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Abstract

Many clinical informatics tasks that are based001
on electronic health records need relevant pa-002
tient cohorts to be selected based on findings,003
symptoms, and diseases. Frequently, these004
conditions are described in radiology reports005
which can be retrieved using information re-006
trieval (IR) methods. The latest of these tech-007
niques utilize neural IR models such as BERT008
trained on clinical text. However, these meth-009
ods still lack semantic understanding of the un-010
derlying clinical conditions as well as ruled011
out findings, resulting in poor precision dur-012
ing retrieval. In this paper we combine clinical013
finding detection with supervised query match014
learning. Specifically, we use lexicon-driven015
concept detection to detect relevant findings in016
sentences. These findings are used as queries017
to train a Sentence-BERT (SBERT) model us-018
ing triplet loss on matched and unmatched019
query-sentence pairs. We show that the pro-020
posed supervised training task remarkably im-021
proves the retrieval performance of SBERT.022
The trained model generalizes well to unseen023
queries and reports from different collections.024

1 Introduction025

Electronic health record (EHR) retrieval is impor-026

tant for clinicians, staff and researchers. The tools027

for performing clinically relevant searches could028

aid in many use cases such as clinical decision sup-029

port (Syeda-Mahmood, 2010), auditing, revenue030

cycle management, and cohort selection for clin-031

ical studies. Frequently, these searches involve032

retrieval of patients based on clinical findings that033

are often captured in unstructured textual reports034

such as radiology reports, encounter notes, etc. Un-035

like structured query-based lookup of EHR, re-036

trieval of unstructured (free-text) EHRs is much037

more challenging, requiring a semantic understand-038

ing of the underlying clinical conditions present or039

absent. Conventional exact or approximate term-040

based retrieval methods such as BM25 (Robertson041

and Zaragoza, 2009) often perform poorly in re- 042

sponse to ad-hoc queries (Chamberlin et al., 2020), 043

as these methods lack the ability of semantic under- 044

standing of the clinical as well as language context. 045

With the emergence of deep learning encoding mod- 046

els, new retrieval methods have emerged with stud- 047

ies showing BERT-based neural methods outper- 048

forming BM25 on multiple retrieval benchmarks 049

(Yilmaz et al., 2019a; Chang et al., 2020; Nogueira 050

and Cho, 2019; Yilmaz et al., 2019b; Qiao et al., 051

2019). The BERT-based retrieval methods can be 052

classified into two categories: the cross-attention 053

(or interaction-based) models (Yilmaz et al., 2019a; 054

Nogueira and Cho, 2019; Yilmaz et al., 2019b) 055

and the embedding-based (or representation-based) 056

models (Chang et al., 2020; Reimers and Gurevych, 057

2019). While the BERT-style cross-attention mod- 058

els are very successful, they cannot be directly 059

applied to large-scale retrieval problems because 060

computing the similarity score for every possible 061

query-document pair during inference can be pro- 062

hibitively expensive. Therefore, they were often 063

used as a re-ranker after a initial candidate retrieval 064

round using BM25. The embedding-based meth- 065

ods can pre-encode the documents, and only the 066

queries need to be encoded upon retrieval. Re- 067

trieval can be achieved via approximate nearest- 068

neighbor search in the embedding space very ef- 069

ficiently (Johnson et al., 2021). In this study, we 070

focus on the embedding-based retrieval BERT mod- 071

els. Specifically, we adopted the sentence-level re- 072

trieval setting, as studies suggested that the "best" 073

sentence in a document provides a good proxy for 074

document relevance (Yilmaz et al., 2019a). 075

Different pre-training tasks were used to train 076

the BERT-based models for retrieval. The pre- 077

training tasks range from masked language mod- 078

elling (MLM) over unlabeled free-text to super- 079

vised training on labeled datasets such as STS (Cer 080

et al., 2017), MS MARCO (Nguyen et al., 2016) 081

or TREC Microblog track (Lin et al., 2014). How- 082

1



ever, MLM is not tailored for the purpose of in-083

formation retrieval (IR), and labeled datasets are084

usually small and not easily accessible. Recently,085

pre-trained models on biomedical corpora such086

as BioClinicalBERT (Alsentzer et al., 2019) and087

BioBERT (Lee et al., 2020) can obtain embeddings088

with medical-domain-specific knowledge, but they089

were still trained with MLM.090

Early studies (Natarajan et al., 2010) showed091

that most clinical queries are actually short queries092

(e.g. a disease or a syndrome). We found that the093

existing BERT models pre-trained with MLM per-094

formed poorly on short queries as well as negative095

queries (i.e. queries asking for lack of a finding).096

Ideally, if retrieval systems could be trained by097

matched and unmatched query-sentence pairs, in098

both positive and negated instances, we can expect099

a higher precision and recall in retrieval. However,100

manually labeling a large dataset is impractical, par-101

ticularly for the medical domain where the number102

of clinical findings is very large. Training neural IR103

models using weak supervision has been previously104

investigated (Dehghani et al., 2017; MacAvaney105

et al., 2019), which use unsupervised methods (e.g.106

BM25) or article headings to provide pseudo labels.107

However, these pseudo labels are usually imprecise108

and the article headings are not always available.109

Motivated by these challenges, we present a110

hybrid approach where we combine automated111

clinical finding detection with supervised query-112

sentence pair learning. Specifically, we use an113

automatic lexicon-driven concept detection method114

to detect relevant chest X-ray (CXR) findings in115

sentences. These findings paired with the sentences116

containing them serve as weakly labeled training117

data for Sentence-BERT (SBERT) (Reimers and118

Gurevych, 2019). The resulting approach avoids119

manual annotation and can be scaled for training120

on a large number of query-sentence pairs. We121

show that the proposed training task remarkably122

improves the retrieval performance of SBERT on123

datasets with automatic annotations and human an-124

notations.125

2 Methods126

2.1 Fine-grained concept extraction127

The algorithm for extracting findings from sen-128

tences in reports uses a vocabulary-driven approach.129

Specifically, a domain-specific CXR finding lexi-130

con was used. This lexicon captures the name of131

finding along with its potential variants and syn-132

onyms mined from over 200,000 chest radiology 133

reports. To spot the occurrence of a finding lexicon 134

phrase within reports, a string matching algorithm 135

called the longest common subfix (LCF) algorithm 136

was used. To determine if a core finding is positive 137

or negative (e.g. ”no pneumothorax”), a two-step 138

approach that combines language structuring and 139

vocabulary-based negation detection is used. The 140

method is reported to be highly accurate (<3% er- 141

rors) compared with human labels. More details 142

are described in (Syeda-Mahmood et al., 2020). 143

2.2 Labeled data generation 144

In this paper, we focus on "anatomical findings" 145

as well as "disease concepts" as those are the 146

most commonly searched in EHR (Natarajan et al., 147

2010). We use these finding modifiers as surrogates 148

for queries. For each sentence Sj in our data col- 149

lection, we have a set with Kj labeled data entries 150

Ij = {(Sj , Nj,i,Mj,i)}1≤i≤Kj . For each labeled 151

entry (Sj , Nj,i,Mj,i), Mj,i is the i-th finding for 152

Sj , and Nj,i = yes|no indicates a positive or ruled 153

out finding. By using the findings as query surro- 154

gates, we can designate a query Qj,i = (Nj,i,Mj,i) 155

paired with Sj : if Nj,i equals to yes, Qj,i is a 156

positive query, otherwise Qj,i is a negative query. 157

For example, (yes, vascular congestion) and 158

(no, pulmonary edema) are two queries for the 159

sentence "lungs: central vascular congestion with- 160

out overt edema." The actual queries may be more 161

properly phrased such as "presence/absence of X". 162

Since we labeled all the sentences in our training 163

dataset extensively with all the finding types we 164

summarized, we can create a dictionary using each 165

unique queryQ = (N,M) as the key and the list of 166

all the sentences that contain that query as the dic- 167

tionary value. Any sentence in the list is considered 168

as a matched sentence for that query, whereas other 169

sentences are considered as unmatched sentences. 170

2.3 Model 171

We used SBERT as our retrieval model. MEAN- 172

pooling was used to derive a fixed size sentence 173

embedding (for either queries or EHR sentences). 174

We used the triplet objective function (Reimers 175

and Gurevych, 2019) to train our model. Given a 176

query q, a matched sentence m and an unmatched 177

sentence u, the triplet loss tunes the network such 178

that the distance between q and m is smaller than 179

the distance between q and u by a margin ε: 180

max(‖eq − em‖ − ‖eq − eu‖+ ε, 0) (1) 181

2



where eq, em and eu are the sentence embed-182

dings for q, m and u, respectively. ‖·‖ is a distance183

metric. We used the cosine distance and ε = 0.5.184

To improve training, we further used hard-185

sampling (HS) to mine the hardest unmatched sen-186

tence for the triplet loss within a training batch. To187

be specific, we performed inference within a batch188

beforehand to find the unmatched sentence with the189

highest cosine similarity score (the most confusing190

unmatched sentence) for each query. We further191

applied mega-batching (MB) (Wieting and Gimpel,192

2018) to encourage the model to learn to distin-193

guish "harder" unmatched sentences by increasing194

the batch size.195

3 Experiments and Results196

3.1 Datasets197

The experiments in Section 3.1-3.4 were carried198

out on two public collections of radiology reports199

provided by Indiana University (Demner-Fushman200

et al., 2016) and NIH (Wang et al., 2017). After201

pruning for duplicates and applying our labeled202

data generation algorithm described in Section 2.2,203

a total of 21,612 labeled entries were generated for204

the Indiana dataset, which include 10,363 unique205

sentences, 200 positive queries and 75 negative206

queries. For the NIH dataset, 17,047 labeled entries207

were generated, including 9,091 unique sentences,208

250 positive queries and 30 negative queries.209

3.2 Ablation study and parameter tuning210

We first run an ablation study on the Indiana dataset211

(IND) to investigate if hard-sampling (HS) and212

mega-batching (MB) can bring improvement over213

random-sampling (RS, randomly select unmatched214

sentence within a batch) and normal-batching (NB,215

size 32). We randomly split the IND dataset into216

two halves with non-overlapping findings with the217

constraint that they should roughly have equal num-218

ber of labeled entries. After the split, the two sets219

have 117/44 and 83/31 positive/negative queries,220

respectively. We performed 2-fold cross-validation221

and reported the average of the two test results222

regarding mean Average Precision (mAP). This223

allows us to evaluate the model performance on un-224

seen queries. The evaluation was performed over225

positive queries (Pos. Q.), negative queries (Neg.226

Q.) and all queries (All Q.) separately.227

The results in Table 1 shows that the combination228

of HS and MB achieved the best results. Increas-229

ing the mega-batching size to 128 resulted the best230

performance, but further increasing the batch size 231

slightly degraded the performance. The remarkable 232

improvent of SBERT over the baseline BioClinical- 233

BERT also suggests that the proposed model can 234

generalize well to unseen queries. 235

Model mean Average Precision (mAP)
Pos. Q. Neg. Q. All Q.

BioClinicalBERT 0.213 0.254 0.224
SBERT/RS/NB(32) 0.353 0.312 0.349
SBERT/HS/NB(32) 0.384 0.334 0.371
SBERT/HS/MB(64) 0.388 0.318 0.369
SBERT/HS/MB(128) 0.399 0.392 0.397
SBERT/HS/MB(256) 0.392 0.352 0.381
SBERT/HS/MB(512) 0.380 0.344 0.370

Table 1: Ablation study and hyperparameter tuning on
the Indiana dataset.

3.3 Cross-dataset study 236

We also trained on the IND dataset and tested on 237

the unique sentences in the NIH dataset and vice 238

versa to investigate whether a trained model can 239

generalize well to a different dataset. The best 240

SBERT model from Table 1 was used here. We 241

further included Okapi BM25 (k1=1.5, b=0.75), 242

the pre-trained BERT (Huggingface "BERT-base- 243

uncased"), the fine-tuned BERT (trained on the 244

EHR sentences using MLM, without using our 245

generated annotations), the BioClinicalBERT and 246

SBERT pre-trained on MS MARCO dataset for 247

comparison. More details about these models are 248

given in the appendix. In addition to mAP, mean 249

Recall (over all the queries) was also reported, 250

where Recall was defined as the ratio of the number 251

of correctly retrieved sentences to the size of the 252

query’s ground truth list. 253

Table 2 shows that our fine-tuned SBERT per- 254

forms very well on the dataset from another col- 255

lection regarding both mAP and mR, and out- 256

performed the other BERT/SBERT models by 257

large margins. The baseline BERT without pre- 258

training over medical texts obtained the worst re- 259

sults. The results for BERT (fine-tuned) and Bio- 260

ClinicalBERT suggest that MLM training over 261

the texts from the same domain can lead to 262

some improvements but is still not ideal for di- 263

rect use of retrieval. SBERT pre-trained on MS 264

MARCO dataset showed significant improvements 265

over BERT trained with MLM, but lacks domain- 266

specific knowledge and shows performance drop on 267

negative queries. BM25 performs well on positive 268

queries with performance degradation on negative 269

queries as well, because negation is not always 270
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Model mean Average Precision (mAP) mean Recall (mR)
Pos. Q.

IND / NIH
Neg. Q.

IND / NIH
All Q.

IND / NIH
Pos. Q.

IND / NIH
Neg. Q.

IND / NIH
All Q.

IND / NIH
BM25 0.39 / 0.46 0.34 / 0.32 0.38 / 0.44 0.36 / 0.43 0.30 / 0.27 0.35 / 0.42
BERT 0.14 / 0.16 0.21 / 0.23 0.16 / 0.17 0.12 / 0.15 0.19 / 0.23 0.14 / 0.16
BERT (fine-tuned) 0.20 / 0.23 0.22 / 0.23 0.21 / 0.23 0.19 / 0.21 0.21 / 0.21 0.19 / 0.21
BioClinicalBERT 0.16 / 0.28 0.21 / 0.25 0.17 / 0.27 0.14 / 0.27 0.19 / 0.22 0.15 / 0.26
SBERT (MS MARCO) 0.40 / 0.44 0.35 / 0.36 0.39 / 0.43 0.37 / 0.40 0.31 / 0.31 0.35 / 0.39
SBERT (ours) 0.48 / 0.45 0.42 / 0.56 0.46 / 0.47 0.44 / 0.42 0.39 / 0.47 0.42 / 0.43

Table 2: Cross-dataset evaluation. The dataset name in the heading means the model was tested on that dataset.

explicitly expressed in EHR.271

3.4 Embedding separation analysis272

Model IND NIH
BERT -0.04±0.06 0.01±0.07
BERT (fine-tuned) 0.03±0.09 0.05±0.08
BioClinicalBERT 0.01±0.05 0.01±0.03
SBERT (MS MARCO) 0.01±0.01 0.02±0.01
SBERT (ours) 0.42±0.36 0.56±0.34

Table 3: Embedding space separation analysis.

Because we have the negation labels, we can273

also create opposite-negation queries. For exam-274

ple, the opposite-negation query for "no opacity"275

would be "opacity". Ideally, for a given sentence,276

the similarity score between the matched query277

and sentence should be larger than that between278

the opposite-negation query and the sentence. We279

reported (Table 3) the differences (mean±std) be-280

tween these two scores for all the entries in each281

dataset with all the BERT embedding-based meth-282

ods. Our trained SBERT showed a clear separation283

in the embedding space. The distances for the other284

BERT models are all around zero with even nega-285

tive distances, suggesting poor negation awareness.286

3.5 Evaluation on human-annotated data287

We also evaluated our model on a separate human-288

annotated dataset. 206 CT reports and 120 CXR re-289

ports were annotated by 3 radiologists on sentence-290

level with majority voting (more details in ap-291

pendix). This resulted in 2,990 unique sentences/8292

queries for CT reports and 1,810 unique sen-293

tences/18 queries for CXR reports. Table 4 shows294

that our SBERT fine-tuned on either IND or NIH295

dataset outperforms the other compared methods296

by large margins.297

4 Discussion298

In this paper we demonstrated that the proposed299

supervised pre-training tasks with automated an-300

notation can greatly improve the IR performance301

Model mAP mR
CT / CXR CT / CXR

BM25 0.34 / 0.34 0.39 / 0.31
BioClinicalBERT 0.32 / 0.28 0.34 / 0.26
SBERT (MS MARCO) 0.35 / 0.39 0.40 / 0.37
SBERT (trained on IND) 0.59 / 0.66 0.57 / 0.60
SBERT (trained on NIH) 0.52 / 0.57 0.50 / 0.54

Table 4: Evaluation on human-annotated datasets.

of SBERT on short and negative queries. The pro- 302

posed labeled data generation method can also be 303

used to train the cross-attention BERT models for 304

further improvement when computation speed is 305

not the bottleneck. 306

We focused on short queries in this study, and 307

BM25 still performs well on positive queries. The 308

embedding-based BERT models are expected to 309

show more advantages over BM25 on complicated 310

queries that require semantic understanding. Hav- 311

ing the comprehensive negation and finding labels 312

for each sentence also allows us to assemble more 313

complicated queries that include more than one 314

finding, such as “A and B” or “A without C” where 315

A, B and C represent three different findings. These 316

more challenging tasks can be explored in the fu- 317

ture work. The label generation tool can also be 318

extended to training IR models in domains other 319

than medical domain, such as finance, law, or retail, 320

provided with the corresponding lexicons. 321

5 Conclusion 322

In this work we proposed to generate query- 323

sentence pairs automatically using a CXR lexicon 324

for training embedding-based BERT models on 325

the EHR retrieval problem. We showed that the 326

fine-tuned SBERT obtained a substantial perfor- 327

mance gain over the other pre-trained models. The 328

trained model can also generalize well to unseen 329

queries and data from another source. The pro- 330

posed method can be especially helpful in training 331

and evaluating neural IR models in domains with 332

limited human-labeled data. 333
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A Appendix: Model training details467

Here we provide more details on the models used468

in Section 3. We used the Huggingface "BERT-469

base-uncased" model (pre-trained on BookCorpus470

and English Wikipedia, availabel at: https://471

huggingface.co/bert-base-uncased)472

as our BERT model for comparison. The BERT473

(fine-tuned) model was fine-tuned on the EHR text474

(Indiana or NIH dataset) using MLM for 5 epochs475

based on the "BERT-base-uncased" model. The476

pre-trained BioClinicalBERT (Alsentzer et al.,477

2019) (availabel at: https://github.com/478

EmilyAlsentzer/clinicalBERT) was479

initialized with BioBERT (Lee et al., 2020) and480

fine-tuned on clinical notes.481

Our SBERT model was initialized with the Bio-482

ClinicalBERT. We fine-tuned SBERT using triplet483

loss for 10 epochs for all datasets in this study. We484

used AdamW optimizer with learning rate 2e-5,485

weight decay 0.01 and a linear learning rate warm-486

up of 100 steps.487

The SBERT model used as comparison was488

pre-trained on 500K (query, answer) pairs from489

the MS MARCO dataset. This pre-trained model490

(msmarco-bert-base-dot-v5) was one of the recom-491

mended sentence embedding models from the offi-492

cial SBERT webpage (https://www.sbert.493

net/docs/pretrained_models.html).494

Among all the pre-trained models, we picked this495

one because it is the only pre-trained model based496

on "BERT-base" model, to be consistent with all 497

the other models (all based on "BERT-base") in 498

our experiments. Since this model was tuned to 499

be used with dot-product, we used dot-product 500

to calculate similarity scores only for this model 501

in the retrieval experiments in Table 2. For all 502

the other models, cosine-similarity was used to 503

calculate scores. However, for the embedding 504

separation analysis in Table 3, cosine-similarity 505

was used for SBERT (MS MARCO) as well so 506

that the scale of the similarity scores is comparable 507

to the others. 508

B Appendix: Human-annotated data 509

The radiology reports used in Section 3.5 are pri- 510

vate data obtained from our collaborative partners. 511

All private data used were anonymized. HIPPA 512

was fully enforced and all data were handled ac- 513

cording to the Declaration of Helsinki. 206 CT 514

reports and 120 chest X-ray (CXR) reports were 515

annotated by 3 radiologists on sentence-level using 516

the brat rapid annotation tool (available at https: 517

//brat.nlplab.org/). Majority voting was 518

used to handle disagreements. This resulted in 519

2,990 unique sentences/8 queries for CT reports 520

and 1,810 unique sentences/18 queries for CXR 521

reports. Note that the candidate sentences for re- 522

trieval also include those sentences without any 523

our interested disease findings. For the CT reports, 524

the annotation was based on the presence or ab- 525

sence of 4 diseases (resulting in 8 queries): tho- 526

racic aneurysm, abdominal aneurysm, lung nodule 527

and pulmonary embolism. The average number 528

of matched sentences for each query is 42±33. 529

For the CXR reports, the annotation was based 530

on 10 diseases (resulting in 18 queries, as 2 nega- 531

tive queries do not have the corresponding matched 532

sentences): pulmonary embolism, airspace opac- 533

ity, lung nodule, emphysema, pneumothorax, ab- 534

dominal aortic aneurysm, thoracic aortic aneurysm, 535

rib fracture, scapula fracture and spine fracture. 536

The average number of matched sentences for 537

each query is 18±16. It it worth noting that 538

some of the diseases are not even used as queries 539

in the IND/NIH training data, including thoracic 540

aneurysm, abdominal aneurysm and spine fracture. 541
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