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Abstract

This paper presents IB-POMCP, a novel algorithm for online planning under
partial observability. Our approach enhances the decision-making process by
using estimations of the world belief’s entropy to guide a tree search process and
surpass the limitations of planning in scenarios with sparse reward configurations.
By performing what we denominate as an information-guided planning process,
the algorithm, which incorporates a novel I-UCB function, shows significant
improvements in reward and reasoning time compared to state-of-the-art baselines
in several benchmark scenarios, along with theoretical convergence guarantees.

1 Introduction

Decision-making agents are increasingly being used under uncertainty in nontrivial systems [17].
Based on the available information, such agents must evaluate potential decisions in the current
environment to build a robust plan that either accomplishes the task or leads to a better situation.
Consider, for instance, a scenario in which drones are deployed to rescue people in a hazardous
environment. Drones need to quickly identify critical locations where they can offer support and save
lives. If no clear target is found, they must rapidly formulate a plan based on their current knowledge
and observable information to find an area in need of assistance from their current position.

The above context describes a partial observability problem that is recurrent in the literature [2, 7, 12].
The Partially Observable Monte-Carlo Planning (POMCP) [32] algorithm is commonly suggested
as a method to address these problems because it enables agents to perform planning in an online
manner while handling uncertainty [6, 36, 38]. However, several state-of-the-art solutions that rely
on POMCP often struggle when rewards are delivered sparsely in time or outside their reasoning
horizon. For example, in foraging, there may be no clear target to spot from the current observation
and/or estimated map so far. Here, we find a fundamental academic challenge: How can we improve
agent performance when rewards are delivered sparsely in time or out of their reasoning horizon?

Every time an agent makes an observation of the world, it gains information that can be used to
improve its internal planning process. Based on this, some works improve the traditional planning
process by handling the lack of prior information using the approximation of the world’s dynamic
models [16, 27], embedding supportive planning methods within the tree [2, 7], extracting non-explicit
information from the observations [6, 16], enhancing the method’s inner calculations [1, 8, 26] or
employing neural networks-based techniques to improve the search quality [18, 37].
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Overall, these strategies can improve search quality within a defined simulation horizon by using
extensions of traditional partially observable models and enabling the integration of additional
knowledge into planning. However, such knowledge may not be available to agents beforehand (e.g.,
conditional observation probabilities), or may demand significantly more computational resources
to perform the task (e.g., time and memory). While it is important to note that incorporating more
knowledge benefits efficiency in terms of objective accomplishment, it does not resolve challenges in
sparse-reward scenarios, as most of the solutions remain reward-driven.

Hence, we present Information-based POMCP (IB-POMCP), an online planning algorithm that uses
a novel information framework to boost the decision-making process under partial observability even
when no rewards are available in the reasoning horizon. Our framework refines the traditional UCB1
action selection strategy by implementing our proposed Information-guided UCB (I-UCB) function,
which is capable of leveraging entropy and estimating information gain, using both real-world and
internally generated observations to identify promising states in the search process that leads the agent
to quickly accomplish its objective. Its application together with our new particle filter reinvigoration
strategy, which considers the current system’s entropy to calibrate the reinvigoration, indicates that
this approach may lead the agent to act hybridly when solving a partially observable problem by better
weighing the exploration, exploitation, and information levels within the tree. We ran experiments
across five benchmarks and compared them with state-of-the-art baselines, obtaining significantly
higher average rewards (up to 10 times) while performing faster reasoning (up to 93%).

2 Related Work

In the current state-of-the-art, POMCP [32] remains a relevant solution due to its adaptability and
problem-solving capability across the most diverse domains [3, 23, 24, 41]. However, many proposals
are tailored to specific problems, leaving room for improvement, especially when handling sparse
reward scenarios. Our approach addresses this gap by shifting POMCP’s reward-based planning
to our “information-guided planning strategy”, capable of leveraging observation space entropy
(information) and guiding the agent to promising spots from where it solves such scenarios.

Other methods suggest approximating the latent world functions to handle the lack of knowledge
[11, 13, 19, 35]. However, these approaches are directly bounded by the belief in space dimensionality,
which grows exponentially and hence requires exponentially more resources as the complexity of the
problem increases [17]. We propose the extraction of information using only the observations received
from the simulations, improving the reasoning without requiring significantly more resources.

Some studies recommend belief-dependent POMDP models to improve POMCP’s reasoning capa-
bilities [4, 21]. Under certain assumptions, these models have shown great efficiency when solving
problems with large action and observation spaces. A recent advancement is ρ-POMCP [36], an
efficient online planner that boosts the POMCP’s search process by estimating belief-dependent
rewards. However, this method relies on explicit access to the observation and transition function,
struggling while reasoning under time constraints. TB ρ-POMCP [36] tries to handle scenarios with
limited time to reason, penalising efficiency in order to do so. IB-POMCP can improve planning
using less information and without significant penalties for reasoning time.

Time-constrained problems are prevalent in the evaluation of online planning algorithms. In real-time
strategy games, a common strategy is to use macro and micro predefined coordination scripts to
support the decision-making [25, 40]. Even though they handle several levels of coordination, these
methods still require behavioural templates to plan. Similar problems arise in the multi-agent swarm
research [28] where they avoid developing a complex planning process in order to save time (using,
for example, Flat Monte Carlo approaches). We propose the execution of efficient planning under
partial observability from scratch and without penalising the planning quality.

The Upper Confidence Bound (UCB1) [20] is a relevant algorithm in the literature for evaluating and
selecting actions in online planning solutions and is recurrently used inside Monte-Carlo decision-
making frameworks [15, 29, 35]. While we acknowledge the existence of other action selection
methods available in the literature, such as the Thompson Sampling method [5] and the PUCT
algorithm [33], in this paper, we focus on augmenting the POMCP’s capabilities by modifying the
UCB1. Differently from PUCT (AlphaGo) [33], for example, our proposed I-UCB well-fits partially
observable scenarios while enhancing POMCP planning capabilities through an entropy-based
perspective, without relying on pre-trained models or a large amount of data.
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Recently, MENTS and ANTS improved the Monte-Carlo Tree Search (MCTS) performance using
maximum entropy policy optimisation networks [18, 37]. In contrast to both works, we focus our
study on partially observable models and, instead of directly optimising latent functions, we improve
planning by embedding knowledge into the search process. Furthermore, both methods rely on
prior problem-specific knowledge and data to train neural networks, including information on the
maximum episode length, which helps them handle issues like sparse rewards. However, we assume
that the agent must reason under a limited number of steps (often lower than necessary to accomplish
the problem) and execute the problem from scratch, carrying no knowledge between executions.

Finally, although we focus on improving POMCP, our contributions can also benefit other algorithms,
such as DESPOT-based solutions [34]. DESPOT’s main focus is on filtering a large observation space
to plan using a sparse approximation of the problem, hence, a smaller reasoning space. However,
the algorithm still struggles in large action spaces, and/or sparse reward scenarios where the optimal
policy could be long (requiring many steps). Our proposal addresses POMDPs featuring sparse
rewards in an efficient manner while running the search process from scratch.

3 Background

Markovian Models – The Markov Decision Process (MDP) is a mathematical framework to model
stochastic processes in a discrete-time flow. The model specifies that each process is composed of
a set of states S, a set of actions A, a reward function R : S ×A → R, and a transition function
T . On the other hand, the Partially Observable MDP (POMDP) extends the MDP representation to
problems in which the agent cannot directly access the current state. Instead, the agent receives an
observation z ∈ Z, determined by observation probabilities Za

s,z = P (zt+1 = z | st+1 = s; at = a).
The belief function B(h) is a distribution over the state space S, which describes the conditional
probability of being in a particular state b ∈ S given the current history h, B(h, b) = P (st = b | ht),
where the history h ∈ H is a sequence of action-observation pairs ht = {a0, z0, . . . , at, zt}. The
decision process follows a policy π(h, a) = P (at+1 = a|ht), while choosing actions.

Monte-Carlo Tree Search (MCTS) – MCTS algorithms aim to determine the optimal action a∗ for
a given state s by simulating the world steps within a tree structure. Each node in the Monte-Carlo
tree T is represented by (s, V , N ), i.e., a tuple with a state s, a value V(s, a), and a visitation count
N (s, a) for each action a ∈ A. The value of the node represents the expected cumulative reward for
the simulated states. The number of visits to the state s is represented by N (s) =

∑
a∈AN (s, a).

The simulations are divided into two main stages: search and rollout. Each state in the search tree is
viewed as a multi-armed bandit taking actions usually chosen by the Upper Confidence Bound (UCB1)
algorithm. UCB1 is a well-known algorithm that tries to increase the value of less-explored actions
by attaching a bonus inversely proportional to the number of times each action is tried, following

the update-equation UCB1(s, a) := V(s, a) + c
√

log(N (s))
N (s,a) . The scalar c is the exploration constant

responsible for weighting the exploration value within the UCB1 function. With a correct definition
of c, the value function converges in probability to the optimal value, V(s, a) p−→ V∗(s, a).

Partially Observable MC Planning (POMCP) – POMCP is an extension of MCTS for partially
observable problems. Analogously to it, each node is represented by a tuple (h, V(h),N (h), Fh) and
the algorithm is divided into the search and rollout stages. In contrast, POMCP uses an unweighted
particle filter Fh to approximate the belief state at each node h. This strategy requires a Monte-Carlo
simulator G, which can sample a state s′, reward r and observation z given a state-action pair.
Recursively down the tree, all sampled information is added to a particle filter F . At the end of
the search stage, the best action is chosen and a real observation is received from the environment.
Considering the current action-observation pair, we move to the new root node and perform the
particle reinvigorating process [32], which is responsible for updating and boosting the new root’s
particle filter belief state approximation. After that, we continue the planning procedure (starting the
search process) as described above. We refer the reader to Silver and Veness (2010) for further detail.

Shannon entropy in Information Theory – A traditional approach to measure uncertainty in
stochastic processes is to use Shannon’s Entropy function H(X) = −

∑n
i=1 P (xi) log(P (xi)),

where X is a discrete random variable and xi are the possible outcomes from X . The core idea is to
find a reliable measure for “information”, that is, to calculate the degree of surprise of an event given
the available space of possibilities. If an event often occurs, the information inside the event is likely
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not “novel”. Hence, there is no “surprise” when it occurs. On the other hand, if an event rarely occurs,
the “surprise” is greater. Comparing both situations, we can follow events with higher surprise levels
to explore the space of possibilities, and safely follow events with lower surprise levels to exploit the
environment, hence, we can adapt an agent’s behaviour according to the entropy of the current state.

4 Information-based Partially Observable Monte Carlo Planning

Algorithm Outline – Our algorithm starts with the (i) initialisation of our tree structure, where we
create our root and calculate the probability of stepping into this node given our current knowledge.
Since the initial knowledge about the problem is assumed to be none, we can not calculate this
probability, hence, we initialise it as 0. Subsequently, we (ii) initialise the particle filter of our root
node, generating possible states from which we can simulate the agents’ actions and search for a
solution to the target problem. Initially, the beliefs are generated through a uniform distribution.

Our search process is iterative, as commonly found in the literature [32, 39, 2], where we sample a
state from our current belief to perform multiple rounds of simulation. However, unlike the typical
approach, we propose the implementation of an adaptive exploration coefficient and of our novel
I-UCB function instead of the usual UCB1. Therefore, at every iteration of our search (before starting
a simulation), we first perform our (iii) exploration coefficient adaptation, adjusting it using the
entropy (level of information) estimated over the set of observations collected through the simulations.
Then, with the updated coefficient in hands, we start our (iv) simulation with the I-UCB function.
While choosing actions, our proposal searches for solutions and takes actions based on observations’
entropy besides the collection of rewards. At the end of each simulation, we re-update the exploration
coefficient based on the information gained during the path traversal. When we finish the search, we
(v) select the best action based on the estimated rewards, entropy, and the number of visits of each
action’s node to determine the most promising path to follow in the real environment.

After taking an action and receiving a new real observation from the environment, we restart the
IB-POMCP algorithm. However, the initial steps are slightly changed to maintain the knowledge and
update the current information, i.e., perform online planning. Unlike the first iteration, we now (i)
update the root node by traversing the tree based on the action taken and the most recent observation
from the environment. Consequently, we recalculate the probability of stepping into the new root
node using the information available in the tree. With the probability in our hands, we now (ii)
update the particle filter of our root node by reinvigorating our belief, generating new states using the
uniform distribution while maintaining promising states for simulation. Then, after performing these
updates, we restart the search and repeat the whole process. Now, let us discuss these steps in detail.

(i) Root Initialisation and Update – This step is responsible for maintaining the tree structure T
coherent with the world and the information gained while performing online planning. Consider r as
the tree T’s root node, hr as the history of the root r (our current history), a as the action taken by the
agent in the real world and z as the most recent observation received from the real world (after the
agent’s action). As in POMCP, this step considers three possible procedures:

• Initialisation: if T does not exist, we create a root node r using the current history hr, else;
• Update: if T exists and the nodes hra and hraz also exist, we walk in the existing tree, traversing
the nodes that correspond to the actions taken by the agent a and the most recent world observation z,
and update the root, i.e., the node hraz becomes the new r, hence, hr = hraz, else;
• Re-initialisation: if T exists but, node hra or hraz does not exist, the tree is re-initialised. That is,
we create a new node (h,V(h),N (h),Fh) with h as the current history, V(h) = 0, N (h) = 0 and
Fh is empty. Afterwards, we assign this new node as our new root r of T, which means that all other
simulations already made in the agent’s head are discarded and we restart the algorithm.

In contrast to POMCP, we estimate the current probability P (z|hra), in this step, when finding
the observation z after taking the action a considering our history hr. Overall, we aim to use
this probability to enhance the Particle Filter Update (see step (ii)) procedure by weighting its
diversification and reinvigoration levels according to the agent’s uncertainty when stepping into the
new root – which would be the same as calculating the agent’s “surprise” on finding the received
observation in the real world after taking the chosen action. However, we consider that a compact
representation of transition T or observation probabilities Z may not be available for complex
problems. Hence, we propose the approximation of this probability using the knowledge within our
particle filter Fr (without requiring a POMDP explicit model) by P (z|hra) ≈ P̃ (z|hra) =

N (hraz)
N (hra)

,
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where N (hraz) and N (hra) are the number of visits of node hraz and hra, respectively (the new
root node and its parent). If hr is empty or no new root node is found, P̃ (z|hra) = 0. Note also that
N (haz) ≤ N (ha),∀h ∈ T and, consequently, N (haz)/N (ha) ∈ [0, 1].

(ii) Particle Filter Initialisation and Update – This process is responsible for initialising the particle
filter of the root node Fr (if it is empty or does not exist) or performing the particle reinvigoration
process based on the probability P̃ (z|hra) calculated in the Root Update process (step (i)). Directly,
the initialisation is made through the sampling of k particles (which generate the observation z) from
the uniform distribution Uz . On the other hand, the update considers the P̃ (z|hra) as the weight that
balances the particle reinvigorating process over Fr. The idea is to diversify (or boost) the new root’s
particle filter as a reliable approximation of the belief state function. If the probability of stepping
into this new root is high, i.e., P̃ (z|hra) is high, we assume that the particles in the new root’s particle
filter will well approximate the real world, since through the simulations we recurrently found the
observation z after taking the action a from the last root node h. In contrast, when this probability is
low, we diversify the new root’s particle filter Fr by uniformly generating particles that may better
represent the real world using Uz instead of Fr. Consequently, coherent with the above rationale,
we reinvigorate the new root’s particle filter Fr by maintaining ⌊kP̃ (z|hra)⌋ particles sampled from
itself, i.e., Fhaz , and sampling new ⌈k(1− P̃ (z|hra))⌉ particles from the uniform distribution Uz .
This update on the new root’s particle filter may offer a better start for the algorithm when performing
the search process since the sampling of belief states may consider an enhanced set of particles
through our uncertainty-guided reinvigoration process. We kindly refer the reader to Appendix A for
further discussion and pseudo-code to implement this procedure.

(iii) Updating the Tree Exploration Coefficient – To explain how we update our tree exploration
coefficient, we first introduce the (a) adaptation made to the traditional exploration coefficient, then
we present our (b) modified entropy function, which is used in the update, we explain how to calculate
it and, in the end, we show our (c) strategy to normalise the entropy in the online planning context.

(a) Exploration Coefficient Adaptation – Before the actual tree simulation process, IB-POMCP first
adjusts the value of our tree’s exploration parameter based on the estimated entropy for the current
system (the tree) in the root level r with history hr. Directly, our approach considers the replacement
of the traditional c constant by the function (1− α(hr)) ∈ [0, 1], which we define as:

α(hr) :=
e ln(N (hr))

N (hr)

∑N (hr)
i=1 Hi(hr)

N (hr)max
N (hr)
i=1 Hi(hr)

(1)

Our insight is to use α to augment the current uncertainty level in the tree’s search policy. On the
left-hand side of the multiplication, we design a function that represents the chance of finding new
information by exploring a node, which decreases as the number of visits to the node increases. e is
the Euler’s constant, which will be used as our amortisation factor for ln(N (hr))/N (hr). Applying
both together, we can describe a function that slowly decreases and maintains, in the infinity and
under some assumptions, theoretical guarantees for belief approximation (see Section 5). The right-
hand side of the multiplication expresses the “general surprise trend”, which is calculated through
the division between the actual cumulative entropy

∑N (hr)
i=1 Hi(hr) and the estimated maximum

cumulative entropyN (hr)max
N (hr)
i=1 Hi(hr), which is the multiplication of the total number of visits

to the node and the maximum entropy. By multiplying both sides of the equation, we can estimate
the current uncertainty of our system, in this case, of our tree. In addition to improving reasoning, we
discard the need for prior knowledge about the problem of adjusting and fixing the tree constant c.
Note that we adjust α(hr) for each traversal on the tree, i.e., from the root r to some leaf.

(b) Entropy Calculation – We adapt Shannon’s Entropy equation to measure the level of information in
the IB-POMCP’s search process based on the collection of observations of our agent while performing
Simulations (see step (iv)), which is designed asH(h) = −

∑
z∈Z̃ Ph(z) ln(Ph(z)), where Ph(z) is

the probability of finding the observation z ∈ Z̃ by simulating actions from the node with history h.
We use Z̃, which is an estimated set of observations, in the calculation of the entropy because we
consider that a compact representation of the full observations space Z may not be available.

In order to build Z̃ as a reliable estimation of Z, we collect all the observations found during all
traversals within the tree and save them first as the multiset Z̃m – avoiding losing information, e.g.,
the frequency of the observations – and then we translate it as the set Z̃ when necessary.
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Each node has its own estimated multiset of observation Z̃m
h . Every time we visit a node h, we update

the Z̃m
h using the collected observation information, which is saved and back-propagated as Z̃m

t . On
the other hand, Z̃m

t is the multiset that saves the observations from a single traversal starting from the
node at the tree level t to the maximum length of the path D. Therefore, each node h has its own
multiset that saves all possible observations to be found by performing a simulation from it. Formally,
we can define Z̃m

h =
⋃N (h)

i=1 Z̃m
t,i, where Z̃m

t,i is the back-propagated Z̃m
t at i-th visit to the node, and

Z̃m
t,i = Z̃m

t+1,i ∪ zt,∀t = 0, 1, ..., D. Note that Z̃m
t,i = ∅,∀t > D. Let’s put it as an example:

Consider h = h0 as the root node, D = 3 and a single traversal in the tree. Under the back-
propagation perspective, we start our update from the last node visited, related to Z̃m

t+3. Following
our definition, Z̃m

t+3 = {zt+3} and, since it is a leaf node, only zt+3 will be included in Z̃m
h3

as a
new possible observation to be found from node h3. Now, in Z̃m

t+2, we will add the zt+2 to our back-
propagation multiset Z̃m

t+3 and, consequently, we will add {zt+3, zt+2} to Z̃m
h2

. We repeat this process
until we reach h0, where we include all found observations Z̃m

t = Z̃m
t+1 ∪ z0 = {z3, z2, z1, z0} to the

root multiset Z̃m
h . Figure 1 illustrates this example and our proposed observation back-propagation

procedure. Figures 1a and 1d present a high-level perspective of the process, showing only the
observation nodes of the tree to facilitate visualisation. Figures 1b and 1c present a closer perspective
of the process as a one-step execution. The red particles are states and the blue ones are observations.

h0

h1

h2

h3

st

st+1

at, zt+1

st+2

at+1, zt+2

st+3

at+2, zt+3

(a) Simulation procedure from
a high-level perspective

...

Fh

h0

a1

Fha1z1

h1

a2

Fha1z′

s

s′, z1, r

(b) One-step
simulation

...

Z̃m
h2

Fh2

a1

Z̃m
h3
Fh3

a2

Fh2a1z′′

Z̃m
t+3 = {z3}

Z̃m
t+2 = Z̃m

t+3 ∪ z2

(c) One-step back-
propagation (BP)

Z̃m
t+3 = {zt+3}

Z̃m
t+2 = Z̃m

t+3 ∪ zt+2

Z̃m
t+1 = Z̃m

t+2 ∪ zt+1

Z̃m
t = Z̃m

t+1 ∪ zt h0

h1

h2

h3

(d) BP through the observation
nodes of the tree

Figure 1: Illustration of IB-POMCP’s search process.

With Z̃m
h in hands, we now can approximate Ph(z) by calculating the frequency of the observation

z in Z̃m
h , following Ph(z) ≈ P̃h(z) =

1
|Z̃m

h |

∑
z′∈Z̃m

h
1{z′=z}. Therefore, our final entropy function

will be H(h) = −
∑

z∈Z̃h
P̃h(z) ln(P̃h(z)). We use this defined entropy to calculate the current

entropy of the system. However, since IB-POMCP plans in an online manner and the Z̃m
h is updated

at each visit to the node, we propose the estimation of our tree’s entropy using the update-equation:

HN (h)(h) := HN (h)−1(h) +
(H(h)−HN (h)−1(h))

N (h)
(2)

where N (h) is the number of visits to the node h, H(h) is the above defined entropy calculation,
andHi(h), i = 1, 2...,N (h) is the estimated entropy at the visit i. Note that, by following this final
definition for the entropy, we can also calculate α (Equation 1) and update it in an online fashion.

(c) Entropy Normalisation – Another issue that arises is that, since we may not have access to the
true observation distribution in advance, our current approach will result in entropy calculations that
are not standardised under the same image function. This problem occurs because the size of the
set Z̃ grows every time an observation never found before is delivered by the environment. As a
consequence, the maximum value for the entropy also grows, and nodes that receive a higher number
of different observations will calculate higher values forH(h), which can create bias by including
these overestimated values in the decision-making process. Therefore, we propose its normalisation a
posteriori, following: Ĥ(h) := HN(h)(h)

max
N(h)
j=1 Hj(h)

, whereHj(h) represents the entropy calculated at the

j-th visit to the node h. This approach guarantees Ĥ(h) ∈ [0, 1],∀h, i.e., for all nodes. Moreover,
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H(h) = 1 when N (h) = 0 by definition, since we consider that when there is no information, the
uncertainty is maximised, hence, the entropy is also maximised.

(iv) Simulation – After adjusting our α function, we start the simulation process. While expanding
the tree, we propose a modified version of UCB1 to guide the tree search process based on the
information level of each node, the I-UCB function, which follows:

I-UCB(h, a, α) := V(ha) + (1− α)
√
ln(N (h))/N (ha) + αĤ(ha) (3)

Our proposal intends to guide the expansion and planning process based on entropy updates that
occur within the tree, defining what we denote as the information-guided planning process. In
this type of planning, a trade-off between exploration and exploitation still exists, but now we also
bring information value to the discussion. Our main novelty here moves past the traditional idea,
where the more we explore, the better we can exploit the rewards, thereby improving the agent’s
performance. Instead, we expand the discussion and enhance the algorithm capabilities by introducing
an information-gain perspective to the tree-planning process using entropy calculations.

Intuitively, our action selection function considers that (a) if the system uncertainty is high (hence, α
value is high), we weight the action selection based on the advantage of information gain (which may
expand the tree in depth), trying to decrease the entropy value and accumulate knowledge, or; (b) if
the system uncertainty is low (hence, α value is low), we weight the action selection in the advantage
of the exploration gain (which may expand the tree in breadth), trying to increase the entropy value
and increase the number of possibilities to reason over. Therefore, I-UCB performs adaptive planning
that also depends on the system entropy, besides the upper confidence estimations.

Another direct advantage of the application of I-UCB instead of UCB1 is that our method rarely fails
to deliver an action justified by metrics, that is, it rarely delivers a randomly chosen action as the best
one. Usually, this issue arises in problems where rewards are sparsely distributed over a long horizon
of actions, which can lead to several ties in the Q-values (e.g., at zero). Proposing a solution that
works under these conditions requires (a) to increase the reasoning horizon of the solution, which
usually leads to the expenditure of significantly more computational resources, or (b) the capability
to handle it within the available reasoning horizon, which is a non-trivial task. IB-POMCP solves
this problem by following a non-trivial solution considering (a) the inclusion of a novel metric for
evaluation – the system entropy, which frequently is non-zero since the observation distribution is
diverse and; (b) the adaptive value of alpha, which often promotes an action branch to find (at least) a
non-zero value (reward or entropy) or to be frequently visited during the reasoning process.

(v) Best action selection – we decide the best action by picking the action with the highest score
using abest = argmaxa∈A (1− α)V(ha) + αĤ(ha). If there is a tie, we break it using the number
of visits for each possible node. If it persists, we run a random policy to select the “best” action.
Because of the proposed entropy calculation (and in contrast to POMCP), IB-POMCP has the ability
to choose actions even without experiencing non-zero rewards while planning.

Lastly, considering the above discussion on adapting and inserting α inside I-UCB, we consider
scaling α value to be within an interval [q, 1− q] ⊂ [0, 1], 0 < q < 0.5, as a practical enhancement.
This strategy allows our method to avoid ignoring part of the I-UCB result by multiplying one term
by zero. This step will not be considered in the theoretical analysis.

Algorithm/Pseudo-code: To highlight the difference between POMCP and IB-POMCP, we present
the complete pseudocode of our algorithm in Appendix A1.

5 Theoretical Analysis

In this section, we analyse IB-POMCP’s capability to plan optimally in partially observable finite
horizon problems and ϵ-optimally for infinite horizon partially observable problems. For the complete
proofs see Appendix B. We start with the following assumption:

Assumption 1 Given a generic POMDP represented by the tuple (S,A,R, T ,Z,Z,H), theR is
bounded and there exists a positive maximum reward value rmax ∈ R.

1IB-POMCP’s implementation publicly available on GitHub: https://github.com/lsmcolab/ib-pomcp/
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Under this simple assumption and to establish the IB-POMCP’s planning capabilities, we must
examine our action selection procedure, specifically through the application of I-UCB. Consequently,
we first analyse how the α coefficient behaves and impacts the IB-POMCP’s search process:

Lemma 1 α(h) ∈ [0, 1] converges to 0 as the number of visits N (h) approach the infinity.

Theorem 1 For any non-empty history h ̸= ∅ ∈ H and ∀a ∈ A, as N (h)→∞, N (ha)→∞, we
have that all states b in B(h, b) which P (s = b | h) > 0 will be simulated infinitely many times.

Using the previous results, we can show the convergence for a finite horizon:

Theorem 2 IB-POMCP’s nodes converge to the optimal value for a fixed horizon D as the number
of search iterations goes to infinite (i.e., N (hr)→∞).

We now move on to the infinite horizon case. Consider V∗(hr) as the optimal value function for the
root r and V∗

D(hr) as the optimal value function for the root r for a finite horizon D. We find that:

Theorem 3 Given any ϵ, there is a finite horizon D for the problem, such that |V∗(hr)−V∗
D(hr)| ≤ ϵ,

where hr represents the root of the tree.

Given the previous results, we can prove the following for the convergence in the infinite horizon:

Corollary 1 IB-POMCP converges to ϵ-optimal actions at the root (hr) in a γ-discounted infinite
horizon scenario.

6 Results

Evaluation Settings – We define five well-known domains as our benchmarks. See Appendix C
for more information. (i) The Tiger (T0) environment presents an agent must choose between two
doors: one hides a treasure; the other, a tiger. The agent can decide which door to open or listen
to before making the final decision. (ii) The Maze (M0-M3) environment [36], which is an Active
Localisation Problem in which an agent navigates through a toroidal grid and tries to localise its own
position by collecting local information. The reward is based on the entropy of the current belief. (iii)
The RockSample (R0-R3) problem [36] considers that a robot has to navigate through a grid-world
and maximise the number of good rocks it picks up and analyses instead of bad rocks. If it picks up
(samples) a bad rock, it gets a negative reward. Otherwise, it gets a positive reward and the good
rock becomes bad. (iv) The Tag/LaserTag (LT0-LT1) environment [34], where an agent is trying
to find and tag a target opponent agent that intentionally moves away. The agent only knows its
own position but can observe the target’s position if they are in the same position (Tag) or using an
8-directional laser (in LaserTag). If the agent successfully tags the target it is rewarded, otherwise it
is penalised. (v) The Foraging (F0-F4) problem is a famous scenario to evaluate online planning
algorithms [2, 30] that presents an agent that collects items displaced in a rectangular grid world.
All experiments were implemented using AdLeap-MAS [9] because it implements all five environ-
ments and enables the quick execution of our experiments. Each run was performed in a single node
of a high-performance cluster containing 16 cores of Intel Ivy Bridge processors and 64 GB RAM.

Baselines – In this work, we compare IB-POMCP against: (a) POMCP [32], since it is a relevant
state-of-art proposal and represents the basis of this work; (b) ρ-POMCP [36], representing our main
competitor in terms of using information theory to perform the online planning procedure, and (c)
TB ρ-POMCP [36], as a faster alternative to ρ-POMCP that employs an explicit POMDP model.

Metrics – Two different evaluation metrics were used: (i) the average reward (R) across the
experiment’s mean reward; and (ii) the average planning time (t) spent by the agent to plan the next
actions. Mean results were calculated across 50 executions. Every experiment ran independently; thus,
no knowledge was carried from one execution to another. The calculated errors (±Err) represent
the 95% confidence interval of a two-sample t-test. Note that our results and baselines are separated
into two categories (i) Quick Planning: grouping methods that perform the decision-making process
within a reasonable time window; and (ii) Long Planning: presenting the ρ-POMCP’s results
(without time constraints). We separated them to make their understanding easier.

Finally, we refer the reader to our Appendix D to information about our hyperparameters set.
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Benchmarks study – All results are presented in Table 1. In addition, we highlight the pros and cons
of our method, analysing our limitations while discussing the outcome for each environment.

Table 1: Summarized results. The bold underlined values in Quick Planning highlight the best result
with statistical significance across all Quick Planning baselines for the respective metric.

Quick Planning Long Planning

Problem
POMCP TB ρ-POMCP IB-POMCP ρ-POMCP

R± Err t± Err R± Err t± Err R± Err t± Err R± Err t± Err
(sec) (sec) (sec) (sec)

Tiger (T0) −4.25× 102 0.09± 0.01 −0.16× 102 0.20± 0.00 −0.52× 102 0.11± 0.01 −0.21× 102 1.45± 0.04
±0.80× 102 ±0.03× 102 ±0.15× 102 ±0.03× 102

MazeCross (M0) 1.11× 10−2 2.47± 0.02 1.12× 10−2 3.00± 0.00 1.23× 10−2 2.43± 0.01 1.19× 10−2 28.16± 0.68
±0.08× 10−2 ±0.07× 10−2 ±0.04× 10−2 ±0.07× 10−2

MazeHoles (M1) 1.56× 10−2 3.72± 0.03 1.32× 10−2 4.00± 0.00 3.80× 10−2 3.60± 0.04 2.34× 10−2 48.41± 2.82
±0.50× 10−2 ±0.46× 10−2 ±0.86× 10−2 ±0.44× 10−2

MazeDots (M2) 1.20× 10−2 2.59± 0.02 0.79× 10−2 3.00± 0.00 2.99× 10−2 2.53± 0.02 1.25× 10−2 36.71± 1.39
±0.28× 10−2 ±0.15× 10−2 ±0.85× 10−2 ±0.20× 10−2

MazeGridX (M3) 2.80× 10−2 1.86± 0.02 0.99× 10−2 2.00± 0.00 0.96× 10−2 1.82± 0.01 1.37× 10−2 19.79± 0.32
±0.60× 10−2 ±0.15× 10−2 ±0.02× 10−2 ±0.30× 10−2

RockSample22 (R0) 0.06× 10−1 2.08± 0.03 0.03× 10−1 5.00± 0.00 0.07× 10−1 2.33± 0.04 0.03× 10−1 2.70± 0.43
±0.01× 10−1 ±0.01× 10−1 ±0.01× 10−1 ±0.01× 10−1

RockSample40 (R1) 0.12× 10−1 2.08± 0.03 0.11× 10−1 5.00± 0.00 0.16× 10−1 2.40± 0.04 0.10× 10−1 2.77± 0.32
±0.01× 10−1 ±0.02× 10−1 ±0.01× 10−1 ±0.01× 10−1

RockSample44 (R2) 0.07× 10−1 4.67± 0.09 0.06× 10−1 5.00± 0.00 0.09× 10−1 5.10± 0.06 0.04× 10−1 23.18± 3.10
±0.01× 10−1 ±0.01× 10−1 ±0.02× 10−1 ±0.02× 10−1

RockSample17 (R3) −0.04× 10−1 4.72± 0.09 −0.06× 10−1 5.00± 0.00 0.00× 10−1 5.11± 0.06 −0.09× 10−1 25.49± 3.28
±0.02× 10−1 ±0.02× 10−1 ±0.01× 10−1 ±0.02× 10−1

Tag (LT0) −0.47× 10−1 1.22± 0.20 −0.65× 10−1 3.00± 0.00 −0.36× 10−1 0.86± 0.14 −0.65× 10−1 11.23± 1.52
±0.09× 10−1 ±0.09× 10−1 ±0.07× 10−1 ±0.10× 10−1

LaserTag (LT1) −0.90× 10−1 4.72± 0.09 −0.86× 10−1 3.00± 0.00 −0.92× 10−1 5.11± 0.06 −0.96× 10−1 19.41± 1.02
±0.06× 10−1 ±0.09× 10−1 ±0.06× 10−1 ±0.51× 10−1

TheCorridor (F0) 4.29× 10−2 0.96± 0.06 4.36× 10−2 1.00± 0.00 6.89× 10−2 0.87± 0.10 5.15× 10−2 8.18± 0.71
±0.51× 10−2 ±0.38× 10−2 ±0.28× 10−2 ±0.18× 10−2

U-shaped (F1) 0.70× 10−2 3.67± 0.02 0.53× 10−2 3.00± 0.00 5.10× 10−2 2.99± 0.19 5.30× 10−2 37.36± 1.29
±0.34× 10−2 ±0.03× 10−2 ±0.14× 10−2 ±0.31× 10−2

U-obstacles (F2) 1.17× 10−2 1.90± 0.03 1.67× 10−2 2.00± 0.00 5.50× 10−2 1.88± 0.08 3.75× 10−2 15.44± 0.37
±0.34× 10−2 ±0.23× 10−2 ±0.34× 10−2 ±0.45× 10−2

Warehouse (F3) 5.20× 10−2 3.02± 0.11 4.42× 10−2 3.00± 0.00 10.73× 10−2 2.91± 0.25 8.99× 10−2 20.40± 0.67
±0.45× 10−2 ±1.03× 10−2 ±0.41× 10−2 ±0.96× 10−2

TheOffice (F4) 0.43× 10−2 1.90± 0.03 0.72× 10−2 2.00± 0.00 2.34× 10−2 1.88± 0.08 1.61× 10−2 15.44± 0.37
±0.21× 10−2 ±0.14× 10−2 ±0.27× 10−2 ±0.17× 10−2

In the Tiger domain, TB ρ-POMCP presents the best average reward among the Quick Planning
methods (ρ < 0.01). IB-POMCP still outperforms POMCP, showing significant improvement in
terms of reward (ρ < 0.01). For this specific problem, since the action “listen” generates variation in
the entropy, IB-POMCP keeps performing it repeatedly until other action value outcomes the “listen”
value in the best action selection procedure (Section 4, step (v)), a circumstance which leads our
method to reduce its average reward collection. Hence, when facing problems where seeking spots
of high uncertainty produces small penalties, IB-POMCP may collect penalties until it significantly
decreases the uncertainty and chooses another path.

In the Maze domain, we observe that IB-POMCP presents a significantly better average reward in 3
out of 4 proposed scenarios (ρ ≤ 0.015), except for M3, for which POMCP presents a better result.
Note that reducing uncertainty leads to increasing reward; i.e. the faster an agent can access areas
with high uncertainty, the higher its received reward. IB-POMCP’s results match our expectations
(given the developed rationale throughout our methodology) since we build it to, besides tracking the
rewards available in the scenario, often seek paths that lead to spots with high entropy in order to
decrease uncertainty, what increases reward in this scenario. In terms of time, we present significantly
faster reasoning in all scenarios (ρ < 0.01). Investigating why IB-POMCP runs faster than POMCP,
we found that our information-guided planning leads the algorithm to perform more transitions during
the rollout phase than while performing the simulation inside our actual search tree, with a rate

#rollout
#simulation = 1.61, whereas POMCP presents a rate of 1.28. Because rollout transitions run faster
than simulation transitions inside the tree, we can save time by performing them frequently.

In the Rock Sample problem, we can see that IB-POMCP shows a significant improvement in terms of
reward collection (ρ ≤ 0.02) in 3 out of 4 scenarios – except for the simplest scenario RockSample22
(R0), which presents a p-value of ρ ≤ 0.11. In terms of reasoning time, POMCP is slightly faster
than all Quick Planning methods in 3 out of 4 scenarios (ρ ≤ 0.01), except for RockSample17 (R3).

In Tag, IB-POMCP presents significant improvement in terms of reward collection and reasoning
time against all baselines (ρ ≤ 0.04). As in the Maze, we believe that IB-POMCP is faster because it
simulates transitions in rollouts more often (in a ratio of #rollout

#simulation = 1.7 against 1.61 for POMCP).
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In LaserTag, we have a tie between all methods, with no statistically significant difference spotted
across metrics (ρ ≥ 0.32 for reward collection and ρ ≥ 0.06 for reasoning time).

Finally, in the Foraging domain, our proposed method significantly outperformed all the baselines
(ρ < 0.01). The Foraging problem represents our most complex scenario, and empirically shows
how IB-POMCP can overcome the necessity of adjusting the reasoning horizon to perform planning
in settings that deliver rewards sparsely. The only reward available in these scenarios comes from
the collection of tasks. Consequently, while attempting to solve a task, the number of actions that
the agent needs to plan and execute in sequence may approach or exceed the reasoning horizon size.
In this case, the probability of experiencing this reward is low, and algorithms that only follow the
reward in planning will rarely obtain it in their simulations; hence, they fail to plan effectively.

Overall, we experimentally demonstrated that our novel proposed method can significantly improve
the performance of our agent and its planning capabilities without penalising the reasoning time.
We also demonstrated that our proposal can improve the decision-making process by using only the
information generated during the tree search process and, in contrast to ρ-POMCP, without relying
on the explicit representation of latent functions (e.g., the observation function).

Ablation study – To evaluate the impact of our proposed modifications and enhancements, we
performed an ablation study over our method. We consider 2 different variations of IB-POMCP
that partially implement its key points in this experiment: (a) the Information-guided Particle
Reinvigoration POMCP (IPR-POMCP), which implements the modifications to the particle filter
reinvigoration process (explained in Section 4, steps (i) and (ii)); and (b) the I-UCB POMCP, which
implements the proposed modifications to the search and simulation process (explained in Section 4,
steps (iii) and (iv)). We consider 4 different scenarios, one for each environment presented in Table 1,
to run our experiments. The results are depicted in Figure 2. Both additional methods proposed for
the study are available in our GitHub repository together with the complete code of this work.
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(b) MazeDots (M2)
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(d) TheOffice (F4)
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Figure 2: Ablation study of IB-POMCP in four different scenarios.

By analysing the graphs, it is clear that the I-UCB and implementation of an information-guided
particle reinvigoration process for the Tiger, Maze, and Foraging problems directly enhance the
reasoning capabilities of our planning method, which is translated here in terms of reward collection.
For the Tiger and Foraging problems, diversifying the set of particles (I-UCB POMCP) alone
presents improvements for POMCP; however, it has less impact than including entropy in the search
process (IPR-POMCP). On the other hand, in the Maze environment, both approaches present similar
improvements for the POMCP algorithm. However, when combined, they significantly improved
upon the baseline results. Our intuition behind these results is that the IPR-POMCP proposal is
responsible for delivering a better set of particles and a better initial estimation of the current state
to the agent before simulating actions, whereas I-UCB continually guides and affects the planning
process from the beginning of the simulations until the decision of the best action.

7 Conclusion

In this study, we propose IB-POMCP, a novel algorithm for planning under uncertainty that is capable
of aggregating information entropy into a decision-making algorithm using our modified version
of the UCB function, I-UCB. We present the theoretical properties for convergence under certain
assumptions, which are supported by empirical results collected in five different domains. Overall,
we increase the reward collection by up to 10 times in comparison with TB ρ-POMCP (U-shaped,
F1), in addition to reducing the reasoning time by up to 93% compared to ρ-POMCP (MazeHoles).
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A Algorithms

In this section, we provide the pseudo-code of the particle filter update step (Algorithm 1), and
for IB-POMCP’s main routine (Algorithm 2). To clarify our approach better and support the text
presented in the main paper, both algorithms highlight the differences between our approach and
POMCP [32]. See Section 3 in the main paper for further details about our rationale and methodology.

Algorithm 1 Particle Filter Update. The starred lines (with a light grey background) highlight the
differences between POMCP and our proposal, IB-POMCP. Union considers repetition here.

1: procedure PARTICLEFILTERUPDATE(Fr, P̃ (z|ha), k)
2: B̂← Fr, Fr ← {} ▷ B̂ is a copy of Fr

*3: while |Fr| < P̃ (z|ha)k do
*4: b ∼ B̂, Fr ← Fr ∪ b ▷ Adding P̃ (z|ha)k particles to the new Fr

*5: while |Fr| < k do
*6: b ∼ Uz , Fr ← Fr ∪ b ▷ Adding (1− P̃ (z|ha))k particles to the new Fr

*7: return Fr

Algorithm 1 Particle Filter Update – Details and Further Discussion: We save some space
here with the intention of assuring the reader’s understanding of the novelty that lies on our particle
filter update proposal. Our method employs a dynamic threshold derived from the dynamic value of
P̃ (z|ha) (or specifically, 1−P̃ (z|ha) that determines the ratio of uniform samples in the reinvigorated
particle filter). Unlike some traditional approaches which use a fixed value for that threshold, or
some other state-of-the-art contributions, which mostly rely on additional knowledge and expensive
calculations [17, 14, 10], IB-POMCP does not need an explicit true distribution of observations,
transition function or training data in this process by using our proposed P̃ (z|hra) probability.

It is important to note that the action selection process within the planning phase has a direct impact
on the P̃ (z|hra) value. Therefore, the strategy used to choose actions for simulation during planning
will affect the particle filter, since it affects the dynamic threshold P̃ (z|hra). Hence, note that the
I-UCB equation used in the search tree also has an impact on belief tracking.

Our suggested algorithm to investigate the impact of this proposal (Ablation study in Section 6),
IPR-POMCP, employs our dynamic threshold and shows significant improvement to the conventional
POMCP, which follows a standard particle reinvigoration paradigm (with a fixed parameter for
reinvigoration). Hence, just using the dynamic threshold P̃ (z|hra) improves results. Furthermore,
the ablation study indicates that combining the dynamic threshold with the I-UCB equation yields
even more favourable results and that using solely the I-UCB equation without the dynamic threshold
(IUCB-POMCP baseline) results in worse outcomes than the full IB-POMCP approach. Hence,
both the dynamic threshold and the I-UCB equation are important to improve results, and their
simultaneous application produces even greater enhancements than when employed individually.

What is perhaps still left open is whether the I-UCB equation leads to better P̃ (z|hra) values than the
UCB equation. Since our approach takes the estimated entropy into consideration for action selection
we believe that I-UCB may lead to better threshold values.

For example, in cases where a node possesses high entropy and no reward in the reasoning horizon,
the I-UCB equation could prioritise visiting it more often than the UCB equation would, increasing
the P̃ (z|hra) value for that particular node (note that it will not imply in worse probability estimation
because the entropy is based on the estimation of observations and the particle filter gives the
probabilities of states). The high entropy indicates that the node accommodates a more diverse set of
particles in the particle filter and hence sampling particles from a uniform distribution during particle
reinvigoration (to increase diversity) becomes less useful. Hence, the implications of the I-UCB
equation appear favourable as it leads to fewer particle samples from the uniform distribution in this
case (as we use the ratio 1 - P̃ (z|hra)). On the other hand, if a node has low entropy, the particle filter
may easily get biased to a small set of states. In this case, I-UCB would lead to a higher number of
particles sampled from the uniform distribution than the UCB equation in the particle reinvigoration,
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since it would have a lower P̃ (z|hra) value in I-UCB. Therefore, we believe that I-UCB should be
better than UCB for defining the dynamic threshold P̃ (z|hra), and hence better in belief tracking.

Algorithm 2 IB-POMCP’s Planning. The starred lines in a light grey background highlight the
difference between POMCP and our proposal. We suggest the reader to Silver and Veness (2010) [32]
for further details. γ is the historical discount factor, depthmax is the maximum depth for the tree,
and zh represents the last observation found (associated with node h).

1: procedure SEARCH(hr)
2: while T imeout() is False do
3: if Fr = ∅ then s ∼ Uz
4: else s ∼ Fr

*5: α := e ln(N (hr))
N (hr)

∑N(hr)
i=1 Hi(hr)

N (hr)
N(hr)
max
i=1

Hi(hr)

*6: Simulate(s, hr, 0, α)

*7: return argmax
a∈A

(1− α)V(ha) + αĤ(ha)

1: procedure EXPAND_NODE(h)
2: for a ∈ A do
3: T(ha)← (ha, Vinit(ha), Ninit(ha), ∅)

1: procedure ROLLOUT(s, h, d, γ)
2: if d < depthmax then return 0
3: a ∼ πrollout(h, ·)
4: (s′, z, r) ∼ G(s, a)
5: return r + γRollout(s′, haz, d+ 1)

1: procedure SIMULATE(s, h, d, α)
2: if d < depthmax then

*3: return 0, {zh}
4: if h /∈ T then ▷ If node is not in the tree
5: Expand_Node(h)

*6: return Rollout(s, h, d), {z}
*7: a← argmax

a∈A
I-UCB(h, a, α)

8: (s′, z, r) ∼ G(s, a)
*9: r′, Z̃m

t+1 ← Simulate(s′, haz, d+ 1, α)
10: Fh ← Fh ∪ {s}
11: N (h)← N (h) + 1
12: N (ha)← N (ha) + 1

13: V(ha)← V(ha) + R−V(ha)
N (ha)

*14: Hi(h) := Hi−1(h) +
(Hi(h)−Hi−1(h))

N (h)

*15: R← r + γ r′

*16: Z̃m
h ← Z̃m

h ∪ Z̃m
t+1

*17: return R, Z̃m
t+1 ∪ z

B Detailed Theoretical Analysis

In this section, we offer a comprehensive theoretical analysis of our proposed method. In addition to
the assumption, lemma, theorems, and corollary presented in the main paper, our complete analysis
encompasses all proofs, along with our definition (Definition 1) and lemma (Lemma 2).

Definition 1 An estimated V̂(s) is said to be ϵ−optimal if |V̂(s)− V∗(s)| ≤ ϵ. From the literature,
actions taken from the result of ϵ-optimal value function estimations are known as ϵ-optimal actions.

Assumption 2 Given a generic POMDP represented by the tuple (S,A,R, T ,Z,Z,H), theR is
bounded and there exists a positive maximum reward value rmax ∈ R.

Lemma 1 α(h) ∈ [0, 1] converges to 0 as the number of visits N (h) approach the infinity. Mathe-
matically, limN (h)→∞ α(h) = 0.

Proof: Considers our equation for a root node with history h:

α(h) =
e ln(N (h))

N (h)

∑N (h)
i=1 Hi(h)

N (h)
N (h)
max
i=1
Hi(h)

First, we can re-organise the equation as follows:

α(h) =
e ln(N (h))

N (h)

∑N (h)
i=1 Hi(h)

N (h)max
N (h)
i=1 Hi(h)

=
e ln(N (h))

N (h)2

∑N (h)
i=1 Hi(h)

max
N (h)
i=1 Hi(h)

Analysing the limit over the new expression, we can find that:

15



lim
N (h)→∞

e ln(N (h))

N (h)2

∑N (h)
i=1 Hi(h)

max
N (h)
i=1 Hi(h)

= 0

by following the rationale:

0 ≤
N (h)∑
i=1

Hi(h) ≤ N (h)
N (h)
max
i=1
Hi(h)⇒ 0 ≤ α(h) ≤ e ln(N (h))

N (h)2
N (h)max

N (h)
i=1 Hi(h)

max
N (h)
i=1 Hi(h)

Therefore, since we know that:

lim
N (h))→∞

eln(N (h))

N (h)2
N (h)max

N (h)
i=1 Hi(h)

max
N (h)
i=1 Hi(h)

=

eln(N (h))

N (h)2
N (h) = e

N (h)ln(N (h))

N (h)2
= 0, by L’Hopital’s Rule

using the sandwich theorem, we find that α(h)→ 0 as N (h)→∞ ■

Now, we introduce Lemma 2, which will be used as a key result that supports Theorem 1. In other
words, we will use Lemma 2’s proof to reach a contradiction later in order to prove Theorem 1.

Lemma 2 Assume an action ai that is taken a finite number of times and aj that is taken infinitely dur-
ing IB-POMCP’s search for any node h. There ∃ t′′ > t′ such that I-UCBt′′(hai) ≥ I-UCBt′′(haj),
where t′ is a finite iteration number after which ai is never taken.

Proof: Let us assume that there exists an iteration time t that is greater than t′ where ai is never
taken again for simulation. Consider the expression I-UCBt(hai)− I-UCBt(haj), which is equal to:

I-UCBt(hai)− I-UCBt(haj) =

[
Vt(hai)− Vt(haj)

]
+

(1− αt(h))
√
ln(Nt(h))

[
1√
Nt(hai)

− 1√
Nt(haj)

]
+ αt(h)

[
Ĥt(haj)− Ĥt(hai)

]

Trivially, ( 1√
Nt(hai)

− 1√
Nt(haj)

) → 1√
Nt′ (hai)

as Nt(haj) → ∞, since 1√
Nt(haj)

→ 0 and

Nt(hai) will be constant under our assumption. Note also that 1√
Nt(hai)

− 1√
Nt(haj)

is increasing

and will become positive at some time t∗ when Nt∗(haj) > Nt∗(hai). After then (i.e. t > t∗),
the term

√
ln(Nt(h))(

1√
Nt(hai)

− 1√
Nt(haj)

) will diverge to ∞ as t → ∞, ln(Nt(h)) → ∞.

Further, note that, in a single time step, the maximum difference in rewards is bounded by rmax,
therefore Vt(hai)− Vt(haj) ≥ −

∑∞
k=0 γ

krmax = −rmax

1−γ (This is because |Vt(hai)− Vt(haj)| ≤
rmax

1−γ , as shown in Theorem 3 and this implies that −rmax

1−γ ≤ Vt(hai) − Vt(haj) ≤ rmax

1−γ ) and

αt(h)(Ĥt(haj) − Ĥt(hai)) ≥ −1 as 0 ≤ αt(h) ≤ 1 and 0 ≤ Ĥt(h) ≤ 1. Therefore, ∃t′′ where
I-UCBt′′(hai)− I-UCBt′′(haj) ≥ 0. ■

Theorem 1 For any non-empty history h ̸= ∅ ∈ H and ∀a ∈ A, as N (h)→∞, N (ha)→∞, we
have that all states b in B(h, b) which P (s = b | h) > 0 will be visited infinitely many times.

Proof: Let us assume that not all actions are taken infinitely many times. There must exist at least
one action ai ∈ A that is taken a finite number of times and, hence, ∃ t′ after which the action ai will
never be taken. Now, consider any action aj that is taken infinitely many times as N (h)→∞. In
Lemma 2, we show that ∃ t′′ > t′ such that:

I-UCBt′′(hai) > I-UCBt′′(haj)
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We know that the second term in I-UCB grows faster for ai than aj , as seen from the I-UCB function,
since 1

Nt(hai)
is constant for t > t′. Consequently, we reach a conclusion that ai is chosen over aj

again after t′. This further means that for all actions ak’s, we can find a such a finite time instant after
which ai is preferred over ak. Therefore, at some point, the action ai has to be chosen over all others.
This is a contradiction to our original claim. Therefore, all action a ∈ A are taken infinitely many
times and, hence, all states will be visited infinitely many times. ■

Theorem 2 IB-POMCP’s nodes converge to the optimal value for a fixed horizon D as the number
of search iterations goes to infinite (i.e., N (hr)→∞).

Proof: We adapt the proof from the UCT convergence in Shah et al. 2020 and POMCP convergence
in Silver and Veness 2010. We induct over the depth of the tree, starting from the leaf up to the
root. From Theorem 1, the leaf nodes will have an unbiased estimation of the expected reward
rah = Eb∈B(h)(R(b, a)), ∀a ∈ A. Note that we are using rah as the expected reward given a h,
which is different from an immediate reward rab = R(b, a) given a state b. Similarly, any state at
level D − 1 has a simple UCB-like problem since each state is visited infinitely many times and the
one-step rewards have an unbiased estimation. In detail, consider the leaves at level |h| = D, as
N (hr)→∞⇒ N (h)→∞, α→ 0, and in the absence of children’s entropyH(ha) (as it is the leaf
node and has no children), rah converges unbiasedly ∀ h ∈ H, a ∈ A. Consequently, V(h)→ V∗(h)
since it is a single decision process, akin to multi-armed bandits. Now, we assume convergence for
all levels from the leaves up to |h′| = |h|+ 1, and as we know rah =

∑
s∈S P (st = b|h)rab . As we

know, the value function satisfies:

V∗(h) = max
a∈A

[
rah + γ

∑
P (ht+1 = h′|htat = ha)V∗(h′)

]
From our hypothesis, the V∗(h′) must converge and moreover, through the sampling process, the
value function must converge for level |h| [32] . Consequently, by backward induction, the whole
tree’s values must converge.■

Theorem 3 Given any ϵ > 0, there is a finite horizon D for the problem, such that |V∗(hr) −
V∗
D(hr)| ≤ ϵ, where hr represents the root of the tree.

Proof: Consider π∗ and π∗
D to be the optimal policies for the infinite and finite horizon problem,

respectively. Also, assume that ϵ is an arbitrary, positive real number. Now, let the value functions
for these problems be V∗(hr) and V∗

D(hr). For the root r, we can find that:

|V∗(hr)− V∗
D(hr)| ≤

∞∑
k=0

γkrmax =
γD

1− γ
rmax ≤ ϵ

since we can calculate D = logγ
ϵ(1−γ)
rmax

, we can also ensure that the relation holds. ■

Corollary 1 IB-POMCP converges to ϵ−optimal actions at the root (hr) in a γ-discounted infinite
horizon scenario.

Proof: From Theorem 6, we can always find a depth D such that the value function of the finite-
horizon problem is arbitrarily close to the infinite-horizon problem. From Theorem 5, we know
that we can converge to the optimal value in a finite horizon POMDP. Therefore, since α → 0 as
N (hr)→∞, IB-POMCP will converge to ϵ−optimal actions by choosing D appropriately. ■

C Benchmark Domains and Scenarios

All environments used were obtained from the literature. The Tiger problem is a well-known standard
problem [36]. For the Maze domain, we based our design on Thomas et al. 2020 [36]. For the
RockSample problem, we designed our own scenarios but based the implementation on Thomas et al.
2020 [36]. For Tag and LaserTag, we used the scenarios proposed by Somani et al. (2013) [34]. For
Foraging [2], we proposed our own configurations for each scenario.
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Tiger Environment: The Tiger problem is a classical benchmark where an agent must choose
between two doors: one hides a treasure; the other, a tiger. The objective is to find out which door
hides the treasure. The agent can decide which door to open or wait and listen to the tiger (with a
certain probability of mishearing it behind one of the doors) before making the final decision.

The agent has a 15% probability of mishearing the tiger. A maximum of 20 actions are allowed per
experiment. Choosing the right door gives the agent a reward of +0.1, the wrong door −1, and the
listening action penalises the agent with a −0.01 reward. Thus, each agent could try to listen to the
tiger 19 times before making the final decision to open either the left or right door.

Maze Environment: This is an Active Localisation Problem where an agent navigates through a
toroidal grid and tries to localise its own position by collecting information about its current position.
The reward is based on the entropy of the current belief. There is a change of 15% to miss observe the
colour of the cell. The belief follows a Bayesian Update process. Figure 1 illustrates the scenarios.

(a) Maze Cross – This is a 5x5 scenario in which black cells are positioned to ease the agent’s
localisation problem. Figure 1a illustrates the scenario’s configuration.

(b) Maze Holes – This is an 8x8 scenario, which requires the agent to reason one step in advance
to search for the missing black cell in this regular configuration. Figure 1b illustrates the
scenario.

(c) Maze Dots – This is a 6x6 scenario, identical to Maze Hole except that black cells are
separated by several white cells. Figure 1c illustrates the scenario.

(d) Maze Grid-X – This is a 3x3 scenario, with an upper white triangle and a bottom black
triangle for the localisation. Figure 1c illustrates the scenario.

(a) Maze Cross. (b) Maze Holes. (c) Maze Dots. (d) Maze Grid-X.

Figure 1: Maze environment scenario’s configuration.

RockSample Environment: The context of this problem illustrates a rover exploring an unknown
planet. The rover’s objective is to earn rewards by both sampling rocks in the environment and
leaving the planet with the samples. While the positions of the rover and the rocks are known, not
all rocks hold scientific value, which are referred to as “good” rocks. Given the cost associated
with rock sampling, the rover is equipped with a noisy long-range sensor, enabling it to assess a
rock’s potential scientific value before deciding whether to approach and sample it. The environment
is a grid map of size N × N with k rocks. The POMDP model for RockSample(N, k) follows:
The state space is a combination of k + 1 features, where Positions represent the rover’s location
{(1, 1), (1, 2), ..., (N,N)}, and k binary features, RockTypei, indicating whether each rock is
“Good” or “Bad”. There is a terminal state (portal) at the top-right corner of the map. The rover
has a choice of k + 5 actions: {North, South,East,West, Sample, Check1, ..., Checkk}. The
first four are deterministic single-step motion actions. The Sample action involves sampling the
rock at the rover’s current location. If the rock is determined to be “Good”, the rover receives a
reward of +1, and the rock transitions to “Bad”, signifying no further benefit from sampling. If
the rock is “Bad”, a penalty of −1 is delivered to the agent. Moving into the exit portal yields
a reward of +0.0001. All other actions have no associated cost or reward. Each Checki action
employs the rover’s long-range sensor to observe Rocki, yielding a noisy observation of either
“Good” or “Bad”. The noise in the long-range sensor reading is influenced by the efficiency η,
which decreases exponentially as a function of Euclidean distance from the target, following η =
exp(−0.2 EuclideanDistance(rover,Rocki)). Initially, every rock is assumed to have an equal
probability of being “Good” or “Bad”. Figure 2 shows the four scenario configurations used.
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(a) RockSample22 – This scenario is set on a 5x5 grid, featuring 2 good rocks and 2 bad rocks.
The rover initiates its mission from the middle of these rocks and must locate each specific
good rock among the bad rocks. Figure 2a illustrates the scenario’s configuration.

(b) RockSample40 – In this 5x5 scenario, there are 4 good rocks initially placed in the environ-
ment, with no bad rocks present. In contrast to RockSample22, the rover’s goal here is to
collect more rewards as there are more good rocks available. The rover starts its journey
from the centre of these rocks. Figure 2b illustrates the scenario’s configuration.

(c) RockSample44 – This 10x10 scenario features 4 good rocks and 4 bad rocks. The rover’s
starting point is the bottom-left corner of the map. Similar to RockSample22 but on a larger
scale, the rover’s challenge is to locate each specific good rock among the bad rocks to
optimize its reward. Figure 2c illustrates the scenario’s configuration.

(d) RockSample17 – In this 10x10 scenario, there’s only 1 good rock and 7 bad rocks, and the
rover begins its journey in the bottom-left corner of the map. Unlike RockSample44, the
expectation here is for the rover to collect fewer rewards. However, if the rover finds the
only good rock available, it can significantly improve its performance in terms of reward
collection. Figure 2c illustrates the scenario’s configuration.

(a) RockSample22. (b) RockSample40. (c) RockSample44. (d) RockSample17.

Figure 2: RockSample environment scenario’s configuration.

Tag and LaserTag Environment: In the Tag scenario (Figure 3a), the agent’s primary objective is
to locate and tag a target that actively moves away. Both the agent and the target navigate within a
grid featuring 29 possible positions. While the agent is aware of its own location, it can only observe
the target’s position when they occupy the same spot. The agent has the option to either stay in its
current position or move to any of the four adjacent positions, incurring a cost of −0.1 for each move.
Additionally, it can opt to execute the tag action, wherein it receives a reward of +1 for a successful
tag but receives a penalty of −1 if it fails to tag the target.

LaserTag (Figure 3b) is an augmented version of Tag, where an agent is acting in a 7x11 grid world
containing randomly placed obstacles. The agent’s behaviour and that of its opponent align with the
rules established in Tag. However, in LaserTag, there’s a key distinction: the agent possesses prior
knowledge of its initial location. Additionally, the agent is equipped with a laser system capable
of providing distance estimations (in cells’ units) in 8 directions. The laser readings are generated
from a normal distribution centred around the agent’s true distance from the nearest obstacle in each
direction, with a standard deviation of 2.5 units. These readings are then discretised into whole units,
resulting in an observation comprising a set of 8 integers. Figure 3 illustrates the scenarios.

(a) Tag. (b) LaserTag.

Figure 3: Tag and LaserTag scenarios’ configuration.
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Foraging Environment: This is a common problem used for evaluating online planning algorithms
[2, 7]. This domain presents an agent that must collect boxes displaced in a rectangular grid-
world. The problem is defined over partial observability and the agent does not know how the
tasks are distributed. The problem ends when the agent collects all boxes. A reward of +1 is
delivered to the agent every time a box is collected. The radius and the angle of vision (integer
numbers) for the agents are, respectively, 20% of the diagonal dimension in the environment in
cells’ unit and 90o – for example, if we have a 10 × 10 environment, so our vision radius will
be radius = 0.2

√
x2
dim + y2dim = 0.2

√
100 + 100 = 0.2

√
200 = 2. Additionally, agents have

memory, i.e., after seeing (in the real world) a state or position in the environment, they will sample
the next possible world configuration considering this information. Moreover, obstacles block the
agent’s vision, hence, it can not see tasks across the walls. Figure 4 illustrates the scenarios.

(a) The Corridor – This is a simple (20, 2) scenario, where the agent starts in the left part of a
corridor with a box at its side and another at the end of the corridor. The idea here is to test
the agent’s capability to find isolated reward spots. Figure 4a illustrates the scenario.

(b) U-Shaped – A complex version of The Corridor, the U-shaped is a 15× 15 scenario, where
the agent starts at the tip of a U-shaped corridor with a box at the beginning, one in the
middle and another at the end. The idea here is to test the agent’s capability to perform
simple planning, but facing sparse rewards collection. Figure 4b illustrates the scenario.

(c) U-Obstacles – A complex 20 × 10 scenario, where the agent needs to collect the boxes
distributed in a room, but there are obstacles (U-shaped walls) that block its vision. This
scenario is commonly used to study local minima issues that emerge in robotic navigation
problems [22]. The idea here is to test the agent’s capability to perform planning with sparse
reward collections, and the vision is blocked by obstacles. Figure 4c illustrates the scenario.

(d) The Warehouse – This scenario is our largest in terms of dimensions, 20× 20. The agent’s
objective is to locate specific reward spots (groups of boxes). These reward clusters are
situated at considerable distances from one another. Consequently, the agent cannot observe
multiple reward clusters from a single position, making planning more challenging. Figure
4d illustrates the scenario.

(e) The Office – Our most complex 15×10 scenario, where the agent needs to collect the boxes
distributed in an office. The idea here is to test the agent’s capability to perform complex
planning when tasks are distributed in different rooms and its vision is blocked by walls.
The agent needs to enter each room to finish the problem. Figure 4e illustrates the scenario.

D Hyperparameters

We used a single hyperparameter set for all Monte-Carlo Tree Search-based methods:

• Historical weight/Discount factor: γ = 0.95

• Maximum depth for the tree: 20
• Maximum number of simulations: 250 (per search)

For ρ-POMCP and TB ρ-POMCP specific hyperparameters, we consider the following:

• Small bag size: |B| = 10

• TB ρ-POMCP runs within the same time window of IB-POMCP’s average planning time.

Finally, considering IB-POMCP practical enhancement, we applied q = 0.2, hence α ∈ [0.2, 0.8].
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(a) The Corridor.

(b) U-shaped.

(c) U-Obstacles.

(d) The Warehouse.

(e) The Office.

Figure 4: Foraging environment scenario’s configuration.

21


	Introduction
	Related Work
	Background
	Information-based Partially Observable Monte Carlo Planning
	Theoretical Analysis
	Results
	Conclusion
	Algorithms
	Detailed Theoretical Analysis
	Benchmark Domains and Scenarios
	Hyperparameters

