Molecularly informed analysis of histopathology images using natural language
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Abstract

Histopathology refers to the microscopic exam-
ination of diseased tissues and routinely guides
treatment decisions for cancer and other diseases.
Currently, this analysis focuses on morphologi-
cal features but rarely considers gene expression
information, which can add an important molec-
ular dimension. Here, we introduce SpotWhis-
perer, an Al method that links histopathologi-
cal images to spatial gene expression profiles
and their text annotations, enabling molecularly
grounded histopathology analysis through natu-
ral language. Our method outperforms pathol-
ogy vision-language models on a newly curated
benchmark dataset, dedicated to spatially resolved
H&E annotation. Integrated into a web interface,
SpotWhisperer enables interactive exploration of
cell types and disease mechanisms using free-text
queries with access to inferred spatial gene expres-
sion profiles. In summary, SpotWhisperer ana-
lyzes cost-effective pathology images with spatial
gene expression and natural-language Al, demon-
strating a path for routine integration of micro-
scopic molecular information into histopathology.

1. Introduction

Histopathology is fundamental for clinical diagnostics and
guides treatment decisions across a wide range of diseases.
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For example, most cancers are diagnosed through manual
examination of macroscale morphological features in hema-
toxylin and eosin (H&E) stained tumor specimens under a
microscope. Despite the low cost of this assay, the analysis
is labor-intensive and requires trained pathologists.

A key goal of computational pathology is to make
histopathology image analysis more accessible. Vision-
language models (VLMs), which interpret images through
natural-language queries, allow training and inference on
H&E images annotated with broad disease phenotypes and
macroscopic features (e.g., “tumor®, “inflamed tissue®). As
a result, these models tend to focus on macroscale morphol-
ogy and are at risk of overlooking the molecular and mi-
croanatomical features needed to capture more fine-grained

aspects of tissue biology and pathophysiology.

By contrast, modern biomedical research increasingly fo-
cuses on molecular readouts such as gene expression pro-
filing, which can provide mechanistic insight and enable
fine-grained characterization of biological states. Spatial
transcriptomics offers a way to obtain molecular information
at high spatial resolution across thousands of genes simulta-
neously. However, the high cost and substantial technical
and bioinformatic challenges associated with this assay have
hindered its widespread adoption in clinical diagnostics.

Here we present SpotWhisperer, a method that combines the
accessibility of histopathology with the mechanistic insights
of spatial transcriptomics and the convenience of chat-based
data analysis. SpotWhisperer builds on recent advances in
biomedical Al that infer spatial transcriptomics from H&E
images and it interprets the resulting profiles using multi-
modal AL Through this approach, SpotWhisperer provides
the ability to analyze H&E images with natural-language
queries, enabling the molecularly grounded interpretation
of tissue composition and function at microscale spatial
resolution.

We evaluated our method on a newly curated benchmark
dataset for zero-shot H&E image property prediction with
microscale resolution. The results demonstrate substantial
performance gains over pathology VLMs, underscoring the
benefit of integrating inferred spatial transcriptomic profiles
into histopathology Al language models.
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Figure 1. Zero-shot pathology image analysis at microscale and molecular resolution. (a) SpotWhisperer connects histopathological
H&E images with fine-grained cell annotations via an interpretable gene expression embedding. (b) SpotWhisperer provides an
interactive web UI for explorative H&E analysis using free-text natural language. (c) The SpotWhisperer web UI exploits inferred spatial
transcriptomics. (d) Existing VLMs link H&E images to macroscale labels but ignore molecular information.

2. Related work

The SpotWhisperer method builds on concepts introduced
by VLMs for pathology, and extends their scope by incorpo-
rating microscale annotations with molecular information
using multimodal models, which we introduce below.

2.1. Pathology vision-language models for H&E images

Pathology VLMs are trained on macroscale free-text an-
notations, which are sourced from clinical diagnostics and
manually annotated by expert pathologists.

Most such models rely on multimodal contrastive learning
(Radford et al., 2021) to connect images with their textual
annotations, thereby enabling zero-shot classification across
arbitrary free-text labels. Representative examples of this
approach include PLIP (Huang et al., 2023) and CONCH
(Lu et al., 2024), which we use here as baseline methods.

2.2. Spatial transcriptomics prediction

Spatial transcriptomics, i.e., the assessment of gene expres-
sion at genomic scale and spatial resolution, is commonly
accompanied by H&E imaging of the same tissue slice. Con-
sequently, a wealth of linked datasets at a microscale spatial
resolution of 1 to 10 cells per spatial spot exists.

Based on these data, specialized machine learning mod-
els have been developed that can infer spatially resolved

transcriptomic profiles from H&E images using convolu-
tional neural networks (He et al., 2020), vision transformers
(Pang et al., 2021; Jia et al., 2024; Zeng et al., 2022), and
contrastive learning techniques (Xie et al., 2023).

The recent DeepSpot method (Nonchev et al., 2025) intro-
duces two key advances. First, it leverages pathology foun-
dation models trained on millions of H&E slides (Chen et al.,
2024; Saillard et al., 2024; Filiot et al., 2024) to extract in-
formative and robust representations from input image tiles.
Second, it integrates multi-level tissue information covering
zoomed-in and neighboring tissue morphology, in addition
to the region of interest. This enables expression prediction
of 5,000 genes — more than six times the number predicted
by previous models — at improved accuracy.

2.3. Multimodal modeling of transcriptomes and text

Several works have linked transcriptomics to textual annota-
tions, enabling zero-shot prediction with free-text labels.

Similar to established VLMs, LangCell (Zhao et al., 2024)
and CellWhisperer (Schaefer et al., 2024a;b) employ mul-
timodal contrastive learning (Radford et al., 2021) to link
transcriptomes to text descriptions, facilitating efficient zero-
shot prediction of cell type and other cell properties. Such
models synergize with graphical single-cell applications,
enabling interactive chat-based analysis of single-cell RNA-
seq data (Schaefer et al., 2024a;b).
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3. Methods

SpotWhisperer advances computational pathology by aug-
menting H&E images with inferred molecular profiles and
natural-language analysis at microscale resolution.

3.1. Microscale analysis of H&E images with natural
language and molecular information

SpotWhisperer integrates the DeepSpot and CellWhisperer
methods to enable molecularly informed analysis of H&E
images with natural language (Fig. 1a) in four key steps.

First, H&E images are subdivided into tiles centered on spot
positions (see Appendix B). Second, DeepSpot (Nonchev
et al., 2025) processes these tiles to predict spot-level (i.e.,
microscale) transcriptomic profiles. Third, the inferred spa-
tial transcriptomics data are processed by the CellWhisperer
embedding model (Schaefer et al., 2024b), yielding spot-
level transcriptome embeddings. Fourth and finally, these
embeddings are used for zero-shot inference with free-text
labels, supported through CellWhisperer’s linked transcrip-
tome and text embeddings.

To provide convenient access to our method, we extended
the CellWhisperer web app (Schaefer et al., 2024b), facil-
itating intuitive annotation of H&E images using natural-
language queries. This enables the direct search of cell
types and states. For example, when searching for T cells
in an H&E tumor image, our method clearly recapitulates
expert annotations for “tertiary lymphoid structures” — re-
gions that are known to harbor T cells and other immune
cells (Fig. 1b). The molecular representation employed by
SpotWhisperer facilitates biological interpretation of these
predictions. Investigating the SpotWhisperer-identified
spots, we identified strong expression enrichment for LTB,
a gene known to be involved in the formation and main-
tenance of tertiary lymphoid structures (Fig. 1c). We pro-
vide a supplementary video of the analysis workflow at
https://bit.ly/spotwhisperer-showcase.

SpotWhisperer facilitates molecular analysis and microscale
annotation of H&E images, thereby supporting biological in-
terpretation. It complements existing computational pathol-
ogy models that focus on macroscale labels and do not link
to the underlying molecular mechanisms (Fig. 1d).

3.2. Evaluation and benchmarking of spatially resolved
natural language H&E image analysis

To quantitatively assess the performance of SpotWhisperer
and future methods supporting microscale annotations, we
compiled a benchmark dataset of H&E images with corre-
sponding microscale ground-truth annotations.

Our dataset is based on five published lung cancer tissue
samples comprising a total of 16,032 patches imaged at 20x

magnification (Dawo et al., 2025). We derived ground-truth
annotations for each of these patches with two text-based
labels: (i) a pathology-focused region annotation and (ii) a
transcriptome-derived cell type annotation (Fig. 2).

We adapted the pathology-focused annotations from recent
work (Dawo et al., 2025), where expert pathologists divided
the H&E images into regions of normal cells, tumor cells,
infiltrating cells, and tertiary lymphoid structures. These
annotations were provided as abbreviations and translated
by us into the natural language labels (see Table 3).

We derived the cell type annotations based on the spatial
transcriptomics measurements provided alongside the H&E
images in our evaluation dataset (Fig. 2) in two steps. First,
we trained a logistic regression model on the comprehensive
human lung reference atlas (Sikkema et al., 2023), consider-
ing only genes that were considered by the DeepSpot model.
Then, we applied this model to the spatial transcriptomics
data, transferring coarse-grained cell type labels Immune,
Epithelial, Endothelial, Stroma, given that more specific
cell type information was likely to be diffused by the multi-
cellular resolution of the Visium technology.

Taken together, this dataset enables a data-driven evalua-
tion of zero-shot H&E prediction methods with a focus on
microscale and molecularly defined properties.

4. Results

To assess SpotWhisperer’s performance, we benchmarked it
on our evaluation dataset in comparison to the state-of-the-
art VLMs PLIP and CONCH.

We performed zero-shot classification of spot-centered im-
age patches (Fig. 1a) and compared them to the ground truth
labels of our dataset (Fig. 2). We refer to Appendix B for
details and to Fig. 1b for an example. Below we present the
results for the two annotation types in the dataset.

SpotWhisperer was adapted to lung cancer tissue data by
training a dedicated DeepSpot model (see Appendix A for
details). We also investigated the potential to optimize the
performance of VLMs through different patch sizes, but did
not observe improvements (Appendix B.3).

Table 1. AUROC scores and overall weighted AUROC of region-
level annotation (mean (SEM)) for the evaluation dataset. Values
in bold indicate the best-performing method.

Region Type PLIP CONCH SpotWhisperer (Ours)
infiltrating cells 0.399 (0.036)  0.550 (0.069) 0.648 (0.089)
normal cells 0.453 (0.068)  0.380 (0.057) 0.658 (0.077)
tertiary lymphoid structures  0.881 (0.059)  0.886 (0.031) 0.801 (0.050)
tumor cells 0.627 (0.039)  0.506 (0.048) 0.760 (0.048)
Overall 0.554 (0.026)  0.478 (0.025) 0.717 (0.049)
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Figure 2. Schematic outline of evaluation dataset creation for the microscale H&E annotation benchmark and evaluation strategy

of zero-shot H&E annotation models

4.1. Pathology-focused region prediction

On the pathology-focused region annotations, SpotWhis-
perer achieved the highest AUROC on three of the four
region types and performed competitively on the fourth
(see Table 1), highlighting the value of transcriptome-
informed annotations for enhancing the accuracy of mi-
croscale histopathological analysis.

4.2. Cell type prediction

Cell types are commonly defined by transcriptome signa-
tures. They might thus be a challenging target for VLMs,
but better detected by SpotWhisperer.

Table 2. AUROC scores and overall weighted AUROC of spot-
level cell type annotations (mean (SEM)) for the evaluation dataset.
Values in bold indicate the best-performing method.

Cell Type PLIP CONCH SpotWhisperer (Ours)
Endothelial  0.584 (0.025) 0.527 (0.039) 0.622 (0.048)
Epithelial 0.565 (0.025)  0.549 (0.013) 0.670 (0.052)
Immune 0.622 (0.022)  0.564 (0.023) 0.659 (0.035)
Stroma 0.521 (0.041)  0.630 (0.069) 0.526 (0.060)
Overall 0.586 (0.022)  0.555 (0.009) 0.656 (0.047)

We benchmarked the three models in terms of their ability
to predict corresponding labels in our evaluation dataset
(see Table 4). SpotWhisperer achieved the highest mean
AUROC, outperforming other models on three of the four
cell types (see Table 2), underlining our method’s potential
for predicting molecularly described annotations.

5. Discussion/Conclusion

With SpotWhisperer, we demonstrate the integration of
spatially resolved molecular information into interactive
histopathology analysis with free-text natural language
queries. We employ transcriptome inference from H&E
images to address the high cost and complexity of experi-
mental spatial transcriptomics profiling, and we use a mul-
timodal language model to enable chat-based interaction
with such datasets, as illustrated in a demonstration video
(https://bit.ly/spotwhisperer-showcase).

SpotWhisperer unlocks rich molecular annotations — as
captured by CellWhisperer — for H&E image analysis us-
ing transcriptomic inference with DeepSpot. Our results
demonstrate the downstream value for biological data in-
terpretation, as SpotWhisperer outperforms state-of-the-art
VLMs on pathology-focused and cell type annotation tasks.
Nevertheless, VLMs were superior on a subset of tasks, in-
cluding the identification of tertiary lymphoid structures (Ta-
ble 1), indicating that integrating the macroscale strengths
of VLMs with SpotWhisperer’s microscale focus could com-
plement each other.

Our results and benchmark motivate further research on
multimodal approaches for H&E analysis, including:

* Learning of tri-modal embedding space that jointly rep-
resents images, transcriptomics, and natural language.

* Increased spatial resolution of our benchmark and base-
line method to the single-cell or subcellular level.

* Creation of a pan-tissue model, circumventing the need
to train tissue-specific models.

Datasets, code, and access to our web UI will be provided
upon archival publication of this work.

5.1. Study limitations

We point out several limitations of our study: First, we
explored our approach on a single tissue type only, which
we selected due to a sufficient availability of training data
and the ability to curate independent evaluation data. We
expect that newly published spatial transcriptomics data will
soon facilitate the analysis across diverse tissue types. Sec-
ond, we limited our evaluations to coarse-grained cell types
such as stromal cells and epithelial cells due to the multi-
cellular resolution of available transcriptomics data. Higher-
resolution spatial transcriptomics data are rapidly becoming
an established technology and will soon facilitate the assess-
ment of fine-grained cell type predictions with our approach.
Finally, while we ensured that baseline VLMs performed
favorably on our chosen queries over rephrased alternatives,
more elaborate methods such as prompt-ensembling could
be explored for VLMs as well as for SpotWhisperer.
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Impact Statement

This paper presents work whose goal is to advance the field
of biomedical Al for histopathology analysis. Later itera-
tions of our work may bear relevance to clinical practice
and biological research. At this stage, we feel these do not
need to be specifically highlighted here.
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A. SpotWhisperer implementation for lung cancer data

Spatial transcriptomics datasets have been generated and published for only a subset of human tissues. Here we trained
DeepSpot in a tissue-specific manner focusing on lung cancer data matching the tissue type of our evaluation dataset. We
further assessed the compatibility of DeepSpot-predicted transcriptomes with CellWhisperer (which is trained once and
applied anywhere).

A.1. DeepSpot model training

DeepSpot is trained as a regression model on the top 5000 highly-variable-genes (HVGs) in spatial transcriptomics data,
using H&E image data as input features. For the lung cancer DeepSpot model, we used 10x Genomics Visium data from 36
lung cancer samples (De Zuani et al., 2024), which were generated independently from our evaluation data. From these data,
the H&E slides are segmented into tiles overlapping with the spatial transcriptomics spot positions. For each spot, a bag of
sub-tiles captures local morphology and a bag of neighboring spots incorporates the adjacent tissue environment. These
image tiles are then processed to embeddings using H-optimus-0, a pre-trained pathology foundation model (Saillard et al.,
2024), and serve as input to the trainable DeepSpot regression module. For a more detailed description of DeepSpot training,
we refer to (Nonchev et al., 2025).

A.2. Compatibility of DeepSpot predictions with CellWhisperer

To assess whether CellWhisperer meaningfully interprets DeepSpot-predicted spatial transcriptomics data, we embedded the
inferred 5000 HVGs with CellWhisperer’s transcriptome embedding model and visualized the embeddings in a UMAP. We
observed meaningful clustering by expert-level annotations, indicating that CellWhisperer recapitulated biological signals
from the DeepSpot-predicted transcriptomics.

tumor cells
@ infiltrating cells

@ normal cells v 3
tertiary lymphoid structures

UMAP 1

UMAP 2

Figure 3. UMAP representing Cell Whisperer embedding of 5000 HVGs inferred using DeepSpot on our lung cancer evaluation
dataset with ground truth expert annotation labels.

B. Evaluating SpotWhisperer and vision-language models on lung cancer benchmark dataset

We evaluated SpotWhisperer, PLIP, and CONCH across five independent lung cancer samples (see Section 3.2) on spot-level
annotations. Annotations comprise expert-annotated tissue labels (tumor, normal, tertiary lymphoid structure and infiltrating
(immune) cells; see Table 3) and four bioinformatics-derived cell type labels (Epithelial, Endothelial, Immune and Stroma;
see Table 4). For each of these two annotation groups, we calculated class probabilities using SpotWhisperer and the two
VLMs, which we then derived AUROC scores from. This analysis was performed for each spot independently, where the
spot positions were predefined by the source spatial transcriptomics data and the derived ground-truth labels. In use cases
without such evaluation data, spot positions can be chosen freely, e.g. in a grid formation.
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Table 3. Queries used for region-level annotation

Expert Annotation

Query

TUM
NOR
TLS

INFL

tumor cells

normal cells

tertiary lymphoid structure
infiltrating cells

B.1. Calculation of class probabilities with SpotWhisperer

To generate spot-level class probabilities, we embedded the class labels using CellWhisperer’s text embedding model and
computed its cosine similarity with spot-level transcriptome embeddings, derived using CellWhisperer’s transcriptome
embedding model, followed by softmax (Schaefer et al., 2024b).

Table 4. Queries used for spot-level annotations

Cell-type annotation

Query

Epithelial epithelial cells
Endothelial endothelial cells
Immune immune cells
Stroma stromal cells

B.2. Calculation of scores with vision-language models

For the vision language models, PLIP and CONCH, we computed the similarity between the text queries and patches of
the image localized at the annotated spots, as described in (Huang et al., 2023; Lu et al., 2024). Again, similarity scores
were converted to probabilities using softmax. We note that CONCH was originally evaluated using prompt-ensembling
to achieve its best performance (Lu et al. (2024), Extended Data Fig. 2). We opted not to report prompt-ensembling in
our benchmark to better reflect a zero-shot setting where users provide a single query. This aligns with the broader aim of
deploying models that are robust to variation in user queries without relying on prompt tuning or selection.

B.3. Effect of patch size on vision-language model performance

Both PLIP and CONCH were trained on histopathology images that were often larger than the patch sizes corresponding to
our microscale labels. We therefore tested whether larger patch sizes could improve the predictive performance of these
baseline methods. To do so, we performed the same annotation task using a larger context area and taking the most frequent
class in a given image patch as the overall label. We did not find a marked improvement in quality (Table 5).

Lung Cancer Evaluation Dataset

Sample 1 Sample2 Sample3 Sampled4 SampleS5 MEAN (SEM)
PLIP
80px 14.8 18.6 20.4 11.1 16.0 16.18 (1.60)
224px 19.0 16.1 19.4 9.6 16.9 16.20 (1.76)
CONCH
80px 9.1 10.0 11.0 8.1 8.6 9.36 (0.51)
224px 12.2 18.5 14.7 8.0 9.7 12.62 (1.85)

Table 5. Difference in accuracy (%) on the region level-annotation task when VLMs are provided with a wider ‘context window’.



