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Abstract

We study the convergence behavior of a generalized Frank-Wolfe algorithm in
constrained (stochastic) monotone variational inequality (MVI) problems. In re-
cent years, there have been numerous efforts to design algorithms for solving
constrained MVI problems due to their connections with optimization, machine
learning, and equilibrium computation in games. Most work in this domain has
focused on extensions of simultaneous gradient play, with particular emphasis on
understanding the convergence properties of extragradient and optimistic gradient
methods. In contrast, we examine the performance of an algorithm from another
well-known class of optimization algorithms: Frank-Wolfe. We show that a gener-
alized variant of this algorithm achieves a fast O(T−1/2) last-iterate convergence
rate in constrained MVI problems. By drawing connections between our gener-
alized Frank-Wolfe algorithm and the well-known smoothed fictitious play (FP)
from game theory, we also derive a finite-sample convergence rate for smoothed FP
in zero-sum matrix games. Furthermore, we demonstrate that a stochastic variant
of the generalized Frank-Wolfe algorithm for MVI problems also converges in a
last-iterate sense, albeit at a slower O(T−1/6) convergence rate.

1 Introduction

A constrained monotone variational inequality (MVI) problem consists of solving for an x∗ ∈ X ⊆
Rd such that

max
s∈X

(x∗ − s)⊤F (x∗) ≤ 0,

where F : X → Rd is a monotone operator [56, 37] and X is a convex set. MVIs arise in many
foundational and emerging problems. In particular, many problems in optimization [10, 1, 39],
equilibrium computation [43, 42], reinforcement learning [57, 38], and learning in games [13] can be
formulated as MVI problems.

Due to their wide applicability, recent years have seen significant advances in developing efficient
algorithms to solve these problems. Despite the structure provided by the monotone mapping,
MVI problems are well-known to be challenging to solve, as simple first-order algorithms may
diverge or exhibit complex limiting behaviors such as chaos [3, 27, 18]. This has motivated the
analysis of algorithms such as the extragradient method [37], the optimistic gradient method [51],
and the Halpern iteration method [19]. These algorithms, particularly the extragradient and optimistic
gradient methods—which can be viewed as approximating proximal point algorithms [46]—have
been the focus of numerous recent works, with matching upper and lower bounds established under
various assumptions about the feasible set X and the operator F (·) [29, 30, 15, 26, 41]. Due to their
connection with gradient descent and various extensions in convex optimization, these algorithms
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have garnered the most attention in the literature, with recent breakthroughs in the constrained regime
where X is a compact convex set [15]. See Section 1.1 for more details about related work.

In this paper, we take an orthogonal approach by analyzing the performance of another optimization
algorithm for solving constrained MVI problems: Frank-Wolfe (FW) [21]. Although the FW
algorithm was first proposed for solving MVI problems decades ago [32] and has been analyzed in
the context of min-max optimization problems [24], its convergence rate for general MVI problems
remains less understood. To address this, we provide an analysis of a smoothed version of FW for
solving constrained MVI problems, even considering the case where one only has access to noisy
estimates of the operator F (·). This case is particularly relevant to problems in machine learning
[23], distributionally robust optimization [5, 61], and learning in games [25, 43].

1.1 Related Literature

There is a rich literature analyzing MVI problems and their solutions [8, 54]. In this section, we give
an overview of the most related works.

Gradient-Based Methods. Work on solving MVI problems has largely focused on understanding
the behavior of gradient-based algorithms due to their connection with gradient descent in optimiza-
tion, though other algorithms have also been proposed in the literature (see, e.g., [60]). Although
straightforward generalizations of gradient descent can fail in MVI problems [42, 43], proximal
point algorithms [52] and related methods such as the extragradient [37] and optimistic gradient [18]
algorithms have been shown to provide much stronger convergence guarantees. Specifically, [26]
showed that the extragradient algorithm achieves a tight O(T−1/2) last-iterate convergence rate for
the smooth convex-concave saddle-point problem (a special case of MVI). In [17], the authors also
studied saddle-point problems and proposed an algorithm called mirror-prox conditional gradient
sliding, which comes with strong complexity guarantees. However, their analysis required a strong
concavity assumption on the objective function, which corresponds to a strong monotonicity assump-
tion in the variational inequality formulation. In [29], the authors studied unconstrained variational
inequality problems and showed that the extragradient algorithm achieves an O(T−1) last-iterate
convergence rate under the assumptions of monotonicity and Lipschitz continuity of F (·). Finally, in
[15], the authors established the tight O(T−1/2) last-iterate convergence of both the extragradient
and optimistic gradient descent-ascent algorithms for constrained MVIs. However, the approach in
[15] relies on computer-aided proofs, whereas our proof uses a natural Lyapunov argument.

The Halpern Iteration Method. The Halpern iteration method was originally proposed to find
the fixed points of non-expansive mappings [31]. More recently, algorithms based on the Halpern
iteration have been applied to solving MVI problems with a fast O(T−1) convergence rate [19, 58].
However, to the best of our knowledge, there are no results showing that the Halpern iteration method,
or the algorithms proposed in [19, 58], have provable convergence in the stochastic setting.

Frank-Wolfe Methods. The closest work to ours in this area is [24], which analyzes FW in
deterministic convex-concave saddle-point problems. They prove last-iterate convergence rates by
making curvature assumptions on the operator F (·) and on the underlying space X (i.e., assuming X
is strongly convex or F (·) is strongly monotone). Additionally, they show a slow convergence rate
for FW on polytopic sets without these curvature assumptions. In contrast, we analyze a smoothed
version of FW, also known as the generalized conditional gradient algorithm [2, 12], in MVIs. We
demonstrate that this generalized version of FW achieves fast convergence without imposing strong
curvature assumptions on either the operator or the underlying space. Crucially, the smoothing
technique allows us to bypass issues that arise with vanilla FW in saddle-point problems. Another
application of FW in MVIs is presented in [35], where FW is used to compute the iterates in
mirror-prox for MVIs.

Stochastic Monotone Variational Inequality Problems. There has been considerable recent work
on solving stochastic MVI problems, where one can only obtain noisy estimates of the operator
F (·). Such problems arise in multi-agent reinforcement learning [62] and distributionally robust
supervised learning [61], among other domains. However, the literature is sparser for this class of
problems, particularly regarding last-iterate convergence in constrained problems. Under curvature
assumptions (on F (·) and/or X ), stronger guarantees (both in expectation and with high probability)
exist for variants of extragradient and optimistic gradient algorithms [8, 28, 44]. Inspired by recent
results using FW for stochastic optimization [45, 20], we extend our smoothed FW algorithm to
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stochastic MVI problems and, to the best of our knowledge, provide the first last-iterate convergence
guarantee for an algorithm in constrained stochastic MVI problems without curvature assumptions
on the monotone operator. While the O(T−1/6) rate of convergence we derive for this algorithm
is slower than the known O(T−1/2) convergence rate for the averaged iterates of the mirror-prox
algorithm [36], it is important to note that the mirror-prox algorithm has been shown to diverge in
stochastic monotone problems [16]. Furthermore, in MVI problems, it has been demonstrated that
the averaged iterates can exhibit fundamentally faster convergence rates than the last iterate [26].

1.2 Our Contributions

We introduce and analyze a generalized FW algorithm for solving MVI problems. This algorithm
is a natural extension of the classic smoothed fictitious play (FP) algorithm for learning in games
[22], applied to monotone games and, by extension, to MVI problems. We show that the algorithm
achieves a fast last-iterate convergence rate of O(T−1/2), matching the rates of optimistic gradient
and extragradient algorithms. As a consequence of our analysis, we derive a finite-time bound for
smooth FP in finite zero-sum games.

We also consider the case of stochastic MVI problems, where only noisy estimates of F (·) are
available. We demonstrate that, by designing estimators similar to those used in stochastic FW for
optimization, it is possible to achieve last-iterate convergence in constrained MVI problems using
generalized FW, though at a slower rate of O(T−1/6). Although this rate is not optimal, it appears to
be the first last-iterate convergence rate for solving constrained stochastic MVI problems without
assuming strong curvature properties of the operator F (·) or the set X . Indeed, previous algorithms
have provided last-iterate guarantees either in the unconstrained setting [14] or under curvature
assumptions on F (·), such as strong (quasi)-monotonicity or coercivity [8].

2 Problem Formulation

Let F : X → Rd be a (possibly nonlinear) operator, where X is a convex and compact subset of Rd.
The associated variational inequality problem consists of solving for an x∗ ∈ X such that

max
s∈X

(x∗ − s)⊤F (x∗) ≤ 0. (1)

Although such problems canonically arise in optimization [54] and machine learning [39], where the
operator F (·) is usually the gradient of some objective function, the formulation is general enough to
capture other problems such as reinforcement learning [38] and learning in games [13]. Next, we
provide two illustrative examples.

Example 1: The Policy Evaluation Problem in Reinforcement Learning. Consider an infinite
horizon discounted Markov decision process (MDP) with a finite state space S , a finite action space
A, a set of action-dependent transition probability matrices {Pa ∈ R|S|×|S| | a ∈ A}, a reward
function R : S × A → R, and a discount factor γ ∈ (0, 1). The transition probabilities and the
reward function are unknown to the agent. Given a policy π : S → ∆(A), where ∆(A) denotes the
probability simplex on A, its value function V π ∈ R|S| is defined as

V π(s) = Eπ

[ ∞∑
t=0

γtR(St, At) | S0 = s

]
for all s ∈ S, where Eπ[ · ] means that the actions are chosen according to the policy π. The
policy evaluation problem in reinforcement learning refers to the problem of estimating V π for a
given policy π [57]. To solve this problem, it has been shown that V π is the unique solution of a
fixed-point equation known as the Bellman equation V = T π(V ), where T π : R|S| → R|S| is the
Bellman operator [50]. Therefore, solving the policy evaluation problem is equivalent to solving the
unconstrained variational inequality problem V − T π(V ) = 0.

Example 2: Multi-Player Convex-Concave Games. Consider an n-player game where each player
i ∈ {1, 2, · · · , n} has a compact convex action set Xi ⊆ Rdi and a loss function fi :

∏n
j=1 Xj → R

such that fi(xi, x−i) is convex in xi for all x−i ∈
∏

j ̸=i Xj . Such games have been well analyzed
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in the literature in economics [53] and more recently in machine learning [42]. Solving for a Nash
equilibrium [47] in this game can be formulated as solving for a point x∗ ∈ X :=

∏n
j=1 Xj such that

maxs∈X (x∗ − s)⊤F (x∗) ≤ 0, where

F (x) = [∇x1
f1(x1, x−1), · · · ,∇xn

fn(xn, x−n)], ∀x ∈ X .

Indeed, by convexity, we have for any x ∈ Rd that

max
s∈X

(x− s)⊤F (x) ≥
n∑

i=1

{fi(xi, x−i)− min
si∈Xi

fi(si, x−i)} ≥ 0,

where the equality is achieved if and only if a joint strategy x∗ = (x∗
1, · · · , x∗

n) satisfies fi(x∗
i , x

∗
−i) =

minsi∈Xi fi(si, x
∗
−i) for all i, which implies that x∗ is a Nash equilibrium of the game.

An important class of variational inequality problems is MVI problems where the operator F (·) is
monotone over X . Note that an operator F : X → Rd is said to be monotone if and only if

(F (x1)− F (x2))
⊤(x1 − x2) ≥ 0, ∀x1, x2 ∈ X . (2)

Despite this additional structure, designing algorithms for solving constrained MVI problems effi-
ciently and with strong convergence guarantees has been an open problem until recently [15], with
most work focused on analyzing approximations of proximal point algorithms such as extragradient
and optimistic gradient approaches [29, 30, 15].

Further generalizations of the MVI problem that are of particular interest for applications in machine
learning are stochastic MVI problems, where one only has access to a noisy estimator of F (x).
Such situations arise in, e.g., reinforcement learning (where the agent learns by interacting with the
environment) [57] and problems of distributionally robust optimization where one seeks to solve a
zero-sum game using mini-batches to estimate gradients [61, 48, 16].

The rest of this paper is organized as follows. To motivate the generalized FW algorithm for MVI
problems, we first present the smoothed FP, a canonical algorithm for learning in games, which
we view as the instantiation of generalized FW in zero-sum matrix games. We then introduce the
generalized FW algorithm for solving MVI problems and present its last-iterate convergence rate.
Moving to the stochastic setting, we propose a stochastic variant of the generalized FW algorithm also
with last-iterate convergence guarantees. Notably, the algorithm employs a two-timescale structure,
where we construct a variance-reduced estimator of F (x) on the fast timescale and implement the
generalized FW algorithm on the slow timescale.

3 Warm-Up: Smoothed Fictitious Play

In this section, we present the problem of finding a Nash equilibrium of a zero-sum game and
reformulate it as an MVI problem. In addition, we present the smoothed FP algorithm for zero-sum
games, which also motivates our algorithm for the MVI problem (1) in the next section.

Consider a two-player finite zero-sum game where the set of pure strategies1 for player i (where
i ∈ {1, 2}) is denoted by Ai. When players play over mixed strategies, we can write this game as
the min-max optimization problem minπ2∈∆(A2) maxπ1∈∆(A1)(π

1)⊤Rπ2, where R ∈ R|A1|×|A2|

is the payoff matrix. A canonical measure of the performance of algorithms for learning in such
games is the Nash gap, which measures how far each player is from their best response:

NG(π1, π2) = max
π̄1∈∆(A1)

(π̄1)⊤Rπ2 − min
π̄2∈∆(A2)

(π1)⊤Rπ̄2.

Suppose that a pair of strategies (π1
∗, π

2
∗) satisfies NG(π1

∗, π
2
∗) = 0. Then, each player is playing the

best response to their opponent’s strategy, thereby having no incentive to deviate from their current
strategy. This situation defines a Nash equilibrium [47].

Solving for a Nash equilibrium in such games has been a focus of interest in economics and the
literature on learning in games, dating back to [59]. One of the most canonical algorithms for learning
in games from that literature is FP, where players play the best responses to the empirical history

1We will use strategy and policy interchangeably.
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of their opponents’ actions. Subsequently, a generalization of that algorithm, smoothed FP, was
introduced as it was found to be a better model of human play, accounting for “trembling-hand”
strategies in games [22]. In smoothed FP, players again keep track the empirical history of their
opponents’ play but instead sample an action from a smoothed best-response strategy rather than
playing the exact best response.

More concretely, for any x ∈ Rd such that xi ≥ 0 for all i, let ν(x) = −
∑d

i=1 xi log(xi) be the
entropy function [55]. Given i ∈ {1, 2} and ai ∈ Ai, we use e(ai) to denote the |Ai|-dimensional
vector with its ai-th entry being one and zero everywhere else. Then, players make use of the
algorithm presented in Algorithm 1 for repeatedly playing the finite zero-sum games.

Algorithm 1 Smoothed Fictitious Play (from Player 1’s perspective)
1: Input: Integer T , temperature τ > 0, and initialization π2

0 ∈ ∆(A2)
2: for t = 0, 1, · · · , T − 1 do
3: v1t = argmaxv∈∆(A1)

{
v⊤Rπ2

t + τν(v)
}

4: Play A1
t ∼ v1t (·) and observe A2

t
5: π2

t+1 = π2
t +

1
t+1 (e(A

2
t )− π2

t )
6: end for

In smoothed FP, with an arbitrary initial estimate of the opponent’s policy π2
0 , in each round, player

1 plays the smoothed best response to its latest estimate of the opponent’s policy (cf. Algorithm 1
Line 4), and updates the estimate π2

t according to Algorithm 1 Line 5, which is an iterative way of
computing the empirical average of the opponent’s historical strategies.

Despite its canonical nature and its connection to classic algorithms in online learning, such as
Follow-The-Regularized-Leader (FTRL) [40], the algorithm lacks a finite-time convergence rate
guarantee, although it has been well analyzed in its continuous-time limit [33, 6]. To connect with
FTRL, suppose that player 1 observes v2t and does not know R, but has payoff-based feedback of
the form rt such that E[rt | A1

t , A
2
t ] = R(A1

t , A
2
t ). In this case, smoothed FP reduces to FTRL or

forms of FTRL with bandit feedback due to the linear structure of the losses. However, smoothed
FP assumes an unusual feedback structure (for online learning algorithms) in which each player is
assumed to know the payoff matrix R, but can only observe the realized actions of their opponent,
not the entire strategy v2t . Therefore, previous approaches for analyzing FTRL do not apply, and,
to the best of our knowledge, finite-time analysis of smoothed FP is still lacking in the literature,
although it has been shown to be asymptotically no-regret [6].

The following convergence rate of Algorithm 1 follows as a consequence of our more general results
of generalized FW. Since we are dealing with a finite game, we assume, without loss of generality,
that maxa1∈A1,a2∈A2 |R(a1, a2)| ≤ 1.

Theorem 3.1. Suppose that both players use smoothed FP in finite zero-sum games and τ ∈ (0, 1].
Then, we have for any t ≥ 0 that

E[NG(π1
t , π

2
t )] ≤

4
√
|A1|+ |A2|
t+ 1

+
36|A1||A2| log(t+ 1)

τ(t+ 1)
+ τ log(|A1||A2|).

The proof of Theorem 3.1 is presented in Appendix A. In view of Theorem 3.1, given a time horizon
T , by choosing τ = O

(
T−1/2

)
, we have an Õ

(
T−1/2

)
rate of convergence of the empirical history

of the play. Equivalently, we have the following iteration complexity for the algorithm.

Corollary 3.1.1. To achieve E[NG(π1
t , π

2
t )] ≤ ϵ, the iteration complexity is Õ(|A1||A2|/ϵ2).

To identify Algorithm 1 for zero-sum games as a special case of generalized FW for MVI problems,
observe that the Nash gap NG(·, ·) can be rewritten as

NG(x1, x2) = max
s∈X

(x− s)⊤F (x), (3)

where x = (x1, x2) ∈ X := ∆(A1) × ∆(A2) and F (x) = Mx with the matrix M defined as
M = [0|A

1|×|A2|,−R;R⊤, 0|A
2|×|A1|]. Since M + M⊤ = 0, it is clear that F (·) is a monotone
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operator. In addition, when both players follow smooth FP as presented in Algorithm 1, the joint
update equation can be equivalently written as

st =argmins∈X {s⊤F (xt) + τf(s)}, (4)
xt+1 =xt − αt(xt − st + wt), (5)

where f(s) = −ν(s1)− ν(s2) for any s = (s1, s2) ∈ X , and wt is a zero-mean random variable. In
smoothed FP, the random variable wt corresponds to the difference between the softmax distribution
(cf. Algorithm 1 Line 3) and a sample from the softmax distribution (cf. Algorithm 1 Line 4). In
view of Eqs. (3), (4), and (5), we see that smoothed FP for zero-sum matrix games is simply a
generalization of FW for MVI problems. Although this algorithm has been well analyzed in the
optimization literature (i.e., when F (·) is the gradient of some objective function) [2, 11, 12], it has
yet to be analyzed, to the best of our knowledge, in the context of more general MVI problems. In
the next section, we show that this algorithm has strong convergence properties.

4 Generalized Frank-Wolfe for Monotone Variational Inequalities

Motivated by the smoothed FP for zero-sum games, we next present our algorithm and convergence
guarantees for solving general MVI problems.

Algorithm 2 Generalized Frank-Wolfe for Monotone Variational Inequalities
1: Input: Integer T , tunable parameter τ > 0, and initialization x0 ∈ Rd

2: for t = 0, 1, · · · , T − 1 do
3: st = argmins∈X {s⊤F (xt) + τf(s)}
4: xt+1 = xt − αt(xt − st + wt)
5: end for

In Algorithm 2 Line 3, the function f : X → [0,∞) serves as a regularizer (analogous to the entropy
function in smoothed FP), for which we impose the following requirement.
Condition 4.1. The function f(·) is continuously differentiable and σf -strongly convex for some
σf > 0. In addition, limx→∂X ∥∇f(x)∥2 = +∞, where ∂X = X \ relintRdX denotes the boundary
of the convex compact subset X of Rd.

Differentiability and strong convexity are standard requirements when choosing regularizers. The
condition that limx→∂X ∥∇f(x)∥2 = +∞ ensures that the generalized FW direction st from
Algorithm 2 Line 3 always lies in the relative interior of X . These conditions are satisfied by, e.g.,
the sum of negative entropies when the compact convex set X is the product of probability simplicies.
Note that when τ = 0, the algorithm recovers the vanilla version of FW analyzed in [24] for saddle
point problems. Although the use of regularization precludes the use linear minimization oracles
(LMOs), which is one of the main features that make FW algorithms so appealing [34, 49], we remark
that it does not add additional complexity to the algorithm when compared to projected extragradient
and optimistic gradient methods. Specifically, note that the subproblem that appears in Algorithm
2 Line 3 is a strongly convex optimization problem and can be solved efficiently or even admits
closed-form solutions. For example, when X the probability simplex and f(·) is the negative entropy,
the FW direction st is the softmax operator.

To derive our convergence guarantees, we impose the following assumptions on the operator F (·)
and the stochastic process {wt}.
Assumption 4.1. The operator F (·) is Lipschitz continuous, i.e., there exists LF > 0 such that

∥F (x1)− F (x2)∥2 ≤ LF ∥x1 − x2∥2, ∀x1, x2 ∈ X .

Assumption 4.2. The operator F (·) has a Lipschitz continuous Jacobian matrix J(·), i.e., there exists
LJ > 0 such that

∥J(x1)− J(x2)∥2 ≤ LJ∥x1 − x2∥2, ∀x1, x2 ∈ X .

In zero-sum games, due to the linear structure of F (·), the Jacobian matrix is the zero matrix.
Therefore, Both Assumptions 4.1 and 4.2 are automatically satisfied. In optimization, F (·) is the
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gradient of the objective function that we aim to optimize, and Assumptions 4.1 and 4.2 are equivalent
to assuming the smoothness of the objective function [4] and the Lipschitz continuity of the Hessian
matrix.
Assumption 4.3. It holds for all t ≥ 0 that (1) st − wt ∈ X , (2) E[wt | Ft] = 0, (3) E[∥wt∥22 |
Ft] ≤ σw, where σw > 0 and Ft is the σ-algebra generated by {x0, w0, w1, · · · , wt−1}.

When σw = 0, Algorithm 2 is a deterministic algorithm. More generally, we allow for this additive
martingale difference noise to capture the potential stochasticity in choosing the FW direction, which
is present in, e.g., smoothed FP, due to sampling an action according to the smoothed best response.

To state our main result for generalized FW in MVI problems, the following notation is needed.
Let DX = maxx∈X ∥x∥2, F̄ = maxx∈X ∥F (x)∥2, and f̄ = maxx∈X f(x), all of which are well
defined and finite due to the Weierstrass extreme value theorem because F (·) and f(·) are continuous
functions and X is a compact set. Next, we present the convergence guarantee on the iterates of
Algorithm 2 when using stepsizes of various decay rates.
Theorem 4.1. Consider {xt} updated according to Algorithm 2. Suppose that F (·) is a monotone
operator on X , and Assumptions 4.1, 4.2, and 4.3 are satisfied. Then, when the regularizer f(·)
satisfies Condition 4.1, we have for all t ≥ 0 that

E
[
max
s∈X

(xt − s)⊤F (xt)

]
≤


2DX F̄ (1− α)t + c1α+ τ f̄ , when αt ≡ α ≤ 1,

2DX F̄

t+ 1
+

c1 log(t+ 1)

t+ 1
+ τ f̄ , when αt =

1

t+ 1
,

where c1 = (LF + L2
F /(2τσf ) +DXLJ)(σw + 4D2

X ).

The proof of Theorem 4.1 is presented in Appendix B.2. Note that for a given time horizon T , choosing
τ = O(T−1/2) results in an overall Õ(T−1/2) last-iterate convergence rate to a solution to the MVI
problem. The problem-dependent constants DX , F̄ , and f̄ appear additively or multiplicatively in
the bound but do not impact the overall Õ(T−1/2) rate of convergence.

Corollary 4.1.1. To achieve E[maxs∈X (xt − s)⊤F (xt)] ≤ ϵ, the iteration complexity is Õ(ϵ−2).

This convergence rate matches the last-iterate convergence rate recently proved for extragradient
and optimistic gradient algorithms for constrained MVI problems [15]. In contrast to the analyses
of those algorithms which requires computer-aided proofs such as the sum of squares programming
[15] or performance estimation problems [29], our proof follows from a simple Lyapunov argument
on the regularized gap V (·), which is defined as

V (x) = max
s∈X

{
(x− s)⊤F (x)− τf(s)

}
. (6)

A key step in proving Theorem 4.1 is the following lemma, which shows the smooth evolution of the
generalized FW directions {st}. For notation convenience, let s(x) = argmins∈X {s⊤F (x)+τf(s)}
for all x ∈ X .
Lemma 4.1. It holds for all x1, x2 ∈ X that ∥s(x1)− s(x2)∥2 ≤ LF

τσf
∥x1 − x2∥2.

The proof of Lemma 4.1 is presented in Appendix B.1. As a last comment, note that while the
Õ(T−1/2) convergence rate is known to be tight for extragradient and optimistic gradient algorithms
[15, 25] (since they both can be seen as instantiations of p-stationary canonical linear iterative algo-
rithms), it is unclear whether this rate is tight for FW-type algorithms. We leave further explorations
of fundamental lower bounds to future work. We also carried out experiments to numerically compare
the performance of our algorithm with those proposed in the literature. Due to space limitation, the
results are reported in Appendix D.

5 Generalized Frank-Wolfe for Stochastic Monotone Variational Inequalities

We now analyze the case where instead of having an accurate F (·), we only have access to a noisy
estimator of F (·). This happens often in optimization and machine learning, where we sometimes
do not have enough information or enough computational power to fully evaluate the operator F (·).
Note that this is different from the additive noise wt in Algorithm 2 Line 4, which captures the
stochasticity in choosing the FW direction.
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In general, incorporating stochasticity into FW algorithms in optimization is known to be nontrivial
when the variance of the noise, though bounded, is not sufficiently small. When there is only access
to a noisy oracle for F (xt), the stochasticity enters the algorithm in a nonlinear manner through
the computation of the smoothed FW direction. Consequently, developing algorithms with strong
convergence guarantees becomes fundamentally more challenging. To illustrate this, suppose that
we directly use a noisy estimate F (xt) + zt (where zt represents the noise) in place of F (xt) in
Algorithm 2 Line 3 to compute the FW direction st. Despite replacing the hardmin with a softmin
(by introducing a regularizer), the FW direction st remains highly sensitive to the noise zt because
the FW direction computed from the exact F (xt) and its noisy counterpart F (xt) + zt could differ
significantly. As a result, due to the lack of control over the noise, it has been observed that using a
noisy estimator of the operator F (·) in place of F (·) can lead to the divergence of the algorithm [16].

To overcome this issue, existing approaches to stochastic FW often build reduced-variance estimators
of the operator F (·). One of the most common methods to achieve this is by averaging the estimates.
Inspired by this approach, we develop a stochastic generalized FW algorithm for constrained MVI
problems, where we first average the noisy estimates of F (·) through an iterative framework. This
results in Algorithm 3 presented in the following. For ease of exposition, we only present the
algorithm with constant stepsizes.

Algorithm 3 Stochastic Frank-Wolfe for Monotone Variational Inequalities
1: Input: Integer T , tunable parameter τ , and initialization x0 ∈ X and y0 ∈ Rd.
2: for t = 0, 1, · · · , T − 1 do
3: yt+1 = yt + β(F (xt) + zt − yt)
4: st = argmins∈X {s⊤yt+1 + τf(s)}
5: xt+1 = xt − α(xt − st)
6: end for

The key step in Algorithm 3 is Line 3, where we build a sequence of estimators {yt} for {F (xt)} by
averaging the newly observed noisy estimate F (xt) + zt with past information. To illustrate, since
yt+1 is a convex combination (with parameter β) of the previous iterate yt and F (xt)+zt, we see that
for any t, yt is essentially a convex combination (hence a weighted average) of {F (xi)+ zi}0≤i≤t−1.
Suppose that xt were stationary (i.e., xt ≡ x for some x), then yt effectively becomes a variance-
reduced estimator of F (x). To extend this idea to time-varying xt, we choose the stepsizes α and β
such that β ≫ α, creating a two-timescale structure [9]. This ensures that, from the perspective of
yt, xt is nearly stationary, allowing yt to converge to F (xt) on a faster timescale. As a result, the xt

iterates should behave similarly to the case where we have an accurate estimate of F (·). In Lemma
5.1, we show that this is indeed the case for the y-process.

To present the lemma, we first formally state our assumption on the noise sequence {zt}.

Assumption 5.1. It holds for all t ≥ 0 that E[zt | Ft] = 0 and E[∥zt∥22 | Ft] ≤ σz for some σz > 0,
where Ft is the σ-algebra generated by {x0, y0, z0, z1, · · · , zt−1}.

The next lemma bounds the distance between the estimator yt and the desired target F (xt). The
proof is presented in Appendix C.1.

Lemma 5.1. Suppose that Assumptions 4.1 and 5.1 are satisfied and β ∈ (0, 1). Then, we have for
any t ≥ 0 that

E[∥yt − F (xt)∥22] ≤
(
1− 3β

4

)t

∥y0 − F (x0)∥2 +
8βσz

3
+

32LFD
2
Xα2

β2
. (7)

In view of the last term on the right-hand side of Eq. (7), to make E[∥yt − F (xt)∥22] sufficiently
small, we need the ratio between the stepsizes, i.e., α/β, to be sufficiently small. This mathematically
justifies the two-timescale structure in Algorithm 3. Notably, Lemma 5.1 holds irrespective of the
monotonicity of F (·) and only makes use of its assumed Lipschitz continuity. Using this lemma
allows us to prove the following result for stochastic FW in constrained MVI problems.

Theorem 5.1. Consider {xt} generated by Algorithm 3. Suppose that F (·) is a monotone operator
on X , Assumptions 4.1, 4.2, and 5.1 are satisfied, and the regularizer f(·) satisfies Condition 4.1.
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Then, when choosing β = 8α2/3/3 ∈ (0, 1), we have for any t ≥ 0 that

E
[
max
s∈X

(xt − s)⊤F (xt)

]
≤ c̄1t (1− α)

t
+

c̄2α
1/3

τ
+

c̄3α
2/3

τ
+

c̄4α

τ
+ c̄5α+ τ f̄ ,

where {c̄i}1≤i≤5 are problem-dependent constants. See Appendix C.2 for their explicit expressions.

A proof sketch of Theorem 5.1 is presented in Section 6, and the complete proof can be found in
Appendix C.2. Based on Theorem 5.1, we have the following iteration complexity.

Corollary 5.1.1. To achieve E[maxs∈X (xt − s)⊤F (xt)] ≤ ϵ, the iteration complexity is Õ(ϵ−6).

Once again, we remark that, to the best of our knowledge, this appears to be the first algorithm
with a last-iterate convergence guarantee in constrained stochastic MVI problems. The guarantees
for variants of gradient-based algorithms are on the averaged iterate or under strong curvature
assumptions on F (·) or X [8]. Numerical simulations are provided in Appendix D to verify the
last-iterate convergence of our proposed algorithm.

Our iteration complexity of Õ(ϵ−6) is slower than the O(ϵ−2) enjoyed by stochastic mirror-prox
algorithms in an averaged-iterate sense [36]. Despite the fact that we have last-iterate convergence,
we believe that the above bound is not tight since using the same estimator in convex optimization
problems results in an O(ϵ−3) rate of convergence [45]. The reason for the potential looseness in our
analysis is due to the fact that F (·) is not the gradient of a function and as such we must rely on the
smoothness of the estimated FW direction st, which results in a suboptimal relationship between the
hyperparameter τ and E[∥yt − F (xt)∥22] in our analysis.

6 Proof Sketch of Theorem 5.1

Here, we present an outline of the proof of Theorem 5.1, which uses Lyapunov-based arguments. The
proof of Theorem 4.1 follows a similar approach.

The first step in proving Theorem 5.1 is to establish Lemma 5.1, which shows that our constructed
estimator yt indeed keeps track of the desired target F (xt).

6.1 Proof Sketch of Lemma 5.1

We will use ∥yt − F (xt)∥22 as a Lyapunov function to study the evolution of yt. To begin with, for
any t ≥ 0, we have by Algorithm 3 Line 3 that

∥yt+1 − F (xt+1)∥22 = ∥(1− β)yt + β(F (xt) + zt)− F (xt+1)∥22
= ∥(1− β)(yt − F (xt)) + βzt + F (xt)− F (xt+1)∥22
=(1− β)2∥yt − F (xt)∥22 + β2∥zt∥22 + ∥F (xt)− F (xt+1)∥22

+ 2(1− β)β(yt − F (xt))
⊤zt + 2βz⊤t (F (xt)− F (xt+1))

+ 2(1− β)(yt − F (xt))
⊤(F (xt)− F (xt+1)).

Taking expectations conditioned on Ft on both sides of the previous inequality, and using Assumption
5.1 for the noise sequence {zt}, along with some algebraic manipulations, we obtain

E[∥yt+1 − F (xt+1)∥22 | Ft] ≤
(
1− 3β

4

)
∥yt − F (xt)∥22 + 2β2σz

+
6

β
E[∥F (xt)− F (xt+1)∥22 | Ft].

The details are presented in Appendix C.1. By the Lipschitz continuity of F (·) (cf. Assumption 4.1),
we have

E[∥F (xt)− F (xt+1)∥22 | Ft] ≤ LFE[∥xt+1 − xt∥22 | Ft]

= LFα
2E[∥st − xt∥22 | Ft]

≤ 4LFD
2
Xα2,
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where the equality follows from Algorithm 3 Line 5. Combining the previous two inequalities
together, we obtain

E[∥yt+1 − F (xt+1)∥22 | Ft] ≤
(
1− 3β

4

)
∥yt − F (xt)∥22 + 2β2σz +

24LFD
2
Xα2

β
.

The final result follows by first taking total expectations on both sides of the previous inequality and
then repeatedly using the resulting inequality.

6.2 Proof Sketch of Theorem 5.1.

Given the proof of convergence for our estimator yt of F (xt), we now give an overview of the proof
of Theorem 5.1. Let s∗t = argmins∈X {s⊤F (xt+1) + τf(s)}. Using V (·) defined in Eq. (6) as our
Lyapunov function, we have, after some algebra, that for any t ≥ 0:

V (xt+1) ≤ (1− α)V (xt) + αF (xt)
⊤(st − s∗t−1) + 2LV D

2
Xα2, (8)

where LV is a problem-dependent constant (cf. Lemma B.1). See Appendix C.2 for more details. It
remains to bound the term F (xt)

⊤(st − s∗t−1). Using Lemma 4.1, we have

F (xt)
⊤(st − s∗t−1) ≤∥F (xt)∥2∥st − s∗t−1∥2

≤ F̄LF

τσf
∥yt+1 − F (xt)∥2

≤ F̄LF

τσf
(∥yt+1 − yt∥2 + ∥yt − F (xt)∥2)

≤ F̄LF

τσf
(β∥F (xt)− yt∥2 + β∥zt∥2 + ∥yt − F (xt)∥2) (Algorithm 3 Line 3)

≤ F̄LF

τσf
(β∥zt∥2 + 2∥yt − F (xt)∥2),

where the last inequality follows from β ∈ (0, 1). Using the upper bound we obtained for the
term F (xt)

⊤(st − s∗t−1) in Eq. (8) and then taking total expectation on both sides of the resulting
inequality, we have

E[V (xt+1)] ≤ (1− α)E[V (xt)] +
F̄LFβα

τσf
σ1/2
z +

2F̄LFα

τσf
E1/2[∥yt − F (xt)∥22] + 2LV D

2
Xα2.

Finally, substituting the upper bound we obtained for E[∥F (xt+1)− yt+1∥22] in Lemma 5.1 into the
previous inequality and then repeatedly using it, we obtain the desired finite-time bound. The details
are presented in Appendix C.2.

7 Conclusion

In this work, we study generalized FW algorithms in constrained MVI problems. We show that the
algorithm enjoys last-iterate convergence guarantees. As a consequence of our results, we prove
the rate of convergence for smoothed FP. We believe that this class of algorithms warrants further
exploration. While extragradient and optimistic gradient algorithms can be seen as approximations to
proximal point algorithms and consequently can be seen as discretizations of the ODE ẋ = F (x),
FW algorithms and consequently generalized FW algorithms are not necessarily related to this ODE
and can thus be viewed as a new class of algorithms for such problems.

An interesting future direction of this work is to develop results for the case where τ = 0. This
corresponds to the regime in which FW algorithms are particularly useful since they require no
projection and instead only an LMO. However, as commented on in [24], without additional curvature
assumptions on X besides convexity, this case seems fundamentally more difficult due to the potential
non-uniqueness and non-smoothness of the FW direction s = argmins∈X s⊤F (x).
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Appendices

A Proof of Theorem 3.1

Observe that Algorithm 1 is a special case of Algorithm 2 with

F (x) =F (π1, π2) =

[
0 −R
R⊤ 0

] [
π1

π2

]
,

J(x) =

[
0 −R
R⊤ 0

]⊤
,

f(x) = f(π1, π2) = −ν(π1)− ν(π2) + log(|A1||A2|),

wt =

[
e(A1

t )− v1t
e(A2

t )− v2t

]
.

In addition, since maxa1,a2 |R(a1, a2)| ≤ 1 we have LF ≤
√

|A1||A2|, LJ = 0, F̄ ≤√
|A1|+ |A2|, f̄ ≤ log(|A1||A2|), σf = 1, σw ≤ 8, and DX ≤ 2. Now, applying Theorem

4.1 with αt = 1/(t+ 1), since τ ≤ 1, we have

NG(π1, π2) ≤
4
√
|A1|+ |A2|
t+ 1

+
36|A1||A2|

τ

log(t+ 1)

t+ 1
+ τ log(|A1||A2|).

B Proof of All Technical Results in Section 4

B.1 Proof of Lemma 4.1

Since s⊤F (x) + τf(s) as a function of s is τσf -strongly convex uniformly for all x ∈ X and the
feasible set X is convex and compact, there is a unique global minimizer to the optimization problem
mins∈X {s⊤F (x)+ τf(s)}. Moreover, since f(·) is chosen such that lims→∂X ∥∇f(s)∥ = +∞ (cf.
Condition 4.1), the unique optimal solution to mins∈X {s⊤F (x) + τf(s)} must lie in the interior of
the feasible set X . Therefore, for any x1, x2 ∈ X , we have by the first-order optimality condition that

F (x1) + τ∇f(s(x1)) = 0, F (x2) + τ∇f(s(x2)) = 0.

It follows that

F (x1)− F (x2) = τ(∇f(s(x2))−∇f(s(x1))).

Using the σf -strong convexity of f(·) and Assumption 4.1, we have

τσf∥s(x1)− s(x2)∥2 ≤ τ∥∇f(s(x2))−∇f(s(x1))∥2
= ∥F (x1)− F (x2)∥2
≤LF ∥x1 − x2∥2,

which implies ∥s(x1)− s(x2)∥2 ≤ LF

τσf
∥x1 − x2∥2.

B.2 Proof of Theorem 4.1

Recall that we use V : X → R defined as V (x) = maxs∈X {(x − s)⊤F (x) − τf(s)} as our
Lyapunov function. The goal here is to show that xt updated according to Algorithm 2 produces a
negative drift with respect to V (·). The following lemma is needed to establish the result.
Lemma B.1. The Lyapunov function V (·) is LV -smooth with respect to ∥ · ∥2, where LV =

2LF +
L2

F

τσf
+ 2DXLJ .

Proof of Lemma B.1. To show the smoothness of V (·), it is enough to show that the gradient operator
∇V (·) is Lipschitz continuous. To compute the gradient of V (·), apply Danskin’s theorem [7] and
we have

∇V (x) = F (x) + J(x)⊤(x− s(x)), ∀x ∈ X ,
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where we recall that s(x) = argmaxs∈X {(x− s)⊤F (x)− τf(s)}. For any x1, x2 ∈ X , we have

∇V (x1)−∇V (x2) =F (x1) + J(x1)
⊤(x1 − s(x1))− F (x2)− J(x2)

⊤(x2 − s(x2))

=F (x1)− F (x2) + J(x1)
⊤(x1 − x2 + s(x2)− s(x1))

+ (J(x1)− J(x2))
⊤(x2 − s(x2)).

Using triangle inequality, Assumption 4.1, Assumption 4.2, and Lemma 4.1, we obtain

∥∇V (x1)−∇V (x2)∥2 ≤∥F (x1)− F (x2)∥2 + ∥J(x1)∥2(∥x1 − x2∥2 + ∥s(x2)− s(x1)∥2)
+ ∥J(x1)− J(x2)∥2∥x2 − s(x2)∥2

≤LF ∥x1 − x2∥2 + LF

(
1 +

LF

τσf

)
∥x1 − x2∥2 + 2DXLJ∥x1 − x2∥2

=

(
2LF +

L2
F

τσf
+ 2DXLJ

)
∥x1 − x2∥2

=LV ∥x1 − x2∥2.

Now, we are ready to prove Theorem 4.1. Using the smoothness of V (·), the explicit expression of
∇V (xt) (both established in Lemma B.1), and the update equation in Algorithm 2 Line 3, we have
for any t ≥ 0 that

V (xt+1) ≤V (xt) +∇V (xt)
⊤(xt+1 − xt) +

LV

2
∥xt+1 − xt∥22

=V (xt)− αt(F (xt) + J(xt)
⊤(xt − st))

⊤(xt − st + wt) +
LV α

2
t

2
∥xt − st + wt∥22

=V (xt)− αtF (xt)
⊤(xt − st + wt)− αt(xt − st)

⊤J(xt)(xt − st + wt)

+
LV α

2
t

2
∥xt − st + wt∥22.

Taking expectations on both sides of the previous inequality, since {wt} is a martingale difference
sequence, we have

E[V (xt+1)] ≤E[V (xt)] + αtE[F (xt)
⊤(st − xt)]− αtE[(xt − st)

⊤J(xt)(xt − st)]

+
LV α

2
t

2
E[∥xt − st + wt∥22]. (9)

Next, we bound each term on the right-hand side of the previous inequality.

For the first term on the right-hand side of Eq. (9), observe that

F (xt)
⊤(st − xt) ≤ −F (xt)

⊤(xt − st) + τf(st) = −V (xt).

Therefore, we have

E[F (xt)
⊤(st − xt)] ≤ −E[V (xt)]. (10)

For the second term on the right-hand side of Eq. (9), since F (·) is monotone, the Jacobian matrix
J(·) is positive semidefinite. Therefore, we have

E[(xt − st)
⊤J(xt)(xt − st)] ≥ 0. (11)

For the third term on the right-hand side of Eq. (9), using Assumption 4.3, we have

E[∥xt − st + wt∥22] =E[∥xt − st∥22 + ∥wt∥22 + 2(xt − st)
⊤wt]

≤ 4D2
X + σw. (12)

Combining Eqs. (10), (11), and (12) with Eq. (9), we have

E[V (xt+1)] ≤ (1− αt)E[V (xt)] +
LV (4D

2
X + σw)α

2
t

2
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=(1− αt)E[V (xt)] + c1α
2
t ,

where we denote c1 = LV (4D
2
X + σw)/2 for simplicity of notation. Repeatedly using the previous

inequality, we have for all t ≥ 0 that

E[V (xt)] ≤
t−1∏
j=1

(1− αj)V (x0) + c1

t−1∑
i=0

α2
i

t−1∏
j=i+1

(1− αj) .

Finally, since

max
s∈X

(x− s)⊤F (x)− τ f̄ ≤ V (x) ≤ max
s

(x− s)⊤F (x) ≤ 2DX F̄ , ∀x ∈ X ,

we have for all t ≥ 0 that

E
[
max
s∈X

(xt − s)⊤F (xt)

]
≤ 2DX F̄

t−1∏
j=1

(1− αj) + c1

t−1∑
i=0

α2
i

t−1∏
j=i+1

(1− αj) + τ f̄ . (13)

Constant Stepsizes. When αt ≡ α, we have
t−1∏
j=0

(1− αj) = (1− α)t, and
t−1∑
i=0

α2
i

t−1∏
j=i+1

(1− αj) ≤ α.

It follows from Eq. (13) that

E
[
max
s∈X

(xt − s)⊤F (xt)

]
≤ 2DX F̄ (1− α)t + c1α+ τ f̄ .

Diminishing Stepsizes. When αt = 1/(t+ 1) for all t ≥ 0, we have
t−1∏
j=1

(1− αj) =

t−1∏
j=1

j

j + 1
=

1

t+ 1

and
t−1∑
i=0

α2
i

t−1∏
j=i+1

(1− αj) =

t−1∑
i=0

1

(i+ 1)2

t−1∏
j=i+1

j

j + 1
=

1

t+ 1

t−1∑
i=0

1

(i+ 1)
≤ log(t+ 1)

t+ 1
.

It follows that

E
[
max
s∈X

(xt − s)⊤F (xt)

]
≤ 2DX F̄

t+ 1
+

c1 log(t+ 1)

t+ 1
+ τ f̄ .

C Proof of All Technical Results in Section 5

C.1 Proof of Lemma 5.1

For any t ≥ 0, we have

∥yt+1 − F (xt+1)∥22 = ∥(1− β)yt + β(F (xt) + zt)− F (xt+1)∥22
= ∥(1− β)(yt − F (xt)) + βzt + F (xt)− F (xt+1)∥22
=(1− β)2∥yt − F (xt)∥22 + β2∥zt∥22 + ∥F (xt)− F (xt+1)∥22

+ 2(1− β) (yt − F (xt))
⊤(F (xt)− F (xt+1))︸ ︷︷ ︸

:=E1

+ 2β z⊤t (F (xt)− F (xt+1))︸ ︷︷ ︸
:=E2

+2(1− β)β(yt − F (xt))
⊤zt. (14)

Using Cauchy–Schwarz inequality, we have

E1 =(yt − F (xt))
⊤(F (xt)− F (xt+1))
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≤∥yt − F (xt)∥2∥F (xt)− F (xt+1)∥2

≤ β

8
∥yt − F (xt)∥22 +

2

β
∥F (xt)− F (xt+1)∥22,

where the last inequality follows from a2 + b2 ≥ 2ab for any a, b ∈ R. Similarly, we also have

E2 = z⊤t (F (xt)− F (xt+1))

≤∥zt∥2∥F (xt)− F (xt+1)∥2

≤ β

2
∥zt∥22 +

1

2β
∥F (xt)− F (xt+1)∥22.

Combining the previous two inequalities with Eq. (14) and then taking expectations on both sides,
we obtain

E[∥yt+1 − F (xt+1)∥22] ≤ (1− β)2E[∥yt − F (xt)∥22] + β2E[∥zt∥22] + E[∥F (xt)− F (xt+1)∥22]

+
β

4
E[∥yt − F (xt)∥22] +

4

β
E[∥F (xt)− F (xt+1)∥22]

+ β2E[∥zt∥22] + E[∥F (xt)− F (xt+1)∥22]
+ 2(1− β)βE[(yt − F (xt))

⊤E[zt | Ft]]

≤
(
1− 3β

4

)
E[∥yt − F (xt)∥22] + 2β2σz +

6

β
E[∥F (xt)− F (xt+1)∥22]︸ ︷︷ ︸

:=E3

,

where the last line follows from Assumption 5.1 and the fact that β ∈ (0, 1).

It remains to bound the term E3 on the right-hand side of the previous inequality. Observe that

E[∥F (xt)− F (xt+1)∥22] ≤LFE[∥xt+1 − xt∥22] (Assumption 4.1)

=LFα
2E[∥st − xt∥22] (Algorithm 3 Line 5)

≤ 4LFD
2
Xα2.

Therefore, we have

E[∥yt+1 − F (xt+1)∥22] ≤
(
1− 3β

4

)
E[∥yt − F (xt)∥22] + 2β2σz +

24LFD
2
Xα2

β
.

Repeatedly using the previous inequality, we obtain

E[∥yt − F (xt)∥22] ≤
(
1− 3β

4

)t

∥y0 − F (x0)∥22 +
8βσz

3
+

32LFD
2
Xα2

β2
.

C.2 Proof of Theorem 5.1

Recall that s∗t := argmins∈X {s⊤F (xt+1) + τf(s)}. Using the smoothness of V (·), the explicit
expression of ∇V (xt) (both established in Lemma B.1), and the update equation in Algorithm 3 Line
5, we have for any t ≥ 0 that

V (xt+1) ≤V (xt) +∇V (xt)
⊤(xt+1 − xt) +

LV

2
∥xt+1 − xt∥22

=V (xt)− α(F (xt) + J(xt)
⊤(xt − st))

⊤(xt − st) +
LV α

2

2
∥xt − st∥22

=V (xt)− αF (xt)
⊤(xt − st)− α(xt − st)

⊤J(xt)(xt − st) +
LV α

2

2
∥xt − st∥22

≤V (xt)− αF (xt)
⊤(xt − st) + 2LV D

2
Xα2 (J(·) is positive semidefinite)

=V (xt)− αF (xt)
⊤(xt − s∗t−1)− αF (xt)

⊤(s∗t−1 − st) + 2LV D
2
Xα2

≤ (1− α)V (xt) + αF (xt)
⊤(st − s∗t−1) + 2LV D

2
Xα2, (15)

where the last line follows from the definition of V (·). To proceed, observe that

F (xt)
⊤(st − s∗t−1) ≤∥F (xt)∥2∥st − s∗t−1∥2
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≤ F̄LF

τσf
∥yt+1 − F (xt)∥2 (Lemma 4.1)

≤ F̄LF

τσf
(∥yt+1 − yt∥2 + ∥yt − F (xt)∥2)

≤ F̄LF

τσf
(β∥F (xt)− yt∥2 + β∥zt∥2 + ∥yt − F (xt)∥2) (Algorithm 3 Line 3)

≤ F̄LF

τσf
(β∥zt∥2 + 2∥yt − F (xt)∥2),

where the last line follows from β ∈ (0, 1). Combining the previous inequality with Eq. (15), we
have

V (xt+1) ≤ (1− α)V (xt) +
F̄LFβα

τσf
∥zt∥2 +

2F̄LFα

τσf
∥yt − F (xt)∥2 + 2LV D

2
Xα2.

Taking expectations on both sides of the previous inequality, we have

E[V (xt+1)] ≤ (1− α)E[V (xt)] +
F̄LFβα

τσf
σ1/2
z +

2F̄LFα

τσf
E1/2[∥yt − F (xt)∥22] + 2LV D

2
Xα2,

where we used E[∥zt∥2] ≤ E1/2[∥zt∥22] = E1/2[E[∥zt∥22 | Ft]] ≤ σ
1/2
z and E[∥yt − F (xt)∥2] ≤

E1/2[∥yt − F (xt)∥22]. Using Lemma 5.1 to bound E[∥yt − F (xt)∥22], we have

E[V (xt+1)] ≤ (1− α)E[V (xt)] +
F̄LFβα

τσf
σ1/2
z + 2LV D

2
Xα2

+
2F̄LFα

τσf

((
1− 3β

4

)t/2

∥y0 − F (x0)∥2 + 3β1/2σ1/2
z +

6L
1/2
F DXα

β

)
,

where we use
√
a+ b+ c ≤

√
a +

√
b +

√
c for any a, b, c ≥ 0. Repeatedly using the previous

inequality, since choosing β = 8α2/3/3 implies 1− 3β/4 ≤ (1− α)2, we have

E[V (xt)] ≤ (1− α)tV (x0) +
F̄LFβ

τσf
σ1/2
z +

2F̄LFα

τσf
t (1− α)

t−1 ∥y0 − F (x0)∥2

+
2F̄LF

τσf

(
3β1/2σ1/2

z +
6L

1/2
F DXα

β

)
+ 2LV D

2
Xα.

Using β = 8α2/3/3 ∈ (0, 1) (which also implies α ≤ 1− α) and the explicit expression of LV from
Lemma B.1 in the previous inequality, we have

E[V (xt)] ≤ (1− α)tV (x0) +
8F̄LFσ

1/2
z α2/3

3τσf
+

2F̄LF

τσf
t (1− α)

t ∥y0 − F (x0)∥2

+
18F̄LF

τσf

(
σ1/2
z +

L
1/2
F DX

4

)
α1/3 + 4(LF +DXLJ)D

2
Xα+

2L2
FD

2
X

τσf
α

Recall that

max
s∈X

(x− s)⊤F (x)− τ f̄ ≤ V (x) ≤ max
s

(x− s)⊤F (x) ≤ 2DX F̄ , ∀x ∈ X .

Therefore, we obtain the following finite-time bound:

E
[
max
s∈X

(xt − s)⊤F (xt)

]
≤ 2DX F̄ (1− α)t +

8F̄LFσ
1/2
z α2/3

3τσf
+

2F̄LF

τσf
t (1− α)

t ∥y0 − F (x0)∥2

+
18F̄LF

τσf

(
σ1/2
z +

L
1/2
F DX

4

)
α1/3 + 4(LF +DXLJ)D

2
Xα+

2L2
FD

2
X

τσf
α+ τ f̄
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= c̄1t (1− α)
t
+

c̄2α
1/3

τ
+

c̄3α
2/3

τ
+

c̄4α

τ
+ c̄5α+ τ f̄ ,

where

c̄1 =2DX F̄ +
2F̄LF

τσf
∥y0 − F (x0)∥2, c̄2 =

18F̄LF

σf

(
σ1/2
z +

L
1/2
F DX

4

)
, c̄3 =

8F̄LFσ
1/2
z

3σf
,

c̄4 =
2D2

XL2
F

σf
, c̄5 = 4(LF +DXLJ)D

2
X .

The proof is complete.

D Numerical Simulations

In this section, we conduct numerical simulations to empirically verify the performance of our
proposed algorithms.

D.1 Generalized Frank-Wolfe

We compare the performance of Algorithm 2 with the extragradient method, both of which provably
enjoy an O(T−1/2) rate of last-iterate convergence.

Recall that the MVI problem aims to find an x∗ ∈ Rd such that maxs∈X (x∗ − s)⊤F (x∗) ≤ 0.
According to [15], the extragradient algorithm initializes an x0 ∈ X and update xk iteratively
according to the following formula:

xt+1/2 = ΠX (xt − αF (xt)), xt+1 = ΠX (xt − αF (xt+1/2)),

where ΠX (·) the projection operator onto X with respect to ∥ · ∥2.

D.1.1 Rock-Paper-Scissors Game

The Rock-Paper-Scissors game is a classic example of a zero-sum game, where each player has three
actions: Rock, Paper, or Scissors. The rules are such that Rock beats Scissors, Scissors beat Paper,
and Paper beats Rock. If both players choose the same move, the game results in a tie. The payoff
matrix for the player 1 (i.e., the row player) can be represented as follows:

Rock Paper Scissors

Rock 0 −1 1
Paper 1 0 −1

Scissors −1 1 0

The results for implementing generalized FW and the extragradient method are reported in Figure 1.

D.1.2 The Burglar-Policeman Matrix Game

The Burglar-Policeman matrix game is another classic zero-sum game. The burglar wants to avoid
being caught, while the policeman wants to catch the burglar. In this game, the actions available to
both players are to either “Stay” at their current position or “Switch” to another location. The payoff
matrix for the burglar can be represented as follows:

Policeman Stay Policeman Switch

Burglar Stay −1 1
Burglar Switch 1 −1

The results for implementing generalized FW and the extragradient method are reported in Figure 2.

In either the Rock-Paper-Scissors Game or the Burglar-Policeman Matrix Game, both algorithms
seem to have similar performance. However, the extragradient method seems to be more stable.
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Figure 1: Convergence Rate Comparison for the Rock-Paper-Scissors Game

Figure 2: Convergence Rate Comparison for the Burglar-Policeman Matrix Game

D.1.3 A Randomly Generated Matrix Game

In this experiment, we choose F (x) = Mx and X = ∆100 ×∆100, where ∆100 denotes the 100-
dimensional probability simplex. The matrix M is chosen to be M = [0100×100,−R;R⊤,0100×100],
where R ∈ R100×100 is a randomly generated matrix. The MVI problem can alternatively be
interpreted as a zero-sum game with the payoff matrix being R. The results are reported in Figure 3.

From the numerical simulations, we see that the generalized FW algorithm seems to slightly outper-
form the extragradient algorithm in the beginning. However, asymptotically, the extragradient method
seems to perform better. This makes intuitive sense as using the softmax in the generalized FW
algorithms results in a bias that depends on τ . The numerical simulations verify that the generalized
FW algorithm indeed holds practical potential.
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Figure 3: Convergence Rate Comparison for

D.2 Stochastic Generalized Frank-Wolfe

Since none of the existing algorithms (e.g., the extragradient method, the optimistic gradient method,
and the Halpern iteration method) have provable convergence in the stochastic setting, we will only
verify the convergence of our algorithm here. The experiment setup is the same as in Appendix D.1.3
except that F (x) is replaced by F (x) + z, where z is a bounded random variable.

Figure 4: Convergence of Algorithm 3

In the stochastic setting, we choose τ = 0.1, α = 0.1, and β = 0.01 in Algorithm 3. The result is
reported in Figure 4. From Figure 4, we see that Algorithm 3 indeed converges, but not to zero due to
the stochasticity and the fact that we are using constant stepsizes, which agrees with Theorem 5.1.
The fact that our algorithm is stable in the stochastic setting highlights one of its main advantages
compared with the existing methods.
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NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the paper’s
contributions and scope?

Answer: [Yes]

Justification: This paper develops theoretical guarantees for a generalized variant of Frank-Wolfe
in solving monotone variational inequality problems, which is clearly stated in the abstract.

Guidelines:

• The answer NA means that the abstract and introduction do not include the claims made in the
paper.

• The abstract and/or introduction should clearly state the claims made, including the contributions
made in the paper and important assumptions and limitations. A No or NA answer to this
question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how much the
results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals are not
attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?

Answer: [Yes]

Justification: The limitations are discussed throughout the paper along with the presentation of the
results.

Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that the
paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to violations of

these assumptions (e.g., independence assumptions, noiseless settings, model well-specification,
asymptotic approximations only holding locally). The authors should reflect on how these
assumptions might be violated in practice and what the implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was only tested
on a few datasets or with a few runs. In general, empirical results often depend on implicit
assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach. For
example, a facial recognition algorithm may perform poorly when image resolution is low or
images are taken in low lighting. Or a speech-to-text system might not be used reliably to
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• The authors should discuss the computational efficiency of the proposed algorithms and how
they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to address
problems of privacy and fairness.
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that individual actions in favor of transparency play an important role in developing norms that
preserve the integrity of the community. Reviewers will be specifically instructed to not penalize
honesty concerning limitations.
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Question: For each theoretical result, does the paper provide the full set of assumptions and a
complete (and correct) proof?

Answer: [Yes]
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Justification: A short proof sketch of the main results is presented in the main paper to provide
intuition. The complete proof of each theoretical result is presented in the appendix.
Guidelines:
• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if they appear

in the supplemental material, the authors are encouraged to provide a short proof sketch to
provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented by
formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental Result Reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main experi-
mental results of the paper to the extent that it affects the main claims and/or conclusions of the
paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: We have provided a detailed description of our experimental setup.
Guidelines:
• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived well by the

reviewers: Making the paper reproducible is important, regardless of whether the code and data
are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken to make
their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways. For
example, if the contribution is a novel architecture, describing the architecture fully might
suffice, or if the contribution is a specific model and empirical evaluation, it may be necessary
to either make it possible for others to replicate the model with the same dataset, or provide
access to the model. In general. releasing code and data is often one good way to accomplish
this, but reproducibility can also be provided via detailed instructions for how to replicate the
results, access to a hosted model (e.g., in the case of a large language model), releasing of a
model checkpoint, or other means that are appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submissions
to provide some reasonable avenue for reproducibility, which may depend on the nature of the
contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how to

reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe the

architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should either

be a way to access this model for reproducing the results or a way to reproduce the model
(e.g., with an open-source dataset or instructions for how to construct the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case authors are
welcome to describe the particular way they provide for reproducibility. In the case of
closed-source models, it may be that access to the model is limited in some way (e.g.,
to registered users), but it should be possible for other researchers to have some path to
reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instructions to
faithfully reproduce the main experimental results, as described in supplemental material?
Answer: [No]
Justification: This paper is a theoretical work, and the numerical simulations are conducted on
synthetic examples to demonstrate the effectiveness of the proposed algorithm.
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• The authors should provide instructions on data access and preparation, including how to access
the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new proposed
method and baselines. If only a subset of experiments are reproducible, they should state which
ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized versions (if
applicable).

• Providing as much information as possible in supplemental material (appended to the paper) is
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