
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

BOOSTING LANGUAGE MODEL FINE-TUNING VIA
ZEROTH-ORDER HYBRID METHODS WITH ADDI-
TIONAL MEMORY AID

Anonymous authors
Paper under double-blind review

ABSTRACT

When adjusting large language models (LLM) for downstream applications,
parameter-efficient fine-tuning (PEFT) significantly reduces memory costs. How-
ever, due to the need to store the activation values of backpropagation during gra-
dient computation, traditional First-order (FO) fine-tuning algorithms generate a
large amount of memory overhead. Zeroth-order (ZO) algorithms eliminate the
need for activation storage by approximating gradients using finite differences of
function values, providing a feasible solution when GPU memory is insufficient.
However, the existing ZO methods have the problem of slow convergence, and
they have far from realized the potential memory advantage of dual forward prop-
agation. In this paper, a low-rank ZO gradient estimation method is proposed,
which uses low-rank fast calculation and stable sampling strategy to accelerate
the convergence of the model. Simultaneously, we divide the model into different
hierarchical blocks, optimize the shallow blocks using the low-rank ZO optimizer,
and perform FO optimization on the deepest blocks (closest to the output) to ac-
celerate convergence. We further propose memory offloading scheduling, offload-
ing the hierarchical blocks that have already participated in computation into CPU
memory, and only moving the blocks that need to be calculated into GPU memory.
By using this method, we can fine-tune very large models, such as the OPT-175B
with over 175 billion parameters, on a GPU with only 17GB memory, while main-
taining a relatively fast convergence speed and fine-tuning performance close to
the FO algorithm.

1 INTRODUCTION

Large language models (LLMs) have exhibited remarkable capabilities in diverse fieldsAchiam et al.
(2023); Brown et al. (2020); Solaiman et al. (2019). Fine-tuning pre-trained models has emerged as
the standard strategy for tailoring LLMs to particular downstream tasks Gururangan et al. (2020);
Sanh et al. (2021). Parameter-efficient fine-tuning (PEFT) techniques, like those introduced by Hu
et al. (2021b); Lester et al. (2021), seek to minimize memory usage by keeping the majority of
pre-trained weights fixed and adjusting only a limited number of parameters. Nonetheless, even em-
ploying these methods, first-order (FO) optimization algorithms such as stochastic gradient descent
(SGD) Amari (1993) and Adam Kingma & Ba (2014) continue to face significant memory burdens
because of the requirement to retain activation values for back-propagation in gradient calculations.
This challenge intensifies further in scenarios involving extended contexts, where activations con-
stitute the primary source of memory consumption.

To improve memory efficiency, a promising option is to use zeroth-order (ZO) algorithms Spall
(1992). Unlike first-order (FO) methods, ZO algorithms avoid explicit gradient computations; in-
stead, they estimate gradients via finite differences of function evaluations. This removes the need
for backpropagation and storing activations, yielding substantial memory savings. Over the past
decades, ZO methods have been studied extensively Duchi et al. (2013); Nesterov & Spokoiny
(2015); Berahas et al. (2019) and have recently been applied to fine-tuning LLMs Malladi et al.
(2023b). In particular, Malladi et al. (2023b) adapts the classical ZO stochastic gradient descent
(ZO-SGD) algorithm Ghadimi & Lan (2013) into a memory-optimized variant (MeZO), which re-
duces memory usage to about one quarter of that of standard SGD.

1



054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

Nevertheless, ZO algorithms face several challenges for LLM fine-tuning. A key issue is the
rank mismatch between ZO gradient estimates and true FO gradients: FO gradients obtained via
backpropagation during LLM fine-tuning are typically low-rank Malladi et al. (2023b); Zhao et al.
(2024b); Hao et al. (2024), whereas the ZO gradients in MeZO arise from Gaussian perturbations
and are therefore nearly full-rank. Introducing a low-rank parameterization into ZO could reduce
computation and potentially accelerate convergence. Despite its memory advantages, MeZO can de-
grade accuracy and require more optimization steps than full first-order fine-tuning across multiple
tasks Malladi et al. (2023b). Moreover, because ZO avoids backpropagation, it naturally supports
offloading and reloading modules between CPU and GPU without storing activations or communi-
cating gradients, offering additional opportunities to reduce runtime GPU memory.

To focus on solving the two major issues of slow convergence speed and further memory opti-
mization, we proposed HZO (Hybrid Zeroth-Order Optimization). The key to addressing these two
challenges is to first divide the model into different hierarchical blocks, apply low-rank adaptation
ZO to some shallow blocks (those closer to the input), accelerate computation. Using FO for deep
blocks (those closer to the output), which avoids unnecessary backpropagation. By processing dif-
ferent hierarchical blocks with different methods, we can accelerate convergence. For the memory
optimization issue under the HZO framework, we designed a unique scheduling algorithm that al-
lows the hierarchical blocks involved in computation to enter GPU memory, while those that have
been computed are removed from GPU memory. Compared to the MeZO Malladi et al. (2023b)
algorithm, this approach has almost no additional communication time and makes it possible to
fine-tune OPT-175B on a single 24G RTX4090.

In brief, the main contributions are as follows:

• We propose a low-order ZO gradient estimator. Our method uses a low-rank perturbation
matrix to derive the ZO gradient, and introduce the stable sampling strategy. At the same
time, using a random seed to store the matrix further reduces GPU memory consumption.

• Integrating zeroth-order and first-order optimizers for fine-tuning language models. After
dividing the model into different hierarchical blocks, HZO is equipped with inter-layer
mixed optimization, using the FO algorithm only for deep blocks to accelerate convergence
speed.

• Compared to first-order optimizers, ZO is more suitable for CPU offloading due to the lack
of communication with GPU memory for activation values and gradients. In the context of
ZO optimization methods, a similar pipeline scheduling approach is applied to significantly
reduce GPU memory requirements.

2 RELATED WORK

2.1 ZEROTH-ORDER OPTIMIZATION AND MEMORY-EFFICIENT FINE-TUNING

Zeroth-order (ZO) optimization estimates gradients through function evaluations, bypassing explicit
backpropagation and offering a memory-efficient alternative for large model adaptation. Classical
ZO methods, such as ZO-SGD, ZO-Adam, and ZO-SVRG Ghadimi & Lan (2013); Chen et al.
(2019); Ji et al. (2019), often face high variance and slow convergence in high-dimensional settings.
To mitigate these issues, strategies like sparse gradient estimation Balasubramanian & Ghadimi
(2018) and feature reuse Chen et al. (2023) have been proposed. In parallel, memory-efficient fine-
tuning techniques for large language models (LLMs), such as LoRA Hu et al. (2021a) and gradient
compression Zhao et al. (2024a), significantly reduce trainable parameters or optimizer state sizes.
Unlike first-order methods, ZO eliminates the need to store activations, making it appealing for LLM
fine-tuning Malladi et al. (2023a). Recent work has further improved ZO efficiency via variance
reduction Gautam et al. (2024), sparse masking Liu et al. (2024).

2.2 HYBRID OPTIMIZATION

Hybrid optimization remains relatively underexplored. Landro, Gallo, and La Grassa Landro et al.
(2020) integrate SGD and Adam through the application of fixed weights to equilibrate the in-
puts from gradient estimations provided by each optimizer. Comparable to traditional fine-tuning

2



108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

employing FO optimizers, this technique necessitates considerable memory. Ansaripour et al.
Ansaripour et al. (2022) suggest hybrid optimization at the model scale within a decentralized op-
timization framework in a distributed setup (with certain agents refined via ZO and others via FO),
which differs substantially from our approach. The hybrid optimization detailed in our research
functions at the layer level (i.e., inter-layer strategy) . Some people have proposed a hybrid opti-
mization strategy, but it consumes a lot of memory Chen et al. (2025).

3 METHODOLOGY

In this section, we will introduce the technical details of the proposed Hybrid Zeroth-Order Opti-
mization (HZO), as shown in Figure 1. The left side of Figure 1 describes the hybrid optimization,
and the right side describes the memory scheduling algorithm. To ensure thoroughness, we first
outline the traditional ZO, as well as the MeZO Malladi et al. (2023b) method, and then delve into
the technical details of our approach.

3.1 ZEROTH-ORDER (ZO) OPTIMIZATION

We consider the following optimization problem:

min
X

f(X) := Eξ[F (X; ξ)], (1)

where X denotes the set of trainable parameters with dimension d. For instance, in the large lan-
guage model (LLM) fine-tuning process, we can express X = {Xℓ}Lℓ=1 where Xℓ ∈ Rmℓ×nℓ

represents the ℓ-th weight matrix and L is the total number of layers. The function F (X; ξ) is the
loss function that depends on a random variable ξ.

The ZO approach approximates gradients exclusively via function assessments, bypassing the ne-
cessity for explicit gradient details. Two prevalent schemes for gradient estimation encompass the
deterministic Coordinate-wise Gradient Estimation (CGE)Lian et al. (2016); Chen et al. (2023) and
the Randomized vector-wise Gradient Estimation (RGE) Nesterov & Spokoiny (2015). These are
formally articulated as:

∇̂F (X; ξ) :=

d∑
i=1

F (X + ϵEi; ξ)− F (X − ϵEi; ξ)

2ϵ
Ei (2)

∇̂F (X; ξ) :=
F (X + ϵZ; ξ)− F (X − ϵZ; ξ)

2ϵ
Z. (3)

The scalar ϵ denotes the perturbation magnitude, which affects the accuracy of the gradient approx-
imation. Both Ei and Z have the same dimensions as X . The quantity Ei is a basis vector/matrix
with its i-th element set to one and all other elements set to zero, whereas the elements of Z are
randomly generated, typically sampled independently from a standard normal distribution. An ex-
tension of the RGE method is the q-RGE approach. In this case, the RGE is computed q times
independently, and the final gradient estimate is obtained by averaging these estimations.

Xt+1 = Xt − α∇̂F
(
Xt; ξt

)
(4)

where α denotes the step size, also referred to as the learning rate, and ∇F represents the gradient
estimated using ZO information.

3.2 MEMORY-EFFICIENT ZO-SGD (MEZO)

The conventional ZO-SGD implementation involves significant memory expenses. For instance,
during the creation of the gradient estimator via the RGE scheme, the classic ZO-SGD approach de-
mands memory allocation for the perturbation matrix Z. To address this memory burden, the MeZO
method Malladi et al. (2023b) emerged as an optimized, memory-saving alternative to ZO-SGD. In
contrast to the traditional method, MeZO eliminates the need to store the full perturbation matrix
Z. Rather, it conducts the perturbation and ZO-SGD updates directly in situ and utilizes a strategy
of preserving the random seed for generating Z, enabling its recreation as required. Although this
results in extra computational demands, it substantially lowers memory consumption.

3



162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

Figure 1: The middle solid line part belongs to the part temporarily stored in the CPU memory, and
the right side is the block swapped into the GPU for computation.

3.3 LOW-RANK ZEROTH-ORDER GRADIENT ESTIMATOR

Gradients in large language models (LLMs) display low-rank characteristics. Prior research has
thoroughly examined the low-rank properties inherent in neural networks Li et al. (2018); Larsen
et al. (2021) . These investigations indicate that loss landscapes are confined to an intrinsic dimen-
sionality, suggesting that model parameters can be refined effectively within a low-rank subspace.
Moreover, further studies Sagun et al. (2017); Gur-Ari et al. (2018) have shown that stochastic gra-
dients tend to converge dynamically into an exceptionally compact subspace, particularly during
the fine-tuning of LLMs Zhang et al. (2023). Contemporary research Zhao et al. (2024a) further
supplies theoretical justification that the gradient matrix assumes a low-rank form throughout LLM
training and adaptation.

We propose a matrix-wise ZO gradient estimator, LGE, that preserves the low-rank structure in gra-
dients. In LLM fine-tuning, let X = {Xℓ}Lℓ=1represent the model’s weights, where Xℓ ∈ Rmℓ×nℓ

is the weight matrix of the ℓ-th layer. We sample two matrices, Uℓ ∈ Rmℓ×rℓ and Vℓ ∈ Rnℓ×rℓ ,
from standard normal distributions, where rℓ ≪ min{mℓ, nℓ}. The LGE for the partial gradient of
the ℓ-th weight matrix is defined as

∇̂Xℓ
F (X; ξ) :=

F
({

Xℓ + ϵUℓV
T
ℓ

}L
ℓ=1

; ξ
)
− F

({
Xℓ − ϵUℓV

T
ℓ

}L
ℓ=1

; ξ
)

2ϵ

(
UℓV

T
ℓ /rℓ

)
. (5)

The scaling factor 1/rℓ is introduced to ensure that LGE is an unbiased estimator of the true gradient
as ϵ→ 0 . Defining

U := {Uℓ}Lℓ=1, V := {Vℓ}Lℓ=1, r := {rℓ}Lℓ=1, ∇F (X; ξ) := {∇Xℓ
F (X; ξ)}Lℓ=1,

we express
X ± ϵUV T := {Xℓ ± ϵUℓV

T
ℓ }Lℓ=1, UV T /r := {UℓV

T
ℓ /rℓ}Lℓ=1.

Using these notations, LGE can be written into a more compact form:

∇̂F (X; ξ) :=
F
(
X + ϵUV T ; ξ

)
− F

(
X − ϵUV T ; ξ

)
2ϵ

(
UV T /r

)
. (6)

Using the definition in (5), we observe that the gradient matrix ∇Xℓ
F (X; ξ) has a rank of at most

rℓ, effectively capturing the low-rank structure of the FO gradient in LLM fine-tuning.

Following the LGE definition (6), we introduce the LGE operator

LGE(X,U ,V , r, ϵ, ξ) :=
F
(
X + ϵUV T ; ξ

)
− F

(
X − ϵUV T ; ξ

)
2ϵ

(
UV T /r

)
(7)

4



216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

To solve problem (1), the vanilla recursion with the LGE scheme is as follows. For any t ≥ 0,

Xt+1 = Xt − α∇̂F
(
Xt; ξt

)
where ∇̂F

(
Xt; ξt

)
= LGE

(
Xt,U t,V t, r, ϵ, ξt

)
. (8)

In practice, we only need to store Uℓ and Vℓ for each layer ℓ, and we apply the perturbation and
the update layer by layer, eliminating the need to retain the full gradient estimator UℓV

T
ℓ . Since

rℓ ≪ min{mℓ, nℓ}, the additional memory required for storing Uℓ and Vℓ is negligible. Moreover,
memory costs can be further reduced using the random seed technique (Malladi et al., 2023). Instead
of storing Uℓ and Vℓ directly, only the random seeds sUℓ and sVℓ used to generate them are saved.
Whenever Uℓ and Vℓ are needed, the seeds sUℓ and sVℓ are used to regenerate these matrices, thereby
eliminating the need for their storage. While this approach reduces memory usage, it introduces
additional floating-point operations (flops) due to the regeneration process.

stable sampling strategy. In the main recursion (8), the variable Xt is updated within the subspace
spanned by U t and V t at each iteration t. However, if U t and V t are resampled at every iteration,
the subspace will shift too frequently. This limits the algorithm’s ability to adequately explore one
low-rank subspace over a longer period, potentially causing abrupt changes in the model parameters
X at each iteration and degrading fine-tuning performance.

Additionally, ZO methods capture less information about the true gradient compared to FO algo-
rithms, necessitating more iterations to achieve similar performance. In other words, multiple ZO
steps may be required to match the progress of a single FO step. This suggests that maintaining a
low-rank structure in the gradient estimator at each step is insufficient; instead, the cumulative sum
of gradient estimators over several consecutive iterations must also preserve a low-rank structure.

The motivations outlined above lead us to propose a stable sampling strategy. While U is sampled
at every iteration t, we only sample V every ν iterations, where ν > 0 represents the chosen period
duration. During the iterations t ∈ {kν, . . . , (k+1)ν−1} for each period k, the matrix V (k) remains
fixed, thus restricting the model update to the subspace spanned by V (k). This leads to our proposed
HZO algorithm, whose update rule for any t ≥ 0 is defined as:

(Xt+1 = Xt − α∇̂F
(
Xt; ξt

)
, where ∇̂F

(
Xt; ξt

)
= LGE

(
Xt,U t,V (k), r, ϵ, ξt

)
. (9)

With the stable sampling strategy, ∇F (Xt; ξt) consistently lies within the subspace determined by
V (k) for any t ∈ {kν, . . . , (k + 1)ν − 1}. Therefore, the accumulation of the estimated gradients
over these consecutive ν steps, which can be viewed as a more accurate approximation of the true
gradient in a single FO step, has a rank that does not exceed r. When ν = 1, the HZO update
rule (9) reduces to the standard recursion (8). Detailed mathematical proof process can be found in
Appendix A.1.

Hyperparameter tuning. The parameter ν, which defines the number of steps over which Xt is
updated within the same subspace, is critical for performance and should be set to a moderate value.
If ν is too small, frequent subspace shifts may lead to abrupt model changes, while a ν that is too
large limits the algorithm to focus only on a few subspaces, potentially reducing generalization. The
parameter r defines the rank of the gradient estimator. Since the true gradient rank is unknown, we
typically set r as a small constant that is significantly less than both mℓ and nℓ to avoid additional
memory overhead. In our experiments, we set rℓ = r through all layers. The typical choices for the
parameters are r = 2, 4, 8 and ν = 50, 100.

3.4 INTER-LAYER HYBRID OPTIMIZATION

While MeZO provides advantages in terms of memory efficiency, it experiences notable reductions
in accuracy relative to complete fine-tuning using SGD or Adam. To address these limitations, we
introduce a low-order hybrid optimizer designed to enhance MeZO’s effectiveness while adhering to
memory constraints, achieved through the fusion of a ZO optimizer and a FO optimizer. The inter-
layer approach features two variations: (1) Z+F, which applies the ZO optimizer for training the
shallow layers and the FO optimizer for the deep layers; (2) F+Z, which employs the FO optimizer
for the shallow layers and the ZO optimizer for the deep layers.

5



270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

Algorithm 1 Resample-Triggered FO: HZO with FO on t mod ν = 0

Require: Parameters X = {Xℓ}Lℓ=1, loss F (X; ξ); total steps T ; ZO scale ε; ZO lr α; FO lr η;
stable interval ν; ranks {rℓ}; layer partition: Z (ZO layers), O (FO layers near output)

1: for t = 0, . . . , T − 1 do
2: for ℓ ∈ Z do
3: Sample Uℓ ∼ N (0, 1)mℓ×rℓ ▷ ZO uses fresh U every step
4: if t mod ν = 0 then
5: Sample Vℓ ∼ N (0, 1)nℓ×rℓ ▷ stable resampling of V every ν steps
6: X ← PERTURBZ(X, +ε, {Uℓ, Vℓ}ℓ∈Z)
7: F+ ← F (X; ξ)
8: X ← PERTURBZ(X, −2ε, {Uℓ, Vℓ}ℓ∈Z)
9: F− ← F (X; ξ)

10: X ← PERTURBZ(X, +ε, {Uℓ, Vℓ}ℓ∈Z) ▷ reset to base

11: c← F+ − F−

2ε
▷ two-point finite difference

12: for ℓ ∈ Z do ▷ ZO update in the current low-rank subspace
13: Xℓ ← Xℓ − α c

(
UℓV

⊤
ℓ /rℓ

)
14: if t mod ν = 0 then ▷ when V is resampled, do one FO update on output-proximal layers
15: {gℓ}ℓ∈O ← FO-BACKWARD(X, ξ,O)
16: for ℓ ∈ O do
17: Xℓ ← Xℓ − η gℓ ▷ or use your optimizer: Adam/Adafactor, etc.

18: procedure PERTURBZ(X, ε, {Uℓ, Vℓ}ℓ∈Z )
19: for ℓ ∈ Z do
20: Xℓ ← Xℓ + εUℓV

⊤
ℓ ▷ perturb only ZO layers

21: return X
22: procedure FO-BACKWARD(X, ξ,O)
23: Freeze layers in Z; enable grads for layers in O
24: G← ∇{Xℓ: ℓ∈O}F (X; ξ) ▷ one forward + one backward
25: return {Gℓ}ℓ∈O

Interlayer mixing optimization, after analyzing the peak memory consumption during the fine-tuning
period, it is evident that the positioning of the FO optimization layer significantly affects overall
memory usage. Compared to the F+Z solution, the Z+F solution uses the ZO optimizer for shallow
layers and the FO optimizer for deep layers, which can reduce more memory consumption because
they need to cache more activations. Therefore, we adopted this solution, as shown on the left side
of Figure 1. In this solution, the gradient calculations of the ZO and FO optimizers are independent.
For the deep layers optimized by the FO optimizer, we perform backpropagation to obtain their
gradients. For the shallow layers trained using the ZO optimizer, we conduct two forward passes to
approximate their gradients. Subsequently, we adjust the parameters of the shallow and deep layers
independently.

Triggering Mechanism (Resample-Triggered FO) The first-order (FO) update is only triggered
when t mod ν = 0, and it aligns strictly with the resampling of V ; all other iterations perform
zero-order (ZO) updates. Specifically, within each low-rank subspace determined by the current V ,
ν consecutive ZO two-point differences and updates are performed; when t ≡ 0 (mod ν) and V
needs to be resampled, after completing the ZO updates for that step (or alternatively, first FO and
then ZO), a single FO backpropagation update is performed on the layers near the output, i.e., the
set O. This strategy implements the concept of “accumulating within the subspace + fine-tuning
upon switching” and is consistent with the stable sampling motivation of HZO as well as the main
loop structure in Algorithm 1. It maintains stable accumulation within the subspace while quickly
correcting during the subspace switch using first-order information.

6



324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

3.5 DYNAMIC SCHEDULER DESIGN FOR EFFICIENT OVERLAP

As shown on the right side of Figure 1.We enhance memory management through the pre-allocation
of a reusable memory block for transformers on the GPU, which avoids the inefficiencies associated
with frequent memory allocations and deallocations amid data exchanges between the CPU and
GPU. This allocated memory is flexibly repurposed for each transformer block successively, accel-
erating data movements and maintaining consistent GPU memory consumption, ultimately boosting
overall computational performance.

Additionally, we implement the approach described by Li et al. Li et al. (2020), utilizing commu-
nication buckets to improve the efficiency of block-based transmissions. In particular, we merge
parameter segments inside blocks into unified memory buckets, thereby elevating the effectiveness
of communications.

To overlap the data loading and computation process, we propose a dynamic scheduler, utilizing
the asynchronous execution on different CUDA streams. Specifically, our scheduler includes three
CUDA streams, which are utilized to control the i-th transformer block’s computation, the (i+1)-th
block’s uploading, and the (i − 1)-th block’s offloading concurrently. This design minimizes data
transfer conflicts and maximizes GPU utilization by keeping computational and communication
channels active.

A key benefit of our framework lies in the dual-forward mechanism, which effectively doubles the
computation duration while leaving the communication time per block unaltered. This improvement
markedly elevates the probability of achieving full overlap between communication and computa-
tion operations, particularly given that CPU-GPU communication is typically slower than GPU-
based computation. Our subsequent assessments reveal that, owing to ZO’s distinctive dual forward
passes—which prolong computation relative to the single forward pass—communication latencies
cease to represent the dominant bottleneck across the majority of cases.

4 EXPERIMENTS

Our experiments assess the algorithms using language models (LMs) across different sizes, en-
compassing RoBERTa-largeLiu et al. (2019) and extensive autoregressive LMs like OPT-13B, 30B,
and 66B Zhang et al. (2022),Details can be found in the appendix A.3.1. Additionally, we exam-
ine LLaMA models Touvron et al. (2023) in multiple scales, Details can be found in the appendix
A.3.3 We benchmark our HZO algorithms against MeZO Malladi et al. (2023b) and its derivatives
LoHOChen et al. (2025), plus other reference methods such as zero-shot and in-context learning
(ICL) techniques. Additionally, we evaluate full fine-tuning and LoRA employing the gradient-
based Adam optimizer Kingma & Ba (2014), denoted as FT and FT-LoRA, respectively.To ensure
equitable comparisons, we execute a comprehensive grid search over the hyperparameters specified
in Malladi et al. (2023b) and adopt the superior outcomes for MeZO and its variants.

4.1 RESULTS ON OPT

To further assess the efficacy of HZO on extensive language models, we broaden our investigation
to the OPT models Zhang et al. (2022) featuring billions of parameters (13B, 30B, and 66B).

For OPT, we conduct experiments on the following datasets: SST-2, RTE, CB De Marneffe et al.
(2019), BoolQ Clark et al. (2019), WSC Levesque et al. (2012), WiC Pilehvar & Camacho-Collados
(2018), MultiRC Khashabi et al. (2018), COPA Roemmele et al. (2011), ReCoRD Zhang et al.
(2018), SQuAD Rajpurkar et al. (2016), and DROP Dua et al. (2019). Based on Table 2, HZO
delivers strong results across multiple tasks, often approaching or surpassing full fine-tuning. On
BoolQ, HZO reaches 73.04, more than six points higher than in-context learning (66.72) and above
MeZO (68.02), although LoHO attains 73.68. On CoPA, HZO achieves 89.70, clearly outperforming
LoHO (84.13) and full fine-tuning (78.98). For reading comprehension, HZO obtains 86.00 on
SQuAD and 63.12 on MultiRC, exceeding LoHO (82.29 and 61.40, respectively); on ReCoRD, it
scores 81.15—below ICL (82.29) and LoHO (81.67) but above full fine-tuning (74.28). Full fine-
tuning remains stronger on several tasks, notably CB, where it reaches 84.18 while HZO attains
68.42; the gaps are small on SST-2 (91.94 for full fine-tuning and 91.76 for HZO) and RTE (70.76
for full fine-tuning and 70.21 for HZO). HZO underperforms on DROP (30.63) relative to MeZO

7



378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

Experiment Hyperparameters Values
HZO Batch size 16

Learning rate {1× 10−6, 1× 10−7}
ϵ {1× 10−3, 1× 10−4}

Rank (r) {1, 2, 4}
Interval (ν) {50, 100}

MeZO Batch size 16
Learning rate {1× 10−6, 1× 10−7} or {1× 10−6, 5× 10−7, 1× 10−7} for SQuAD and DROP

ϵ 1× 10−3

LoHO Batch size 16
Learning rate {1× 10−4, 5× 10−5} or {1× 10−4, 5× 10−5, 1× 10−5} for SQuAD and DROP

ϵ 1× 10−2

FT Batch size 8
Learning rate {1× 10−5, 5× 10−5, 8× 10−5}

Table 1: The hyperparameter grids used for OPT experiments

(31.13), LoHO (31.33), and full fine-tuning (31.28). Overall, HZO is a competitive alternative to full
fine-tuning, with clear strengths on WSC, CoPA, and SQuAD, and competitive results on ReCoRD.
HZO demonstrates accelerated convergence across different model scales, such as 13B and 66B. As

Task SST-2 RTE CB BoolQ WSC WiC MultiRC CoPA ReCoRD SQuAD DROP
Zero-shot 58.86 59.45 46.31 59.15 38.44 54.83 47.08 80.03 81.01 46.23 14.46
ICL 87.14 62.18 57.16 66.72 39.34 50.39 52.96 87.10 82.29 75.94 29.55
MeZO 91.41 68.09 65.91 68.02 61.70 60.23 59.55 88.19 81.36 81.84 31.13
LoHO 89.71 68.09 67.85 73.68 63.43 60.12 61.40 84.13 81.67 82.29 31.33
HZO 91.76 70.21 68.42 73.04 63.81 63.93 63.12 89.70 81.15 86.00 30.63
FT 91.94 70.76 84.18 77.01 63.37 70.29 71.29 78.98 74.28 84.90 31.28

Table 2: Experiments on OPT-13B (with 10000 examples). ICL: in-context learning; FT: full fine-
tuning with Adam. The best results are shown in bold except for FT.

shown in Figure 2, the method consistently converges faster on diverse datasets and architectures.
For instance, on the WIC dataset with the OPT-66B configuration, the HZO algorithm reaches the
same training loss as MeZO in only half the epochs, while also producing smoother trajectories with
reduced loss oscillations.

(a) (b)

Figure 2: Convergence speed on different models and datasets

Based on Table 3, HZO shows strong performance on SuperGLUE for both OPT-30B and OPT-66B,
often matching or exceeding baselines, with a few exceptions. For OPT-30B, HZO achieves 93.81
on SST-2 and 72.99 on BoolQ, outperforming in-context learning (66.24) and MeZO (68.11) on the
latter. On WSC and WiC, HZO obtains 65.43 and 58.31, higher than MeZO (63.36 and 56.46) and
in-context learning (56.65 and 51.24). On SQuAD, HZO reaches 85.00, above in-context learning
(77.82) and zero-shot (46.70), while MeZO attains 85.97. For OPT-66B, HZO attains 92.41 on SST-
2 and 74.74 on RTE, slightly above MeZO (92.14 and 71.40) and clearly above in-context learning
(89.20 and 65.29). HZO also delivers 74.71 on BoolQ and 84.26 on SQuAD, exceeding MeZO
(73.64 and 83.85) and in-context learning (62.61 and 81.12). The only metric where MeZO leads

8



432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

Task SST-2 RTE BoolQ WSC WiC SQuAD
30B Zero-shot 56.69 51.98 39.12 38.50 50.17 46.70
30B ICL 82.01 66.82 66.24 56.65 51.24 77.82
30B MeZO 90.67 64.41 68.11 63.36 56.46 85.97
30B HZO 93.81 65.83 72.99 65.43 58.31 85.00
66B Zero-shot 57.53 67.34 66.68 43.26 50.72 47.96
66B ICL 89.20 65.29 62.61 52.90 55.00 81.12
66B MeZO 92.14 71.40 73.64 64.45 57.67 83.85
66B HZO 92.41 74.74 74.71 64.32 59.49 84.26

Table 3: Experiments on OPT-30B and OPT-66B on SuperGLUE benchmark. For each model size,
the best results are shown in bold.

GPU Memory Usage (GB) ↓ Throughput (tokens/sec) ↑
Model MeZo (FP32) HZO(FP32) MeZo (FP16) HZO (FP16) MeZo (FP32) HZO(FP32) MeZo (FP16) HZO(FP16)
OPT-1.3B 8.69 4.98(x0.57) 5.68(x0.65) 3.64(x0.42) 1998 1955(x0.97) 6629(x3.32) 6448(x3.23)
OPT-2.7B 14.17 5.79(x0.41) 8.84(x0.62) 4.04(x0.29) 1104 1086(x0.98) 4229(x3.83) 4220(x3.82)
OPT-6.7B 32.16 8.22(x0.26) 16.20(x0.50) 4.88(x0.15) 492 485(x0.98) 2349(x4.77) 2270(x4.61)
OPT-13B 57.38 10.48(x0.18) 28.99(x0.51) 6.04(x0.11) 266 259(x0.97) 1326(x4.98) 1251(x4.70)
OPT-30B 143.45 15.61(x0.11) 62.40(x0.43) 8.65(x0.06) 136 122(x0.90) 641(x4.71) 514(x3.78)
OPT-66B 290.75 21.77(x0.07) 126.33(x0.43) 11.79(x0.04) 46 40(x0.87) 325(x7.07) 273(x5.93)
OPT-175B 623.49 33.22(x0.05) 269.27(x0.43) 17.62(x0.03) 17 14(x0.82) 56(x3.29) 37(x2.18)

Table 4: Key findings from HZO performance across diverse model setups and in both FP32 and
FP16 precision modes. Bold numbers indicate the lowest memory usage and highest throughput for
each model.Our HZO achieves a throughput close to MeZO while maintaining minimal memory
consumption.

is WSC (64.45 compared with HZO 64.32). Overall, HZO provides robust gains over in-context
learning and zero-shot, and often matches or slightly outperforms MeZO across large models.

Based on Table 4, HZO consistently reduces GPU memory usage across OPT models. For OPT-
6.7B, it uses 8.22 GB in FP32 compared with MeZO’s 32.16 GB (reduction ≈ 74%) and 4.88 GB
in FP16 compared with 16.20 GB (reduction ≈ 70%). These reductions enable larger models: in
FP16, HZO requires 11.79 GB for OPT-66B and 17.62 GB for OPT-175B, whereas MeZO needs
126.33 GB and 269.27 GB. Throughput remains broadly comparable to MeZO: on OPT-2.7B in
FP32, HZO achieves 1086 tokens/s compared with 1104; in FP16 it is typically within about 3–20%
of MeZO (for OPT-66B, 273 tokens/s compared with 325). Overall, FP16 memory savings range
from roughly 36–54% on smaller models to about 70–95% from 6.7B upward, while maintaining
throughput close to MeZO.

4.2 ABLATION STUDY

Details of the ablation experiment can be found in Appendix A.3.4. We have also proven the con-
vergence, with details in Appendix A.2.

5 CONCLUSION

In summary, this work introduces a low-rank zeroth-order gradient estimation method that effec-
tively reduces memory consumption while preserving competitive fine-tuning performance. By
combining hierarchical block-wise optimization with a hybrid ZO–FO strategy and proposing an
offloading scheme between GPU and CPU memory, the method enables large-scale models such as
OPT-175B to be fine-tuned on limited hardware resources. The proposed approach not only miti-
gates the slow convergence issue inherent in conventional ZO methods but also achieves convergence
behavior comparable to first-order algorithms, thereby providing a practical and efficient solution for
parameter-efficient fine-tuning of large language models under memory-constrained environments.

REFERENCES

OpenAI Josh Achiam, Steven Adler, Sandhini Agarwal, Lama Ahmad, and Ilge Akkaya. Gpt-
4 technical report. 2023. URL https://api.semanticscholar.org/CorpusID:

9

https://api.semanticscholar.org/CorpusID:257532815
https://api.semanticscholar.org/CorpusID:257532815
https://api.semanticscholar.org/CorpusID:257532815


486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

257532815.

Shun-ichi Amari. Backpropagation and stochastic gradient descent method. Neurocomputing, 5:
185–196, 1993. URL https://api.semanticscholar.org/CorpusID:30699194.

Matin Ansaripour, Shayan Talaei, Giorgi Nadiradze, and Dan Alistarh. Hybrid decentralized op-
timization: Leveraging both first- and zeroth-order optimizers for faster convergence. In AAAI
Conference on Artificial Intelligence, 2022. URL https://api.semanticscholar.org/
CorpusID:272397977.

Krishnakumar Balasubramanian and Saeed Ghadimi. Zeroth-order (non)-convex stochastic opti-
mization via conditional gradient and gradient updates. ArXiv, abs/1809.06474, 2018. URL
https://api.semanticscholar.org/CorpusID:52295256.

Roy Bar-Haim, Ido Dagan, Bill Dolan, Lisa Ferro, Danilo Giampiccolo, Bernardo Magnini, and
Idan Szpektor. The second pascal recognising textual entailment challenge. In Proceedings of the
Second PASCAL Challenges Workshop on Recognising Textual Entailment, 2006.

Luisa Bentivogli, Ido Dagan, Bernardo Magnini, and Danilo Giampiccolo. The fifth pascal recog-
nizing textual entailment challenge. In Proceedings of Text Analysis Conference (TAC), 2009.

Albert S. Berahas, Liyuan Cao, Krzysztof Choromanski, and Katya Scheinberg. A theo-
retical and empirical comparison of gradient approximations in derivative-free optimization.
Foundations of Computational Mathematics, 22:507 – 560, 2019. URL https://api.
semanticscholar.org/CorpusID:146120814.

Samuel R Bowman, Gabor Angeli, Christopher Potts, and Christopher D Manning. A large anno-
tated corpus for learning natural language inference. In Proceedings of the 2015 Conference on
Empirical Methods in Natural Language Processing, pp. 632–642, 2015.

Tom B. Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared Kaplan, Prafulla Dhari-
wal, Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, Sandhini Agar-
wal, Ariel Herbert-Voss, and Gretchen Krueger. Language models are few-shot learn-
ers. ArXiv, abs/2005.14165, 2020. URL https://api.semanticscholar.org/
CorpusID:218971783.

Aochuan Chen, Yimeng Zhang, Jinghan Jia, James Diffenderfer, Jiancheng Liu, Konstantinos
Parasyris, Yihua Zhang, Zheng Zhang, Bhavya Kailkhura, and Sijia Liu. Deepzero: Scaling
up zeroth-order optimization for deep model training. ArXiv, abs/2310.02025, 2023. URL
https://api.semanticscholar.org/CorpusID:263609305.

Minping Chen, You-Liang Huang, and Zeyi Wen. Towards efficient low-order hybrid optimizer for
language model fine-tuning. In AAAI Conference on Artificial Intelligence, 2025. URL https:
//api.semanticscholar.org/CorpusID:277767644.

Xiangyi Chen, Sijia Liu, Kaidi Xu, Xingguo Li, Xue Lin, Mingyi Hong, and David Cox. Zo-adamm:
Zeroth-order adaptive momentum method for black-box optimization. In Neural Information
Processing Systems, 2019. URL https://api.semanticscholar.org/CorpusID:
202777327.

Christopher Clark, Kenton Lee, Ming-Wei Chang, Tom Kwiatkowski, Michael Collins, and Kristina
Toutanova. Boolq: Exploring the surprising difficulty of natural yes/no questions. In Proceedings
of the 2019 Conference of the North American Chapter of the Association for Computational
Linguistics, pp. 2924–2936, 2019.

Ido Dagan, Oren Glickman, and Bernardo Magnini. The pascal recognising textual entailment chal-
lenge. In Proceedings of the First International Conference on Machine Learning Challenges:
Evaluating Predictive Uncertainty Visual Object Classification, and Recognising Textual Entail-
ment, pp. 177–190, 2005.

Marie-Catherine De Marneffe, Mandy Simons, and Judith Tonhauser. The commitmentbank: Inves-
tigating projection in naturally occurring discourse. In Proceedings of Sinn und Bedeutung 23,
pp. 107–124, 2019.

10

https://api.semanticscholar.org/CorpusID:257532815
https://api.semanticscholar.org/CorpusID:257532815
https://api.semanticscholar.org/CorpusID:257532815
https://api.semanticscholar.org/CorpusID:30699194
https://api.semanticscholar.org/CorpusID:272397977
https://api.semanticscholar.org/CorpusID:272397977
https://api.semanticscholar.org/CorpusID:52295256
https://api.semanticscholar.org/CorpusID:146120814
https://api.semanticscholar.org/CorpusID:146120814
https://api.semanticscholar.org/CorpusID:218971783
https://api.semanticscholar.org/CorpusID:218971783
https://api.semanticscholar.org/CorpusID:263609305
https://api.semanticscholar.org/CorpusID:277767644
https://api.semanticscholar.org/CorpusID:277767644
https://api.semanticscholar.org/CorpusID:202777327
https://api.semanticscholar.org/CorpusID:202777327


540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

Dheeru Dua, Yizhong Wang, Pradeep Dasigi, Gabriel Stanovsky, Sameer Singh, and Matt Gard-
ner. Drop: A reading comprehension benchmark requiring discrete reasoning over paragraphs.
In Proceedings of the 2019 Conference of the North American Chapter of the Association for
Computational Linguistics, pp. 2368–2378, 2019.

John C. Duchi, Michael I. Jordan, Martin J. Wainwright, and Andre Wibisono. Optimal rates for
zero-order convex optimization: The power of two function evaluations. IEEE Transactions on
Information Theory, 61:2788–2806, 2013. URL https://api.semanticscholar.org/
CorpusID:552111.

Tanmay Gautam, Youngsuk Park, Hao Zhou, Parameswaran Raman, and Wooseok Ha. Variance-
reduced zeroth-order methods for fine-tuning language models. arXiv preprint arXiv:2404.08080,
2024.

Saeed Ghadimi and Guanghui Lan. Stochastic first- and zeroth-order methods for noncon-
vex stochastic programming. SIAM J. Optim., 23:2341–2368, 2013. URL https://api.
semanticscholar.org/CorpusID:14112046.

Danilo Giampiccolo, Bernardo Magnini, Ido Dagan, and Bill Dolan. The third pascal recognizing
textual entailment challenge. In Proceedings of the ACL-PASCAL Workshop on Textual Entail-
ment and Paraphrasing, pp. 1–9, 2007.

Guy Gur-Ari, Daniel A Roberts, and Ethan Dyer. Gradient descent happens in a tiny subspace. arXiv
preprint arXiv:1812.04754, 2018.

Suchin Gururangan, Ana Marasović, Swabha Swayamdipta, Kyle Lo, Iz Beltagy, Doug Downey,
and Noah A. Smith. Don’t stop pretraining: Adapt language models to domains and
tasks. ArXiv, abs/2004.10964, 2020. URL https://api.semanticscholar.org/
CorpusID:216080466.

Yongchang Hao, Yanshuai Cao, and Lili Mou. Flora: Low-rank adapters are secretly gradient com-
pressors. ArXiv, abs/2402.03293, 2024. URL https://api.semanticscholar.org/
CorpusID:267412117.

Edward J Hu, Yelong Shen, Phillip Wallis, Zeyuan Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang,
and Weizhu Chen. Lora: Low-rank adaptation of large language models. arXiv preprint
arXiv:2106.09685, 2021a.

J. Edward Hu, Yelong Shen, Phillip Wallis, Zeyuan Allen-Zhu, Yuanzhi Li, Shean Wang, and
Weizhu Chen. Lora: Low-rank adaptation of large language models. ArXiv, abs/2106.09685,
2021b. URL https://api.semanticscholar.org/CorpusID:235458009.

Kaiyi Ji, Zhe Wang, Yi Zhou, and Yingbin Liang. Improved zeroth-order variance reduced algo-
rithms and analysis for nonconvex optimization. In International Conference on Machine Learn-
ing, 2019. URL https://api.semanticscholar.org/CorpusID:174800372.

Daniel Khashabi, Eunsol Choi, Han Han, Dan Roth, Sameer Singh, Karl Stratos, Alon Talmor,
Travis Wolfe, Yiben Zhou, Chris Callison-Burch, et al. Looking beyond the surface: A challenge
set for reading comprehension over multiple sentences. In Proceedings of the 2018 Conference
of the North American Chapter of the Association for Computational Linguistics, pp. 252–262,
2018.

Diederik P. Kingma and Jimmy Ba. Adam: A method for stochastic optimization.
CoRR, abs/1412.6980, 2014. URL https://api.semanticscholar.org/CorpusID:
6628106.

Nicola Landro, Ignazio Gallo, and Riccardo La Grassa. Mixing adam and sgd: a combined opti-
mization method. ArXiv, abs/2011.08042, 2020. URL https://api.semanticscholar.
org/CorpusID:226964883.

Brett W Larsen, Stanislav Fort, Nic Becker, and Surya Ganguli. How many degrees of freedom do
we need to train deep networks: a loss landscape perspective. arXiv preprint arXiv:2107.05802,
2021.

11

https://api.semanticscholar.org/CorpusID:552111
https://api.semanticscholar.org/CorpusID:552111
https://api.semanticscholar.org/CorpusID:14112046
https://api.semanticscholar.org/CorpusID:14112046
https://api.semanticscholar.org/CorpusID:216080466
https://api.semanticscholar.org/CorpusID:216080466
https://api.semanticscholar.org/CorpusID:267412117
https://api.semanticscholar.org/CorpusID:267412117
https://api.semanticscholar.org/CorpusID:235458009
https://api.semanticscholar.org/CorpusID:174800372
https://api.semanticscholar.org/CorpusID:6628106
https://api.semanticscholar.org/CorpusID:6628106
https://api.semanticscholar.org/CorpusID:226964883
https://api.semanticscholar.org/CorpusID:226964883


594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Brian Lester, Rami Al-Rfou, and Noah Constant. The power of scale for parameter-efficient prompt
tuning. In Conference on Empirical Methods in Natural Language Processing, 2021. URL
https://api.semanticscholar.org/CorpusID:233296808.

Hector Levesque, Ernest Davis, and Leora Morgenstern. The winograd schema challenge. In Pro-
ceedings of the Thirteenth International Conference on Principles of Knowledge Representation
and Reasoning, pp. 552–561, 2012.

Chunyuan Li, Heerad Farkhoor, Rosanne Liu, and Jason Yosinski. Measuring the intrinsic dimension
of objective landscapes. arXiv preprint arXiv:1804.08838, 2018.

Shen Li, Yanli Zhao, Rohan Varma, Omkar Salpekar, Pieter Noordhuis, Teng Li, Adam Paszke, Jeff
Smith, Brian Vaughan, Pritam Damania, and Soumith Chintala. Pytorch distributed. Proceedings
of the VLDB Endowment, 13:3005 – 3018, 2020. URL https://api.semanticscholar.
org/CorpusID:220250008.

Xiangru Lian, Huan Zhang, Cho-Jui Hsieh, Yijun Huang, and Ji Liu. A comprehensive
linear speedup analysis for asynchronous stochastic parallel optimization from zeroth-order
to first-order. In Neural Information Processing Systems, 2016. URL https://api.
semanticscholar.org/CorpusID:8281479.

Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Mandar Joshi, Danqi Chen, Omer Levy, Mike
Lewis, Luke Zettlemoyer, and Veselin Stoyanov. Roberta: A robustly optimized bert pretraining
approach. ArXiv, abs/1907.11692, 2019. URL https://api.semanticscholar.org/
CorpusID:198953378.

Yong Liu, Zirui Zhu, Chaoyu Gong, Minhao Cheng, Cho-Jui Hsieh, and Yang You. Sparse
mezo: Less parameters for better performance in zeroth-order llm fine-tuning. arXiv preprint
arXiv:2402.15751, 2024.

Sadhika Malladi, Tianyu Gao, Eshaan Nichani, Alex Damian, Jason D Lee, Danqi Chen, and Sanjeev
Arora. Fine-tuning language models with just forward passes. Advances in Neural Information
Processing Systems, 36:53038–53075, 2023a.

Sadhika Malladi, Tianyu Gao, Eshaan Nichani, Alexandru Damian, Jason D. Lee, Danqi Chen, and
Sanjeev Arora. Fine-tuning language models with just forward passes. ArXiv, abs/2305.17333,
2023b. URL https://api.semanticscholar.org/CorpusID:258959274.

Yurii Nesterov and Vladimir G. Spokoiny. Random gradient-free minimization of convex func-
tions. Foundations of Computational Mathematics, 17:527 – 566, 2015. URL https://api.
semanticscholar.org/CorpusID:2147817.

Mohammad Taher Pilehvar and Jose Camacho-Collados. Wic: The word-in-context dataset for
evaluating context-sensitive meaning representations. In Proceedings of the 2018 Conference on
Empirical Methods in Natural Language Processing, pp. 1267–1276, 2018.

Pranav Rajpurkar, Jian Zhang, Konstantin Lopyrev, and Percy Liang. Squad: 100,000+ questions for
machine comprehension of text. In Proceedings of the 2016 Conference on Empirical Methods in
Natural Language Processing, pp. 2383–2392, 2016.

Melissa Roemmele, Cosmin Bejan, and Andrew Gordon. Choice of plausible alternatives: An
evaluation of commonsense causal reasoning. In Proceedings of the 2011 AAAI Spring Symposium
on Logical Formalizations of Commonsense Reasoning, 2011.

Levent Sagun, Utku Evci, V Ugur Guney, Yann Dauphin, and Leon Bottou. Empirical analysis of
the hessian of over-parametrized neural networks. arXiv preprint arXiv:1706.04454, 2017.

Victor Sanh, Albert Webson, Colin Raffel, Stephen H. Bach, Lintang Sutawika, Zaid Alyafeai,
Antoine Chaffin, and Arnaud Stiegler. Multitask prompted training enables zero-shot task gen-
eralization. ArXiv, abs/2110.08207, 2021. URL https://api.semanticscholar.org/
CorpusID:239009562.

12

https://api.semanticscholar.org/CorpusID:233296808
https://api.semanticscholar.org/CorpusID:220250008
https://api.semanticscholar.org/CorpusID:220250008
https://api.semanticscholar.org/CorpusID:8281479
https://api.semanticscholar.org/CorpusID:8281479
https://api.semanticscholar.org/CorpusID:198953378
https://api.semanticscholar.org/CorpusID:198953378
https://api.semanticscholar.org/CorpusID:258959274
https://api.semanticscholar.org/CorpusID:2147817
https://api.semanticscholar.org/CorpusID:2147817
https://api.semanticscholar.org/CorpusID:239009562
https://api.semanticscholar.org/CorpusID:239009562


648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

Richard Socher, Alex Perelygin, Jean Wu, Jason Chuang, Christopher D Manning, Andrew Y Ng,
and Christopher Potts. Recursive deep models for semantic compositionality over a sentiment
treebank. In Proceedings of the 2013 conference on empirical methods in natural language pro-
cessing, pp. 1631–1642, 2013.

Irene Solaiman, Miles Brundage, Jack Clark, Amanda Askell, Ariel Herbert-Voss, Jeff Wu,
Alec Radford, and Jasmine Wang. Release strategies and the social impacts of language
models. ArXiv, abs/1908.09203, 2019. URL https://api.semanticscholar.org/
CorpusID:201666234.

James C. Spall. Multivariate stochastic approximation using a simultaneous perturbation gradient
approximation. IEEE Transactions on Automatic Control, 37:332–341, 1992. URL https:
//api.semanticscholar.org/CorpusID:122365276.

Hugo Touvron, Louis Martin, Kevin R. Stone, Peter Albert, Amjad Almahairi, Yasmine Babaei,
Niko lay Bashlykov, Soumya Batra, and Prajjwal Bhargava. Llama 2: Open foundation and fine-
tuned chat models. ArXiv, abs/2307.09288, 2023. URL https://api.semanticscholar.
org/CorpusID:259950998.

Ellen M Voorhees and Dawn M Tice. Building a question answering test collection. In Proceed-
ings of the 23rd Annual International ACM SIGIR Conference on Research and Development in
Information Retrieval, pp. 200–207, 2000.

Adina Williams, Nikita Nangia, and Samuel R Bowman. A broad-coverage challenge corpus for
sentence understanding through inference. In Proceedings of the 2018 Conference of the North
American Chapter of the Association for Computational Linguistics: Human Language Technolo-
gies, volume 1, pp. 1112–1122, 2018.

Shiyue Zhang, Hongliang Bai, Yiming Ding, Bo Dai, and Dit-Yan Yeung. Record: Bridging the gap
between human and machine commonsense reading comprehension. In Proceedings of the 2018
Conference on Empirical Methods in Natural Language Processing, pp. 5718–5728, 2018.

Susan Zhang, Stephen Roller, Naman Goyal, Mikel Artetxe, Moya Chen, Shuohui Chen, Christo-
pher Dewan, Mona T. Diab, Xian Li, Xi Victoria Lin, Todor Mihaylov, Myle Ott, Sam Shleifer,
Kurt Shuster, Daniel Simig, Punit Singh Koura, Anjali Sridhar, Tianlu Wang, and Luke Zettle-
moyer. Opt: Open pre-trained transformer language models. ArXiv, abs/2205.01068, 2022. URL
https://api.semanticscholar.org/CorpusID:248496292.

Zhong Zhang, Bang Liu, and Junming Shao. Fine-tuning happens in tiny subspaces: Exploring in-
trinsic task-specific subspaces of pre-trained language models. In Proceedings of the 61st Annual
Meeting of the Association for Computational Linguistics, 2023.

Jiawei Zhao, Zhenyu Zhang, Beidi Chen, Zhangyang Wang, Anima Anandkumar, and Yuandong
Tian. Galore: Memory-efficient llm training by gradient low-rank projection. arXiv preprint
arXiv:2403.03507, 2024a.

Jiawei Zhao, Zhenyu (Allen) Zhang, Beidi Chen, Zhangyang Wang, Anima Anandkumar, and Yuan-
dong Tian. Galore: Memory-efficient llm training by gradient low-rank projection. ArXiv,
abs/2403.03507, 2024b. URL https://api.semanticscholar.org/CorpusID:
268253596.

A APPENDIX

You may include other additional sections here.

A.1 HZO IS A ZERO-ORDER SUBSPACE OPTIMIZATION METHOD

Let F (X; ξ) be the stochastic objective, with X ∈ Rm×n and randomness ξ. Fix a rank parameter
r ∈ N with r ≤ min{m,n}, a perturbation radius ε > 0, and, within epoch k of length ν, a direction

13

https://api.semanticscholar.org/CorpusID:201666234
https://api.semanticscholar.org/CorpusID:201666234
https://api.semanticscholar.org/CorpusID:122365276
https://api.semanticscholar.org/CorpusID:122365276
https://api.semanticscholar.org/CorpusID:259950998
https://api.semanticscholar.org/CorpusID:259950998
https://api.semanticscholar.org/CorpusID:248496292
https://api.semanticscholar.org/CorpusID:268253596
https://api.semanticscholar.org/CorpusID:268253596


702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

matrix V (k) ∈ Rn×r that is held fixed. For any X ∈ Rm×n, U ∈ Rm×r, V ∈ Rn×r, define the
low-rank zeroth-order gradient estimator

LGE(X,U, V, r, ε, ξ) :=
F
(
X + εUV ⊤; ξ

)
− F

(
X − εUV ⊤; ξ

)
2ε

· UV ⊤

r
. (10)

HZO update. Within epoch k, for each inner step t ∈ {kν, . . . , (k + 1)ν − 1}, HZO samples
Ut ∈ Rm×r, keeps V (k) fixed, and performs

Xt+1 = Xt − αLGE
(
Xt, Ut, V

(k), r, ε, ξt
)
= Xt − α · F

(
Xt+εUt(V

(k))⊤; ξt

)
−F

(
Xt−εUt(V

(k))⊤; ξt

)
2ε · Ut(V

(k))⊤

r .

(11)

Zeroth-order subspace method. In the same epoch, consider the subspace iterate anchored at
X̃(k) ∈ Rm×n and parameterized by B ∈ Rm×r. Starting from B(k,0) = 0, perform ν inner steps

B(k,s+1) = B(k,s) − γ ∇̂B F
(
X̃(k) +B(k,s)(V (k))⊤; ξ(k,s)

)
, s = 0, 1, . . . , ν − 1, (12)

where each inner step draws an independent U (k,s) ∈ Rm×r and uses the symmetric-difference
zeroth-order estimator (applied to the B variable)

∇̂B F (Z; ξ) =
F
(
Z + εU (k,s)(V (k))⊤; ξ

)
− F

(
Z − εU (k,s)(V (k))⊤; ξ

)
2ε

U (k,s). (13)

Lifting to the ambient space. Define, for each inner step,

Y (k,s) := X̃(k) +B(k,s)(V (k))⊤ ∈ Rm×n.

Then

Y (k,s+1) − Y (k,s) =
(
B(k,s+1) −B(k,s)

)
(V (k))⊤

= − γ
F
(
X̃(k) + (B(k,s) + εU (k,s))(V (k))⊤; ξ(k,s)

)
− F

(
X̃(k) + (B(k,s) − εU (k,s))(V (k))⊤; ξ(k,s)

)
2ε

U (k,s)(V (k))⊤

= − γ
F
(
Y (k,s) + εU (k,s)(V (k))⊤; ξ(k,s)

)
− F

(
Y (k,s) − εU (k,s)(V (k))⊤; ξ(k,s)

)
2ε

U (k,s)(V (k))⊤.

(14)

Step-size coupling and identification. Choose γ = α/r. Substituting yields

Y (k,s+1) = Y (k,s) − α ·
F
(
Y (k,s) + εU (k,s)(V (k))⊤; ξ(k,s)

)
− F

(
Y (k,s) − εU (k,s)(V (k))⊤; ξ(k,s)

)
2ε

· U
(k,s)(V (k))⊤

r

= Y (k,s) − αLGE
(
Y (k,s), U (k,s), V (k), r, ε, ξ(k,s)

)
,

(15)
which is exactly the HZO inner-step update executed at the state Y (k,s) with the same fixed V (k)

and the same sampled U (k,s).

Trajectory equivalence. Assume a shared initialization X0 = X̃(0) and, at the start of epoch k,
Xkν = X̃(k). Because the one-step updates coincide under the same randomness within the epoch,
induction over s = 0, 1, . . . , ν gives Y (k,s) = Xkν+s. In particular,

X̃(k+1) = X̃(k) +B(k,ν)(V (k))⊤ = Y (k,ν) = X(k+1)ν . (16)

Conclusion. Holding V (k) fixed within each epoch and coupling step sizes by γ = α/r, HZO
is trajectory-wise equivalent to performing ν steps of standard zeroth-order SGD on the low-rank
subspace spanned by V (k), followed by writing the increment back to the full space.

A.2 CONVERGENT PROOF

[Convergence of HZO] Let f(X) = Eξ[F (X; ξ)] with X = {Xℓ}Lℓ=1 and assume: (i) for ev-
ery ξ, F (·; ξ) is differentiable and has L-Lipschitz gradient; (ii) E[∇F (X; ξ)] = ∇f(X) and
E∥∇F (X; ξ) − ∇f(X)∥2 ≤ σ2; (iii) at each period the column matrix V = {Vℓ} satisfies
V ⊤
ℓ Vℓ = nℓI and E[VℓV

⊤
ℓ ] = rℓI . Consider HZO with rank r = {rℓ}, stable resampling interval

14



756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

ν, stepsize α, and smoothing radius ε. Then, for T = Kν iterations and a suitable α ≤ 1
144Lmnν

(with m =
∑

ℓ mℓ, n =
∑

ℓ nℓ), the iterates {Xt} satisfy

1

K

K−1∑
k=0

E
∥∥∇f(Xkν)

∥∥2 ≤ 8∆0

Tα
+

56Lmn2 σ2

r
α +

16Lmnr ε2

ν α
,

where ∆0 = f(X0)− f. With the choices

ε =

√
∆0 ν

16T Lmnr
, α =

(
144Lmnν +

√
56T Lmn2 σ2

9∆0 r

)−1

,

it follows that

1

K

K−1∑
k=0

E
∥∥∇f(Xkν)

∥∥2 ≤ 16

√
7∆0 Lmn2 σ2

r T
+

2592∆0 Lmnν

T
.

Equivalently, aggregating across layers with d =
∑

ℓ mℓnℓ and d̃ =
∑

ℓ mℓn
2
ℓ/rℓ gives the big-O

rate

1

K

K−1∑
k=0

E
∥∥∇f(Xkν)

∥∥2 = O

√
∆0 L d̃ σ2

T
+

∆0 Ld ν

T

 .

Step 1 (Low-rank ZO estimator and unbiasedness). For layer ℓ, sample Uℓ ∈ Rmℓ×rℓ and
Vℓ ∈ Rnℓ×rℓ , and define the matrix-wise finite-difference estimator

∇̂Xℓ
F (X; ξ) :=

F ({Xj + εUjV
⊤
j }Lj=1; ξ)− F ({Xj − εUjV

⊤
j }Lj=1; ξ)

2ε
· UℓV

⊤
ℓ

rℓ
.

As ε→ 0, the estimator is asymptotically unbiased in expectation over the Gaussian directions, i.e.
limε→0 E[∇̂Xℓ

F (X; ξ)] = ∇Xℓ
F (X) for every ℓ. Summing over ℓ gives an unbiased matrix-wise

gradient in the limit.

Step 2 (Equivalence to ZO subspace optimization). Fix V , and write the subproblem gX,V (B) =
Eξ[F (X + BV ⊤; ξ)] in the “low-rank variable” B = {Bℓ} (with Bℓ ∈ Rmℓ×rℓ ). Running ν steps
of standard ZO-SGD on gX,V with stepsize γ and then updating X ← X + BνV

⊤ is equivalent
to HZO provided γ = α/r; more precisely, if both methods start from the same initialization, then
Xkν = X̃(k) for all periods k, where X̃(k) denotes the outer iterate of the subspace method. Hence
it suffices to prove descent on gX,V over a period and translate it back to f .

Step 3 (Second moment bound and Gaussian smoothing). Let GX,V (B; ξ) = F (X + BV ⊤; ξ)
and denote the ZO estimator for ∇BG by

∇̂GX,V (B; ξ) :=
GX,V (B + εU ; ξ)−GX,V (B − εU ; ξ)

2ε
U,

with U having i.i.d. standard normal entries and overall rank parameter mr =
∑

ℓ mℓrℓ. Under the
smoothness assumption, its second moment admits

E
∥∥∇̂GX,V (B; ξ)

∥∥2
F
≤ 6mr

∥∥∇GX,V (B; ξ)
∥∥2
F

+ 64 L̃ 2 m3r3 ε2,

for an appropriate smoothness constant L̃ induced by the reparameterization through V . Introduce
the Gaussian-smoothed subproblem gε(B) = EU [gX,V (B + εU)]. Then EU,ξ[∇̂GX,V (B; ξ)] =

∇gε(B), gε is L̃-smooth, and the smoothing biases satisfy
∣∣gε(B) − gX,V (B)

∣∣ ≤ 1
2 L̃mr ε2 and

∥∇gε(B)−∇gX,V (B)∥2F ≤ L̃ 2mrε2.

Step 4 (One-period expected descent on the subproblem). Run the ν inner ZO-SGD steps on
gX,V with stepsize α/r. By L̃-smoothness of gε, the unbiasedness property in Step 3, and the
second-moment bound, summing the standard descent inequality over a period and choosing α
small enough yields

E
[
gX,V (Bν)− gX,V (B0)

]
≤ −

(
να
4r − c1 ν α

2
)
E ∥∇gX,V (B0)∥2F + c2 ν α

2 σ2 + c3 mr ε2,

15



810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

for absolute constants c1, c2, c3 that depend on L, L̃,m but not on T . When α satisfies the stated
small-stepsize condition, the bracketed coefficient is positive and we obtain a net expected decrease
dominated by ∥∇gX,V (B0)∥2F , up to variance and smoothing terms.

Step 5 (Back to the full problem and telescoping). Because gXk,V (k)(Bν) = f(X(k+1)ν) and
gXk,V (k)(B0) = f(Xkν), the inequality in Step 4 becomes a per-period reduction bound for f . Tak-
ing expectation over the fresh V (k) and using E[V (k)(V (k))⊤] = I gives E∥∇gXk,V (k)(B0)∥2F =

E∥∇f(Xkν)∥2F . Summing the per-period inequality over k = 0, . . . ,K−1 (so T = Kν) telescopes
the function values and yields

1

K

K−1∑
k=0

E
∥∥∇f(Xkν)

∥∥2 ≤ 8∆0

Tα
+

56Lmn2 σ2

r
α +

16Lmnr ε2

ν α
,

under α ≤ 1
144Lmnν . Optimizing the bound over (α, ε) by balancing the variance and smoothing

terms gives the stated parameter choices and the rate

1

K

K−1∑
k=0

E
∥∥∇f(Xkν)

∥∥2 ≤ 16

√
7∆0 Lmn2 σ2

r T
+

2592∆0 Lmnν

T
.

Finally, summing the per-layer bounds and recalling d =
∑

ℓ mℓnℓ and d̃ =
∑

ℓ mℓn
2
ℓ/rℓ yields the

big-O statement in the theorem.

A.3 MORE EXPERIMENTS

A.3.1 RESULTS ON ROBERTA-LARGE

For RoBERTa-large, we evaluate the performance on six NLP tasks: SST-2 Socher et al. (2013),
SST-5 Socher et al. (2013), SNLI Bowman et al. (2015), MNLI Williams et al. (2018), RTE Dagan
et al. (2005); Bar-Haim et al. (2006); Giampiccolo et al. (2007); Bentivogli et al. (2009), and TREC
Voorhees & Tice (2000). We adopt two settings: k = 16 and k = 512, which require 16 and 512
examples per class, respectively, during both the training and validation stages.

Experiment Hyperparameters Values
HZO Batch size 64

Learning rate (k=16) 1× 10−6

Learning rate (k=512) 2× 10−7

Rank (r) {4, 8}
Interval (ν) {50, 100}

ϵ 1× 10−3

Weight Decay 0
MeZO Batch size 64

Learning rate {1× 10−7, 1× 10−6, 1× 10−5}
ϵ 1× 10−3

Weight Decay 0
LoHO Batch size 64

Learning rate {1× 10−5, 5× 10−5, 1× 10−4}
ϵ 1× 10−3

Weight Decay 0.1
FT Batch size 8

Learning rate {1× 10−5, 3× 10−5, 5× 10−5}
Weight Decay 0

FT-LoRA Batch size 8
Learning rate {1× 10−4, 3× 10−4, 5× 10−4}
Rank (r), α (8, 16)

Table 5: The hyperparameter grids used for RoBERTa-large experiments

16



864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

Task SST-2 SST-5 SNLI MNLI RTE TREC
Type sentiment sentiment natural language inference natural language inference topic

Zero-shot 79.06 35.39 50.37 48.63 51.41 32.16
Gradient-free methods: k = 16

MeZO 86.54 (7.97) 41.93 (1.94) 68.22 (4.50) 56.81 (3.21) 58.48 (9.65) 61.80 (10.35)
LoHO 88.54 (1.73) 38.89 (2.00) 67.09 (3.26) 60.17 (6.67) 59.81 (4.31) 57.61 (5.23)
HZO 89.06 (2.16) 42.18 (1.66) 75.18 (4.90) 64.89 (4.66) 58.25 (9.16) 82.29 (5.73)

Gradient-based methods: k = 16
FT 89.36 (5.58) 44.25 (1.72) 72.82 (5.55) 66.44 (4.42) 59.54 (4.79) 84.59 (4.65)

FT-LoRA 92.87 (0.81) 45.47 (1.34) 71.38 (4.55) 61.57 (6.82) 61.79 (4.63) 75.97 (7.42)
Gradient-free methods: k = 512

MeZO 92.69 (0.36) 53.80 (2.05) 84.25 (1.71) 84.75 (1.27) 71.98 (2.93) 95.06 (0.44)
LoHO 91.73 (0.33) 45.29 (1.36) 73.01 (0.92) 73.23 (1.26) 72.71 (0.68) 94.86 (1.86)
HZO 94.65 (0.22) 53.02 (0.15) 86.01 (1.01) 85.25 (1.03) 79.04 (1.62) 95.44 (0.44)

Gradient-based methods: k = 512
FT 96.36 (0.65) 55.82 (1.70) 88.48 (0.78) 84.72 (0.65) 82.03 (1.59) 97.23 (0.44)

FT-LoRA 91.83 (2.04) 52.25 (1.04) 84.41 (1.26) 74.63 (3.38) 81.30 (1.73) 96.29 (0.65)

Table 6: Experimental results on RoBERTa-large (350M). All reported numbers are averaged accu-
racy (standard deviation).

Based on the results in Table 6, the HZO method performs stably across tasks. Under the Zero-
shot setting, HZO achieves 89.06 (SST-2), 42.18 (SST-5), and 75.18 (SNLI), outperforming other
gradient-free methods. For Gradient-free methods: k = 512, HZO obtains 94.65 (SST-2), 85.25
(MNLI), 79.10 (RTE), and 95.44 (TREC), which are close to the results of full fine-tuning (FT) and
FT-LoRA. While FT achieves slightly higher scores on sentiment and inference tasks, HZO remains
competitive without requiring full gradient updates, and even surpasses FT and FT-LoRA on TREC.
Overall, HZO shows strong and stable performance, particularly outstanding in RTE and TREC
tasks, with efficiency advantages over gradient-based methods.

A.3.2 RESULTS ON OPT

Compared to full fine-tuning, we can complete fine-tuning with MeZO using much less GPU mem-
ory, requiring only 7 GB memory and a single GPU on RTE and 6.9 GB on MultiRC.7

Task RTE MultiRC

Memory Consumed GPUs Memory Consumed GPUs

HZO 7.0 GB 1 × A800 6.9 GB 1 × A800
MeZo 29.0 GB 1 × A800 28.3 GB 1 × A800
LoHO 49.7 GB 1 × A800 50.1 GB 1 × A800
FT-LoRA 79.0 GB 1 × A800 102.4 GB 2 × A800
FT 250.0 GB 4 × A800 315.2 GB 4 × A800

Table 7: HZO achieves competitive performance with drastically lower resource consumption on
OPT-13B.

A.3.3 RESULTS ON LLAMA

As shown in the table 9, HZO demonstrates strong performance across multiple tasks and models. It
excels in SST-2 with a score of 95.8, matching the best results, and performs competitively in COPA
(85.3) and SQuAD (90.3). HZO also outperforms other methods in WG on LLama-7B, with a score
of 71.0. While its performance in WiC (57.9) lags behind other methods, it remains competitive
in general, especially in COPA and SQuAD. Overall, HZO shows balanced and robust results,
particularly in sentiment analysis and world knowledge tasks, with minor room for improvement in
tasks requiring fine-grained contextual understanding.

A.3.4 ABLATION STUDY

In this section, we investigate the influence of the rank parameter r and the stable update interval ν on
the performance of the proposed algorithm. Specifically, we evaluate their effects on the OPT-1.3B
model using the SST-2, COPA, and RTE datasets. To demonstrate the convergence behavior under

17



918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

Experiment Hyperparameters Values
HZO Batch size 16

Learning rate (k=16) {1e-7}
Rank (r) {2, 4}

Interval (ν) {50, 100}
ϵ 1e-3

Weight Decay 0
MeZO Batch size 16

Learning rate {1e-7, 1e-6}
ϵ 1e-3

Weight Decay 0
FT Batch size {8}

Learning rate {1e-6, 1e-7}
FT-LoRA Batch size {8}

Learning rate {1e-4, 1e-5}
(r, α) (8, 16)

Table 8: The hyperparameter grids used for LLaMA experiments. The learning rate of the HZO
algorithm refers to α/r.

Model LLama-7B LLama-13B LLama-70B
SST-2 WiC COPA SQuAD WG SST-2 WG WG

HZO 95.8 57.9 85.3 90.3 71.0 93.6 68.6 72.1
MeZO 91.8 56.3 86.0 90.0 64.3 92.1 67.2 72.1

FT-LoRA 95.8 69.4 84.0 91.2 70.9 95.5 76.6 50.4
FT 94.1 72.8 83.0 90.6 64.4 96.4 73.3 75

Table 9: Performance comparison of different models on various tasks

varying configurations, we present the loss curves across training epochs in Figure 3. Furthermore,
the corresponding accuracy and training loss obtained with different combinations of r and ν are
summarized in Table 10.

(a) (b)

Figure 3: Left: Loss curves of OPT-1.3B on RTE dataset across different rank r.Right: Loss curves
of OPT-1.3B on SST-2 dataset across different value ν.

A small rank r is consistently associated with degraded model performance (Table 10, Fig. 3a).
When the rank is fixed at r = 1, the predictive accuracy drops substantially across all datasets,
suggesting a severe limitation in representational capacity. For instance, SST-2 accuracy decreases
to 55.0% with a corresponding loss of 0.79, while RTE accuracy falls to 50.9% (Table 10). These
results indicate that an insufficiently expressive subspace impairs the model’s ability to generalize
effectively.

An increased value of ν enhances convergence stability and test performance (Table 10, Fig. 3b).
For SST-2, larger ν values such as ν = 50, 100, 200 consistently yield accuracies above 91% with

18



972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

SST-2 COPA RTE
r ν Accuracy loss Accuracy loss Accuracy loss

1
50 88.1 0.45 72.8 1.93 56.7 0.68

100 89.1 0.46 74.0 2.18 56.8 0.68

2
1 55.0 0.79 74.1 2.58 50.9 0.70
50 93.0 0.37 74.0 2.04 61.0 0.69

100 92.0 0.37 70.8 2.05 57.9 0.68
200 92.9 0.37 76.9 2.05 62.1 0.67
500 91.9 0.37 74.9 2.05 62.8 0.67

4
50 91.3 0.35 76.0 1.99 57.4 0.69

100 91.9 0.35 74.8 1.97 57.7 0.69

8
50 88.7 0.48 71.2 2.03 55.0 0.71

100 89.0 0.45 73.0 2.03 56.4 0.71

Table 10: Results on SST-2, COPA and RTE across different r and ν.

Figure 4: We tested the convergence speed of using only ZO optimization without mixed optimiza-
tion, proving that mixed optimization has a significant promotion effect on convergence speed

relatively low losses around 0.37, suggesting improved optimization dynamics and stronger general-
ization. However, excessively large values such as ν = 500 do not produce further gains, reflecting
diminishing returns beyond a moderate threshold.

Moderate ranks (r = 2 or r = 4) provide the most favorable trade-off (Table 10). Compared
to r = 1, these configurations deliver robust and balanced improvements across all benchmarks.
For example, at r = 4, ν = 50, SST-2 achieves 91.3% accuracy with the lowest observed loss of
0.35, while COPA and RTE maintain competitive performance. This suggests that a moderate rank
effectively balances representational richness with training efficiency.

Excessively large ranks such as r = 8 do not guarantee additional performance benefits (Table 10).
Although higher ranks may theoretically increase modeling capacity, empirical results indicate no
consistent advantage. For instance, at r = 8, ν = 100, COPA accuracy of 73.0% is lower than that
observed at r = 4, implying that overly complex subspaces may introduce redundancy or hinder
generalization without improving accuracy.

19


	Introduction
	Related Work
	Zeroth-order optimization and memory-efficient fine-tuning
	Hybrid optimization

	Methodology
	ZEROTH-ORDER (ZO) OPTIMIZATION
	 MEMORY-EFFICIENT ZO-SGD (MEZO)
	 LOW-RANK ZEROTH-ORDER GRADIENT ESTIMATOR
	 Inter-layer Hybrid Optimization
	 Dynamic Scheduler Design for Efficient Overlap

	Experiments
	Results on OPT
	Ablation Study

	Conclusion
	Appendix
	HZO is a zero-order subspace optimization method 
	Convergent proof 
	More experiments 
	Results on RoBERTa-large
	Results on OPT
	Results on LLaMA
	Ablation Study



