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ABSTRACT

Data contamination poses a significant threat to the reliable evaluation of Large
Language Models (LLMs). This issue arises when benchmark samples may in-
advertently appear in training sets, compromising the validity of reported perfor-
mance. While detection methods have been developed for the pre-training and
Supervised Fine-Tuning stages, a critical research gap exists for the increasingly
significant phase of Reinforcement Learning (RL) post-training. As RL post-
training becomes pivotal for advancing LLM reasoning, the absence of special-
ized contamination detection methods in this paradigm presents a critical vulner-
ability. To address this, we conduct the first systematic study of data detection
within RL post-training scenario and propose Self-Critique. Our method is mo-
tivated by a key observation: after RL phase, the output entropy distribution of
LLMs tends to collapse into highly specific and sparse modes. Self-Critique
probes for the underlying policy collapse, i.e., the model’s convergence to a nar-
row reasoning path, which causes this entropy reduction. To facilitate this re-
search, we also introduce RL-MIA, a benchmark constructed to simulate this
specific contamination scenario. Extensive experiments show that Self-Critique
significantly outperforms baseline methods across multiple models and contam-
ination tasks, achieving an AUC improvement of up to 30%. Whereas existing
methods are close to a random guess for RL-phase contamination, our method
makes detection possible. Our benchmark and code are available at https:
//anonymous.4open.science/r/Data-Contamination-in-RL.

1 INTRODUCTION

The reliability of Large Language Model (LLM) evaluations is seriously threatened by data contam-
ination. This happens when benchmark test samples accidentally get included in the training data,
which can invalidate the model’s reported performance. To solve this problem, many researchers
have developed detection methods, but they have almost exclusively focused on the pre-training and
Supervised Fine-Tuning (SFT) (Dong et al., 2024; Fu et al., 2024; Shi et al., 2024; Zhang et al.,
2024b; Xie et al., 2024b; Zhang et al., 2025a;b) stages. However, these efforts have left a major gap:
the increasingly important phase of Reinforcement Learning (RL) post-training. We believe this is
a critical oversight, because powerful techniques like Reinforcement Learning with Verifiable Re-
wards (RLVR) (Shao et al., 2024a; Guo et al., 2025; Yu et al., 2025) are now essential for improving
LLM reasoning. This makes the RL stage a major potential source of contamination that has been
largely overlooked.

The challenge of detecting RL-phase contamination stems from a fundamental shift in the training
objective, rendering existing methods ineffective. Both pre-training and SFT are likelihood-based
paradigms; they train models to maximize the probability of observed data. This process naturally
creates strong, likelihood-based signals, such as unusually low perplexity, which most current de-
tectors are built to identify. By contrast, RL, especially RLVR, operates on a reward-maximization
principle. The policy is not trained to mimic a ground-truth distribution but is instead guided by
sparse reward signals to find a successful reasoning path. This approach often enables stronger gen-
eralization than SFT (Kirk et al., 2024; Chu et al., 2025), but by decoupling from likelihood-based
objectives, it also erases the very signals that traditional detectors rely on. Consequently, RL-phase
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(c) AUC comparison

Figure 1: Motivation behind Self-Critique. After RL post-training, entropy distributions become
sparse. (a) For contaminated samples, the critique reasoning path remains highly similar to the orig-
inal one, indicating policy collapse and memorization. (b) Clean samples exhibit greater divergence
between the original and critique reasoning paths. (c) Our method achieves a significantly higher
AUC while existing baselines perform close to random guess.

contamination becomes a uniquely challenging problem, creating an urgent need for a new class of
detection methods specifically designed for this reward-driven setting.

Given that likelihood-based signals are ineffective, our search for a new detection method begins
with identifying a signal inherent to the reward-driven training process. Recent studies on RL’s
training dynamics point to a promising candidate: the phenomenon of policy collapse. Specifi-
cally, RL narrows the search space to improve pass@1 accuracy, often at the cost of lower pass@k
performance (Havrilla et al., 2024; Shao et al., 2024b; Yue et al., 2025; Dong et al., 2025), and
produces distinctive entropy patterns, such as high-entropy concentration on certain tokens (Wang
et al., 2025a; Cheng et al., 2025; Song et al., 2025). These findings suggest that entropy could serve
as a powerful indicator of this collapse and its associated path dependency. However, our initial in-
vestigations revealed that using entropy directly as a contamination signal is unreliable. The reason
is that policy collapse is a general behavior of RL and can occur even on clean samples not seen
during training. As shown in Figures 1a and 1b, both contaminated and clean samples can exhibit
sparse token-level entropy. This implies that a simple passive check is insufficient. Therefore, we
introduce an active probing mechanism to expose the underlying differences. We find that when the
model is asked to generate an alternative reasoning path given its initial response (self-critique),
contaminated samples struggle to deviate, resulting in highly similar entropy curves (Figure 1a).
In contrast, the model shows greater flexibility on clean samples, leading to more distinct entropy
patterns (Figure 1b).1

Building on these observations, we introduce Self-Critique, an entropy-based detection method
that applies our self-critique probing strategy. The core idea is to instruct the model to generate two
distinct responses for the same problem; samples where the two responses exhibit high similarity
in their entropy space are flagged as contaminated. A detailed workflow is shown in Figure 2.
However, rigorously evaluating this method is challenging, as no existing benchmark can isolate
and simulate contamination purely within the RL phase. To overcome this hurdle, we also developed
RL-MIA (Reinforcement Learning Membership Inference Attack), a new benchmark constructed
for this specific purpose. Using RL-MIA across challenging math and logic datasets, we show that
Self-Critique is highly effective. As previewed in Figure 1c, our method significantly outperforms
existing detectors, which operate near the level of random guess.

Our main contributions are summarized as follows:

❶ To the best of our knowledge, we present the first systematic study of data contamination
detection in the RL post-training phase of LLMs, highlighting a critical yet overlooked
problem.

❷ We propose Self-Critique, an entropy-based detector that measures RL-induced policy
collapse via self-critique probing. Across four tasks and multiple models, Self-Critique
consistently outperforms baselines, which perform near random guess, achieving an AUC
improvement of up to 30%.

❸ We introduce RL-MIA, a new benchmark that simulates RL-specific contamination sce-
narios across math and logic tasks, enabling the rigorous evaluation of detection methods.

1We also provide visualizations of the contamination score distribution in Appendix D.
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2 RELATED WORKS

In this section, we outline the two most relevant directions and associated papers of this work.

Data Contamination Detection Data contamination detection can be regarded as a specific in-
stance of membership inference attacks (MIA), which were initially introduced to measure mem-
orization and privacy risks (Shokri et al., 2017; Carlini et al., 2019; Mireshghallah et al., 2022a).
Recently, the issue of data contamination in LLMs has drawn increasing attention, as it directly
undermines the validity of benchmark evaluations (Sainz et al., 2023; Xu et al., 2024a;b; Wu et al.,
2025). Prior work on data contamination detection in LLMs has mainly focused on the pre-training
and Supervised Fine-Tuning stages (Mireshghallah et al., 2022b; Fu et al., 2023; Mattern et al., 2023;
Shi et al., 2024; Xie et al., 2024b; Gonen et al., 2023; Dong et al., 2024; Zhang et al., 2025b). In these
stages, models largely rely on memorizing training data for learning (Zeng et al., 2024a; Chu et al.,
2025; Wang et al., 2025b), a process that naturally creates strong, likelihood-based signals—such as
unusually low perplexity—that most current detectors are built to identify. In contrast, during the
RL post-training phase, LLMs are optimized to autonomously explore reasoning trajectories. This
reward-driven objective decouples the model’s behavior from simple likelihood metrics, posing a
unique challenge for conventional detection methods.

Entropy in Reinforcement Learning Post-training Reinforcement learning has become a crucial
paradigm for post-training large language models. Leveraging reinforcement learning with verifi-
able rewards substantially enhances LLM’s reasoning capabilities (Jaech et al., 2024; Guo et al.,
2025). A key factor in RL post-training is entropy: high entropy promotes exploration via stochastic
policies, while low entropy favors exploitation through deterministic behavior. A common challenge
in RL post-training is entropy collapse (Cui et al., 2025; Liang et al., 2025), where policy entropy de-
creases dramatically in the early stages of training, leading to premature convergence and restricted
exploration. To address this, entropy management strategies regularize entropy to prevent rapid col-
lapse (O’Donoghue et al., 2016; He et al., 2025; Wang et al., 2025c) or use high-entropy signals to
encourage inherently exploratory reasoning behaviors (Cheng et al., 2025; Vanlioglu, 2025; Tan &
Pan, 2025), thus maintaining a balance between exploration and exploitation. In reasoning tasks,
high-entropy tokens indicate uncertain decision points and are assigned stronger RL updates, while
low-entropy tokens, which correspond to more deterministic outputs, receive smaller updates (Li
et al., 2025; Wang et al., 2025a; Tang et al., 2025). As a result, the trained model develops distinct
entropy patterns across tokens. In this work, we analyze these entropy patterns before and after
self-critique to detect potential data contamination.

3 THE CHALLENGE OF CONTAMINATION DETECTION IN RL

In this section, we formalize the problem of detecting data contamination in the RL post-training
phase of LLMs, and then highlight why detection methods based on likelihood, which are effective
in pre-training and SFT, become unreliable in RL. Finally, we introduce token-level entropy as a
lens to analyze RL-induced policy collapse, which lays the foundation for our proposed method.

3.1 PROBLEM DEFINITION

We consider the task of detecting data contamination in the RL post-training phase of Large Lan-
guage Models. Formally, this can be framed as a Membership Inference Attack(MIA) problem:
given a model M that has undergone RL post-training and a sample x, the goal is to determine
whether x was included in the RL training dataset DRL. A detector is a function f(M, x)→ {0, 1},
where 1 indicates membership (contamination) and 0 indicates non-membership. We focus on the
black-box setting (Shi et al., 2024), where the detector can only queryM for outputs, without access
to internal states, gradients, or training data.

3.2 WHY RL POST-TRAINING IS A UNIQUE CASE

Existing data detection methods are largely designed for training paradigms whose objectives are
rooted in Maximum Likelihood Estimation (MLE). However, the objective of RL post-training is
fundamentally different, which introduces unique and significant challenges for detection.
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Both pre-training and Supervised Fine-Tuning are governed by an MLE-based objective. Their
goal is to train a model M with parameters θ to maximize the likelihood of the observed data by
minimizing the negative log-likelihood loss.

For pre-training, the model learns from a vast corpus of unlabeled text Dpretrain. The objective is
next-token prediction, aiming to learn a general distribution of the language. For a text sequence
x = (x1, x2, . . . , xT ), the loss is:

LPretrain(θ) = −
∑

x∈Dpretrain

T∑
t=1

log pθ(xt|x<t) (1)

For SFT, the model learns from a dataset of prompt-response pairs DSFT = {(q, r)}. The objective
is to learn to follow instructions and generate helpful responses. The model is trained to maximize
the likelihood of the target response r = (r1, . . . , rK) given the prompt q:

LSFT(θ) = −
∑

(q,r)∈DSFT

K∑
t=1

log pθ(rt|q, r<t) (2)

Despite their different data sources, both paradigms (Eq. 1 and 2) share the same underlying princi-
ple: they directly train the model to assign high probabilities to sequences seen in the training
data. This provides a clear signal for detection methods like Perplexity (Gonen et al., 2023) and
Min-K% Prob (Shi et al., 2024), which are built upon this likelihood principle.

In stark contrast, RL post-training (and specifically RLVR) does not directly optimize for likeli-
hood. Its objective is to update the policy πθ to maximize the expected reward R from a set of
generated outputs {oi} given a prompt q. The objective for a method like GRPO (Shao et al., 2024a)
can be abstracted as:

JRL(θ) = Eq∼DRL,{oi}∼πθold
[f(R(oi), πθ)] , (3)

where f(·) is a function of the reward, the current policy, and a reference policy. The key distinction
is that the optimization is driven by an external, often sparse, reward signal R(oi) (e.g., 1 for a cor-
rect final answer, 0 otherwise), not by the token-level log-probabilities of the ground-truth response.
This decouples the model’s final behavior from simple likelihood metrics, rendering many existing
detection approaches that rely on this signal ineffective.

3.3 ENTROPY AS A NEW SIGNAL FOR RL DETECTION

Recent studies (Yue et al., 2025; Wang et al., 2025a; Cui et al., 2025) have shown that RL post-
training frequently leads to policy collapse: for samples that receive consistent reward, the model
converges to a narrow reasoning path, producing overly stable outputs . This phenomenon is re-
flected in the token-level entropy. For each decoding step t, the token-level entropy is

Ht = −
∑
v∈V

pθ(v | x<t) log pθ(v | x<t), (4)

and the entropy sequence E = {Ht}Tt=1 measures uncertainty along the generated trajectory. Em-
pirical observations show that RL tends to push entropy sequences into sparse patterns, where many
tokens are nearly deterministic. Crucially, this collapse is stronger for contaminated samples that
were explicitly rewarded during RL training, whereas clean samples retain more variability when
probed.

These insights suggest that contamination detection in RL requires moving beyond likelihood and in-
stead measuring the policy’s dependence on specific reasoning paths. Token-level entropy provides
a natural signal for this purpose, which directly motivates our Self-Critique method: by asking the
model to regenerate an alternative reasoning path conditioned on its initial response and comparing
the entropy sequences, we can reveal whether a sample was memorized during RL training.

4 DETECTION VIA SELF-CRITIQUE

Our method is motivated by the hypothesis that RL post-training induces high-reward path depen-
dence for contaminated samples. Concretely, for a problem q seen during RL training, the policy πθ

4



216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

Initial 
Thinking Membership

Self-Critique 
Probing

Probelm ＋

Initial Thinking Critique Thinking

Critique
Thinking

Figure 2: Overview of the Self-Critique detection workflow. The method compares token-level
entropy sequences between the initial response and the self-critique response. High similarity in en-
tropy space indicates contamination (policy collapse), while low similarity indicates clean samples.

tends to converge to a highly rewarded and thus similar response trajectory. In contrast, for problems
not seen during RL training, the model is more likely to produce an alternative reasoning path when
prompted.

The Self-Critique method quantifies this dependency. We first elicit the model’s most confident
(deterministic) response, and then ask the model to produce a different solution conditioned on the
initial response. We compare the token-level entropy sequences of the two generations to measure
the degree of path dependence. An overview is shown in Figure 2.

4.1 THE SELF-CRITIQUE DETECTION PROCESS

Let M be a large language model with parameters θ, and let q be the problem under test. We
use a deterministic decoding strategy (e.g., greedy decoding) to obtain the model’s most confident
response as the reference.

Step 1: Initial response. We construct the initial prompt P1 by embedding q into a chat template
T , and obtain the model’s response:

r1 =M(T (q)). (5)

We then compute the token-level entropy sequence for this response, E1 = {Ht(r1)}|r1|t=1, which
serves as the baseline reasoning trajectory.

Step 2: Self-critique response. We form a self-critique prompt P2 by augmenting q with an in-
structional meta-prompt Icritique

2 and the text of r1:

q′ = q ⊕ Icritique(r1), (6)

where ⊕ denotes appending to the user content within the prompt structure. We then generate the
second response and its entropy sequence:

r2 =M(T (q′)), E2 = {Ht(r2)}|r2|t=1. (7)

Step 3: Similarity score. The contamination score is the similarity between the two entropy se-
quences. A higher similarity indicates that the model remains on the same reasoning path despite
being instructed to change it, suggesting memorization. We use a length-aware (penalized) cosine
similarity:

ScoreSelf-Critique(q) = cospenalized(E1, E2), (8)

where

cospenalized(A,B) = cos
(
pad(A), pad(B)

)
× min(|A|, |B|)

max(|A|, |B|)
. (9)

Here cos(·, ·) is the standard cosine similarity between vectors (dot product over the product of L2
norms), and pad(·) zero-pads the shorter sequence to the maximum length so that non-overlapping
positions contribute zero. The multiplicative length ratio penalizes cases where one response is

2The exact Icritique is shown in Appendix E.
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much shorter/longer than the other, since response length itself reflects a facet of the reasoning
mode. Overall, a higher score indicates a higher likelihood of contamination. A formal description
of the procedure is provided in Appendix A.

5 EXPERIMENTS

In this section, we present a comprehensive empirical evaluation of our proposed Self-Critique. We
first introduce the RL-MIA benchmark, which we constructed specifically for RL data contamination
detection. We then describe the baseline methods we compare against and detail our experimental
setup. Finally, we present the main results, followed by analysis and ablation studies. Additional
experimental results are in Appendix B and C.

5.1 RL-MIA: A BENCHMARK FOR RL MEMBERSHIP INFERENCE ATTACK

To the best of our knowledge, no benchmark currently exists for systematically detecting data con-
tamination during the RL post-training stage. To address this gap, we introduce the RL-MIA (Re-
inforcement Learning Membership Inference Attack). The key idea behind RL-MIA is to simulate
controllable data contamination by selectively including a subset of data in the RL post-training pro-
cess, while the objective of the contamination detection task is to identify which samples have been
used.

The problems used for this simulation are drawn from four benchmarks selected to cover diverse
styles and potential pre-training exposure. We include the widely used mathematical reasoning
benchmarks, i.e., AIME 2024 and AIME 2025. AIME 2024 may have appeared in some models’
pre-training corpora, allowing us to test robustness to prior exposure, whereas AIME 2025 is post-
cutoff and thus unlikely to be present in pre-training data. To obtain a controlled setting free from
prior exposure, we also include two synthetically generated logical reasoning datasets: Knights &
Knaves (K&K) (Xie et al., 2024a) and SAT (Liu et al., 2025). The synthetic nature of these datasets
ensures that any detected training signal can be attributed to the RL post-training phase.

To approximate a realistic setting, we embed the selected benchmarks into a larger RL post-training
corpus. For AIME24 and AIME25, we use the widely adopted OpenR1-Math-46K (Guha et al.,
2025) corpus as the base and inject 50% of each benchmark’s items into the RL training data. For
K&K and SAT, following their original papers , we use the provided training portions to form the
contaminated split and synthesize additional items as held-out clean samples. We primarily use
Qwen2.5-7B-Instruct (Qwen et al., 2025) and DeepSeek-Math-7B-Instruct (Shao et al., 2024b) as
the model for simulating RL-stage contamination. We also run experiments on Qwen2.5-0.5B-
Instruct, Qwen2.5-3B-Instruct (Qwen et al., 2025) and Qwen2.5-7B-Math (Yang et al., 2024). All
RL runs are implemented with VeRL (Sheng et al., 2025) framework on 8 × NVIDIA A100 (40 GB).
Detailed dataset splits and training settings are provided in Appendix F.

5.2 EXPERIMENTAL SETUP

Baseline Methods We compare Self-Critique against a set of representative baselines. A key con-
sideration in the RL post-training setting is that training changes the response distribution rather
than the likelihood of the prompt. Therefore, for baselines originally designed for pre-training data
detection (which operate on input text), we adapt them to operate on the model’s responses to ensure
a fair comparison. The baselines include: ❶ Perplexity (PPL) (Gonen et al., 2023), which assumes
memorized text has lower perplexity; ❷ Min-K% Prob (Shi et al., 2024), which posits that memo-
rized text is less likely to contain low-probability outlier tokens; and ❸ Min-K%++ (Zhang et al.,
2025b), which normalizes token probabilities for a more robust score. We also include ❹ Recall (Xie
et al., 2024b), which prefixes the text with non-member content and measures the relative change in
log-likelihood, and ❺ CDD (Dong et al., 2024), which measures output consistency under stochastic
sampling via the average token-level edit distance across multiple generations.

We summarize these baselines in Table 1: PPL, Min-K%, and Min-K%++ directly use log-
probability properties of the text; Recall and CDD expose differences by injecting a non-member
prefix or by randomly sampling multiple outputs, respectively. In contrast, we propose a new probing
mechanism, i.e., self-critique probing, and use entropy as the core signal for RL-stage contami-
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nation detection. Following the probing ideas in CDD and Recall, we also introduce two additional
entropy-based baselines, ❻ Entropy-Temp and ❼ Entropy-Noise, which keep the probing mecha-
nisms but replace the consistency/likelihood metric with entropy.

Table 1: A taxonomy of data contamination detection methods. Our work is the first to specifically
address the challenges in the RL Post-training phase.

Method Probing Mechanism Core Metric Designed for
Existing Methods for Pre-training / SFT

PPL (EMNLP’23) Intrinsic Property Log Probability Pre-training / SFT
Min-K% (ICLR’24) Intrinsic Property Log Probability Pre-training / SFT
Min-K%++ (ICLR’25) Intrinsic Property Log Probability Pre-training / SFT
Recall (EMNLP’24) Non-member prefix Log Probability Pre-training / SFT
CDD (ACL’24) Stochastic Sampling Edit Distance Pre-training / SFT

Our Proposed Methods for RL Post-training

Entropy-Temp Stochastic Sampling Entropy RL
Entropy-Noise Non-member prefix Entropy RL
Self-Critique(Ours) Self-Critique Probing Entropy RL

Evaluation Metrics We primarily report the Area Under the ROC Curve (AUC), a standard metric
for detection problems such as data contamination and membership inference (Shi et al., 2024; Duan
et al., 2024; Zhang et al., 2025b). AUC is threshold-independent and reflects the probability that the
detector ranks a randomly chosen contaminated sample higher than a randomly chosen clean one;
higher AUC indicates stronger detection performance (50% corresponds to random guess). We also
report the F1 score at the Youden threshold (Fluss et al., 2005) as a threshold-specific reference.

5.3 MAIN RESULTS

Table 2: Performance of different detection methods on the RL-MIA benchmark across two models.
The AVG column is the average AUC across all benchmarks. Best AUC is in bold; the second best
is underlined.

Method AIME24 AIME25 K&K SAT AVG
F1 score AUC F1 score AUC F1 score AUC F1 score AUC

Qwen2.5-7B-Instruct

PPL (Gonen et al., 2023) 0.33 0.51 0.42 0.56 0.67 0.47 0.54 0.50 0.51
Min-K% (Shi et al., 2024) 0.59 0.49 0.52 0.44 0.70 0.54 0.32 0.50 0.49
Min-K%++ (Zhang et al., 2025b) 0.73 0.58 0.46 0.45 0.67 0.40 0.00 0.31 0.44
Recall (Xie et al., 2024b) 0.62 0.61 0.55 0.65 0.67 0.47 0.62 0.62 0.59
CDD (Dong et al., 2024) 0.50 0.57 0.67 0.52 0.67 0.47 0.57 0.47 0.51

Entropy-Temp 0.73 0.64 0.12 0.42 0.59 0.49 0.66 0.69 0.56
Entropy-Noise 0.70 0.57 0.67 0.63 0.68 0.52 0.79 0.77 0.62
Self-Critique(Ours) 0.69 0.72 0.76 0.72 0.69 0.66 0.69 0.67 0.70 (↑ 19%)
DeepSeek-Math-7B-Instruct

PPL (Gonen et al., 2023) 0.42 0.53 0.62 0.41 0.34 0.54 0.68 0.64 0.53
Min-K% (Shi et al., 2024) 0.55 0.47 0.12 0.40 0.67 0.46 0.69 0.35 0.42
Min-K%++ (Zhang et al., 2025b) 0.67 0.53 0.67 0.56 0.15 0.47 0.62 0.49 0.51
Recall (Xie et al., 2024b) 0.54 0.46 0.52 0.56 0.39 0.54 0.69 0.62 0.54
CDD (Dong et al., 2024) 0.30 0.49 0.65 0.51 0.08 0.48 0.66 0.50 0.50

Entropy-Temp 0.60 0.48 0.70 0.54 0.23 0.43 0.64 0.61 0.52
Entropy-Noise 0.70 0.56 0.72 0.69 0.48 0.52 0.67 0.45 0.55
Self-Critique(Ours) 0.76 0.67 0.71 0.61 0.60 0.63 0.66 0.67 0.64 (↑ 19%)

The main results of different data contamination methods based on Qwen2.5-7B-Instruct and
DeepSeek-Math-7B-Instruct3 are shown in Table 2. Across both models, Self-Critique is the most
reliable detector: it attains the best average AUC on Qwen2.5-7B-Instruct (0.70, +19% over the
best non-ours baseline) and on DeepSeek-Math-7B-Instruct (0.64, also +19% improvement), and

3We also provide additional results on Qwen2.5-7B-Math and LLama in Appendix B.
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it leads on most per-dataset AUCs. In contrast, likelihood-based baselines (PPL, Min-K%, Min-
K%++) often perform near random guesses and can be unstable. Among existing methods, Recall
achieves relatively strong performance (it is also a state-of-the-art approach for pre-training contam-
ination (Xie et al., 2024b)), suggesting that probing to expose membership signals is more effective
than relying solely on intrinsic text properties. Moreover, when using the same probing mechanisms,
the entropy-based variants perform better (Entropy-Temp vs. CDD; Entropy-Noise vs. Recall), indi-
cating that entropy is a sensitive indicator of RL-induced changes and thus better suited for RL-stage
detection.

Finally, compared to random sampling or prefix injection, our self-critique probing aligns more
closely with the RL property of dependence on high-reward paths. Within our entropy-based meth-
ods, this leads to notable gains, i.e., +13% on Qwen2.5-7B-Instruct and +16% on DeepSeek-Math-
7B-Instruct.

5.4 DUAL-STAGE CONTAMINATION IN PRE-TRAINING & RL

To isolate the effects of RL-phase contamination, our previous experiments were primarily con-
ducted on synthetic data or datasets with low levels of contamination. However, for public bench-
marks released before an LLM’s training cutoff, contamination from both pretraining and the RL
phase can co-occur. Therefore, we design a study to distinguish between these two sources of
contamination. Concretely, we choose GSM8K (widely acknowledged to suffer from substantial
pretraining leakage (Zhang et al., 2024a; Dekoninck et al., 2024; Mirzadeh et al., 2025)) and train
Qwen2.5-0.5B-Instruct with the PPO algorithm.4 We then simulate RL-phase contamination by
injecting half of the test set into the RL training data. As discussed in Section 3.2, pretraining
(which optimizes via Maximum Likelihood Estimation) and RL (which uses reward-driven policy
optimization) pursue different objectives, so their respective forms of contamination are likely to
produce distinct effects.

1.0 0.9 0.8 0.6 0.3 0.1
Pretraining contamination rate (higher  lower)

0.4

0.5

0.6

0.7

0.8

0.9

AU
C

+55%

0.88Self-Critique (lower pretraining contamination)
Self-Critique (random subset)
PPL
Random guess (AUC = 0.50)

Figure 3: Dual-stage contamination analysis. Self-
Critique on the lower-pretraining-contamination sub-
set (green) improves sharply as the rate decreases.

We first assign each test item a pretraining-
contamination proxy score using a
likelihood-based detector (e.g., PPL) to
separate these effects. We then evaluate
RL-stage contamination detection under
two conditions: ❶ a lower-pretraining-
contamination subset, created by select-
ing the bottom-q quantile of items by
PPL score (e.g., the lowest 50%); and ❷
a random-control subset. To control for
any confounding effects from a smaller
sample size on AUC, the random-control
subset is formed by uniformly sampling
the same number of items, thereby match-
ing the subset size while preserving the
original data distribution. Our hypothesis
predicts that Self-Critique’s performance
will significantly improve on the former
subset, but not on the latter.

The results are shown in Figure 3, and we also provide the numerical results in Table 7 of Appendix
B. As the pretraining contamination level decreases, the performance of Self-Critique on the lower-
pretraining-contamination subset improves significantly. In contrast, its performance on the random-
control subset shows a slight decrease, while the PPL-based detector’s performance approaches that
of a random guess. This outcome rules out a pure sample-size effect (as performance on the random-
control subset does not improve) and supports our hypothesis: conditioning the RL detector on items
with a weaker pretraining signal allows it to identify RL-phase memorization or path dependence
far more clearly. Meanwhile, the fact that likelihood-based cues (PPL) remain unstable and close
to 0.5 further demonstrates the effectiveness of our method in specifically targeting RL-phase data
contamination.

4Actually, the setting is the same as the quick start in verl, which makes it easy to reproduce the results.
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5.5 ABLATION STUDIES

Table 3: Detection performance on K&K with Qwen2.5-3B-Instruct trained by different RL algo-
rithms. AVG column reports the mean AUC across three RL algorithms.

Method PPO GRPO DAPO AVG
F1 score AUC F1 score AUC F1 score AUC

PPL (Gonen et al., 2023) 0.65 0.41 0.63 0.46 0.61 0.51 0.46
Min-K% (Shi et al., 2024) 0.43 0.50 0.58 0.54 0.64 0.46 0.50
Min-K%++ (Zhang et al., 2025b) 0.39 0.50 0.61 0.52 0.26 0.49 0.51
Recall (Xie et al., 2024b) 0.61 0.46 0.35 0.49 0.55 0.50 0.48
CDD (Dong et al., 2024) 0.66 0.53 0.65 0.51 0.60 0.49 0.51

Entropy-Temp 0.41 0.55 0.53 0.60 0.57 0.59 0.58
Entropy-Noise 0.64 0.59 0.43 0.52 0.60 0.49 0.53
Self-Critique(Ours) 0.67 0.61 0.67 0.61 0.64 0.60 0.60 (↑ 18%)

Contaminate with Different RL Algorithms Table 3 reports results on the K&K task using
Qwen2.5-3B-Instruct trained with three RL algorithms, including PPO (Schulman et al., 2017),
GRPO (Shao et al., 2024a), and DAPO (Yu et al., 2025). Across all algorithms, Self-Critique is
the most reliable detector: it attains the best AUC for each algorithm and the highest average AUC
(0.60). Entropy-based probes are consistently stronger than likelihood-based methods: Entropy-
Temp is the next best on average (0.58), while likelihood baselines (PPL, Min-K%, Min-K%++) are
around 0.46–0.51. These trends suggest that our probe, measuring path dependence via entropy sim-
ilarity, captures an RL-induced rigidity signal that is algorithm-agnostic. F1 scores follow the same
pattern, further indicating that Self-Critique yields both better ranking (AUC) and better thresholded
decisions. We also provide a discussion on different alignment algorithms under the RLHF paradigm
in Appendix B.3.

Ablation on Top-K Entropy Approximation As LLM vocabularies are large, it is often imprac-
tical to obtain the full next-token distribution at every decoding step to compute exact entropy. In
many APIs, only Top-K token probabilities are available, so we approximate entropy using those
Top-K masses. We conduct an ablation on the choice of K (Table 4). Reducing K does not harm
performance; even in the extreme case K = 3, the AUC drops only slightly. We attribute this to
the long-tailed nature of next-token distributions: most probability mass concentrates on a small
set of tokens, and the tail contributes little to entropy. Hence, Top-K entropy is both efficient and
accurate enough for our detector. Considering practical applications, we also include a discussion
on inference cost in Appendix G.2.

Table 4: Ablation on Top-K entropy approximation (Qwen2.5-7B-Instruct). We report AUC for
different K and the row-wise variance across K∈{3, 5, 10, 20, 50}.

Dataset K=3 K=5 K=10 K=20 K=50 Variance

AIME25 0.7022 0.7111 0.7111 0.7156 0.7156 2.39× 10−5

K&K 0.6460 0.6572 0.6636 0.6608 0.6584 3.62× 10−5

We also provide additional ablation studies about why self-critique probing is better, the sampling
strategy and sensitivity to meta-instructions in Appendix C.

6 CONCLUSION

In this paper, we presented the first systematic study of data contamination in the overlooked RL
post-training stage, demonstrating that existing data contamination detection methods are ill-suited
for this reward-driven paradigm. To address this gap, we proposed Self-Critique, a novel method
that identifies RL-induced policy collapse by actively probing the model’s reasoning path dependen-
cies using token-level entropy. To validate our method in a controlled setting, we also developed
RL-MIA, a new benchmark for RL-phase contamination. Experiments show that Self-Critique con-
sistently outperforms baselines, improving the average AUC by up to 30%, and its ability to isolate
RL-specific signals is further highlighted in dual-contamination scenarios, where performance im-
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proves by up to 55%. As the community’s understanding of RL post-training grows, we expect that
more detectors tailored to this unique setting will emerge.

ETHICS STATEMENT

All authors have read and adhered to the ICLR Code of Ethics. The primary objective of our work
is to enhance the integrity and reliability of Large Language Model evaluations. We address this
by developing Self-Critique, a method to detect data contamination in the Reinforcement Learning
(RL) post-training phase, aiming to prevent misleading performance claims and promote transparent
research practices. Our method is a specific application of Membership Inference Attack (MIA)
techniques, and we acknowledge the potential dual-use concerns regarding data privacy. However,
our study is carefully scoped to mitigate these risks. The goal of our work is defensive—providing
a validation tool for researchers—and it is applied exclusively to public, non-sensitive benchmarks
(AIME, K&K, SAT, GSM8K) that contain no personal data. We believe the societal benefit of
ensuring robust and honest model evaluation significantly outweighs the minimal risk of misuse in
this context.

REPRODUCIBILITY STATEMENT

We are committed to ensuring the full reproducibility of our research. To facilitate this, we have
made our code and the newly constructed RL-MIA benchmark anonymously available at https:
//anonymous.4open.science/r/Data-Contamination-in-RL. This repository in-
cludes the implementation of our proposed Self-Critique method, baseline methods, and scripts to
run the experiments. A formal, step-by-step description of the Self-Critique algorithm is provided
in Appendix A (Algorithm 1). The specific prompts used for the self-critique probing mechanism
are detailed in Appendix E. Details regarding the construction of the RL-MIA benchmark, includ-
ing dataset sources, injection methods, and data splits, are described in Section 5.1 and further
elaborated in Appendix F (Table 6). The key training hyperparameters for all RL models and algo-
rithms are provided in Appendix F (Table 7), ensuring that our training process can be accurately
replicated. Our evaluation metrics are standard in the field and are defined in Section 5.1.
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A ALGORITHM OF SELF-CRITIQUE

Algorithm 1 Self-Critique Contamination Detection

Require: Model M (black-box with per-token log-prob access or top-k probs), meta-prompt
Icritique, problem q

Ensure: Contamination score Score(q)
Deterministic decoding. Use greedy decoding (temperature = 0) in all generations.

1: (Initial response) Construct P1 ← T (q) and generate r1 ←M(P1).
2: Compute token-level entropy sequence E1 ← {Ht(r1)}|r1|t=1 using per-token probabilities.
3: (Self-critique response) Form q′ ← q ⊕ Icritique(r1); construct P2 ← T (q′) and generate r2 ←
M(P2).

4: Compute entropy sequence E2 ← {Ht(r2)}|r2|t=1.
5: (Similarity) Pad the shorter sequence with zeros: Ẽ1 ← pad(E1), Ẽ2 ← pad(E2).
6: Compute cosine similarity s← cos(Ẽ1, Ẽ2).
7: Compute length penalty λ← min(|E1|,|E2|)

max(|E1|,|E2|) .
8: return Score(q)← s× λ.

B ADDITIONAL RESULTS

B.1 ADDITIONAL RESULTS ON QWEN2.5-7B-MATH OTHER MODELS

To better demonstrate the generalization of our method across different models, we provide addi-
tional experiments on Qwen2.5-7B-Math (Yang et al., 2024) and Llama-3.1-8B-Instruct (Grattafiori
et al., 2024). As shown in Table 5, on Qwen2.5-7B-Math, Self-Critique achieves the best AUC on
both AIME24 (0.76) and AIME25 (0.72), and the highest average AUC (0.74). The two entropy
baselines are competitive, while likelihood-based methods (PPL, Min-K%, Min-K%++) and Recal-
l/CDD are clearly weaker here. We do not report K&K and SAT for this model because we could
not get stable RL training on these synthetic datasets with a non-instruct base; such setups typically
require more careful RL hyperparameters and data curation. This engineering detail is outside the
scope of our study. The experimental results on Llama-3.1-8B-Instruct are presented in Table 6.
Consistent with our previous findings, Self-Critique achieves the highest AUC on both K&K (0.61)
and SAT (0.62) datasets, significantly outperforming likelihood-based baselines which remain close
to random guessing.

Table 5: Detection results on Qwen2.5-7B-Math under RL-MIA (higher is better). AVG reports
mean AUC across AIME24 and AIME25.

Method AIME24 AIME25 AVG
F1 score AUC F1 score AUC

PPL(Gonen et al., 2023) 0.71 0.59 0.60 0.55 0.57
Min-K%(Shi et al., 2024) 0.72 0.41 0.63 0.45 0.43
Min-K%++(Zhang et al., 2025b) 0.69 0.48 0.58 0.46 0.47
Recall(Xie et al., 2024b) 0.45 0.55 0.32 0.49 0.52
CDD(Dong et al., 2024) 0.67 0.51 0.67 0.43 0.47

Entropy-Temp 0.72 0.50 0.70 0.63 0.56
Entropy-Noise 0.70 0.64 0.67 0.51 0.57
Self-Critique (Ours) 0.81 0.76 0.71 0.72 0.74 (↑ 30%)

B.2 NUMERICAL RESULTS FOR DUAL-STAGE CONTAMINATION

For completeness, we provide the numerical data corresponding to the dual-stage contamination
analysis presented in Figure 3 of the main paper. The results, detailed in Table 7, quantify the trend
shown in the figure: as the pretraining contamination signal is reduced (i.e., when evaluating on
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Table 6: Detection results on Llama-3.1-8B-Instruct under RL-MIA (higher is better). AVG reports
mean AUC across K&K and SAT. Self-Critique consistently outperforms baselines on both logic
datasets.

Method K&K SAT AVG
F1 score AUC F1 score AUC

PPL(Gonen et al., 2023) 0.52 0.47 0.67 0.53 0.50
Min-K%(Shi et al., 2024) 0.66 0.50 0.50 0.46 0.48
Min-K%++(Zhang et al., 2025b) 0.45 0.44 0.51 0.47 0.46
Recall(Xie et al., 2024b) 0.67 0.53 0.68 0.55 0.54
CDD(Dong et al., 2024) 0.67 0.53 0.67 0.51 0.52

Entropy-Temp 0.68 0.56 0.67 0.53 0.55
Entropy-Noise 0.67 0.52 0.68 0.57 0.55
Self-Critique (Ours) 0.69 0.61 0.70 0.62 0.62 (↑ 15%)

subsets with lower PPL scores), the AUC of Self-Critique on these filtered subsets increases sharply
from 0.59 to 0.88, confirming its effectiveness at isolating RL-specific signals.

Table 7: Numerical AUC results for the dual-stage contamination analysis. The header row indicates
the quantile of pretraining contamination retained.

Method 1.0 0.9 0.8 0.6 0.3 0.1

PPL 0.52 0.48 0.47 0.56 0.54 0.56
Self-Critique (random subset) 0.59 0.58 0.60 0.57 0.49 0.54
Self-Critique (lower pretraining contamination) 0.59 0.62 0.62 0.65 0.74 0.88

B.3 ADDITIONAL RESULTS ON RLHF PARADIGM

While our primary investigation in the main text focuses on the Reinforcement Learning with Verifi-
able Rewards (RLVR) paradigm due to its rising prominence in reasoning tasks, we acknowledge the
critical role of Reinforcement Learning with Human Feedback (RLHF) in the broader post-training
landscape. To demonstrate the generalizability of our method, we extended our experiments to the
standard RLHF setting. Following the experimental setup of Zhong et al. (2025), we utilized Llama-
3-8B-Instruct trained on the UltraFeedback dataset (Cui et al., 2023) under four distinct alignment
algorithms: PPO (Schulman et al., 2017) (representing traditional reward modeling), DPO (Rafailov
et al., 2023) (representing implicit reward alignment), TDPO (Zeng et al., 2024b) and RTO (Zhong
et al., 2025) (representing token-level reward modeling).

Table 8: Detection results (AUC) on the UltraFeedback dataset across different RLHF alignment
algorithms. Self-Critique consistently outperforms baselines regardless of the alignment method.

Method PPO DPO TDPO RTO
(Schulman et al., 2017) (Rafailov et al., 2023) (Zeng et al., 2024b) (Zhong et al., 2025)

PPL(Gonen et al., 2023) 0.56 0.45 0.49 0.53
Min-K%(Shi et al., 2024) 0.40 0.53 0.49 0.45
Min-K%++(Zhang et al., 2025b) 0.47 0.52 0.51 0.44
Recall(Xie et al., 2024b) 0.58 0.58 0.60 0.56
CDD(Dong et al., 2024) 0.56 0.46 0.44 0.44

Entropy-Temp 0.54 0.53 0.54 0.52
Entropy-Noise 0.53 0.51 0.53 0.59
Self-Critique (Ours) 0.62 0.62 0.64 0.70

The detection results are presented in Table 8. We observe that Self-Critique consistently maintains
its effectiveness across all four paradigms, achieving the highest AUC scores ranging from 0.62 to
0.70. In contrast, baseline methods such as PPL and CDD often perform near random guessing
(AUC ≈ 0.50) or exhibit instability. This suggests that the phenomenon of policy collapse is a
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fundamental characteristic of alignment training, regardless of whether the reward signal is sparse,
implicit, or token-level.

C ADITIONAL ABLATIONS

C.1 WHY SELF-CRITIQUE PROBING IS A BETTER DETECTOR

AIME24 AIME25 K&K SAT
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(a) Qwen2.5-7B-Instruct
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Figure 4: Self-critique probing vs. no self-critique.

As our self-critique idea asks the model to propose an alternative reasoning path given its initial
response, a naive variant is to skip the initial response and simply tell the model to “answer us-
ing an unusual technique”5. The results in Figure 4 show that without the initial response as an
anchor, performance collapses to near random guess . This variant fails because it removes the an-
chor that makes the probe meaningful: without conditioning on the initial answer, the “alternative”
path is unconstrained, instruction following is noisy, and both members and non-members produce
heterogeneous trajectories whose entropy sequences are not comparable. Moreover, RL can induce
mode-seeking even on unseen items, so we end up measuring two arbitrary paths rather than the
deviation from a memorized one. Self-critique fixes a concrete baseline and probes deviation from
it—hence the large AUC gains over the no-response variant.

C.2 ABLATION ON SAMPLING STRATEGY

We perform an ablation study of the sampling strategies used to generate model responses. Specifi-
cally, we experiment with three settings: (1) using greedy sampling for both the initial response and
the second self-critique response; (2) using greedy sampling for the initial response and tempera-
ture sampling for the self-critique response; and (3) using temperature sampling for both the initial
response and the self-critique response. For temperature sampling, we test multiple temperatures.
The ablation results, shown in Figure 5, indicate that the best performance is achieved when both
the initial and self-critique responses are generated by greedy sampling. This is because greedy
sampling eliminates the effect of randomness, thereby better revealing the sharp policy distributions
caused by entropy collapse from RL post-training.

C.3 ABLATION ON META-INSTRUCTION

To address the concern that our method’s behavior might be tied to a specific prompt template, we
conducted an ablation study to test its sensitivity to the Self-Critique instruction. We evaluated five
paraphrased variations of our original meta-instruction (detailed as Variations 1–5 in Appendix E).

The results, presented in Table 9, demonstrate that Self-Critique is exceptionally stable across dif-
ferent templates. The standard deviation in AUC across all meta-prompts is remarkably low (0.0251
on AIME25 and 0.0254 on K&K). This quantitative evidence confirms that the detection signal is
driven by the underlying policy collapse mechanism rather than the specific phrasing of the instruc-
tion.

5Detail prompt is shown in Appendix E Prompt 1
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Figure 5: Ablation on Sampling Strategy

Table 9: Ablation study on different Self-Critique meta-instructions. The method shows high ro-
bustness to prompt variations, as indicated by the low standard deviation.

Meta-Instruction AIME25 K&K
F1 score AUC F1 score AUC

Original 0.7647 0.7156 0.6866 0.6584
Variation 1 0.7179 0.6978 0.6992 0.6464
Variation 2 0.7879 0.7600 0.6763 0.6432
Variation 3 0.7429 0.6978 0.7302 0.7016
Variation 4 0.7500 0.7422 0.7009 0.6640
Variation 5 0.7500 0.7333 0.6809 0.6272

Mean 0.7522 0.7244 0.6957 0.6568
Std 0.0233 0.0251 0.0195 0.0254

D VISUALIZATION OF CONTAMINATION SCORE DISTRIBUTION

For the contaminated and uncontaminated samples in the AIME and AIME25 dataset, we computed
their Self-Critique similarity scores, and present the histograms in Figure 6. Through Kernel Den-
sity Estimation (KDE), we observe a clear difference in the distribution of Self-Critique similarity
scores between contaminated and uncontaminated samples, demonstrating the effectiveness of our
proposed Self-Critique method for data contamination detection.

E INSTRUCTIONS

We present here the prompts used in the data contamination detection process. We employ Prompt 1
to encourage the model to generate responses that deviate from conventional reasoning. In particular,
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Figure 6: Histograms and Kernel Density Estimation (KDE) of Self-Critique similarity scores be-
tween contaminated and uncontaminated samples.

for the Self-Critique process, we use Prompt 2 to guide the model to regenerate a second response
that differs as much as possible from the initial one. For the ablation study on template sensitivity,
we additionally employed five paraphrased variations (Variations 1–5) detailed below.

Prompt 1: Unconventional Reasoning

Answer using a technique you’d typically avoid or a deliberately unconventional line of
reasoning.

Prompt 2: Self-Critique Instruction (Original)

A possible answer is provided below (it may or may not be correct). Please provide a re-
sponse that follows a different reasoning path or provides an alternative solution:
—
{Initial Response}
—
Please now provide your new, different response:

Prompt 3: Self-Critique Variation 1

A potential answer is shown below (it may or may not be correct). Please give a response
that uses a different reasoning approach or offers an alternative solution:
—
{Initial Response}
—
Please now give your new, different response:

Prompt 4: Self-Critique Variation 2

An answer attempt is provided below (it may or may not be correct). Please provide a
response that takes a different reasoning path or presents an alternative solution:
—
{Initial Response}
—
Please now provide your new, alternative response:
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Prompt 5: Self-Critique Variation 3

A candidate answer is provided below (it may or may not be correct). Please give a response
that employs a different reasoning path or supplies an alternative solution:
—
{Initial Response}
—
Please now give your new, distinct response:

Prompt 6: Self-Critique Variation 4

A potential solution is presented below (it may or may not be correct). Please provide a
response that adopts a different reasoning path or offers an alternative solution:
—
{Initial Response}
—
Please now provide your new, varied response:

Prompt 7: Self-Critique Variation 5

A tentative answer is provided below (it may or may not be correct). Please provide a
response that uses a different reasoning path or presents an alternative solution:
—
{Initial Response}
—
Please now provide your new, alternative response:

F BENCHMARK DETAIL & TRAINING SETTINGS

This section provides a detailed breakdown of the RL-MIA benchmark construction and the specific
training configurations used in our experiments.

To create a controlled environment for evaluating data contamination in the RL phase, we con-
structed the RL-MIA benchmark. The methodology involves injecting a known subset of test sam-
ples (contaminated items) into a larger base corpus for RL post-training. The detection task is then to
distinguish these injected samples from clean, unseen samples. Table 10 summarizes the data splits
for each source dataset, detailing the size of the base RL corpus, the number of injected items, the to-
tal size of the final training set, the number of times each contaminated item appears (Occurrences),
and the total number of items in the final detection task (Contaminated + Clean).

For reproducibility, we also provide the key hyperparameters used during RL post-training. Table 11
lists the shared training parameters for our two primary experimental models: Qwen2.5-7B-Instruct
and Deepseek-math-7b-Instruct.

Table 10: RL-MIA data splits for training and evaluation. The last column reports the total number
of evaluation items (Contam + Clean).

Source Base RL Corpus (size) Injected items Train Size Occurrences Detection Tasks

AIME24
OpenR1-Math-46K

15
46K + 30 2 30

AIME25 15 30

K&K K&K train: 950 K&K test: 50 950 + 50 3 100
SAT SAT train: 450 SAT test: 50 450 + 50 100

GSM8K GSM8K train: 7473 GSM8K test: 659 7473 + 659 4 1319

Due to the 4,096 context length of DeepSeek-Math-7B-Instruct, we set its maximum generation
length to 3,072 (with a 1,024-token prompt). For other models (Qwen2.5-7B-Math, Qwen2.5-
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Table 11: Shared training hyperparameters

Parameter Qwen2.5-7B-Instruct Deepseek-Math-7B-Instruct

Actor learning rate 1.0× 10−6 1.0× 10−6

Batch size (train / val) 128 / 512 128 / 512
Max prompt length 1024 1024
Max generation length 4096 3072
Temperature (train / val) 1.0 / 0.6 1.0 / 0.6
Samples per prompt (n) 8 8
Tensor model parallel (TP) 2 2
micro / mini-batch 2 / 2 2 / 2
Max tokens per GPU 16384 16384
Use KL loss No No
Entropy coefficient 0.001 0.001

3B-Instruct, and Qwen2.5-0.5B-Instruct), the settings are essentially the same as for Qwen2.5-7B-
Instruct. Full details are available in the training scripts included with our released code.

G DISCUSSION

G.1 DISCUSSION ON RESULT VARIABILITY AND ERROR BARS

In Table 2, we observed variability in the performance of baseline methods across different models,
particularly for Entropy-Noise on the SAT dataset. This variability largely stems from the nature of
the probing mechanism: Entropy-Noise injects a random, non-member prefix to disrupt the context.
Different models react differently to these out-of-distribution prefixes—some models robustly ignore
them, while others may become unstable or hallucinate, leading to erratic entropy shifts that do not
consistently correlate with contamination. In contrast, Self-Critique uses a semantically meaningful
instruction, guiding the model into a more predictable state, which results in more stable detection.

Table 12: Bootstrap analysis (1,000 resamples) on the SAT dataset. We report Mean ± Std and
the [95% Confidence Interval]. Self-Critique shows stable performance significantly above random
guessing.

Method Qwen2.5-7B-Instruct DeepSeek-Math-7B
Mean ± Std 95% CI Mean ± Std 95% CI

PPL(Gonen et al., 2023) 0.50 ± 0.06 [0.38, 0.63] 0.64 ± 0.06 [0.52, 0.75]
Min-K%(Shi et al., 2024) 0.50 ± 0.06 [0.37, 0.61] 0.35 ± 0.06 [0.24, 0.47]
Min-K%++(Zhang et al., 2025b) 0.31 ± 0.05 [0.21, 0.42] 0.49 ± 0.06 [0.38, 0.61]
Recall(Xie et al., 2024b) 0.62 ± 0.06 [0.51, 0.72] 0.62 ± 0.06 [0.50, 0.74]
CDD(Dong et al., 2024) 0.47 ± 0.06 [0.36, 0.58] 0.50 ± 0.02 [0.46, 0.54]

Entropy-Temp 0.69 ± 0.05 [0.58, 0.78] 0.61 ± 0.06 [0.49, 0.72]
Entropy-Noise 0.77 ± 0.05 [0.67, 0.86] 0.45 ± 0.06 [0.33, 0.56]
Self-Critique (Ours) 0.67 ± 0.05 [0.56, 0.76] 0.67 ± 0.06 [0.55, 0.77]

To rigorously quantify this stability, we performed a bootstrap analysis (Efron, 1992) (resampling
1,000 times) to calculate the mean AUC and 95% Confidence Intervals (CI) (DiCiccio & Efron,
1996) for the SAT dataset. As shown in Table 12, while baseline performance fluctuates significantly
(e.g., Min-K%++ varies from 0.21 to 0.42 on Qwen), Self-Critique demonstrates robust performance
with confidence intervals that consistently surpass the likelihood-based methods.

G.2 DISCUSSION ON INFERENCE COST

A practical consideration for deployment is the trade-off between detection performance and compu-
tational budget. We categorize detection methods into passive (e.g., PPL, Min-K%) and active (e.g.,
Recall, CDD, Self-Critique) approaches. ❶ Passive Methods: These are computationally cheapest,
requiring only a single forward pass of the text. However, as demonstrated in our experiments (Table
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2), they are largely ineffective for RL post-training contamination because the likelihood signal is
decoupled from the reward-driven training objective. ❷ Active Methods: These require additional
computation to probe the model but are necessary for valid detection in this regime. Among active
methods, Self-Critique offers the best balance. It requires two generations (initial + critique). In
comparison, Recall also requires two passes but generally achieves lower AUC. CDD typically re-
quires a large number of samples (e.g., N = 50) to estimate the edit distance distribution reliably. If
we limit CDD to just two samples to match Self-Critique’s budget, its estimation of the edit distance
distribution becomes noisy and unreliable, leading to meaningless results.

Regarding the overhead of computing token-level entropy, our ablation study in Table 4 demon-
strates that approximating entropy using only the Top-K (e.g., K = 5) probabilities is sufficient.
This avoids the need to materialize the full vocabulary distribution, making the entropy calculation
overhead negligible compared to the generation cost.

H LIMITATIONS AND FUTURE WORK

While our work presents a robust framework for detecting contamination in the RL post-training
phase, we acknowledge several avenues for future research that build upon our findings.

Generalization Across Diverse Domains. Our experiments primarily focused on mathematical
and logical reasoning tasks, as these are prominent domains where RL has demonstrated significant
benefits. However, the unique characteristics of RL-induced contamination may vary across differ-
ent problem domains. For instance, in areas such as code generation, where a wider diversity of
valid solutions is common, the signature of policy collapse might manifest differently. Future work
could extend the evaluation of Self-Critique and other reward-aware detection methods to these and
other domains, thereby assessing the broader applicability and potential domain-specific adaptations
of our method.

Scalability to Larger Models. The models used in our study, ranging from 0.5B to 7B parameters,
are representative of a widely used class of open-source LLMs. However, the landscape of foun-
dation models is rapidly evolving, with state-of-the-art proprietary and open-source models now
exceeding hundreds of billions of parameters. While we have no reason to believe our method’s
core principles would not apply, the dynamics of policy collapse and memorization at such scales
are not yet fully understood. Investigating the effectiveness of Self-Critique on these frontier models
represents an important next step in ensuring the reliability of the entire LLM ecosystem.

I LLM USAGE STATEMENT

In preparing this manuscript, we use LLMs to aid and polish the writing. Specifically, LLMs improve
clarity, grammar, and phrasing, ensuring the text is concise and readable. The use of LLMs does
not influence the technical contributions or the interpretation of experimental findings. All content
polished by LLMs is carefully checked by the authors.
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