
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

INVESTIGATING THE EFFECTIVENESS OF HYPERTUN-
ING VIA GISTING

Anonymous authors
Paper under double-blind review

ABSTRACT

Gisting (Mu et al., 2023) is a simple method for training models to compress infor-
mation into fewer token representations using a modified attention mask, and can
serve as an economical approach to training Transformer-based hypernetworks.
We introduce HyperLlama, a set of Gisting-based hypernetworks built on Llama-2
models that generates task-specific soft prefixes based on few-shot inputs. In ex-
periments across P3, Super-NaturalInstructions and Symbol Tuning datasets, we
show that HyperLlama models can effectively compress information from few-
shot examples into soft prefixes. However, they still underperform multi-task
fine-tuned language models with full attention over few-shot in-context exam-
ples. We also show that HyperLlama-generated soft prefixes can serve as better
initializations for further prefix tuning. Overall, Gisting-based hypernetworks are
economical and easy to implement, but have mixed empirical performance.

1 INTRODUCTION

With the increasing capability and popularity of large language models (LLMs), much recent work
on LLMs has focused on improving the efficiency of training and serving models, such as via
more efficient attention implementations (Dao et al. 2022, Dao 2023), lower precision operations
(Dettmers et al., 2023; Frantar et al., 2023) and speculative decoding (Leviathan et al., 2023). De-
spite great advances in parameter-efficient fine-tuning (PEFT) methods and implementation im-
provements, fine-tuning a large language model to adapt it to a given downstream application still
remains a computationally expensive task. In particular, parameter-efficient fine-tuning still gener-
ally requires backpropagating gradients through most of the model, despite only a small fraction of
parameters requiring updates.

Given the strong in-context learning of LLMs (Brown et al., 2020), some recent work has explored
using trained language models as optimizers–explicitly using their in-context learning capability to
learn patterns or encode knowledge into hidden states or parameters (von Oswald et al., 2023a;b).
Building on similar ideas, Phang et al. (2023) introduced HyperTuning: using specially trained large
language as hypernetworks (Ha et al., 2017) to generate parameters from in-context inputs, without
the need for backpropagation or gradient-descent-based training.

In this work, we investigate Gisting (Mu et al., 2023) as an approach for efficiently training mod-
els to compress few-shot examples into Gist token representations. Through large-scale multi-task
training, Gisting models can serve as hypernetworks that generate task-specific soft-prefixes. Using
LLaMA-2 (Touvron et al., 2023) models as the foundation, we train HyperLlama, a set of Gisting-
based hypernetworks that generates soft prefixes based on few-shot examples. In experiments across
P3 (Sanh et al., 2022), Super-NaturalInstructions (Wang et al., 2022) and Symbol Tuning datasets
(Wei et al., 2023), we show that while HyperLlama models can effectively compress information
from few-shot examples into a downstream model, their performance still generally pales in com-
parison to models with full attention over examples and trained for few-shot learning. We also
show that the performance of Gisting-based hypernetworks can be boosted by performing an addi-
tion phase of pretraining to train the underlying model to perform Gisting, and jointly adapting the
downstream model during the hypernetwork training phase. Consistent with prior work, we find
that HyperLlama-generated soft prefixes can serve as better initializations for further prefix tuning,
achieving better scores on held-out tasks.

Our contributions are as follows:

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

• We introduce HyperLlama, a Gisting-based hypernetwork that generates soft prefixes for a
frozen downstream Llama-2 model.

• We show in experiments across P3, Super-NaturalInstructions and Symbol Tuning datasets
that HyperLlama can effectively compress information from few-shot examples into soft
prefixes, outperforming baselines that do not have access to additional examples. However,
HyperLlama still generally underperforms Llama-2 models with full access to few-shot
examples.

• We also show that HyperLlama-generated soft prefixes serve as better initializations for
further prefix tuning.

2 RELATED WORK

Hypernetworks and LLMs Hypernetworks were initially introduced by Ha et al. (2017) in the
context of RNNs for sequence tasks. Recent work on hypernetworks have focused on using large
foundation models (Bommasani et al., 2022) to generate a subset of parameters of a larger frozen
model; this both significantly reduces the output space of the hypernetwork, and allows the resulting
parameters to take advantage of an already capable pretrained model. Karimi Mahabadi et al. (2021)
and He et al. (2022) trained hypernetworks as part of a larger model to perform efficiently cross-trak
transfer learning. Phang et al. (2023) introduced HyperTuning, using a T5-based hypernetwork to
generate soft prefixes and LoRA parameters from few-shot examples for a frozen downstream T5
model. Ivison et al. (2023) concurrently explored a T5-based hypernetwork with a similar setup, ex-
cept also allowing the downstream model to access the hypernetwork encoder representations. Deb
et al. (2022) similarly explored training BART models to generate parameters from task instructions.
Outside of language models, Ruiz et al. (2023) trained a hypernetwork to generate a reduced version
of LoRA parameters for personalizing generation of images of faces.

Meta Learning and LLMs as Optimizers Large language models have been shown to be able
to learn at inference time from in-context examples, through regular language modeling pretraining
(Brown et al., 2020) or being explicitly trained to do in-context learning (Min et al., 2022; Shi et al.,
2023). von Oswald et al. (2023a;b) showed that the attention mechanism can mimic gradient descent
while processing in-context tokens, providing another approach to using Transformers to generate
parameters or parameter updates.

Parameter-Efficient Fine-tuning (PEFT) and Gisting To reduce memory and computation re-
quirements for fine-tuning, many parameter-efficient fine-tuning methods have been proposed in
recent years. We refer the reader to Lialin et al. (2023) for a comprehensive overview of PEFT
methods. QLoRA (Dettmers et al., 2023), a method for fine-tuning LoRA (Hu et al., 2022) param-
eters against 4-bit quantized language models, is heavily used in this work to reduce the memory
footprint of training runs. Gisting (Mu et al., 2023) involves training a decoder-only Transformer to
compress information from earlier tokens into Gist token representations via appropriate modifica-
tion of the attention mask. These Gist token representations are exactly equivalent to soft prefixes
(Li & Liang, 2021), as discussed in Section 3.1.

3 HYPERTUNING WITH LANGUAGE MODELS

Parameter-efficient fine-tuning involves modifying a small number of parameters in a larger pre-
trained model through standard gradient descent-based training. The goal of hypertuning is to use a
large language model to generate the corresponding modified parameters (e.g. soft prefixes, LoRA
weights) in a single forward pass through a hypernetwork; those parameters can then be inserted in
the frozen downstream model in the same configuration as in parameter efficient fine-tuning. The
hypernetwork typically takes either few-shot examples and/or a task instruction as the input, and is
generally initialized from the same parameters as the downstream model.

We briefly recap here the framework for hypertuning from Phang et al. (2023).

In standard fine-tuning, given a dataset of N (x, y) input-output pairs, a model M with parameters
θ, and a loss function L, we fine-tune θ based on the following objective:

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

argmin
θ

1

N

∑
{(x,y)}

L
(
y,M(θ;x)

)
(1)

During parameter-efficient fine-tuning (PEFT), instead of optimizing over θ directly, the majority of
the parameters are frozen (represented by θ0), while only a much smaller subset of parameters ϕ1

are fine-tuned with the following objective.

argmin
ϕ

1

N

∑
{(x,y)}

L
(
y,M(θ0;x, ϕ)

)
(2)

HyperTuning introduces a hypernetwork H2 that generates parameters ϕ̂ based on a set of K few-
shot examples {(xi, yi)}K , rather than directly optimizing over ϕ. The hypernetwork is itself pa-
rameterized by ξ.

ϕ̂ = H
(
ξ; {(xi, yi)}K

)
(3)

To train the hypernetwork H , we optimize over the hypernetwork parameters ξ. Combining Equa-
tions 2 and 3, we form the hypertuning training objective:

argmin
ξ

1

N

∑
{(x,y)}

{{(xi,yi)}K}

L
(
y,M(θ0;x,H(ξ; {(xi, yi)}K))

)
(4)

As long as both M and H are differentiable, as is typically the case with neural networks, this
optimization over ξ can be performed simply with gradient descent.

3.1 HYPERTUNING WITH GISTING

In Phang et al. (2023), the authors introduced HyperT5, a set of T5-based hypernetworks that gen-
erated soft prefixes and LoRA (Hu et al., 2022) parameters based on few-shot examples. One of the
major challenges identified in that work was the need to train parameter-generation heads, which
were themselves large neural network modules which required significant training, necessitating an
expensive hyperpretraining phase to initialize those modules before multi-task fine-tuning could be
performed.

As additional background: Prefix tuning (Li & Liang, 2021) is a popular parameter-efficient fine-
tuning method that involves directly fine-tuning a set of soft prefixes—key and value hidden states
corresponding to a set of prefix tokens—to adapt a frozen language model to a downstream task.
Phang et al. also found that HyperT5 performed better when trained to generate soft prefixes com-
pared to generating LoRA parameters.

Recently, Mu et al. (2023) introduced Gisting, a simple method for fine-tuning a decoder Trans-
former to generate representations for Gist tokens that condense information from prior tokens.
Referring to Figure 1a, by modifying the causal attention mask such that Gist tokens can attend to
prefix tokens and suffix tokens can only attend to Gist tokens, a Gisting model can be trained to
compress information relevant to language modeling on the suffix from the prefix within the Gist
token representations. We emphasize that Gist token representation can be reduced to just their key
and value hidden states, since these are the only hidden states that subsequent tokens interact with.
Correspondingly, prefix tuning involves tuning soft prefixes, the hidden representations of key and
value hidden states prepended to input text tokens. Hence, a Gisting model can be seen as a model
that is trained to generate soft prefixes, with the gist representations being equivalent to soft prefixes
in practice.3

1ϕ may be parameters such as soft prefixes or LoRA weights.
2Phang et al. uses the term hypermodel, but we use the term hypernetwork in this work for consistency with

the field.
3There is some subtlety around handling position encodings, which we elaborate on in Appendix B.

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

(a) Gist Masking for HyperTuning. The bot-
tom left block of the causal attention mask is ze-
roed out, preventing tokens after the Gist tokens
from attending to tokens before. Gist masking en-
courages the model to compress information from
the few-shot examples into the Gist token hidden
states, which the post-Gist tokens attend to.

(b) Architecture of HyperLlama HyperLlama
consists of a hypernetwork that takes as input few-
shot examples and generates task-specific soft pre-
fixes (Gists) that get inserted into the downstream
model. In practice, HyperLlama is a LoRA-tuned
version of the Llama-2 model, so only one copy
of the Llama-2 model weights needs to be kept in
memory.

Compared to HyperT5, the advantage of using Gisting to generate soft prefixes is that it introduces
no new layers or parameters (e.g. the parameter prediction heads in HyperT5), as Transformers
already output key and value hidden states in regular operation. Gisting therefore provides a po-
tentially highly economical approach to training LLM-based hypernetworks by building on already
existing components in the Transformer architecture.

3.2 HYPERLLAMA: A GISTING-BASED HYPERNETWORK

We now introduce HyperLlama, a Gisting-based hypernetwork built on Llama-2 (Touvron et al.,
2023). We illustrate the architecture of HyperLlama in Figure 1b. HyperLlama consists of two mod-
els, a hypernetwork that takes as input few-shot examples and compresses the information into Gist
representations, and a downstream model that uses the Gist representations prepended to the input.
The Gist representations thus effectively serve as soft prefixes. We use Llama-2-7B as the foundation
for both the hypernetwork and downstream model, and use 16 Gist tokens for all experiments.

In practice, loading two large language models into memory is prohibitively expensive, especially
during training. To reduce the computational cost of training the hypernetwork (which requires
backpropagating gradients through both models), we apply QLoRA (Dettmers et al., 2023), quan-
tizing both the hypernetwork and downstream model to 4-bit precision and using LoRA to modify
the hypernetwork. During the forward pass through the hypernetwork, we activate the LoRA pa-
rameters for hypernetwork, and extract the Gist outputs. Then, we deactivate the LoRA parameters,
restoring the untuned Llama-2 model, and feed both the Gist representations and the example inputs
into the model. Aside from the LoRA parameters, we also introduce a set of additional embeddings
for the Gist tokens. The LoRA parameters and the Gist embeddings are the only trained parameters
of the hypernetwork.

We highlight that this approach differs from Mu et al. (2023), where they fine-tune all the model
weights and use a single model that processes the pre-Gist tokens, the Gist tokens, and the post-Gist
tokens.

3.3 COMPRESSION HYPERPRETRAINING

In some experiments, we follow Phang et al. (2023) and do an additional stage of pretraining to
train the model to do perform Gisting before proceeding to multi-task fine-tuning. We refer to this
as compression hyperpretraining, as it involves training the model to compress information into
Gist tokens. The setup can be seen in Figure 2, and is based on the original hyperpretraining setup.
Given a sequence of tokens from a pretraining corpus, we divide it into 4 segments: A, B, C and D.
A and D are concatenated and serve as inputs to be compressed into the Gist representations <G>.

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

Figure 2: Compression Hyperpretraining. The model compresseses information in segments A
and D into the Gist tokens <G>, and the model is trained to use that additional information to predict
C based on B.

The additional context from A and D should help the model better predict tokens C from tokens B.4
We use the RedPajama dataset (Computer, 2023) for hyperpretraining, and train for 50,000 steps.
More training details are found in Appendix C.

Importantly, unlike with the training for hypertuning discussed above, we fine-tune all model pa-
rameters (i.e. no LoRA). This is the only step in this work that involves modifying the underlying
Llama-2 parameters, and the compression-hyperpretrained models are only used in a subset of ex-
periments, with the remainder using the base Llama-2 weights. We use FSDP (Zhao et al., 2023) to
perform training in a memory-efficient manner.

3.4 FREEZING OR TUNING THE DOWNSTREAM MODEL

In most of the experiments in this work, the downstream model will either be a frozen base Llama-
2, or a frozen Llama-2 after compression hyperpretraining. However, in specific experiments, we
will also tune the downstream model. In those cases, we use a second set of LoRA weights for the
downstream model.5 We will make explicitly clear when the downstream model is also finetuned,
referring to this as downstream adaptation. In all other cases, the downstream model is frozen during
the multi-task training of the hypernetwork.

4 MULTI-TASK FINE-TUNING WITH HYPERLLAMA

We generally follow the training and evaluation recipe outlined in Phang et al. (2023). To evaluate
the ability of LLM-based hypernetworks to generate task-specific parameters, we use the P3 (Sanh
et al., 2022) and Super-NaturalInstructions (S-NI; Wang et al., 2022) datasets. Both datasets consist
of a large number of in-domain training task datasets (62 for P3 and >1,000 for S-NI), and a smaller
number of held-out task datasets for evaluation. Following the standard evaluation protocols for
the respective datasets, evaluation for P3 held-out tasks is performed by accuracy from predicting
the more likely answer option based on per-token logits, while for S-NI evaluation is performed
via ROUGE on the generated responses. The hyperparameters for each experiment can be found in
Appendix C.

4.1 MULTI-TASK FINE-TUNING ON P3

For P3, we use randomly sampled examples from the training set as the few-shot examples for
input for the hypernetwork in the HyperLlama models and to be prepended to the input in the few-
shot Llama-2B models. The 0-shot Llama-2 baseline is trained on single input-output pairs, similar
to the T0 models. We find that the HyperLlama models generally outperform the 0-shot baseline
but underperform the few-shot Llama-2 model, which is to be expected as the Llama-2 model can

4The entire BC sequence can actually be used as labels as in the standard language-modeling objective, but
the separation of B and C is an artifact of following the hyperpretraining setup described in (Phang et al., 2023).

5In the actual implementation, we swap between the hypernetwork LoRA weights and the downstream
LoRA weights depending on the phase of the forward pass.

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

ANLI HSwag CB COPA RTE WiC WSC WGD AVG

HyperTuning
HyperLlama-7B 37.4 40.1 63.1 68.9 74.8 53.5 57.2 51.3 55.8
HyperLlama-7BC 38.2 42.2 61.8 76.1 74.0 54.6 56.4 51.1 56.8
HyperLlama-7BD 39.4 42.0 58.9 75.2 76.5 56.7 56.9 52.0 57.2
HyperLlama-7BCD 39.0 46.2 56.9 81.6 70.0 52.1 59.6 52.1 57.2

Fine-tuned LMs with In-Context Examples
Fine-tuned Llama-2-7B, 0-shot 40.1 41.2 54.6 77.6 69.1 55.2 55.1 50.5 55.4
Fine-tuned Llama-2-7B, 16-shot 40.7 41.8 80.4 83.3 75.6 54.9 58.3 54.9 61.2

T0-3B (Sanh et al., 2022) 33.4 27.3 45.4 73.1 64.5 50.7 65.0 51.0 51.3

Table 1: Results on P3 on held-out tasks with LLaMA-2 7B models. For the HyperLlama models,
C indicates hyperpretraining, while D indicates downstream adaptation.

directly attend to the few-shot examples and no compression is required. We also include results
with variants of HyperLlama-2, including with compression hyperpretraining before the P3 training,
and with downstream adaptation during P3 training. We find that both additions lead to improved
performance, although used jointly there is no performance benefit.

4.2 MULTI-TASK FINE-TUNING ON SUPER-NATURALINSTRUCTIONS (S-NI)

We use only the English tasks in S-NI, which comprises over 1,000 task datasets. Each task includes
a task definition as well as a set of preset positive examples for in-context learning, in addition to the
actual examples of the task. For HyperLlama, we include both the definition and positive examples
in the hypernetwork input, and only the actual task input for a given example as the downstream
model input. We also train several other variants of HyperLlama on the S-NI dataset, incorporating
compression hyperpretraining, downstream adaptation, and also additionally including the task def-
inition in the downstream model input as well. We compare to baselines of training and evaluating
Llama-2-7B with only the task definition, or task definition and few-shot examples as inputs (in
addition to the actual task example input).

Results are shown in Table 2. We find that all versions of HyperLlama outperform the Llama-2
model provided only the task definition, demonstrating that HyperLlama is able to provide some
useful information to the downstream model beyond just the task definition. All HyperLlama vari-
ants underperform the Llama-2 model with both the definition and few-shot examples, which is to
be expected as discussed above. We also find that including the instruction in the downstream model
(in addition to the hypernetwork) leads to a marked improvement in performance. This demonstrates
that providing the downstream model with tokens it can attend to explicitly as opposed to through
the hypernetwork can make a huge difference in performance, so the distribution of inputs between
the hypernetwork and downstream model deserves significant consideration. Additionally, we find
that incorporating both compression hyperpretraining and downstream adaptation leads to improved
performance.

AVG

HyperTuning
HyperLlama-7B 40.2
HyperLlama-7BC 41.7
HyperLlama-7BCI 46.4
HyperLlama-7BCDI 48.2

Fine-tuned LMs with In-Context Definitions+Examples
Fine-tuned Llama-2-7B (Def) 39.7
Fine-tuned Llama-2-7B (Def + Few-shot) 52.7

Table 2: Results on Super-NaturalInstuctions (S-NI) for Llama-7B models. For the HyperLlama
models, C indicates hyperpretraining, D indicates downstream adaptation, I indicates including in-
struction in the downstream model.

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

5 SYMBOL-TUNING WITH HYPERLLAMA

Model SUBJ TEH TEAB TEAT TEFE TEHI ADEC OR SOT TOS TC AVG

HyperTuning
HyperLlama-7B 51.0 49.6 35.3 37.5 36.3 39.0 54.4 47.6 50.4 63.8 55.4 47.3
HyperLlama-7BC 48.4 48.9 36.1 38.3 35.8 39.4 55.8 44.4 54.2 65.2 57.6 47.6
HyperLlama-7BCD 49.5 51.7 37.0 38.7 34.2 39.4 58.0 47.2 56.4 67.2 56.0 48.7

LMs with In-Context Examples
Untuned Llama-2-7B, 0-shot 49.3 50.8 34.5 32.7 34.8 33.0 51.4 51.4 36.2 49.2 49.4 43.0
Untuned Llama-2-7B, 16-shot 68.8 55.0 45.6 51.7 43.3 46.5 63.8 75.0 71.1 77.2 65.0 60.3
Symbol-tuned Llama-2-7B, 16-shot 79.5 57.6 47.3 51.2 49.7 48.4 68.6 88.4 58.4 70.6 83.6 63.9

Table 3: Results on symbol tuning held-out tasks with HyperLlama and Llama-2 models. Hy-
perLlama models are trained with symbol tuning data. For the HyperLlama models, C indicates
hyperpretraining, while D indicates downstream adaptation. HyperLlama models only slightly out-
perform the 0-shot Llama-2 baseline, while greatly underperforming the 16-shot Llama-2 baseline
without any symbol tuning.

Symbol tuning (Wei et al., 2023) is a variant of instruction tuning (Sanh et al., 2022; Wei et al.,
2022), where the natural language labels are swapped for random strings (random words, or strings
of letters or numbers). For instance, all instances of ‘Apple’ may be substituted for ‘True’ and
‘7832’ substituted for ‘False’. Wei et al. showed that symbol tuning LLMs improves their in-
context learning behavior and allows them to generalize better to tasks without instructions or natural
language labels. The symbol tuning experimental setup is of interesting to us because it bypasses
an issue with evaluating on the P3 and S-NI datasets above, where the task inputs cannot easily be
separated from the instructions. In contrast, the symbol tuning training and evaluation sets include a
variant where task instructions are omitted and the labels are swapped for irrelevant strings, allowing
us to purely isolate the ability for either a hypernetwork or in-context learning to acquire knowledge
of a task.

To evaluate the models on symbol tuned data, we use the same set of eleven held-out tasks with
swapped labels and no instructions as in the original work. Because labels are randomly sampled
even at evaluation time, we average over 10 random seeds for evaluating each model. All evaluation
is computed with accuracy, with predictions based on the relative probabities of output strings as
with the P3 experiments.

We make two modifications compared to the original setup. First, whereas Wei et al. performed
symbol tuning on instruction-tuned Flan-PaLM models, we perform symbol tuning on Llama-2 or
HyperLlama models that have not been trained on instruction-formatted task data. Second, the orig-
inal evaluation setup used a different distribution of random labels at evaluation time compared to
training time to evaluate the generalization capability of symbol tuning. We found that this mismatch
of distributions can greatly impact the performance of symbol-tuned models. We make a mild ad-
justment to the distribution of random labels in the evaluation distribution to make them more in
line with the training distribution, in a manner that does not detract from the ability for models to
generalize to unrelated label strings at inference time. More details on evaluation can be found in
Appendix D.

For the HyperLlama models, we follow the setup in the above sections, performing few-shot exam-
ples of the symbol-tuning training data to the hypernetwork and one input-output pair to the down-
stream model. We likewise include results with the HyperLlama variants with hyperpretraining and
downstream adaptation. We compare the performance of HyperLlama models to a 0-shot Llama-2
model, a few-shot prompted Llama-2 model, and a symbol-tuned Llama-2 model. We expect the
0-shot model to perform effectively at chance, as the output label string have no correspondence
with actual output classes. The symbol-tuned Llama-2 model should serve as an upper-bound of
hypernetwork performance, since the model has full access to the in-context examples.

Our results are shown in Table 3. We verify that 0-shot Llama-2 performs close to chance (the eval-
uation tasks are a mix of 2-class and 3-class classification tasks), while Llama-2 with symbol tuning
performs the best. We find that the HyperLlama models perform quite poorly, slightly outperform-
ing the 0-shot Llama-2 baseline, but severely underperforming even the few-shot Llama-2 model
without symbol tuning. This suggests that, even in the absence of instructions and close associa-

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

0 500 1000 1500 2000 2500 3000
Training Steps

50

60

Av
er

ag
e

Ac
cu

ra
cy

Hyper Init Shared Init Random Init

Figure 3: Prefix tuning performance on P3 held-out tasks with different initializations.
HyperLlama-generated soft prefixes are better initializations for prefix tuning, achieving higher
overall scores compared to baselines.

tions between output classes and label strings, the HyperLlama models still poorly take advantage
of few-shot examples in the hypernetwork’s inputs.

6 HYPERTUNING FOR IMPROVED PARAMETER INITIALIZATION

While HyperLlama is able to generate parameters from in-context examples, we expect the perfor-
mance of the parameters to fall short of full parameter-efficient fine-tuning, given that it only sees
a small set of in-context examples, and the parameters are generated with a single forward pass
through the hypernetwork. However, the generated parameters can be used as initializations for fur-
ther fine-tuning, and Phang et al. (2023) showed that HyperT5-generated parameters perform better
as initializations compared to other baselines.

We conduct the same experiments as in Phang et al., performing prefix tuning with the HyperLlama-
generated parameters on the P3 held-out tasks. We use HyperLlama-7B trained on P3 as the hyper-
network, and perform prefix tuning with the Llama-2 models.6 We compare to two baselines: shared
initialization (performing prefix tuning on the P3 training set, and using the resultant soft prefixes as
the initialization), and random initialization of the soft prefixes. In these experiments, we perform
prefix tuning without the reparameterization mentioned in Li & Liang (2021), and instead directly
fine-tune the soft prefixes. This allows for the fairest comparison between the different initialization
schemes, but also leads to the extremely poor performance of the random initialization, consistent
with the findings of Li & Liang. We discuss this further in Appendix E.

The results are shown in Figure 3 and Table 4. Consistent with Phang et al., we find that the
HyperLlama-generated soft prefixes outperform both the shared and random initializations, achiev-
ing higher scores throughout the fine-tuning process.

ANLI HSwag CB COPA RTE WiC WSC WGD AVG

Hyper Init 50.5 55.4 87.5 86.0 83.8 59.7 63.2 52.2 67.3
Shared Init 34.5 40.6 87.5 71.0 77.3 48.3 61.1 52.1 59.0
Rand Init 42.4 41.2 67.9 60.0 81.2 57.1 63.2 48.5 57.7

Table 4: Full prefix tuning performance on P3 held-out tasks.

7 DISCUSSION

We have seen above a set of mixed results from performing hypertuning via Gisting. Generally, the
HyperLlama model is able to incorporate some information from the few-shot examples provided
to the hypernetwork and impart useful information to the downstream model, thereby generally
outperforming even a trained zero-shot model. However, we consistently find that HyperLlama
still meaningfully underperforms Llama-2 models that have full access and attention over few-shot

6We perform prefix tuning without reparameterization for a fair comparison, as the HyperLlama only gen-
erated the flat prefix. Refer to Appendix E for more discussion.

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

examples, even when both HyperLlama and the Llama-2 models are trained on the same data. This
shows that the process of compressing and transferring the information from the few-shot examples
is generally still far from perfect.

From qualitative analysis of HyperLlama model mistakes, we found that the model particularly
struggles on cases where the downstream model would benefit from being able to directly refer to or
copy from the few-shot examples–for instance, tasks where there is a very specific output format that
is only discoverable through few-shot examples. Such cases where there is a high sensitivity to exact
strings in the few-shot examples appear to be where the HyperLlama models perform worse, whereas
the Llama-2 models can directly attend to the few-shot examples. We find additional evidence for
this in our symbol tuning experiments, where we find that HyperLlama underperforms even a Llama-
2 without symbol tuning. In this case, even the few-shot learning capability inherent in the base
Llama-2 trumps HyperLlama, which struggles with compressing unintuitive input-output pairings.

More generally, hypertuning also possesses several other weaknesses, such as only being able to take
as input as many examples as can fit into a language model’s limited context, needing to generate
the parameters in a single, forward pass with fixed amounts of computation and potentially high
sensitivity to the selection of few-shot input examples.

However, HyperLlama possesses other advantages too. Compressing relevant task-specific informa-
tion into a soft prefix is significantly more economical at inference time than needing to recompute
or store the hidden states of the whole set of few-shot examples. A soft prefix generally consists of
such a small number of tokens worth of hidden states that the additional computation to attend to
them is negligible relative to the rest of the input, and the storage is also more convenient given the
small size. Moreover, we have shown that the HyperLlama-generated soft prefixes can be further
fine-tuned to achieve better performance, providing another avenue of computation savings. Lastly,
Gisting-based hypernetworks models can be efficiently trained and served since they only require
a modification to the attention mask and LoRA weights (for swapping between hypernetwork and
downstream model phases), which are common components in modern LLM infrastructure.

Overall, while we have found that Gisting-based hypernetworks such as HyperLlama face certain
limitations and underperform fine-tuned, full-context language models, we see them as a promising
and easy starting point for further investigations on LLM-based hypernetworks.

REFERENCES

Rishi Bommasani, Drew A. Hudson, Ehsan Adeli, Russ Altman, Simran Arora, Sydney von Arx,
Michael S. Bernstein, Jeannette Bohg, Antoine Bosselut, Emma Brunskill, Erik Brynjolfsson,
Shyamal Buch, Dallas Card, Rodrigo Castellon, Niladri Chatterji, Annie Chen, Kathleen Creel,
Jared Quincy Davis, Dora Demszky, Chris Donahue, Moussa Doumbouya, Esin Durmus, Ste-
fano Ermon, John Etchemendy, Kawin Ethayarajh, Li Fei-Fei, Chelsea Finn, Trevor Gale, Lauren
Gillespie, Karan Goel, Noah Goodman, Shelby Grossman, Neel Guha, Tatsunori Hashimoto, Pe-
ter Henderson, John Hewitt, Daniel E. Ho, Jenny Hong, Kyle Hsu, Jing Huang, Thomas Icard,
Saahil Jain, Dan Jurafsky, Pratyusha Kalluri, Siddharth Karamcheti, Geoff Keeling, Fereshte
Khani, Omar Khattab, Pang Wei Koh, Mark Krass, Ranjay Krishna, Rohith Kuditipudi, Ananya
Kumar, Faisal Ladhak, Mina Lee, Tony Lee, Jure Leskovec, Isabelle Levent, Xiang Lisa Li,
Xuechen Li, Tengyu Ma, Ali Malik, Christopher D. Manning, Suvir Mirchandani, Eric Mitchell,
Zanele Munyikwa, Suraj Nair, Avanika Narayan, Deepak Narayanan, Ben Newman, Allen Nie,
Juan Carlos Niebles, Hamed Nilforoshan, Julian Nyarko, Giray Ogut, Laurel Orr, Isabel Papadim-
itriou, Joon Sung Park, Chris Piech, Eva Portelance, Christopher Potts, Aditi Raghunathan, Rob
Reich, Hongyu Ren, Frieda Rong, Yusuf Roohani, Camilo Ruiz, Jack Ryan, Christopher Ré,
Dorsa Sadigh, Shiori Sagawa, Keshav Santhanam, Andy Shih, Krishnan Srinivasan, Alex Tamkin,
Rohan Taori, Armin W. Thomas, Florian Tramèr, Rose E. Wang, William Wang, Bohan Wu, Jiajun
Wu, Yuhuai Wu, Sang Michael Xie, Michihiro Yasunaga, Jiaxuan You, Matei Zaharia, Michael
Zhang, Tianyi Zhang, Xikun Zhang, Yuhui Zhang, Lucia Zheng, Kaitlyn Zhou, and Percy Liang.
On the Opportunities and Risks of Foundation Models. arXiv preprint 2108.07258, 2022.

Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D Kaplan, Prafulla Dhariwal,
Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, Sandhini Agarwal, Ariel
Herbert-Voss, Gretchen Krueger, Tom Henighan, Rewon Child, Aditya Ramesh, Daniel Ziegler,
Jeffrey Wu, Clemens Winter, Chris Hesse, Mark Chen, Eric Sigler, Mateusz Litwin, Scott Gray,

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

Benjamin Chess, Jack Clark, Christopher Berner, Sam McCandlish, Alec Radford, Ilya Sutskever,
and Dario Amodei. Language Models are Few-shot Learners. In H. Larochelle, M. Ranzato,
R. Hadsell, M.F. Balcan, and H. Lin (eds.), Advances in Neural Information Processing Sys-
tems (NeurIPS), volume 33. 2020. URL https://proceedings.neurips.cc/paper/
2020/file/1457c0d6bfcb4967418bfb8ac142f64a-Paper.pdf.

Together Computer. RedPajama: an Open Dataset for Training Large Language Models, 2023.
URL https://github.com/togethercomputer/RedPajama-Data. https://
github.com/togethercomputer/RedPajama-Data.

Tri Dao. FlashAttention-2: Faster Attention with Better Parallelism and Work Partitioning. arXiv
preprint 2307.08691, 2023.

Tri Dao, Daniel Y. Fu, Stefano Ermon, Atri Rudra, and Christopher Ré. FlashAttention: Fast and
Memory-Efficient Exact Attention with IO-Awareness. arXiv preprint 2205.14135, 2022.

Budhaditya Deb, Guoqing Zheng, and Ahmed Hassan Awadallah. Boosting Natural Language Gen-
eration from Instructions with Meta-learning. arXiv preprint 2210.11617, 2022.

Tim Dettmers, Artidoro Pagnoni, Ari Holtzman, and Luke Zettlemoyer. QLoRA: Efficient Finetun-
ing of Quantized LLMs. arXiv preprint 2305.14314, 2023.

Elias Frantar, Saleh Ashkboos, Torsten Hoefler, and Dan Alistarh. GPTQ: Accurate Post-Training
Quantization for Generative Pre-trained Transformers. arXiv preprint 2210.17323, 2023.

David Ha, Andrew M. Dai, and Quoc V. Le. HyperNetworks. In 5th International Conference on
Learning Representations, ICLR 2017, 2017. URL https://openreview.net/forum?
id=rkpACe1lx.

Yun He, Steven Zheng, Yi Tay, Jai Gupta, Yu Du, Vamsi Aribandi, Zhe Zhao, Yaguang Li, Zhao
Chen, Donald Metzler, Heng-Tze Cheng, and Ed H. Chi. HyperPrompt: Prompt-based Task-
conditioning of Transformers. In Kamalika Chaudhuri, Stefanie Jegelka, Le Song, Csaba Szepes-
vari, Gang Niu, and Sivan Sabato (eds.), Proceedings of the 39th International Conference on
Machine Learning (ICML), volume 162 of Proceedings of Machine Learning Research. PMLR,
2022. URL https://proceedings.mlr.press/v162/he22f.html.

Edward J Hu, Yelong Shen, Phillip Wallis, Zeyuan Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang,
and Weizhu Chen. LoRA: Low-Rank Adaptation of Large Language Models. In 10th In-
ternational Conference on Learning Representations, ICLR 2022, 2022. URL https://
openreview.net/forum?id=nZeVKeeFYf9.

Hamish Ivison, Akshita Bhagia, Yizhong Wang, Hannaneh Hajishirzi, and Matthew Peters. HINT:
Hypernetwork Instruction Tuning for Efficient Zero- & Few-shot Generalisation. arXiv preprint
2212.10315, 2023.

Rabeeh Karimi Mahabadi, Sebastian Ruder, Mostafa Dehghani, and James Henderson. Parameter-
efficient Multi-task Fine-tuning for Transformers via Shared Hypernetworks. In Proceedings of
the 59th Annual Meeting of the Association for Computational Linguistics and the 11th Inter-
national Joint Conference on Natural Language Processing (Volume 1: Long Papers), pp. 565–
576, Online, August 2021. Association for Computational Linguistics. doi: 10.18653/v1/2021.
acl-long.47. URL https://aclanthology.org/2021.acl-long.47.

Yaniv Leviathan, Matan Kalman, and Yossi Matias. Fast Inference from Transformers via Spec-
ulative Decoding. In Proceedings of the 40th International Conference on Machine Learning
(ICML), 2023.

Xiang Lisa Li and Percy Liang. Prefix-Tuning: Optimizing Continuous Prompts for Generation. In
Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the
11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers),
pp. 4582–4597, Online, August 2021. Association for Computational Linguistics. doi: 10.18653/
v1/2021.acl-long.353. URL https://aclanthology.org/2021.acl-long.353.

Vladislav Lialin, Vijeta Deshpande, and Anna Rumshisky. Scaling Down to Scale Up: A Guide to
Parameter-efficient Fine-tuning. arXiv preprint 2303.15647, 2023.

10

https://proceedings.neurips.cc/paper/2020/file/1457c0d6bfcb4967418bfb8ac142f64a-Paper.pdf
https://proceedings.neurips.cc/paper/2020/file/1457c0d6bfcb4967418bfb8ac142f64a-Paper.pdf
https://github.com/togethercomputer/RedPajama-Data
https://github.com/togethercomputer/RedPajama-Data
https://github.com/togethercomputer/RedPajama-Data
https://openreview.net/forum?id=rkpACe1lx
https://openreview.net/forum?id=rkpACe1lx
https://proceedings.mlr.press/v162/he22f.html
https://openreview.net/forum?id=nZeVKeeFYf9
https://openreview.net/forum?id=nZeVKeeFYf9
https://aclanthology.org/2021.acl-long.47
https://aclanthology.org/2021.acl-long.353

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

Sewon Min, Mike Lewis, Luke Zettlemoyer, and Hannaneh Hajishirzi. MetaICL: Learning to Learn
In Context. In Proceedings of the 2022 Conference of the North American Chapter of the Asso-
ciation for Computational Linguistics: Human Language Technologies, pp. 2791–2809, Seattle,
United States, July 2022. Association for Computational Linguistics. doi: 10.18653/v1/2022.
naacl-main.201. URL https://aclanthology.org/2022.naacl-main.201.

Jesse Mu, Xiang Lisa Li, and Noah Goodman. Learning to Compress Prompts with Gist Tokens. In
Advances in Neural Information Processing Systems, volume 36, 2023.

Jason Phang, Yi Mao, Pengcheng He, and Weizhu Chen. HyperTuning: Toward Adapting Large
Language Models without Back-propagation. In Proceedings of the 40th International Confer-
ence on Machine Learning (ICML), 2023.

Nataniel Ruiz, Yuanzhen Li, Varun Jampani, Wei Wei, Tingbo Hou, Yael Pritch, Neal Wadhwa,
Michael Rubinstein, and Kfir Aberman. HyperDreamBooth: Hypernetworks for Fast Personal-
ization of Text-to-image Models. arXiv preprint 2307.06949, 2023.

Victor Sanh, Albert Webson, Colin Raffel, Stephen Bach, Lintang Sutawika, Zaid Alyafeai, Antoine
Chaffin, Arnaud Stiegler, Arun Raja, Manan Dey, M Saiful Bari, Canwen Xu, Urmish Thakker,
Shanya Sharma Sharma, Eliza Szczechla, Taewoon Kim, Gunjan Chhablani, Nihal Nayak, De-
bajyoti Datta, Jonathan Chang, Mike Tian-Jian Jiang, Han Wang, Matteo Manica, Sheng Shen,
Zheng Xin Yong, Harshit Pandey, Rachel Bawden, Thomas Wang, Trishala Neeraj, Jos Rozen,
Abheesht Sharma, Andrea Santilli, Thibault Fevry, Jason Alan Fries, Ryan Teehan, Teven Le
Scao, Stella Biderman, Leo Gao, Thomas Wolf, and Alexander M Rush. Multitask Prompted
Training Enables Zero-Shot Task Generalization. In 10th International Conference on Learn-
ing Representations, ICLR 2022, 2022. URL https://openreview.net/forum?id=
9Vrb9D0WI4.

Weijia Shi, Sewon Min, Maria Lomeli, Chunting Zhou, Margaret Li, Rich James, Xi Victoria Lin,
Noah A. Smith, Luke Zettlemoyer, Scott Yih, and Mike Lewis. In-context Pretraining: Language
Modeling Beyond Document Boundaries. arXiv preprint 2310.10638, 2023.

Hugo Touvron, Louis Martin, Kevin Stone, Peter Albert, Amjad Almahairi, Yasmine Babaei, Niko-
lay Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti Bhosale, Dan Bikel, Lukas Blecher,
Cristian Canton Ferrer, Moya Chen, Guillem Cucurull, David Esiobu, Jude Fernandes, Jeremy
Fu, Wenyin Fu, Brian Fuller, Cynthia Gao, Vedanuj Goswami, Naman Goyal, Anthony Hartshorn,
Saghar Hosseini, Rui Hou, Hakan Inan, Marcin Kardas, Viktor Kerkez, Madian Khabsa, Isabel
Kloumann, Artem Korenev, Punit Singh Koura, Marie-Anne Lachaux, Thibaut Lavril, Jenya Lee,
Diana Liskovich, Yinghai Lu, Yuning Mao, Xavier Martinet, Todor Mihaylov, Pushkar Mishra,
Igor Molybog, Yixin Nie, Andrew Poulton, Jeremy Reizenstein, Rashi Rungta, Kalyan Saladi,
Alan Schelten, Ruan Silva, Eric Michael Smith, Ranjan Subramanian, Xiaoqing Ellen Tan, Binh
Tang, Ross Taylor, Adina Williams, Jian Xiang Kuan, Puxin Xu, Zheng Yan, Iliyan Zarov, Yuchen
Zhang, Angela Fan, Melanie Kambadur, Sharan Narang, Aurelien Rodriguez, Robert Stojnic,
Sergey Edunov, and Thomas Scialom. Llama 2: Open Foundation and Fine-tuned Chat Models.
arXiv preprint 2307.09288, 2023.

Johannes von Oswald, Eyvind Niklasson, Ettore Randazzo, João Sacramento, Alexander Mordv-
intsev, Andrey Zhmoginov, and Max Vladymyrov. Transformers learn in-context by gradient
descent. arXiv preprint 2212.07677, 2023a.

Johannes von Oswald, Eyvind Niklasson, Maximilian Schlegel, Seijin Kobayashi, Nicolas Zucchet,
Nino Scherrer, Nolan Miller, Mark Sandler, Blaise Agüera y Arcas, Max Vladymyrov, Razvan
Pascanu, and João Sacramento. Uncovering mesa-optimization algorithms in Transformers. arXiv
preprint 2309.05858, 2023b.

Yizhong Wang, Swaroop Mishra, Pegah Alipoormolabashi, Yeganeh Kordi, Amirreza Mirzaei,
Atharva Naik, Arjun Ashok, Arut Selvan Dhanasekaran, Anjana Arunkumar, David Stap, Es-
haan Pathak, Giannis Karamanolakis, Haizhi Lai, Ishan Purohit, Ishani Mondal, Jacob An-
derson, Kirby Kuznia, Krima Doshi, Kuntal Kumar Pal, Maitreya Patel, Mehrad Moradshahi,
Mihir Parmar, Mirali Purohit, Neeraj Varshney, Phani Rohitha Kaza, Pulkit Verma, Ravse-
haj Singh Puri, Rushang Karia, Savan Doshi, Shailaja Keyur Sampat, Siddhartha Mishra, Sujan

11

https://aclanthology.org/2022.naacl-main.201
https://openreview.net/forum?id=9Vrb9D0WI4
https://openreview.net/forum?id=9Vrb9D0WI4

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

Reddy A, Sumanta Patro, Tanay Dixit, and Xudong Shen. Super-NaturalInstructions: Generaliza-
tion via declarative instructions on 1600+ NLP tasks. In Yoav Goldberg, Zornitsa Kozareva,
and Yue Zhang (eds.), Proceedings of the 2022 Conference on Empirical Methods in Natu-
ral Language Processing, pp. 5085–5109, Abu Dhabi, United Arab Emirates, December 2022.
Association for Computational Linguistics. doi: 10.18653/v1/2022.emnlp-main.340. URL
https://aclanthology.org/2022.emnlp-main.340.

Jason Wei, Maarten Bosma, Vincent Zhao, Kelvin Guu, Adams Wei Yu, Brian Lester, Nan Du,
Andrew M. Dai, and Quoc V Le. Finetuned Language Models are Zero-Shot Learners. In 10th
International Conference on Learning Representations, ICLR 2022, 2022. URL https://
openreview.net/forum?id=gEZrGCozdqR.

Jerry Wei, Le Hou, Andrew Lampinen, Xiangning Chen, Da Huang, Yi Tay, Xinyun Chen, Yifeng
Lu, Denny Zhou, Tengyu Ma, and Quoc V. Le. Symbol tuning improves in-context learning in
language models. arXiv preprint 2305.08298, 2023.

Yanli Zhao, Andrew Gu, Rohan Varma, Liang Luo, Chien-Chin Huang, Min Xu, Less Wright,
Hamid Shojanazeri, Myle Ott, Sam Shleifer, Alban Desmaison, Can Balioglu, Pritam Damania,
Bernard Nguyen, Geeta Chauhan, Yuchen Hao, Ajit Mathews, and Shen Li. Pytorch FSDP:
Experiences on Scaling Fully Sharded Data Parallel. arXiv preprint 2304.11277, 2023.

A APPENDIX

B HYPERLLAMA IMPLEMENTATION COMPLEXITIES

One complexity that arises with using Gist tokens is dealing with position encodings. Transformer-
based language models such as Llama-2 tend to be highly sensitive to position encodings, and pro-
viding an input with an incorrect encoded position can lead to very poor results. Specifically, the
issue is that for a given input to the downstream model, to prepend to Gist tokens as a soft prefix, we
would need the Gist tokens to be encoded to a position before the input. However, the Gist tokens
appear at the end of the Gisted input, meaning it is in a position very far from zero.

Mu et al. (2023) addressed this in their implementation of Gisting by always jointly processing
the whole sequence of the Gist input, the Gist tokens and the post-Gist input. An alternative and
more flexible solution is to modify the implementation of Llama-2 to accept a ‘position offset’,
which pushes encoded positions of the post-Gist input down. While RoPE (?) is a relative position
encoding, implementation-wise it be treated as a position embedding scheme when precomputing
the rotary matrix, so this change is easy to implement. Hence, the output of the hypernetwork
actually consists of two elements: first the Gists (KV hidden states corresponding to the Gist tokens),
and secondly the offset corresponding to the position of the final Gist token, which is also how many
position the downstream input token needs to be ‘pushed down’.

This has also an additional benefit in allowing one to average over Gists of different sets of few-
shot examples, which otherwise would not be possible if the Gist tokens were encoded to different
positions. This can be implemented be providing an initial offset to the hypernetwork itself, with
the offsets computed such that the resulting Gist tokens have the same position ending.

Lastly this implementation tweak is also helpful for Prefix Tuning, which similarly requires pushing
the input tokens down by the number of prefix tokens.

C TRAINING DETAILS

For hyperpretraining, we train for 50,000 steps.For the HyperLlama, we use sequence length of 1024
for the hypernetwork and 384 for the downstream model. For Llama-2 models, we use a sequence
length of 1024. For generation in S-NI, we use a maximum generation length of 128 (the generation
length is in addition to the above sequence lengths). For prefix tuning, we use a sequence length of
384.

12

https://aclanthology.org/2022.emnlp-main.340
https://openreview.net/forum?id=gEZrGCozdqR
https://openreview.net/forum?id=gEZrGCozdqR

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

Hyperpretraining P3 S-NI Symbol Tuning Prefix Tuning

Learning Rate 2e-5 2e-5 2e-5 2e-5 1e-43
Batch Size 128 128 128 32 32
Steps 50K/30K 10,000 3,000 4,000 3,000

Table 5: Training Hyperparameters

D SYMBOL TUNING DETAILS

Label Distributions In the symbol tuning experimental setup, the symbol tuning training and
evaluation phases use different distributions of random strings for swapping out labels. In particular,
one component of the training distribution uses random 4-digit integers, while the evaluation distri-
bution uses 5-digit integers. We should in initial experiments that performance was especially poor
due to the mismatch in this distribution. Specifically: the Llama-2 tokenizer tokenizes each digit
separately, and through the symbol-tuning training phase, the models learned that numerical outputs
never exceeded 4-digit integers, and hence would assign near-0 probability to predicing 5-digit in-
tegers. Hence, we modify the evaluation distribution to similarly only include up to 4-digit integers.
We do not modify the other components of the random string distribution other than the random
numbers component. We expect that this modification might slightly advantage the hypernetwork
models since the downstream model does not have direct access to the few-shot example labels,
but our results still show that the hypernetworks significant underperform the comparable in-context
learning baseline.

Label Sampling For both training and evaluation, as sample a different set of labels for each
actual example. The few-shot examples are constrained to have the same label mapping as each
actual example.

E ADDITIONAL NOTES ON PREFIX TUNING

As discussed in Li & Liang (2021), directly fine-tuning the soft prefixes in a language model gener-
ally leads to very poor performance, or is highly sensitive to initializations and training hyperparam-
eters. To address this, the authors introduce a reparameterization trick, where instead of fine-tuning
the soft prefixes directly, the authors introduce an MLP that take a static input and outputs the soft
prefixes. For reasons not yet well explored, this significantly improved the performance and stability
of prefix tuning.

In the context of this work, HyperLlama generates soft prefixes from the attention mechanism of
the model. We then directly fine-tune the generated soft prefixes, with generally good results. To
fairly compare this to other forms of prefix tuning, we would need to find other baselines that also
fine-tune a soft prefix directly. In the shared baseline, we perform prefix tuning over the P3 dataset
with the reparameterization, then run the MLP and extract the resulting soft prefix–this soft prefix is
then an appropriate point of comparison to the HyperLlama-generated soft prefixes.

On the flip side, we might consider using prefix tuning with reparameterization as a point of com-
parison. This would be an unfair comparison, as it involves significantly more parameters than just
the soft prefixes. If we proceed with this knowledge, we have two experiments we can run. We show
the results in Figure 4 and in Table 6 We find that standard prefix tuning with reparameterization
outperforms directly fine-tuning the sof tprefix without reparameterization with any initialization
scheme, including share initialization and HyperLlama-generated initializations. However, we em-
phasize that directly fine-tuning the soft prefix requires much fewer parameters, and is thus much
less expensive than with the reparameterization.

We use the following P3 prompt formats for the prefix tuning experiments.

1. anli GPT 3 style r1

2. hellaswag complete first then

3. super glue cb GPT 3 style

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

ANLI HSwag CB COPA RTE WiC WSC WGD AVG

Hyper Init 50.5 55.4 87.5 86.0 83.8 59.7 63.2 52.2 67.3
Shared Init 34.5 40.6 87.5 71.0 77.3 48.3 61.1 52.1 59.0
Rand Init 42.4 41.2 67.9 60.0 81.2 57.1 63.2 48.5 57.7
Rand (Reparam) Init 67.5 77.9 94.6 87.0 88.1 71.0 82.1 50.4 77.3

Table 6: Full prefix tuning performance on P3 held-out tasks.

0 500 1000 1500 2000 2500 3000
Training Steps

50

60

70
Av

er
ag

e
Ac

cu
ra

cy

Hyper Init
Shared Init

Random Init Random Init (Reparam)

Figure 4: Prefix tuning performance on P3 held-out tasks with different initializations, includ-
ing reparameterization.

4. super glue copa C1 or C2 premise so because
5. super glue rte GPT 3 style
6. super glue wic GPT 3 prompt
7. super glue wsc.fixed GPT 3 Style
8. winogrande winogrande debiased Replace

14

	Introduction
	Related Work
	HyperTuning with Language Models
	HyperTuning with Gisting
	HyperLlama: A Gisting-based Hypernetwork
	Compression Hyperpretraining
	Freezing or Tuning the Downstream Model

	Multi-Task Fine-Tuning with HyperLlama
	Multi-Task Fine-tuning on P3
	Multi-Task Fine-tuning on Super-NaturalInstructions (S-NI)

	Symbol-Tuning with HyperLlama
	HyperTuning for Improved Parameter Initialization
	Discussion
	Appendix
	HyperLlama Implementation Complexities
	Training Details
	Symbol Tuning Details
	Additional Notes on Prefix Tuning

