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ABSTRACT

Semi-supervised learning (SSL) digs unlabeled data through pseudo-labeling
when labeled data is limited. Despite various auxiliary strategies to enhance
SSL training, the main challenge lies in how to determine reliable pseudo labels
with a robust thresholding algorithm based on quality indicators (e.g., confidence
scores). However, the latest methods for distinguishing low or high-quality labels
require complex-designed thresholding strategies but still fail to guarantee robust
and efficient selection. Empirically, we group the quality indicators of pseudo
labels into three clusters (easy, semi-hard, and hard) and statistically reveal the
real bottleneck of threshold selection lying in the sensitivity of separating semi-
hard samples. To this end, we propose an adaptive Grouping and Transporting
for Robust thresholding (dubbed as GTR) that efficiently selects semi-hard sam-
ples with test-time augmentations and consistency constraints while saving the
selection budgets of easy and hard samples. Our proposed GTR can effectively
determine high-quality data when applied to existing SSL methods while reduc-
ing redundant selection costs. Extensive experiments on eleven SSL benchmarks
across three modalities verify that GTR achieves significant performance gains
and speedups over Pseudo Label, FixMatch, and FlexMatch.

1 INTRODUCTION

Over the past decades, deep learning (DL) has made significant strides across diverse applications
and modalities (He et al., 2016; Devlin et al., 2018; Dong et al., 2018). However, the majority
of tasks operate under supervised learning (SL), which necessitates manual data labeling that is
constrained by limited quantity and resource-intensive efforts. To overcome these limitations and
leverage extensive unlabeled data, semi-supervised learning (SSL) has emerged as a promising solu-
tion. Holistically, SSL exploits information from both unlabeled and limited labeled data (Tarvainen
& Valpola, 2017; Sohn et al., 2020) within the self-training paradigm of pseudo-labeling (Lee et al.,
2013), where models are designed to be trained using unlabeled data and pseudo-labels assigned by
their own predictions.

As SSL continues to develop, a crucial avenue for advancing mainstream methods lies in estab-
lishing a well-designed selection method (Zhang et al., 2021) or a robust quality indicator (Li
et al., 2024) for more accurate pseudo label selection. Existing approaches predominantly rely on
threshold-based pseudo-labeling strategies (Sohn et al., 2020; Kim et al., 2022) based on confidence
scores (Lee et al., 2013), designing refined class-wise thresholding schemes (Wang et al., 2022b) or
dynamic thresholding policies throughout the whole training process (Zhang et al., 2021). However,
these thresholding methods, with their complex thresholding values or schedules, are still linear
classification algorithms to separate whether the pseudo labels are reliable and thereby exhibit insta-
bility, which requires substantial manual intervention but fail to leverage the inherent distributions of
indicators. Taking FlexMatch (Zhang et al., 2021) as an example, the density estimation in Figure 1a
demonstrates that training leads to instability and a lack of distinct class differentiation. The over-
lapping confidence distributions also indicate the model’s struggle to distinguish between classes
both before and after training clearly. Recent methods such as FreeMatch (Wang et al., 2022b) and
SoftMatch (Chen et al., 2022b) also face similar challenges. These methods focus on sample level
but employ a simple mean threshold that only captures the inter-class properties of labels, making
them sensitive to threshold variations and thus leading to instability.
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Table 1: Characteristics of the pseudo-label selection process, comparing typical SSL algorithms
and the proposed GTR. The compared characteristics or strategies include Robust τ (the thresh-
olding guarantees robustness or not), Speedup (boosting the convergence or not), Gain (improving
performance or not), and Thresholding (the method of filtering pseudo labels). G&T denotes the
proposed Grouping and Transporting as a robust thresholding way.

Method Pseudo Labeling FixMatch FlexMatch FreeMatch SemiReward GTR
Robust τ ✗ ✗ ✗ ✗ ✗ ✓
Speedup ✗ ✓ ✗ ✓ ✓ ✓
Gain ✗ ✗ ✓ ✓ ✓ ✓
Thresholding None Hard Dynamic Adaptive Mean G&T

Our study addresses these challenges at once by constructing a robust thresholding mechanism,
termed Grouping and Transporting Robust thresholding (GTR), tailored for SSL. Unlike traditional
methods that solely rely on inter-class separation, our GTR leverages the inherent properties of
the indicator distribution through unsupervised clustering. As shown in Figure 1b, GTR mitigates
the threshold sensitivity by focusing on the intra-class properties, particularly in those semi-hard
groups. This innovative grouping design enables effective pseudo-label selection, enhanced by the
transportation method, which refines the indicator distribution. Table 1 compares existing schemes
and their characteristics, finding Grouping and Transporting mechanism in GTR ensures effective
pseudo-label thresholding, leading to improved convergence speed and performance gains, setting
it apart as a superior approach for SSL tasks. We further conduct a detailed analysis with grouping
to gain an in-depth understanding of the intrinsic characteristics of the entire SSL training pipeline
from a data perspective.

Empirical research and statistical analysis show that the proposed GTR can accelerate model train-
ing and achieve excellent results with fast convergence and no extra computations. Based on the
popular USB benchmarks (Wang et al., 2022a), we selected representative SSL methods to conduct
comparative experiments for verifying the versatility and robustness of our GTR method. Our main
contributions are threefold:

• We empirically reveal that the impediment of existing thresholding techniques lies in their inabil-
ity to separate the semi-hard group of the indicator when selecting high-quality pseudo labels.
This insight highlights the need for a specially designed method to address the issue.

• We design a transporting method tailored for three groups of samples: easy, semi-hard, and hard.
By employing kernel density estimation, we analyze the SSL training pipeline and leverage the
inherent nature of indicator distribution to elucidate how our method promotes the semi-hard
group towards a better-optimized distribution, such as that of the easy group.
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(a) Confidence distributions by class (FlexMatch)
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(b) Reward score distributions (GTR)
Figure 1: Distribution of pseudo-label indicators and selection boundaries on CIFAR-100 (400 la-
bels). (a) In FlexMatch, confidence score distributions show slight changes before and after training,
with separation boundaries (yellow lines) located at density peaks, making it difficult to distinguish
classes effectively. (b) In GTR, leveraging intra-class properties for pseudo-label selection, sepa-
ration boundaries are placed at low-density regions. The grouping of three types of samples (red
lines) captures essential label characteristics. Combining grouping with transporting significantly
enhances distribution separability, addressing the instability issues seen in existing methods.
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• We seamlessly integrate GTR into existing SSL algorithms without incurring any additional
overhead. Extensive experiments across eleven SSL benchmarks further validate the reliability
and effectiveness of GTR, showcasing its applicability over diverse SSL modalities.

2 PROBLEM DEFINITION

Notations. Semi-Supervised Learning (SSL) extends Supervised Learning (SL) by using a small
labeled dataset DL = {(xl

i, y
l
i)}

NL
i=1 and a large unlabeled dataset DU = {xu

i }
NU
i=1 with NL ≪ NU .

For a given classification task, the model prediction fS(x) = y ∈ RC , where C is the label di-
mension. The SSL training involves three processes: (i) pseudo-label generation produces pseudo
labels yu = fT (x

u) by a trained teacher model fT on DL and converts them to one-hot encoding;
(ii) pseudo-label filtering selects high-quality pseudo-labels ŷu using a pseudo-label quality indi-
cator I(·) and thresholds, e.g., ŷu = I(yu) > τ with a single threshold τ ; (iii) learning objectives
are computed by the sum of supervised and unsupervised losses, L = Ls + Lu.

LS =
1

BL

BL∑
i=1

H
(
yli, fS

(
ω(xi)

))
, (1)

where ω(·) denotes weak data augmentations, and H(·, ·) is the loss function for SL tasks (e.g.,
cross-entropy, ℓ1 loss). For a mini-batch of BU unlabeled data, the unsupervised loss is:

LU =
1

BU

BU∑
i=1

I(pui , τ)H
(
ŷui , fS

(
Ω(xu

i )
))

, (2)

where Ω(xu
i ) denotes strong augmentations. Consistency regularization typically involves updating

fS parameters to fT via copying or exponential moving average (EMA) and requires predicted
classification confidence to identify reliable labels.

The Devil Lies in Thresholding. In SSL frameworks, the pseudo-label filtering process is the
most crucial part (Arazo et al., 2020; Zhang et al., 2021), which can be regarded as a binary classi-
fication task: a thresholding algorithm predicts whether the pseudo label yu is reliable (as positive)
or inaccurate (as negative) according to the quality indicator I(yu). With two widely employed
indicators (confidence scores (Lee et al., 2013; Xie et al., 2020a) and reward scores (Li et al., 2024)),
existing SSL methods designed numerous thresholding strategies. However, no matter how adaptive
or fine-grained thresholds are adopted (Wang et al., 2022b), existing thresholding algorithms are
equal to linear classifiers and neglect the intrinsic binary distributions of distinguishing two types of
pseudo labels. As shown in Figure 1a (right), it is difficult to separate the Gaussian-like indicator
distributions by linear decision boundaries at the densest locations (i.e., the yellow lines), which will
cause instability filtering issues in the existing thresholding methods with class confidences shown
in Figure 2a. To reveal the cause of instabilities, we first cluster the indicator distributions into three
consistent groups by a clustering algorithm (Reynolds et al., 2009) to investigate the properties of
the thresholding task. As indicated in Figure 1b (left) or 4a, we found that both the indicator values
of unreliable and reliable pseudo labels are clustered into two distinct distributions (dubbed as hard
and easy groups), while the middle group (dubbed as semi-hard) is similar to both the hard and
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(a) Thresholding by Confidence
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(c) Grouping by Reward Scores

Figure 2: Pseudo-label selection with 100-epoch training on CIFAR-100 (400 labels) with FixMatch.
(a) Changing trend of confidence threshold for each class of five randomly selected classes. (b) The
variation trend of mean and variance statistics for three groups clustered on the confidence scores. (c)
The variation trend of mean and variance statistics of three groups clustered on the reward indicators.
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easy groups. The semi-hard distribution nearly corresponds to the dense region of original indicator
distributions, which can be hard to separate and cause instabilities during the entire SSL training as
shown in Figure 2.

3 ROBUST GROUPING AND THRESHOLDING FOR UNLABELED DATA

To address the instability and poor class differentiation discussed in Section 2, we introduce GTR,
which employs robust thresholding through grouping and transporting. Unlike traditional meth-
ods that use simple linear thresholds, GTR clusters pseudo-labels into distinct groups, effectively
filtering high-quality labels. This approach mitigates the instability caused by overlapping indica-
tor distributions, ensuring more accurate and stable pseudo-label selection and improving SSL task
performance.

3.1 GROUPING: INDICATOR-BASED PROPERTY MINING

Within a single epoch, each unlabeled sample is selected by an evaluation criterion, such as
quality indicators like confidence scores. We employ the unsupervised Gaussian Mixture Model
(GMM) (Reynolds et al., 2009) to divide samples into three clusters and calculate related statistics
(µ, σ), resulting in the distribution of three types of samples: DU =

{
X u

α ,X u
β ,X u

γ

}
, corresponding

to easy, semi-hard, and hard groups, respectively. The size of each group in a mini-batch is denoted
as A, B, Γ. We define the probability of each data point belonging to each cluster as Pα(xi|θα),
Pβ(xi|θβ), Pγ(xi|θγ). In this probability distribution, each data point has associated probabilities of
belonging to the easy, semi-hard, and hard groups, summing up to 1. Thus, we accomplish sample-
level grouping. The choice of the GMM method is due to its effectiveness in forming non-spherical
clusters with ambiguous points, allowing better modeling of elongated clusters. As shown in Fig-
ure 2, compared to class-level grouping, the variations among groups obtained through this method
are relatively stable and align with the intuition of modeling the label space, which typically involves
both intra-class and inter-class modeling. Figure 1a illustrates that class-level grouping mainly con-
siders inter-class attributes, reflecting only part of the properties. Different samples within the same
class can have varying difficulty levels, leading to more uncertainty during thresholding. Whether
using a hard, class-level, or adaptive threshold, traditional methods essentially separate labels be-
low a threshold under limited modeling. The grouping method avoids this rigid thresholding and
includes the nature of intra-class properties, making the preparation for thresholding more compre-
hensive. Meanwhile, using more robust indicators like a reward score ri = R(xu

i , y
p
i ) (Li et al.,

2024) further enhances the stability in Figure 2c.

3.2 TRANSPORTING: PROMOTING SEMI-HARD TO ESAY
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Figure 3: The average quality indicator
for each group is calculated on CIFAR-
100 (400 labels) after grouping the unla-
beled data. The number of filters applied
and resulting changes in the quality indi-
cator are mapped out. Thresholds are set
as the mean for each group. After filter-
ing, samples are scored and re-grouped.

Building upon the foundation of the grouping method,
we further contemplate how to utilize the properties
from the label space to achieve more robust process-
ing. Hence, we introduce the transporting method. As
shown in Figure 3, grouping can capture the intrin-
sic properties of indicator distributions, reflecting that
the semi-hard group is sensitive to thresholds during
SSL training, and easy/hard groups are robust and de-
termined. Statistically, we also introduced the Pearson
correlation coefficient (Cohen et al., 2009) to derive the
characteristics of each group further. First, we collected
the accuracy data corresponding to the three groups af-
ter different filtering times as follows:

r =
n(
∑

XY )− (
∑

X)(
∑

Y )√
[n

∑
X2 − (

∑
X)2][n

∑
Y 2 − (

∑
Y )2]

,

(3)
where n is the maximum number of filterings, X repre-
sents the vector X = {1, 2, 3. . . , 9, 10} corresponding
to the filtering number array. Y is the accuracy rate of each group after the corresponding filtering
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times. The result calculation can be obtained as Pα = 0.189, Pβ = 1.415× 10−7, Pγ = 0.067. Ob-
serving Pβ , a notable P < 0.01 is evident within the semi-hard group, underscoring a pronounced
association between semi-hard samples and the thresholding frequency. This implies the sensitivity
of semi-hard samples to filtering. Consequently, the advanced threshold design is a great way to
improve the SSL method.

Transporting leverages the intrinsic properties of pseudo-label indicators. Our approach consists of
three steps: (i) Accepting easy samples: Easy samples are likely to produce high-quality pseudo-
labels, which we use to compute LU . (ii) Addressing semi-hard samples: We aim to align the
distribution of semi-hard samples with that of easy samples during the transporting step. This group
exhibits high sensitivity, fluctuating between high and low quality with input variations. To address
this, we propose multiple selection and consistency constraints to reduce uncertainty and enhance
pseudo-label accuracy. By leveraging Test-Time Augmentation (TTA) (Shanmugam et al., 2021),
we generate multiple augmented samples for the student model and select pseudo-labels above a
certain threshold for LU . The augmented samples also serve as regularization. Using the highest-
scoring pseudo-label as the target, we compute a consistency loss to align all augmented data to the
distribution of high-quality samples. This method extracts high-quality pseudo-labels, enhancing
the efficiency and robustness of semi-hard samples. For TTA, we randomly apply horizontal and
vertical flipping. (iii) Addressing hard samples: In each iteration, we discard half of the pseudo-
labels in this group. Using the mean indicator score of the hard group as a threshold, we retain
samples above the threshold and transfer them to the semi-hard group for the next iteration.

Overall, the final equation of unlabeled loss is written as:

LU =
1

BU

BU∑
i=1

I(qui , τβ , τγ)H
(
ŷui , fS

(
Ω(xu

i )
))

+

1

B

B∑
i=1

H
(
ŷu,βi , fS

(
T(xu,β

i )
))

,

(4)

where B denotes the size of semi-hard group in mini-batch, and T represents TTA. Also, qui is
the quality indicator corresponding to each unlabeled sample, τβ is the filtering threshold of the
semi-hard group, whose value is (X̄ u

α + X̄ u
β )/2, τγ is threshold of hard group equivalent to X̄ u

γ .

3.3 ESSENTIAL CHARACTERISTICS OF SSL TRAINING

As mentioned in Sec. 2, most SSL methods focus on constructing appropriate quality indicators
(metrics) and designing methods based on these indicators. Previous research has established suit-
able indicators but lacks an analysis from the perspective of the entire SSL training process. Mean-
while, it is essential to explore the related properties of the grouping and transporting pipeline to
ensure reliability and robustness. To accurately map input samples to the label space, it is essential
to use appropriate methods for identifying intrinsic properties for effective thresholding. In the pro-
cess of empirical experiments, we find the label space distribution is typically elongated. Grouping
methods, such as GMM, can identify these properties. We use a GMM to group pseudo-labels by
quality indicators z ∈ Rd:

p(z) =

K∑
k=1

πkN (z|µk,Σk), (5)

where K is the number of components, πk is the mixture weight, µk and Σk denote the mean and
the covariance matrix. Parameters are estimated via EM algorithm (MacQueen et al., 1967). The
Mahalanobis distance dM (zi, µki) assesses pseudo-label fit to find high distances indicate lower
reliability, which guides thresholding decisions:

dM (zi, µki) =
√
(zi − µki)

TΣ−1
ki

(zi − µki). (6)

In our training pipeline, the key issue is to monitor the changes in the indicator distributions. With-
out performing transporting, although the overall quality indicator trend is upward, the changes in
the semi-hard group are negligible, as shown in Figure 4a. Since SSL training is a process from
easy to hard, there inevitably exists uncertainty in the student model in the early stages. Previous
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(a) Without Transporting
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(b) With Transporting
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(c) Indicator Change by Epochs

Figure 4: Illustration of the sample pseudo-label quality indicator kernel density estimation and
compares the difference in the sample pseudo-label quality indicator kernel density distribution ob-
tained before and after training. The abscissa denotes the reward score, which is the indicator we
selected, and the ordinate is the density distribution of the quality indicator for each sample after
kernel density estimation. (a) Before and after distribution without transporting. (b) The figure on
the left is the result before transporting, and the figure on the right is the result after transporting. (c)
When t > T , Changes are distributed in two adjacent epochs.

methods attribute these changes to inter-class sample properties and ignore the presence of key sam-
ples. Therefore, they may not effectively capture the subtle differences required for performance
improvement. In contrast, GTR can model the intra-class distribution through grouping, associate
relevant features, and fully utilize transporting for targeted processing.

After transporting, the semi-hard group’s distribution is closely aligned with the easy group through-
out training, as shown in Figure 4b. Clustering results are updated at each epoch with a step size
defined as t. Notably, for t < T , transporting eliminates subpar semi-hard samples without adding
them in training. As the semi-hard samples are aligned to the easy distribution, some samples may
lie on the cluster boundary, stabilizing distributions via transporting. After t−1, semi-hard and easy
samples may be re-grouped randomly at t, akin to merging the groups. When t > T , the previous
process can lead to convergence to a more stable state, reflecting the advantages of transporting. The
process is formulated as follows:

X u
α,t−1 → X u

α,tI (rui > τβ,t−1) ,

X u
β,t−1 → X u

β,t,
(7)

when the process reaches the next epoch, we will have:
X u

α,t → X u
α,t+1(x

u
i ∈ X u

β,t)I (ri > τβ,t) ,

X u
β,t → X u

β,t+1(x
u
i ∈ X u

α,t),
(8)

where τβ,t is defined in Eq. 4, t refers to the epoch for training. After training N epochs, when the
model is nearly converged, we will have:

X u
α,t+N ∼ X u

β,t+N , X̄ u
α,t+N ≈ X̄ u

β,t+N , (9)

which signifies a favorable convergence condition. Therefore, as distinctly illustrated in Figure 4c,
we found that the quality indicator distributions of the two groups in two consecutive epochs closely
mirror each other after convergence.

4 EXPERIMENTS

4.1 EXPERIMENTAL SETUP

Comparison Methods for Tasks. To unveil the efficiency of GTR, we conduct a comprehen-
sive comparison with mainstream SSL algorithms, including FlexMatch, FixMatch, and Pseudo
Label (Lee et al., 2013; Arazo et al., 2020), which establish performance baselines. The essential
differences between these methods are explained in Table 1. Our evaluation initially focuses on
assessing the algorithms’ performance regarding classification error rate and training convergence
speed, undertaking a two-fold comparison. Firstly, we introduce FlexMatch and Pseudo Label as
baselines, SemiReward as one of the comparison objects, and then use GTR based on the reward in-
dicator as our method for comparative analysis. Secondly, when confidence scores or reward scores
served as the indicator, we introduce confidence-based and reward-based GTR for further analysis.
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Table 2: Top-1 error rate (%), performance gain (%), and training speedup times on nine classifica-
tion datasets across CV, NLP, and Audio modalities in various label settings. R.GTR denotes GTR
with the reward indicator, and its gains and speedup times are calculated upon baselines (Base).

Domain Dataset (Setting)
Pseudo Label FlexMatch Average

Base +SR R.GTR Base +SR R.GTR Gain Speed.

Audio

ESC-50 (250) 38.42±0.85 33.33±0.97 32.12±0.19 36.83±0.51 32.58±0.51 30.11±1.04 +6.51 ×2.62
ESC-50 (500) 28.92±0.24 27.65±0.32 26.91±0.61 27.75±0.41 25.92±0.31 25.11±0.21 +2.33 ×2.46

FSDnoisy18k (1773) 34.60±0.55 33.24±0.82 31.10±0.88 26.29±0.17 25.63±0.28 25.10±0.18 +2.35 ×1.39
UrbanSound8k (100) 37.74±0.96 36.47±0.65 36.11±0.32 37.88±0.46 36.06±0.93 35.17±0.92 +2.17 ×3.13
UrbanSound8k (400) 27.45±0.96 25.27±0.65 24.01±0.71 23.78±0.46 23.45±0.93 21.02±0.54 +3.10 ×1.37

NLP

AG News (40) 13.89±0.11 12.63±0.21 11.32±0.52 11.11±1.19 10.60±0.69 10.23±0.70 +1.73 ×5.09
AG News (200) 13.10±0.39 12.10±0.58 11.24±0.51 13.27±0.13 11.05±0.14 10.11±0.29 +2.15 ×2.64

Yahoo! Answer (500) 34.87±0.50 35.08±0.40 33.41±0.51 34.73±0.09 33.64±0.73 31.03±0.61 +2.58 ×1.53
Yahoo! Answer (2000) 33.14±0.70 32.50±0.42 31.33±0.18 31.06±0.32 29.97±0.10 29.21±0.09 +1.83 ×6.41

Yelp Review (250) 46.09±0.15 42.99±0.14 42.43±0.66 46.09±0.15 42.76±0.33 42.32±0.44 +3.72 ×1.31
Yelp Review (1000) 44.06±0.14 42.08±0.15 38.96±0.64 40.38±0.33 37.58±0.19 36.21±0.34 +4.64 ×1.47

CV

CIFAR-100 (200) 32.78±0.20 31.94±0.57 30.17±0.27 25.72±0.35 23.74±1.39 22.61±0.97 +2.86 ×1.27
CIFAR-100 (400) 25.16±0.67 23.84±0.20 21.41±0.52 17.80±0.57 17.59±0.35 16.03±0.36 +2.76 ×1.29

STL-10 (40) 20.53±0.12 17.37±0.47 16.31±0.95 11.82±0.51 10.20±1.11 9.83±0.52 +3.11 ×1.82
STL-10 (100) 11.25±0.81 10.88±1.48 9.05±0.27 7.13±0.20 7.59±0.57 7.02±0.69 +1.16 ×2.73

Euro-SAT (20) 25.25±0.72 23.65±0.41 22.11±0.52 5.54±0.16 4.86±1.00 4.09±0.43 +2.30 ×1.64
Euro-SAT (40) 12.82±0.81 8.33±0.33 7.69±0.82 4.51±0.24 3.88±0.69 3.69±0.32 +2.98 ×1.52

Semi Aves 3959 (3959) 40.35±0.30 37.93±0.45 37.15±0.76 32.48±0.15 31.23±0.09 30.75±0.41 +2.47 ×2.21

Table 3: Top-1 error rate (%), performance gain (%), and training speedup times on SSL classi-
fication datasets with CV in various label settings under FixMatch. C.GTR refers to confidence
indicator-based GTR, while R.GTR denotes reward indicator-based GTR. Performance gain and
speedup times for R.GTR are compared to the baseline (Base).

Dataset (Setting)
FixMatch Average

Base +C.GTR +SR +R.GTR Gain Speed.
CIFAR-100 (200) 29.6±0.90 28.72±2.44 28.42±0.56 26.14±1.09 +3.46 ×2.12
CIFAR-100 (400) 19.56±0.52 19.04±0.10 18.21±0.25 17.79±0.55 +1.77 ×1.67

STL-10 (40) 16.15±1.89 14.97±1.07 12.92±0.71 11.80±0.74 +4.35 ×1.98
STL-10 (100) 8.11±0.68 7.68±0.48 7.72±0.41 7.22±0.46 +0.89 ×1.51

Euro-SAT (20) 13.44±3.53 11.56±0.21 10.69±0.26 9.36±0.80 +4.08 ×1.93
Euro-SAT (40) 5.91±2.02 5.13±0.28 4.91±0.17 4.35±0.57 +1.56 ×2.13

Task Configurations. Our experiments cover eleven SSL datasets across three popular modalities,
each with specific settings outlined below. Details of datasets and experiment configurations are
provided in Appendix A.1.

(i) For CV tasks, we investigate challenging datasets including CIFAR-100 (Krizhevsky et al.,
2009), STL-10 (Coates et al., 2011), EuroSAT (Helber et al., 2019), and ImageNet (Deng et al.,
2009). The backbone architectures used were the ImageNet pre-trained Vision Transformers
(ViT) (Dosovitskiy et al., 2021) or randomly initialized ResNet-50 (He et al., 2016).

(ii) In NLP, we consider three datasets: AG News (Zhang et al., 2015), Yahoo! Answers (Chang
et al., 2008), and Yelp Review (yel, 2014). The backbone encoder for these tasks is the self-
supervised pre-trained BERT (Devlin et al., 2018).

(iii) In audio tasks, our study covers three datasets: UrbanSound8k (Salamon et al., 2014), ESC-
50 (Piczak, 2015), and FSDNoisy18k (Fonseca et al., 2019). The pre-trained backbone adopts
HuBERT (Hsu et al., 2021).

Implementations. GTR does not require tunable hyperparameters except for using GMM for the
grouping step, which follows the default setting given by (Reynolds et al., 2009). As for the quality
indicators of confidence and reward scores in the baselines, we follow the official hyper-parameters
and training settings in FixMatch and SemiReward. More specific training and hyperparameter
settings are provided in Appendix A.2.

4.2 COMPARISON RESULTS ON SEMI-SUPERVISED BENCHMARKS

7



378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Table 4: Top-1 error rate, performance gain, and
training speedup times on ImageNet with 100
labels per class. GTR utilizes reward scores.

Method Top-1 (%) Gain (%) Speedup
FixMatch 43.66 +0.00 ×1.00
FixMatch+SR 41.72 +1.94 ×1.98
FixMatch+GTR 41.12 +2.54 ×2.58
FlexMatch 41.85 +0.00 ×0.00
FreeMatch 40.57 +1.28 ×1.50
SoftMatch 40.52 +1.33 ×1.46
FlexMatch+GTR 39.72 +1.49 ×2.95

Table 2 illustrates the significant performance
improvements achieved by integrating reward
indicator-based GTR with two representative SSL
algorithms, significantly improving training effi-
ciency and final performance. Notably, GTR ex-
hibits an average performance gain of 6.51% on
ESC-50 with 250 labels. Relative to SemiRe-
ward, GTR also performs well on fine-grained
data sets. The GTR method further promotes the
convergence of the model training process, as can
be seen from the reduction in training time, as de-
tailed in Appendix B. Table 3 illustrates that GTR based on confidence continues to exhibit a pos-
itive impact on model convergence. Using FixMatch as the baseline, we conducted comparisons
by introducing SemiReward and employing confidence indicator-based GTR and reward indicator-
based GTR to highlight their respective effects. Notably, GTR based on confidence, as discussed in
Sec. 3.1, exhibits a smooth grouping strategy with a commendable promotional effect. On CIFAR-
100, confidence indicator-based GTR achieves a comparable effect to SemiReward but with lower
overhead, omitting additional gradient calculations. In contrast, reward indicator-based GTR in-
curs no extra overhead while reducing the number of student model forwards. Our approach thus
achieves improved convergence and acceleration outcomes efficiently and robustly. Sec. 3.3 has
explained such results and further demonstrated the superiority of GTR through these experiments.

Moreover, on the large-scale SSL benchmark ImageNet, as shown in Table 4, GTR noticeably
reduces training time and achieves lower error rates, e.g., FlexMatch+GTR outperforms previous
SOTA methods Freematch and Softmatch. The basic method FixMatch also significantly benefits
from combining with GTR and outperforms FixMatch simply combined with SemiReward.

4.3 ANALYSIS AND ABLATION

This section provides an empirical analysis of the proposed modules, verifies their functionalities,
and examines the key issues in the SSL training process, evaluating the impact of the proposed GTR.

Resource-Friendly SSL Training. Existing SSL training pipelines, like in SemiReward, require
multiple forwards of the student model to generate pseudo-label candidates (e.g., 6 times), leading
to increased resource consumption in each iteration. GTR can dramatically optimizes the training
process. Assuming k student model forwards per batch and denoting the proportions of easy, semi-
hard, and hard samples as α, β, γ, respectively, easy and hard samples do not need multiple forwards,
while semi-hard samples only need one additional forward with TTA. Thus, the total forwards per
batch reduce to 2 while the computational cost of re-grouping after each epoch is also negliectable.

Table 5: Ablation experiments for two
groups of thresholds on Semihard and Hard
groups with FlexMatch on CIFAR-100 (400
labels). Top-1 accuracy (%) and training it-
erations are reported.

Group SemiHard Acc. Iterations
τ1 84.01 108544 iters

Threshold τ2 83.95 165888 iters
τ3 83.21 139263 iters

Group Hard Acc. Iterations

Threshold ✓ 84.01 108544 iters
✗ 83.82 165888 iters

Confirmation of Group Filtering Thresholds.
As described in Sec. 3.2, we screened samples from
the semi-hard and hard groups during training. The
hard group is less sensitive to filtering than the semi-
hard group, but it still impacts training due to cluster-
ing updates each epoch. For semi-hard samples, we
aim to align their distribution with the easy group,
using the mean of both groups as an indicator. To
test this, we conducted ablation experiments. Table 5
shows results for different thresholds: τ1 (average of
means of easy and semi-hard groups), τ2 (geomet-
ric mean of means), and τ3 (mean within semi-hard
group). For the hard group, we evaluated the training
impact. The results show that using the geometric mean as the threshold increases time cost, likely
due to first-order distance separability. Notably, using the mean within the group slows convergence
and reduces accuracy. Hard sample screening does not significantly affect final performance but
does influence convergence speed.

Selection of Clustering Methods and Grouping Numbers. As discussed in Sec. 3.1, we use
GMM due to the linear distribution of our clustered data, which enables non-spherical clusters and
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handles fuzzy points better. We also tested alternative unsupervised methods for a clearer illustra-
tion. Figure 5 shows the indicator data distribution on CIFAR-100, highlighting that GMM effec-
tively models the flat and narrow distribution, which is difficult for other methods. Experiments
on CIFAR-100 with 400 labels further validate the necessity of GMM. Table 6 shows these results,
with GMM achieving the highest accuracy (84.01%), demonstrating its effectiveness in capturing
the probability distribution of such data and confirming it as the most suitable unsupervised method.
Moreover, we conduct further analysis of the number of groups. Since the semi-hard labels are likely
to become easy with further training, they help improve label quality progressively. As shown in
Table 7, using only two groups (easy and hard) would result in high misclassification at the decision
boundary, destabilizing training, while more than three groups introduce unnecessary complexity
without more performance gains.

Table 6: Ablation of various clustering methods for the
Grouping step on CIFAR-100 (400 labels). The clas-
sification accuracy (%) and the total training iterations
are reported. HC denotes Hierarchical Clustering.

Types Acc. Iterations
GMM Kambhatla & Leen (1994) 84.01 108544 iters
K-means MacQueen et al. (1967) 83.25 139263 iters
HC Eppstein (2000) 83.21 145408 iters
DBSCAN Ester et al. (1996) 82.31 77824 iters

Table 7: Error (%) for different group num-
bers. Setting on Flexmatch with GTR us-
ing the reward indicator.

Group Number Error
3 group 16.03±0.36

2 group 17.64±0.61

4 group 15.97±0.42

5 group 16.09±0.18
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Figure 5: Illustration of the distribution of
the quality indicator on CIFAR-100, which
is distributed in a narrower rather than a hy-
perellipse pattern.

Rethinking GTR Thresholding. Sec. 3.3 ex-
plores the SSL training process using the GTR
method. Also, Figure 5 illustrates the distribution
of quality indicators on CIFAR-100, showing that
the data is distributed in a narrower rather than a
hyperellipse, making other unsupervised methods
(e.g., K-means) less effective. Our GMM-based
approach identifies high-density regions, addressing
limitations of prior class-wise methods and improv-
ing data-centric analyses. The proposed method of-
fers a nuanced understanding of pseudo-label qual-
ity, enhancing SSL training. Future work will extend
this approach to complex data distributions and inte-
grate it with other SSL strategies.

5 RELATED WORK

Pseudo Label (Lee et al., 2013) pioneered generating synthetic labels for unlabeled data using a
model trained on labeled data, laying the foundation for semi-supervised learning (SSL). Consis-
tency regularization (Samuli & Timo, 2017) followed, ensuring consistent predictions for diverse
perspectives of the same data. Subsequent SSL advancements focus on (i) refining high-quality
pseudo-label identification and (ii) developing robust thresholding methodologies. Incorporating
curriculum learning further enhances deep learning training by structuring data into a curriculum
and integrating grouping concepts (Bengio et al., 2009a; Elman, 1993b).

Thresholding High-Quality Pseudo Labels. Confidence-based SSL methods have designed nu-
merous thresholding as pivotal strategies (Xie et al., 2020a; Sohn et al., 2020; Zheng et al., 2022),
developing from predefined single threshold (Lee et al., 2013) to considering class-wise adaptive
thresholds changing during the SSL training process (Zhang et al., 2021; Yang et al., 2023). Flex-
Match (Zhang et al., 2021) introduces class-level thresholds to alleviate the class imbalance in Fix-
Match (Sohn et al., 2020). SoftMatch (Chen et al., 2022b) balances the quantity and quality of
pseudo-labels using a truncated Gaussian function. FreeMatch (Wang et al., 2022b) dynamically
adjusts thresholds based on the model’s learning state. ShrinkMatch (Yang et al., 2023) and Sim-
Match (Zheng et al., 2022) integrate self-supervised contrastive learning principles. However, these
methods often lack generality and may require extensive tuning for specific tasks or datasets. CR-
Match (Fan et al., 2021) introduces FeatDistLoss for regression tasks but falls short. In contrast, the

9



486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

proposed GTR allows for multiple rounds of selection and feedback evaluation by dividing pseudo
labels into groups based on kernel density, improving pseudo-label quality.

Tolerance to Inaccurate Pseudo Labels. Early SSL models face heightened sensitivity to low-
quality pseudo-labels. The Π model (Rasmus et al., 2015) uses dual perturbations to input samples,
while Temporal Ensembling (Samuli & Timo, 2017) maintains an EMA of label predictions. Mean
Teacher (Tarvainen & Valpola, 2017) averages model weights, reducing label dependency. Robust
training strategies address noisy labels in labeled datasets (Xu et al., 2021; Li et al., 2019a). The
GTR method achieves adaptive grouping of pseudo-labels and addresses consistency variations for
semi-hard pseudo-labels, resulting in greater robustness.

Curriculum Learning. Curriculum learning enhances deep neural network (DNN) training by
structuring data into a progressively challenging curriculum (Bengio et al., 2009b; Elman, 1993a).
Initially, models are exposed to simpler samples, gradually introducing more complex ones. Various
strategies classify ”easy” and ”hard” samples (Cascante-Bonilla et al., 2021; Castells et al., 2020;
Dogan et al., 2020; Hacohen & Weinshall, 2019; Sinha et al., 2020) based on loss, label, feature
space, or using fixed or dynamic curricula. Loss-based curricula sequence data using teacher or
student network confidence (Hacohen & Weinshall, 2019). Label-based curricula manipulate labels
for imbalanced data or increased usage (Zhang et al., 2021; Wang et al., 2019). Feature-based
curricula leverage feature density for training from clean to noisy examples (Guo et al., 2018).
Fixed curricula employ strategies like EMA of loss (Kong et al., 2021) or reducing contrastive loss
weight (Peng et al., 2021). Dynamic curricula use adjustable parameters (Saxena et al., 2019; Li &
Gong, 2017), and SuperLoss de-emphasizes high-loss samples (Castells et al., 2020).

6 CONCLUSION

This paper introduces GTR, a versatile method tailored for SSL scenarios with the aim of enhancing
robust thresholding to improve overall performance and convergence speed. Through a comprehen-
sive analysis of the SSL training process and evolving data distributions, we devised the Grouping
and Transporting methods, enabling targeted processing for each distinct group. Extensive exper-
iments across diverse classification and regression datasets demonstrate that integrating GTR with
popular SSL algorithms yields substantial performance improvements and accelerates convergence.
Our approach, grounded in a data-centric perspective and the inherent characteristics of data, not
only presents an effective technique for SSL but also holds the potential for broader applicability
across various areas.
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SUPPLEMENT MATERIAL

The appendix is structured as follows:

(A) In Appendix A, we provide implementation details, including dataset settings, hyperparameter
settings, and training schedule.

(B) In Appendix B, we provide additional experimental results, including detailed training time
statistics across different datasets and settings.

(C) In Appendix C, we describe the extensive background of semi-supervised learning methods
from three aspects.

A IMPLEMENTATION DETAILS

A.1 DATASET SETTING

For a fair comparison, we train and evaluate all methods with the same ViT backbones and hyper-
parameters in Table A2 based on USB (Wang et al., 2022a). As for CV, we evaluate SemiReward
on common benchmarks: CIFAR-100 (Krizhevsky et al., 2009), Euro-SAT (Helber et al., 2019),
STL-10 (Coates et al., 2011), and ImageNet (Deng et al., 2009) for image modality. Euro-SAT
contains Sentinel-2 satellite images covering 13 spectral bands, which is not a natural image dataset
as the other three. As for NLP, AG News (Zhang et al., 2015) (news topic material), Yahoo! An-
swer (Chang et al., 2008) (topic classification), and Yelp Review (yel, 2014) (sentiment classifi-
cation) to evaluate SSL algorithms on more fine-grained sentiment NLP classification tasks. For
audio classification, we choose UrbanSound8k (Salamon et al., 2014) with a maximum length of 4
seconds, ESC-50 (Piczak, 2015) with a maximum length of 5 seconds, and FSDNoisy18k (Fonseca
et al., 2019) with the length between 3 seconds and 30 seconds.

Table A1: Settings and details classification datasets in various modalities.

Domain Dataset #Label per class #Training data #Validation data #Test data #Class
CIFAR-100 2 / 4 50,000 - 10,000 100

CV STL-10 4 / 10 5,000 / 100,000 - 8,000 10
EuroSat 2 / 4 16,200 - 5,400 10

ImageNet 100 1,28,167 - 5,0000 1000
Yelp Review 50 / 200 250,000 25,000 50,000 5

NLP AG News 10 / 50 100,000 10,000 7,600 4
Yahoo! Answer 50 / 200 500,000 50,000 60,000 10

ESC-50 5 / 10 1,200 400 400 50
Audio UrbanSound8k 10 / 40 7,079 816 837 10

FSDnoisy18k 52-171 1,772 / 15,813 - 947 20

A.2 HYPERPARAMETER AND TRAINING SETTINGS

Basic Settings. As for classification tasks, regarding hyperparameter settings of SSL classifica-
tion benchmarks constructed in USB (Wang et al., 2022a), we adopted the original settings with
pre-trained Transformers as the backbone and made a few adjustments to adapt to SemiReward,
as shown in Table A2. The total training iterations are set to 220, and an early stop technique is
used for calculating the convergence times. Meanwhile, we use the full experimental settings in
FlexMatch (Zhang et al., 2021) for ImageNet, which uses 100 classes per class with ResNet-50 as
the backbone. All methods are trained from scratch by SGD (Loshchilov & Hutter, 2016) optimizer
with a momentum of 0.9, a basic learning rate of 0.03, and a cosine learning rate decay as USB. Note
that Semi-AVES (Su & Maji, 2020) uses 224 × 224 input resolutions and ViT-S-P16-224 with the
labeled and unlabeled batch size of 32, and other settings are the same as STL-10. We apply ℓ1 loss
as the basic regression loss. All experiments are implemented with PyTorch and run on NVIDIA
A100 GPUs, using 4GPUs training by default.

Settings of GTR with SemiReward. We provide detailed hyper-parameters and settings for
SemiReward training. The two-stage online training of the rewarder R and generator G is trained by
Adam (Kingma & Ba, 2014) optimizer with a learning rate of 0.0005 for all tasks, independent of
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Table A2: Hyper-parameters and training schemes of SSL classification tasks based on USB.
Domain CV NLP Audio
Dataset CIFAR-100 STL-10 Euro-SAT AG News Yahoo! Answer Yelp-5 UrbanSound8k FSDNoisy ESC-50
Image Size 32 96 32 − −
Max Length − 512 4.0 5.0 5.0
Sampling Rate − − 16,000
Model ViT-S-P4-32 ViT-B-P16-96 ViT-S-P4-32 BERT-Base HuBERT-Base
Weight Decay 5e-4 1e-4 5e-4
Labeled Batch size 16 4 8
Unlabeled Batch size 16 4 8
Learning Rate 5e-4 1e-4 5e-5 5e-5 1e-4 5e-5 5e-5 5e-4 1e-4
Layer Decay Rate 0.5 0.95 1.0 0.65 0.65 0.75 0.75 0.75 0.85
Scheduler η = η0 cos(

7πk
16K )

Model EMA 0.999
Eval EMA 0.999
Weak Augmentation Random Crop, Random Horizontal Flip − Random Sub-sample
Strong Augmentation RandAugment(Cubuk et al., 2018) Back-Translation (Xie et al., 2020a) Random Sub-sample, Gain, Pitch, Speed

Table A3: Top-1 error rate (%), performance gain, and training speedup times on nine SSL clas-
sification datasets with CV, NLP, and Audio modalities in various label settings. R.GTR refers to
Reward-based GTR. Performance gains and training speedup times with R.GTR are compared to
the baseline (Base).

Domain Dataset (Setting)
Pseudo Label FlexMatch Avg. SpeedupBase +SR R.GTR Base +SR R.GTR

Audio

ESC-50 (250) 5.700 7.125 5.500 10.053 3.142 2.395 ×2.617
ESC-50 (500) 6.750 3.214 3.014 10.806 4.912 4.026 ×2.462

FSDnoisy18k (1773) 7.467 8.297 7.267 12.133 8.089 6.954 ×1.386
UrbanSound8k (100) 5.250 5.833 5.050 4.728 1.525 0.905 ×3.131
UrbanSound8k (400) 4.217 6.024 4.017 2.833 2.361 1.676 ×1.370

NLP

AG News (40) 2.400 1.714 1.514 6.267 1.333 0.728 ×5.095
AG News (200) 2.889 1.699 1.499 3.556 1.693 1.060 ×2.641

Yahoo! Answer (500) 0.178 0.445 0.222 8.711 5.807 3.851 ×1.532
Yahoo! Answer (2000) 8.689 1.889 1.689 8.122 1.692 1.059 ×6.406

Yelp Review (250) 22.400 22.400 22.200 20.066 20.066 12.393 ×1.314
Yelp Review (1000) 1.822 4.673 1.622 21.411 16.470 11.742 ×1.473

CV

CIFAR-100 (200) 9.320 11.314 9.120 54.280 49.345 35.977 ×1.265
CIFAR-100 (400) 14.920 13.564 13.364 100.240 94.044 68.929 ×1.285

STL-10 (20) 0.528 1.320 0.328 11.760 8.400 5.792 ×1.820
STL-10 (40) 0.268 0.693 0.068 9.556 7.351 6.274 ×2.732

Euro-SAT (20) 1.196 5.980 0.996 14.320 17.900 6.887 ×1.640
Euro-SAT (40) 1.092 5.460 0.892 21.040 23.378 11.572 ×1.521

Semi Aves 3959 (3959) 19.212 16.720 9.375 82.064 71.248 35.922 ×2.167

the student model’s optimization. For each training step after T iterations, R infers once and selects
high-quality pseudo labels for the student with the average reward score as the threshold τ . The
generator G utilizes a 4-layer MLP (only containing FC layers and ReLU) with 256, 128, and 64
hidden dimensions.

B EXTENSIVE EXPERIMENT RESULTS

B.1 DETAILS IN SPEEDUP

In Sec. 4, we give the average speed gain but not the specific training time. Table A3 gives the
different training times corresponding to the nine sets of data sets in the three modes in the main
text. We stipulate that the calculation is on a single NVIDIA A100 GPU to carry out relevant
statistics, and the reported unit is the total hours.

C EXTENSIVE RELATED WORK

C.1 SELF-TRAINING

In semi-supervised learning (SSL), self-training frameworks (Rosenberg et al., 2005; Grandvalet
& Bengio, 2004; Yarowsky, 1995) play a very important role in unlabeled data utilization. Then,
pseudo-labeling (Lee et al., 2013), as one of the classic self-training ways, pioneered the generation
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of artificial labels for unlabeled data. However, this embodiment faces the need for high-quality
labels due to the problem of confirmation bias (Arazo et al., 2020). Subsequent work will mainly
address this problem from two perspectives: one is to design a class or combine multiple methods to
improve the quality of pseudo-label generation and application, and the other is to consider enhanc-
ing the network’s acceptance of pseudo-labels, that is, a small number of low-quality pseudo-labels
will not affect the overall prediction of the network.

Consistency Regularization. Temporal Ensembling (Samuli & Timo, 2017) first proposed con-
sistency regularization to ensure consistent predictions for similar data points, which has become a
basic method for generating high-quality pseudo labels. Based on this, MixMatch (Berthelot et al.,
2019b) and its variants (Berthelot et al., 2019a; Liu et al., 2023) performs data augmentation on
unlabeled data, inputs multiple data into the same classifier, obtains different predicted classification
probabilities, and uses a class method to make the average variance of multiple probability distribu-
tions smaller. UDA (Xie et al., 2020a) goes a step further and starts to use two branches of weak and
strong augmented samples and regards the predictions of the weak augmentation branch as the target
of the strong augmentation branch to improve the consistency of the pseudo-label and predictions.
Then, ReMixMatch (Berthelot et al., 2019a) uses the distribution alignment method to encourage
the marginal distribution of predictions for unlabeled data to be close to the marginal distribution of
ground truth labels. Fixmatch (Sohn et al., 2020) designs a fixed confidence threshold to filter pseudo
labels so that the high-quality pseudo-labels can be used in the SSL training process. The following
works, like FlexMatch (Zhang et al., 2021), deeply explore the idea of confidence thresholds and
propose curriculum learning to dynamically adjust the thresholds generated by pseudo labels based
on the training process. Additionally, softmatch (Chen et al., 2022b) shows the trade-off between
the quantity and quality of pseudo labels and also derives a truncated Gaussian function to weight
sample confidence. Freematch (Wang et al., 2022b) proposes a free matching method that adaptively
adjusts confidence thresholds based on the model’s learning state. The above methods essentially
follow the strategy of training teacher-student distillation. Even the most advanced methods still rely
on the manual design of confidence thresholds for screening. Although Meta Pseudo Labels (Pham
et al., 2021) proposes to generate more accurate pseudo labels with a meta learner through bi-level
optimization, it doubles training times and requires large-scale teacher models.

Tolerance to Inaccurate Pseudo Labels. Early SSL models have a certain sensitivity to low-
quality pseudo labels. Then, another aspect of work starts by improving the model’s tolerance to
errors or low-quality labels. Π-Model (Rasmus et al., 2015) adds two different perturbations to an
input sample, inputs the network twice to get the result, and then compares the consistency of the
two results. This weakens the impact of low-quality labels but may be less efficient since two for-
ward propagations are required to calculate the loss. Based on this, Temporal Ensembling (Samuli
& Timo, 2017) maintains an EMA of label predictions on each training example and penalizes pre-
dictions that are inconsistent with this goal. Mean Teacher (Tarvainen & Valpola, 2017) further
averages model weights instead of label predictions. This allows the use of fewer labels than se-
quential integration during training and also improves the accuracy of testing. Meanwhile, another
branch of research assumes the labeled datasets are noisy and designs robust training or ad-hoc label
selection policies to discriminate inaccurate labels (Xu et al., 2021; Li et al., 2019a; Tan et al., 2021).

C.2 DISAGREEMENT-BASED MODELS

From the view of disagreement SSL, it is required to train two or three different networks simulta-
neously and label unlabeled samples with each other (Zhou & Li, 2010) so that they are less affected
by model assumptions and loss functions. Co-training (Blum & Mitchell, 1998) assumes that each
data point has two different and complementary views, and each view is sufficient to train a good
classifier. Noisy Student (Xie et al., 2020b) is assigned pseudo-labels by a fixed teacher from the
previous round, while (Yalniz et al., 2019) scales up this training paradigm to billion-scale unlabeled
datasets. MMT (Ge et al., 2019), DivideMix (Li et al., 2019a) learn through multiple models or clas-
sifiers through online mutual teaching. Multi-head Tri-training (Ruder & Plank, 2018) uses training
to learn three classifiers from three different training sets obtained using bootstrap sampling. In these
methods, each classifier head is still trained using potentially incorrect pseudo-labels generated by
other heads. Afterward, the classifier for pseudo-labels generated by DST (Chen et al., 2022a) is
trained with unused pseudo-labels, thus having better tolerance to inaccurate pseudo-labels.
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C.3 SELF-SUPERVISED LEARNING FOR SSL

Self-supervised contrastive learning (CL) approaches (Chen et al., 2020) are also applied to SSL,
such as CoMatch (Li et al., 2021) that first introduced CL to the consistency regularization frame-
work. ShrinkMatch (Yang et al., 2023) allows the model to search for contracted class space adap-
tively. In detail, for each uncertain sample, ShrinkMatch dynamically defines a shrunk class space,
including the original top-1 class and less likely classes. Similarly, SimMatch (Zheng et al., 2022)
uses semantic and instance similarity for mutual calibration. It uses the labeled data to train a se-
mantic classifier and uses this classifier to generate pseudo labels for the unlabeled data. Meanwhile,
ReMixMatch (Berthelot et al., 2019a) and CR-Match (Fan et al., 2021) utilize rotation prediction as
the auxiliary task for SSL. Moreover, fine-tuning a pre-trained model on labeled datasets is a widely
adopted form of transfer learning (TL), and several recent works (Li et al., 2018; 2019b; You et al.,
2020; Ximei et al., 2021) like Self-Tuning (Ximei et al., 2021) combining TL with SSL methods.
Self-Tuning (Ximei et al., 2021) and HCR (Tan et al., 2022) introduce CL pre-trained models as the
regularization to mitigate confirmation bias in TL.

C.4 ADVERSARIAL TRAINING FOR SSL

In the realm of SSL, innovative approaches have emerged that utilize adversarial training. One ap-
proach involves generating synthetic data (Odena, 2016; Dai et al., 2017) using a generator network
and assigning it to a new ”generated” class. The goal is to make the discriminator network pro-
vide class labels for these synthetic samples. Another line of research creates adversarial examples
through techniques like VAT (Miyato et al., 2018), which adds noise to input data; VAdD (Park et al.,
2018), introducing an adversarial exit layer into the model’s architecture; and RAT (Suzuki & Sato,
2020), extending the concept of noise to input transformations. These methods aim to impose lo-
cal smoothness constraints on the model’s learned representations without relying on pseudo-labels
during training. These advancements enhance model robustness and generalization, particularly in
data-scarce scenarios, by utilizing latent data distribution structures for more effective learning. This
research contributes significantly to improving SSL algorithms, addressing challenges in leveraging
unlabeled data to enhance the applicability and performance of machine learning models in real-
world applications. These innovative adversarial training approaches are poised to advance SSL.
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