast to the other trials; participants had to suppress a response in these trials.  

Then, participants moved on to the continuous version of the task, but they were first trained 
on a paradigm with higher mean coherences during response periods; in addition, the fixation dot 
would change its colour to white to indicate the onset of response periods. Gradually, all conditions 
of the experiment and the final mean coherence levels of signal periods were introduced, and a change 
of the fixation dot colour to white was disabled. At this point, when the paradigm was the same as in 
the full task, they had an extended period of practice on the task across all four conditions. Note that 
during this time the colours of the fixation dot feedback were the same as in the main experiment, 
and participants were instructed about the meaning of these dots. 

We progressed participants through the different versions of training by checking 
psychometric functions to establish that they had fully learnt each stage before progressing onto the 
next stage of the task. Participants had to perform at 80% correct or higher on discrete trials to move 
on to the continuous tasks, and performance in the continuous task was checked qualitatively by 
plotting the stimulus stream and responses after each block. Verbal feedback was given to participants 
based on their performance, which also helped participants to improve their behaviour during 
training. If, in the latter parts of training, participants still missed more than half of the response 
periods, they were excluded from the subsequent EEG session. Participants (n=3) who failed to 
progress from the training session were paid for that session and did not progress on to the EEG 
session.   

After participants completed training successfully, they participated in the EEG testing session 
not more than one week later. In this session, participants first performed a ‘reminder’ where they 
practised one run of the full task for 20 minutes (all 4 conditions, presented for 5 minutes each, in 
randomised order); this was performed while the experimenter put on the EEG cap. Then, while EEG 
data was collected, they completed 5-6 task ‘runs’, each lasting 20 minutes. Each run consisted of all 
4 conditions in randomised order.  
 
Data collection  

We tested 33 participants (13 male). Of those, three were unable to learn the continuous task 
and did not progress beyond training. One participant was excluded for falling asleep during the EEG 
session. Another 5 were excluded from the analysis due to technical issues matching the continuous 
EEG with the stimulus stream, and/or issues with EEG data quality after pre-processing. This means 
24 subjects were included in the analysis. Each subject completed 6 runs, except for one subject who 
completed only 5 runs. For the control experiment with superimposed vertical motion (Figure 8), a 
further 6 participants were tested (4 male). All participants were aged 18-40, had normal or corrected-
to-normal vision and gave written consent prior to taking part in the study. The study was approved 
by the University of Oxford local ethics committee (CUREC R60298). 
 
Behavioural analysis  

Detection rate/reaction times. We calculated correct detection rate (Figure 2b) as the 
proportion of response periods in which correct responses were made. We calculated this separately 
for each run within each level of motion coherence (collapsing across leftward/rightward correct 
responses), and then averaged across the six runs, to obtain three values (0.3, 0.4 and 0.5 motion 
coherence) for each of the four conditions per subject. We performed a similar analysis on reaction 
times for these correct responses (Figure 2c), but here we excluded responses in LONG conditions that 
exceeded 3.5s, such that the average response time could be directly compared between LONG and 
SHORT conditions. (We note that due to noise and the associated uncertainty concerning response 
period onset, participants are incentivised to respond as quickly as possible whenever they thought 
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they were in a response period, as delaying responses would lead to ‘missed trials’). We analysed the 
effects of coherence, response period length and response period frequency on detection rate and 
reaction time across the 24 participants using a three-way repeated measures ANOVA. 

Integration kernels. We calculated integration kernels by averaging the presented motion 
coherence for 5s preceding every buttonpress (having first multiplied this by -1 for leftward button 
presses, so that left and right responses can be averaged together). We did this separately for false 
alarms (Figure 3b) and for correct responses (Figure 2d). We excluded correct responses in LONG 
conditions that exceeded 3.5s, for similar reasons as outlined above. We also note that the integration 
kernel in this period includes a mixture of ‘signal’ (shift in mean coherence) plus noise, whereas the 
integration kernel from false alarms is driven by noise alone. This explains why the segment of the 
integration kernel that reflects non-decision time (i.e. immediately prior to button press) returns close 
to 0 in Figure 3b but is closer to 0.5 in Figure 2c, and also why the false alarm integration kernel is 
more clearly an exponential decay function.  

We fit an exponential decay model to the empirical integration kernel from false alarm 
responses: 
 

𝑘(𝑡) = 𝐴𝑒
!"
#   

 

where k(t) is the height of the integration kernel t seconds before its peak; A is the peak 
amplitude of the integration kernel (in units that denote the fraction of dots moving towards the 
chosen response direction), and 𝜏  is the decay time constant (in units of seconds). To fit the 
exponential decay function, we first found the peak of the empirical integration function (using max 
in MATLAB), and set this timepoint to t=0 in equation 1 (see main text). We then fit A and 𝜏 to the 
empirical integration kernel for all timepoints up to and including t=0 using fminsearch in MATLAB, 
using a least squares cost function between the fitted model and data with an L2 regularisation term 
that penalised large values of either A or 𝜏  (l  = 0.01). To calculate the quality of the model fit, we 
calculated R2 for this function: 
 

𝑅% = 1 −
𝑅𝑆𝑆
𝑇𝑆𝑆

 

 
with RSS being the Residual Sum of Squares after model fitting, and TSS being the Total Sum of 
Squares. 
 False alarm rates. To calculate false alarm rates (Figure 3), we counted the total number of 
responses made during baseline periods, and divided this by the total amount of time where subjects 
could possibly have made a false alarm (i.e. total time spent in baseline periods). We repeated this 
separately for each of the four conditions within each participant. 
 
EEG acquisition 

EEG data was collected at a sampling rate of 1000 Hz with Synamps amplifiers and Neuroscan 
data acquisition software (Compumedics) and 61 scalp electrodes following the 10-20 layout. 
Additionally, bipolar electrodes were placed below and above the right eye and on the temples to 
measure eyeblinks as well as horizontal and vertical eye movements (HEOG and VEOG channels). A 
ground electrode was attached to the left elbow bone. The EEG signal was referenced to the left 
mastoid but later re-referenced to the average of left and right mastoids. Impedances of electrodes 
were kept below 15 kW.  
  
EEG pre-processing 

Data were pre-processed using spm12 (http://www.fil.ion.ucl.ac.uk/spm/) (Litvak et al., 
2011), the FieldTrip toolbox for EEG/MEG-analysis (http://fieldtriptoolbox.org) (Oostenveld et al., 
2010) and MATLAB (Version R2018b, The MathWorks, Inc., Natick, Massachusetts, United States). 
Each session for each participant was pre-processed as continuous data. First, each session was 
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downsampled to 100Hz. Then, the data was rereferenced to the average of left and right mastoid 
electrodes and bandpass filtered the data between 0.1Hz and 30Hz using the function spm_eeg_filter 
with default settings (fifth-order Butterworth filter, passed in both directions). In a next step, we used 
signal space projection methods in SPM to perform eyeblink correction. The bipolarized VEOG channel 
was used to build a spatial confound topography of eye blinks to delineate ocular source components, 
Segments of 1000ms around eye blink events in the VEOG channel were generated and averaged. 
Principal component analysis was then used to define the noise subspace of eyeblinks across all 
channels, and the first principal component was regressed out of the continuous EEG data (Berg and 
Scherg, 1994; Hunt et al., 2012). For each participant and session the spatial confound map of the first 
component was visually checked to ensure it showed a typical eye blink topography before the 
regression was applied. The EEG data was further thresholded to remove artefacts that were >= 100µV 
in a single channel by labelling a 500ms window around the peak of the artefact, and removing these 
timewindows when estimating the deconvolutional GLM. 
 
Deconvolutional GLM analysis  

We used triggers sent to each jump in the noise stream to align the continuous EEG data with 
the continuous stream of sensory evidence (and other experimental events, such as button presses). 
As the downsampled EEG was at the same sampling rate as the refresh rate as the display (100 Hz), 
we simply used the continuous stream of evidence presented on each frame of the experiment from 
then onwards. In addition to the 5 participants excluded due to technical issues with trigger recording 
and alignment (see ‘Data collection’ above), there was one further participant in our main EEG sample 
(n=24) who had 3 out of 24 blocks missing due to technical issues; this participant was nevertheless 
taken forward into the main analysis with the remaining 21 recorded blocks. 

We then constructed a design matrix X for the continuous EEG data, with 11 regressors in 
total: 
 

𝐸𝐸𝐺	~𝑗𝑢𝑚𝑝&'&(! + 𝑗𝑢𝑚𝑝)&'&) + 𝑗𝑢𝑚𝑝|+&',-&(.&| + 𝑐𝑜𝑛𝑡𝑖𝑛𝑢𝑜𝑢𝑠|&',-&(.&|
+ 𝑐𝑜𝑛𝑡𝑖𝑛𝑢𝑜𝑢𝑠&',-&(.&(0,1(&-) + 𝑟𝑒𝑠𝑝𝑜𝑛𝑠𝑒	𝑝𝑒𝑟𝑖𝑜𝑑	𝑜𝑛𝑠𝑒𝑡&'&(!
+ 𝑟𝑒𝑠𝑝𝑜𝑛𝑠𝑒	𝑝𝑒𝑟𝑖𝑜𝑑	𝑜𝑛𝑠𝑒𝑡.34&5&(.& + 𝑏𝑢𝑡𝑡𝑜𝑛𝑝𝑟𝑒𝑠𝑠.355&.!
+ 𝑏𝑢𝑡𝑡𝑜𝑛𝑝𝑟𝑒𝑠𝑠67)0&	7)759 	+ (𝑙𝑒𝑓𝑡 − 𝑟𝑖𝑔ℎ𝑡	𝑏𝑢𝑡𝑡𝑜𝑛𝑝𝑟𝑒𝑠𝑠).355&.!
+ (𝑙𝑒𝑓𝑡 − 𝑟𝑖𝑔ℎ𝑡	𝑏𝑢𝑡𝑡𝑜𝑛𝑝𝑟𝑒𝑠𝑠)67)0&	7)759	 

 
The ‘buttonpress’ regressors and the regressors with subscript ‘event’ are ‘stick functions’ (1 

at the timepoint that they occurred, and 0 at all other timepoints). Other regressors are parametric 
modulators of these, except for the two continuous regressors which were valued at all timepoints of 
the experiment (reflecting the current motion onscreen, either absoluted (reported in the main paper) 
or signed (not discussed)). In this paper we focus on responses to 𝑗𝑢𝑚𝑝&'&(!  (Figure 6a), 
𝑗𝑢𝑚𝑝|+&',-&(.&|  (Figure 6b, 7a, Figure 7 - figure supplement 1a, Figure 8), 𝑐𝑜𝑛𝑡𝑖𝑛𝑢𝑜𝑢𝑠|&',-&(.&| 
(Figure 6c, Figure 9), and 𝑏𝑢𝑡𝑡𝑜𝑛𝑝𝑟𝑒𝑠𝑠.355&.! (Figure 7b, Figure 7 - figure supplement 1b). For all of 
these except for the 𝑏𝑢𝑡𝑡𝑜𝑛𝑝𝑟𝑒𝑠𝑠.355&.! , we only estimate the EEG response during the baseline 
periods, when participants are still integrating evidence (as shown empirically in Figure 3) but the 
statistics of the stimulus stream across all four experimental conditions are matched.  We calculated 
the correlation between the key regressors of interest (table 1) to ensure that they were sufficiently 
decorrelated from one another to reliably obtain parameter estimates in the general linear model. 

To obtain the deconvolved response to each of these regressors, we time-expanded the 
design matrix into a large design matrix Xdc (see (Ehinger and Dimigen, 2019) for recent review). We 
used simple ‘staircasing’ of the regressors to create this design matrix (as illustrated in Figure 6), rather 
than a time-Fourier basis set (Litvak et al., 2013) or time-Spline basis set (Ehinger and Dimigen, 2019); 
any of these approaches might be suitable for future studies. The number of timepoints for each of 
the regressors varied slightly between different regressors (for example, we were primarily interested 
in activity after stimulus changes but before buttonpresses; the number of pre- and post-event lags 
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reflected this). We then estimated parameter estimates for the deconvolved regressor at each sensor 
for each subject with ordinary least squares (using the method of (Courrieu, 2008) to facilitate fast 
computation of the pseudoinverse of the design matrix). 
 
Table 1:  (Average) explained variance between regressors of the convolutional GLM for 

baseline periods. Columns and rows are the different regressors used to investigate 
baseline periods. Between each pair of regressors for the key continuous variables, the 
explained variance (squared correlation coefficient) was calculated to ensure that these 
regressors were not correlated with each other prior to estimating the GLM. 

 
R2 Jump Jump level Jump 

|Devidence| 
Continuous 
|evidence| 

Jump  1 0 0.01 0 

Jump level 0 1 0.18 0.03 

Jump 
|Devidence| 0.01 0.18 1 0.01 

Continuous 
|evidence| 0 0.03 0.01 1 

 
 
 
Table 2:  Design matrix. This table describes the size of the design matrix assuming a sampling 

frequency of the EEG signals of 100Hz. For each regressor the number of lags pre- and post 
event and the total number of rows this regressor covers in the design matrix are described. 
The same number of lags were applied to vertical motion regressors for the control study.   

 
Regressor Pre-event time in 

time-expanded 
design matrix (ms) 

Post-event time in 
time-expanded 
design matrix (ms) 

Total rows in the 
time-expanded 
design matrix 

Jump event (stick 
function) 1000 1500 251 

Jump level (|evidence| 
at each jump event) 1000 1500 251 

Jump |Devidence| (at 
each jump event) 1500 1500 301 

Continuous |evidence| 1500 1500 301 

Continuous (signed) 
evidence 1500 1500 301 

Correct buttonpresses 
(stick function) 5000 3500 851 

Correct buttonpresses 
(+1 for right, -1 for left) 5000 3500 851 

False alarm 
buttonpresses (stick 
function) 

5000 3500 851 

False alarm 
buttonpresses (+1 for 
right, -1 for left) 

5000 3500 851 

Onset of response 
period (stick function) 
 

500 8000 851 
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Response period 
|coherence| of 
response period (stick 
function) 
 

500 8000 851 

 
Permutation test for convolutional GLM analysis  

To test for significant differences between deconvolved EEG responses for LONG versus 
SHORT response periods, and for RARE versus FREQUENT response periods, we performed a non-
parametric paired T test controlling for multiple comparisons across time, using the FieldTrip function 
ft_timelockstatistics (Maris and Oostenveld, 2007).  We first selected electrodes and time-windows of 
interest based upon the average response to the key regressors across all four conditions (see Figure 
6); we note that because this selection vector is orthogonal to the difference between conditions (and 
the number of observations are matched between conditions), then it provides an unbiased method 
for selecting a window of interest (Kriegeskorte et al., 2009). In practice, this meant that the cluster-
based permutation test was performed on an average of three centro-parietal electrodes 
(CP1,CP2,CPz) and a time window from 0 to 800ms post-event for jump-locked events (Figure 7a, 
Figure 7 – figure supplement 1a, Figure 8), and an average of six centro-parietal and central electrodes 
(C1,C2,Cz,CP1,CP2,CPz) and a time window from 2000ms to 0ms pre-event for buttonpress events 
(Figure 7b, Figure 7 – figure supplement 1b). 1000 permutations were generated with the Monte Carlo 
method, and clusters were selected based on a T-statistic threshold of 2.07 for initial cluster formation 
(except for |	𝑗𝑢𝑚𝑝|:&',-&(.&|, where a slightly lower threshold of T>1.80 was used), and an alpha of 
0.05 (two-tailed) was then used for significance detection of clusters, corrected for multiple 
comparisons across time.  

For the behavioural-neural correlations in Figure 9, we first temporally smoothed single 
subject betas with a gaussian kernel with 75ms FWHM (to further improve single subject SNR), and 
then calculated the Spearman’s correlation at each timepoint between the estimated betas for the 
𝑐𝑜𝑛𝑡𝑖𝑛𝑢𝑜𝑢𝑠|&',-&(.&| regressor and the 𝜏 parameters fit to the empirical evidence integration kernels 
for false alarms. We did this separately for the four conditions, providing four separate tests of the 
same behavioural-neural correlation (we note that these tests are independent in the sense that they 
consist of separate data for each correlation, but not in the sense that different participants were used 
to generate the data). In Figure 9b, we report the behavioural-neural correlation for the time window 
420-750ms after the evidence. 
 
Materials availability statement 
 
Code repositories are available at our lab GitHub site for recreating the experimental paradigm 
within Psychtoolbox (https://github.com/CCNHuntLab/continuous-rdm-task) and for analysis of both 
behavioural and EEG data in MATLAB (https://github.com/CCNHuntLab/ruesseler-eeg-analysis). A 
resource containing both raw and pre-processed anonymised EEG and behavioural data has been 
uploaded to DataDryad, and will be available at https://doi.org/10.5061/dryad.02v6wwq6b.  
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