

000 001 002 003 004 005 006 007 008 009 010 011 012 013 014 015 016 017 018 019 020 021 022 023 024 025 026 027 028 029 030 031 032 033 034 035 036 037 038 039 040 041 042 043 044 045 046 047 048 049 050 051 052 053 DETECTING DATA CONTAMINATION FROM REINFORCEMENT LEARNING POST-TRAINING FOR LARGE LANGUAGE MODELS

Anonymous authors

Paper under double-blind review

ABSTRACT

Data contamination poses a significant threat to the reliable evaluation of Large Language Models (LLMs). This issue arises when benchmark samples may inadvertently appear in training sets, compromising the validity of reported performance. While detection methods have been developed for the pre-training and Supervised Fine-Tuning stages, a critical research gap exists for the increasingly significant phase of Reinforcement Learning (RL) post-training. As RL post-training becomes pivotal for advancing LLM reasoning, the absence of specialized contamination detection methods in this paradigm presents a critical vulnerability. To address this, we conduct the first systematic study of data detection within RL post-training scenario and propose **Self-Critique**. Our method is motivated by a key observation: after RL phase, the output entropy distribution of LLMs tends to collapse into highly specific and sparse modes. Self-Critique probes for the underlying policy collapse, i.e., the model’s convergence to a narrow reasoning path, which causes this entropy reduction. To facilitate this research, we also introduce **RL-MIA**, a benchmark constructed to simulate this specific contamination scenario. Extensive experiments show that Self-Critique significantly outperforms baseline methods across multiple models and contamination tasks, achieving an AUC improvement of up to **30%**. Whereas existing methods are close to a random guess for RL-phase contamination, our method makes detection possible. Our benchmark and code are available at <https://anonymous.4open.science/r/Data-Contamination-in-RL>.

1 INTRODUCTION

The reliability of Large Language Model (LLM) evaluations is seriously threatened by data contamination. This happens when benchmark test samples accidentally get included in the training data, which can invalidate the model’s reported performance. To solve this problem, many researchers have developed detection methods, but they have almost exclusively focused on the pre-training and Supervised Fine-Tuning (SFT) (Dong et al., 2024; Fu et al., 2024; Shi et al., 2024; Zhang et al., 2024b; Xie et al., 2024b; Zhang et al., 2025a;b) stages. However, these efforts have left a major gap: the increasingly important phase of Reinforcement Learning (RL) post-training. We believe this is a critical oversight, because powerful techniques like Reinforcement Learning with Verifiable Rewards (RLVR) (Shao et al., 2024a; Guo et al., 2025; Yu et al., 2025) are now essential for improving LLM reasoning. This makes the RL stage a major potential source of contamination that has been largely overlooked.

The challenge of detecting RL-phase contamination stems from a fundamental shift in the training objective, rendering existing methods ineffective. Both pre-training and SFT are likelihood-based paradigms; they train models to maximize the probability of observed data. This process naturally creates strong, likelihood-based signals, such as unusually low perplexity, which most current detectors are built to identify. By contrast, RL, especially RLVR, operates on a reward-maximization principle. The policy is not trained to mimic a ground-truth distribution but is instead guided by sparse reward signals to find a successful reasoning path. This approach often enables stronger generalization than SFT (Kirk et al., 2024; Chu et al., 2025), but by decoupling from likelihood-based objectives, it also erases the very signals that traditional detectors rely on. Consequently, RL-phase

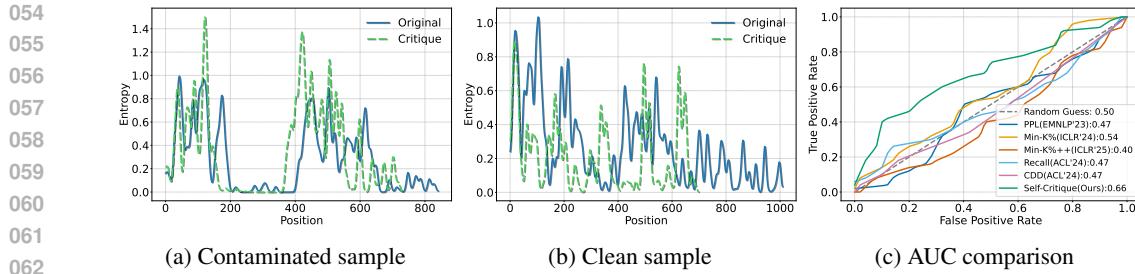


Figure 1: Motivation behind **Self-Critique**. After RL post-training, entropy distributions become sparse. (a) For contaminated samples, the critique reasoning path remains highly similar to the original one, indicating policy collapse and memorization. (b) Clean samples exhibit greater divergence between the original and critique reasoning paths. (c) Our method achieves a significantly higher AUC while existing baselines perform close to random guess.

contamination becomes a uniquely challenging problem, creating an urgent need for a new class of detection methods specifically designed for this reward-driven setting.

Given that likelihood-based signals are ineffective, our search for a new detection method begins with identifying a signal inherent to the reward-driven training process. Recent studies on RL’s training dynamics point to a promising candidate: the phenomenon of **policy collapse**. Specifically, RL narrows the search space to improve pass@1 accuracy, often at the cost of lower pass@k performance (Havrilla et al., 2024; Shao et al., 2024b; Yue et al., 2025; Dong et al., 2025), and produces distinctive entropy patterns, such as high-entropy concentration on certain tokens (Wang et al., 2025a; Cheng et al., 2025; Song et al., 2025). These findings suggest that entropy could serve as a powerful indicator of this collapse and its associated path dependency. However, our initial investigations revealed that using entropy directly as a contamination signal is unreliable. The reason is that policy collapse is a general behavior of RL and can occur even on clean samples not seen during training. As shown in Figures 1a and 1b, both contaminated and clean samples can exhibit sparse token-level entropy. This implies that a simple passive check is insufficient. Therefore, we introduce an active **probing mechanism** to expose the underlying differences. We find that when the model is asked to **generate an alternative reasoning path given its initial response (self-critique)**, contaminated samples struggle to deviate, resulting in highly similar entropy curves (Figure 1a). In contrast, the model shows greater flexibility on clean samples, leading to more distinct entropy patterns (Figure 1b).¹

Building on these observations, we introduce **Self-Critique**, an entropy-based detection method that applies our self-critique probing strategy. The core idea is to instruct the model to generate two distinct responses for the same problem; samples where the two responses exhibit high similarity in their entropy space are flagged as contaminated. A detailed workflow is shown in Figure 2. However, rigorously evaluating this method is challenging, as no existing benchmark can isolate and simulate contamination purely within the RL phase. To overcome this hurdle, we also developed **RL-MIA** (Reinforcement Learning Membership Inference Attack), a new benchmark constructed for this specific purpose. Using RL-MIA across challenging math and logic datasets, we show that Self-Critique is highly effective. As previewed in Figure 1c, our method significantly outperforms existing detectors, which operate near the level of random guess.

Our main contributions are summarized as follows:

- ① To the best of our knowledge, we present *the first systematic study of data contamination detection in the RL post-training phase of LLMs*, highlighting a critical yet overlooked problem.
- ② We propose **Self-Critique**, an entropy-based detector that measures RL-induced policy collapse via self-critique probing. Across four tasks and multiple models, Self-Critique consistently outperforms baselines, which perform near random guess, achieving an AUC improvement of up to 30%.
- ③ We introduce **RL-MIA**, a new benchmark that simulates RL-specific contamination scenarios across math and logic tasks, enabling the rigorous evaluation of detection methods.

¹We also provide visualizations of the contamination score distribution in Appendix D.

108
109

2 RELATED WORKS

110
111
In this section, we outline the two most relevant directions and associated papers of this work.112
113
114
115
116
117
118
119
120
121
122
123
124
125

Data Contamination Detection Data contamination detection can be regarded as a specific instance of membership inference attacks (MIA), which were initially introduced to measure memorization and privacy risks (Shokri et al., 2017; Carlini et al., 2019; Mireshghallah et al., 2022a). Recently, the issue of data contamination in LLMs has drawn increasing attention, as it directly undermines the validity of benchmark evaluations (Sainz et al., 2023; Xu et al., 2024a;b; Wu et al., 2025). Prior work on data contamination detection in LLMs has mainly focused on the pre-training and Supervised Fine-Tuning stages (Mireshghallah et al., 2022b; Fu et al., 2023; Mattern et al., 2023; Shi et al., 2024; Xie et al., 2024b; Gonen et al., 2023; Dong et al., 2024; Zhang et al., 2025b). In these stages, models largely rely on memorizing training data for learning (Zeng et al., 2024a; Chu et al., 2025; Wang et al., 2025b), a process that naturally creates strong, likelihood-based signals—such as unusually low perplexity—that most current detectors are built to identify. In contrast, during the RL post-training phase, LLMs are optimized to autonomously explore reasoning trajectories. This reward-driven objective decouples the model’s behavior from simple likelihood metrics, posing a unique challenge for conventional detection methods.

126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143

Entropy in Reinforcement Learning Post-training Reinforcement learning has become a crucial paradigm for post-training large language models. Leveraging reinforcement learning with verifiable rewards substantially enhances LLM’s reasoning capabilities (Jaech et al., 2024; Guo et al., 2025). A key factor in RL post-training is entropy: high entropy promotes exploration via stochastic policies, while low entropy favors exploitation through deterministic behavior. A common challenge in RL post-training is entropy collapse (Cui et al., 2025; Liang et al., 2025), where policy entropy decreases dramatically in the early stages of training, leading to premature convergence and restricted exploration. To address this, entropy management strategies regularize entropy to prevent rapid collapse (O’Donoghue et al., 2016; He et al., 2025; Wang et al., 2025c) or use high-entropy signals to encourage inherently exploratory reasoning behaviors (Cheng et al., 2025; Vanlioglu, 2025; Tan & Pan, 2025), thus maintaining a balance between exploration and exploitation. In reasoning tasks, high-entropy tokens indicate uncertain decision points and are assigned stronger RL updates, while low-entropy tokens, which correspond to more deterministic outputs, receive smaller updates (Li et al., 2025; Wang et al., 2025a; Tang et al., 2025). As a result, the trained model develops distinct entropy patterns across tokens. In this work, we analyze these entropy patterns before and after self-critique to detect potential data contamination.

144
145
146
147

3 THE CHALLENGE OF CONTAMINATION DETECTION IN RL

148
149
150
151
152
153
154
155
156
157
158
159
160
161
In this section, we formalize the problem of detecting data contamination in the RL post-training phase of LLMs, and then highlight why detection methods based on likelihood, which are effective in pre-training and SFT, become unreliable in RL. Finally, we introduce token-level entropy as a lens to analyze RL-induced policy collapse, which lays the foundation for our proposed method.174
175
3.1 PROBLEM DEFINITION176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1380
1381
1382
1383
1384
1385<br

162 Both pre-training and Supervised Fine-Tuning are governed by an MLE-based objective. Their
 163 goal is to train a model \mathcal{M} with parameters θ to maximize the likelihood of the observed data by
 164 minimizing the negative log-likelihood loss.

165 For **pre-training**, the model learns from a vast corpus of unlabeled text D_{pretrain} . The objective is
 166 next-token prediction, aiming to learn a general distribution of the language. For a text sequence
 167 $x = (x_1, x_2, \dots, x_T)$, the loss is:

$$169 \quad \mathcal{L}_{\text{Pretrain}}(\theta) = - \sum_{x \in D_{\text{pretrain}}} \sum_{t=1}^T \log p_{\theta}(x_t | x_{<t}) \quad (1)$$

172 For **SFT**, the model learns from a dataset of prompt-response pairs $D_{\text{SFT}} = \{(q, r)\}$. The objective
 173 is to learn to follow instructions and generate helpful responses. The model is trained to maximize
 174 the likelihood of the target response $r = (r_1, \dots, r_K)$ given the prompt q :

$$176 \quad \mathcal{L}_{\text{SFT}}(\theta) = - \sum_{(q, r) \in D_{\text{SFT}}} \sum_{t=1}^K \log p_{\theta}(r_t | q, r_{<t}) \quad (2)$$

179 Despite their different data sources, both paradigms (Eq. 1 and 2) share the same underlying principle:
 180 they **directly train the model to assign high probabilities to sequences seen in the training**
 181 **data**. This provides a clear signal for detection methods like Perplexity (Gonen et al., 2023) and
 182 Min-K% Prob (Shi et al., 2024), which are built upon this likelihood principle.

183 In stark contrast, **RL post-training** (and specifically RLVR) does not directly optimize for likelihood.
 184 Its objective is to update the policy π_{θ} to maximize the expected *reward* \mathcal{R} from a set of
 185 generated outputs $\{o_i\}$ given a prompt q . The objective for a method like GRPO (Shao et al., 2024a)
 186 can be abstracted as:

$$187 \quad \mathcal{J}_{\text{RL}}(\theta) = \mathbb{E}_{q \sim D_{\text{RL}}, \{o_i\} \sim \pi_{\theta_{\text{old}}}} [f(\mathcal{R}(o_i), \pi_{\theta})], \quad (3)$$

188 where $f(\cdot)$ is a function of the reward, the current policy, and a reference policy. The key distinction
 189 is that the optimization is driven by an external, often sparse, reward signal $\mathcal{R}(o_i)$ (e.g., 1 for a cor-
 190 rect final answer, 0 otherwise), not by the token-level log-probabilities of the ground-truth response.
 191 This decouples the model’s final behavior from simple likelihood metrics, rendering many existing
 192 detection approaches that rely on this signal ineffective.

193 3.3 ENTROPY AS A NEW SIGNAL FOR RL DETECTION

195 Recent studies (Yue et al., 2025; Wang et al., 2025a; Cui et al., 2025) have shown that RL post-
 196 training frequently leads to *policy collapse*: for samples that receive consistent reward, the model
 197 converges to a narrow reasoning path, producing overly stable outputs. This phenomenon is re-
 198 flected in the *token-level entropy*. For each decoding step t , the token-level entropy is

$$199 \quad H_t = - \sum_{v \in V} p_{\theta}(v | x_{<t}) \log p_{\theta}(v | x_{<t}), \quad (4)$$

202 and the entropy sequence $E = \{H_t\}_{t=1}^T$ measures uncertainty along the generated trajectory. Em-
 203 pirical observations show that RL tends to push entropy sequences into sparse patterns, where many
 204 tokens are nearly deterministic. Crucially, this collapse is stronger for contaminated samples that
 205 were explicitly rewarded during RL training, whereas clean samples retain more variability when
 206 probed.

207 These insights suggest that contamination detection in RL requires moving beyond likelihood and in-
 208 stead measuring the policy’s dependence on specific reasoning paths. Token-level entropy provides
 209 a natural signal for this purpose, which directly motivates our **Self-Critique** method: by asking the
 210 model to regenerate an alternative reasoning path conditioned on its initial response and comparing
 211 the entropy sequences, we can reveal whether a sample was memorized during RL training.

212 4 DETECTION VIA SELF-CRITIQUE

215 Our method is motivated by the hypothesis that RL post-training induces high-reward path depen-
 216 dence for contaminated samples. Concretely, for a problem q seen during RL training, the policy π_{θ}

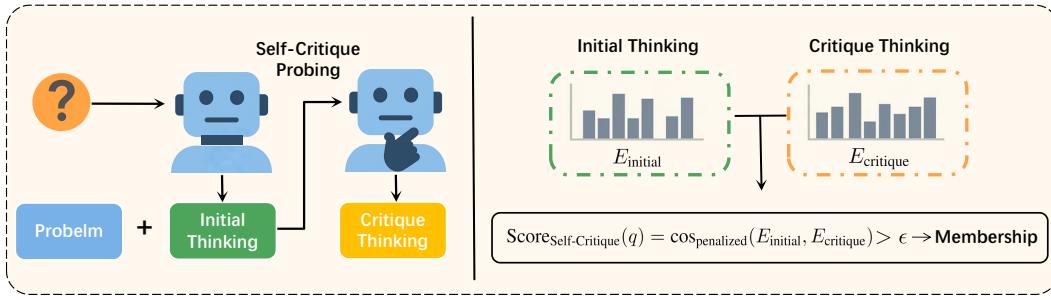


Figure 2: Overview of the **Self-Critique** detection workflow. The method compares token-level entropy sequences between the initial response and the self-critique response. High similarity in entropy space indicates contamination (policy collapse), while low similarity indicates clean samples.

tends to converge to a highly rewarded and thus similar response trajectory. In contrast, for problems not seen during RL training, the model is more likely to produce an alternative reasoning path when prompted.

The **Self-Critique** method quantifies this dependency. We first elicit the model’s most confident (deterministic) response, and then ask the model to produce a different solution *conditioned on* the initial response. We compare the token-level entropy sequences of the two generations to measure the degree of path dependence. An overview is shown in Figure 2.

4.1 THE SELF-CRITIQUE DETECTION PROCESS

Let \mathcal{M} be a large language model with parameters θ , and let q be the problem under test. We use a deterministic decoding strategy (e.g., greedy decoding) to obtain the model’s most confident response as the reference.

Step 1: Initial response. We construct the initial prompt P_1 by embedding q into a chat template T , and obtain the model’s response:

$$r_1 = \mathcal{M}(T(q)). \quad (5)$$

We then compute the token-level entropy sequence for this response, $E_1 = \{H_t(r_1)\}_{t=1}^{|r_1|}$, which serves as the baseline reasoning trajectory.

Step 2: Self-critique response. We form a self-critique prompt P_2 by augmenting q with an instructional meta-prompt I_{critique} ² and the text of r_1 :

$$q' = q \oplus I_{\text{critique}}(r_1), \quad (6)$$

where \oplus denotes appending to the user content within the prompt structure. We then generate the second response and its entropy sequence:

$$r_2 = \mathcal{M}(T(q')), \quad E_2 = \{H_t(r_2)\}_{t=1}^{|r_2|}. \quad (7)$$

Step 3: Similarity score. The contamination score is the similarity between the two entropy sequences. A higher similarity indicates that the model remains on the same reasoning path despite being instructed to change it, suggesting memorization. We use a length-aware (penalized) cosine similarity:

$$\text{Score}_{\text{Self-Critique}}(q) = \text{cos}_{\text{penalized}}(E_1, E_2), \quad (8)$$

where

$$\text{cos}_{\text{penalized}}(A, B) = \cos(\text{pad}(A), \text{pad}(B)) \times \frac{\min(|A|, |B|)}{\max(|A|, |B|)}. \quad (9)$$

Here $\cos(\cdot, \cdot)$ is the standard cosine similarity between vectors (dot product over the product of L2 norms), and $\text{pad}(\cdot)$ zero-pads the shorter sequence to the maximum length so that non-overlapping positions contribute zero. The multiplicative length ratio penalizes cases where one response is

²The exact I_{critique} is shown in Appendix E.

270 much shorter/longer than the other, since response length itself reflects a facet of the reasoning
 271 mode. Overall, a higher score indicates a higher likelihood of contamination. A formal description
 272 of the procedure is provided in Appendix A.

274 5 EXPERIMENTS

277 In this section, we present a comprehensive empirical evaluation of our proposed Self-Critique. We
 278 first introduce the RL-MIA benchmark, which we constructed specifically for RL data contamination
 279 detection. We then describe the baseline methods we compare against and detail our experimental
 280 setup. Finally, we present the main results, followed by analysis and ablation studies. Additional
 281 experimental results are in Appendix B and C.

282 5.1 RL-MIA: A BENCHMARK FOR RL MEMBERSHIP INFERENCE ATTACK

284 To the best of our knowledge, no benchmark currently exists for systematically detecting data con-
 285 tamination during the RL post-training stage. To address this gap, we introduce the RL-MIA (Re-
 286inforcement Learning Membership Inference Attack). The key idea behind RL-MIA is to simulate
 287 controllable data contamination by selectively including a subset of data in the RL post-training
 288 process, while the objective of the contamination detection task is to identify which samples have been
 289 used.

290 The problems used for this simulation are drawn from four benchmarks selected to cover diverse
 291 styles and potential pre-training exposure. We include the widely used mathematical reasoning
 292 benchmarks, i.e., AIME 2024 and AIME 2025. AIME 2024 may have appeared in some models’
 293 pre-training corpora, allowing us to test robustness to prior exposure, whereas AIME 2025 is post-
 294 cutoff and thus unlikely to be present in pre-training data. To obtain a controlled setting free from
 295 prior exposure, we also include two synthetically generated logical reasoning datasets: Knights &
 296 Knaves (K&K) (Xie et al., 2024a) and SAT (Liu et al., 2025). The synthetic nature of these datasets
 297 ensures that any detected training signal can be attributed to the RL post-training phase.

298 To approximate a realistic setting, we embed the selected benchmarks into a larger RL post-training
 299 corpus. For AIME24 and AIME25, we use the widely adopted OpenR1-Math-46K (Guha et al.,
 300 2025) corpus as the base and inject 50% of each benchmark’s items into the RL training data. For
 301 K&K and SAT, following their original papers , we use the provided training portions to form the
 302 contaminated split and synthesize additional items as held-out clean samples. We primarily use
 303 Qwen2.5-7B-Instruct (Qwen et al., 2025) and DeepSeek-Math-7B-Instruct (Shao et al., 2024b) as
 304 the model for simulating RL-stage contamination. We also run experiments on Qwen2.5-0.5B-
 305 Instruct, Qwen2.5-3B-Instruct (Qwen et al., 2025) and Qwen2.5-7B-Math (Yang et al., 2024). All
 306 RL runs are implemented with VeRL (Sheng et al., 2025) framework on 8 × NVIDIA A100 (40 GB).
 307 Detailed dataset splits and training settings are provided in Appendix F.

308 5.2 EXPERIMENTAL SETUP

310 **Baseline Methods** We compare Self-Critique against a set of representative baselines. A key con-
 311 sideration in the RL post-training setting is that training changes the response distribution rather
 312 than the likelihood of the prompt. Therefore, for baselines originally designed for pre-training data
 313 detection (which operate on input text), we adapt them to operate on the model’s *responses* to ensure
 314 a fair comparison. The baselines include: ❶ **Perplexity (PPL)** (Gonen et al., 2023), which assumes
 315 memorized text has lower perplexity; ❷ **Min-K% Prob** (Shi et al., 2024), which posits that memo-
 316 rized text is less likely to contain low-probability outlier tokens; and ❸ **Min-K%++** (Zhang et al.,
 317 2025b), which normalizes token probabilities for a more robust score. We also include ❹ **Recall** (Xie
 318 et al., 2024b), which prefixes the text with non-member content and measures the relative change in
 319 log-likelihood, and ❺ **CDD** (Dong et al., 2024), which measures output consistency under stochastic
 320 sampling via the average token-level edit distance across multiple generations.

321 We summarize these baselines in Table 1: PPL, Min-K%, and Min-K%++ directly use log-
 322 probability properties of the text; Recall and CDD expose differences by injecting a non-member
 323 prefix or by randomly sampling multiple outputs, respectively. In contrast, we propose a new probing
 mechanism, i.e., **self-critique probing**, and use **entropy** as the core signal for RL-stage contami-

324 nation detection. Following the probing ideas in CDD and Recall, we also introduce two additional
 325 entropy-based baselines, **⑥ Entropy-Temp** and **⑦ Entropy-Noise**, which keep the probing mecha-
 326 nisms but replace the consistency/likelihood metric with entropy.

327 Table 1: A taxonomy of data contamination detection methods. Our work is the first to specifically
 328 address the challenges in the RL Post-training phase.
 329

Method	Probing Mechanism	Core Metric	Designed for
<i>Existing Methods for Pre-training / SFT</i>			
PPL (EMNLP'23)	Intrinsic Property	Log Probability	Pre-training / SFT
Min-K% (ICLR'24)	Intrinsic Property	Log Probability	Pre-training / SFT
Min-K%++ (ICLR'25)	Intrinsic Property	Log Probability	Pre-training / SFT
Recall (EMNLP'24)	Non-member prefix	Log Probability	Pre-training / SFT
CDD (ACL'24)	Stochastic Sampling	Edit Distance	Pre-training / SFT
<i>Our Proposed Methods for RL Post-training</i>			
Entropy-Temp	Stochastic Sampling	Entropy	RL
Entropy-Noise	Non-member prefix	Entropy	RL
Self-Critique(Ours)	Self-Critique Probing	Entropy	RL

343 **Evaluation Metrics** We primarily report the Area Under the ROC Curve (AUC), a standard metric
 344 for detection problems such as data contamination and membership inference (Shi et al., 2024; Duan
 345 et al., 2024; Zhang et al., 2025b). AUC is threshold-independent and reflects the probability that the
 346 detector ranks a randomly chosen contaminated sample higher than a randomly chosen clean one;
 347 higher AUC indicates stronger detection performance (50% corresponds to random guess). We also
 348 report the F1 score at the Youden threshold (Fluss et al., 2005) as a threshold-specific reference.

349 5.3 MAIN RESULTS

351 Table 2: Performance of different detection methods on the RL-MIA benchmark across two models.
 352 The AVG column is the average AUC across all benchmarks. Best AUC is in **bold**; the second best
 353 is underlined.

Method	AIME24		AIME25		K&K		SAT		AVG
	F1 score	AUC							
<i>Qwen2.5-7B-Instruct</i>									
PPL (Gonen et al., 2023)	0.33	0.51	0.42	0.56	0.67	0.47	0.54	0.50	0.51
Min-K% (Shi et al., 2024)	0.59	0.49	0.52	0.44	0.70	0.54	0.32	0.50	0.49
Min-K%++ (Zhang et al., 2025b)	0.73	0.58	0.46	0.45	0.67	0.40	0.00	0.31	0.44
Recall (Xie et al., 2024b)	0.62	0.61	0.55	<u>0.65</u>	0.67	0.47	0.62	0.62	0.59
CDD (Dong et al., 2024)	0.50	0.57	0.67	<u>0.52</u>	0.67	0.47	0.57	0.47	0.51
Entropy-Temp	0.73	<u>0.64</u>	0.12	0.42	0.59	0.49	0.66	0.69	0.56
Entropy-Noise	0.70	<u>0.57</u>	0.67	0.63	0.68	0.52	0.79	<u>0.77</u>	0.62
Self-Critique(Ours)	0.69	0.72	0.76	0.72	0.69	0.66	0.69	0.67	0.70 ($\uparrow 19\%$)
<i>DeepSeek-Math-7B-Instruct</i>									
PPL (Gonen et al., 2023)	0.42	0.53	0.62	0.41	0.34	<u>0.54</u>	0.68	<u>0.64</u>	0.53
Min-K% (Shi et al., 2024)	0.55	0.47	0.12	0.40	0.67	0.46	0.69	<u>0.35</u>	0.42
Min-K%++ (Zhang et al., 2025b)	0.67	0.53	0.67	0.56	0.15	0.47	0.62	0.49	0.51
Recall (Xie et al., 2024b)	0.54	0.46	0.52	0.56	0.39	<u>0.54</u>	0.69	0.62	0.54
CDD (Dong et al., 2024)	0.30	0.49	0.65	0.51	0.08	0.48	0.66	0.50	0.50
Entropy-Temp	0.60	0.48	0.70	0.54	0.23	0.43	0.64	0.61	0.52
Entropy-Noise	0.70	<u>0.56</u>	0.72	0.69	0.48	0.52	0.67	0.45	0.55
Self-Critique(Ours)	0.76	0.67	0.71	<u>0.61</u>	0.60	0.63	0.66	0.67	0.64 ($\uparrow 19\%$)

373 The main results of different data contamination methods based on Qwen2.5-7B-Instruct and
 374 DeepSeek-Math-7B-Instruct³ are shown in Table 2. Across both models, **Self-Critique** is the most
 375 reliable detector: it attains the best average AUC on Qwen2.5-7B-Instruct (0.70, $\uparrow 19\%$ over the
 376 best non-ours baseline) and on DeepSeek-Math-7B-Instruct (0.64, also $\uparrow 19\%$ improvement), and
 377

³We also provide additional results on Qwen2.5-7B-Math and LLama in Appendix B.

378 it leads on most per-dataset AUCs. In contrast, likelihood-based baselines (PPL, Min-K%, Min-
 379 K%++) often perform near random guesses and can be unstable. Among existing methods, Recall
 380 achieves relatively strong performance (it is also a state-of-the-art approach for pre-training contam-
 381 ination (Xie et al., 2024b)), suggesting that probing to expose membership signals is more effective
 382 than relying solely on intrinsic text properties. Moreover, when using the same probing mechanisms,
 383 the entropy-based variants perform better (Entropy-Temp vs. CDD; Entropy-Noise vs. Recall), indi-
 384 cating that entropy is a sensitive indicator of RL-induced changes and thus better suited for RL-stage
 385 detection.

386 Finally, compared to random sampling or prefix injection, our self-critique probing aligns more
 387 closely with the RL property of dependence on high-reward paths. Within our entropy-based meth-
 388 ods, this leads to notable gains, i.e., **+13%** on Qwen2.5-7B-Instruct and **+16%** on DeepSeek-Math-
 389 7B-Instruct.

390

391 5.4 DUAL-STAGE CONTAMINATION IN PRE-TRAINING & RL

392

393 To isolate the effects of RL-phase contamination, our previous experiments were primarily con-
 394 ducted on synthetic data or datasets with low levels of contamination. However, for public bench-
 395 marks released before an LLM’s training cutoff, contamination from both pretraining and the RL
 396 phase can co-occur. Therefore, we design a study to distinguish between these two sources of
 397 contamination. Concretely, we choose GSM8K (widely acknowledged to suffer from substantial
 398 pretraining leakage (Zhang et al., 2024a; Dekoninck et al., 2024; Mirzadeh et al., 2025)) and train
 399 Qwen2.5-0.5B-Instruct with the PPO algorithm.⁴ We then simulate RL-phase contamination by
 400 injecting half of the test set into the RL training data. As discussed in Section 3.2, pretraining
 401 (which optimizes via Maximum Likelihood Estimation) and RL (which uses reward-driven policy
 402 optimization) pursue different objectives, so their respective forms of contamination are likely to
 403 produce distinct effects.

404 We first assign each test item a pretraining-
 405 contamination proxy score using a
 406 likelihood-based detector (e.g., PPL) to
 407 separate these effects. We then evaluate
 408 RL-stage contamination detection under
 409 two conditions: **① a lower-pretraining-
 410 contamination** subset, created by select-
 411 ing the bottom-q quantile of items by
 412 PPL score (e.g., the lowest 50%); and **② a
 413 random-control** subset. To control for
 414 any confounding effects from a smaller
 415 sample size on AUC, the random-control
 416 subset is formed by uniformly sampling
 417 the same number of items, thereby match-
 418 ing the subset size while preserving the
 419 original data distribution. Our hypothesis
 420 predicts that Self-Critique’s performance
 421 will significantly improve on the former
 422 subset, but not on the latter.

423 The results are shown in Figure 3, and we also provide the numerical results in Table 7 of Appendix
 424 B. As the pretraining contamination level decreases, the performance of Self-Critique on the lower-
 425 pretraining-contamination subset improves significantly. In contrast, its performance on the random-
 426 control subset shows a slight decrease, while the PPL-based detector’s performance approaches that
 427 of a random guess. This outcome rules out a pure sample-size effect (as performance on the random-
 428 control subset does not improve) and supports our hypothesis: conditioning the RL detector on items
 429 with a weaker pretraining signal allows it to identify RL-phase memorization or path dependence
 430 far more clearly. Meanwhile, the fact that likelihood-based cues (PPL) remain unstable and close
 431 to 0.5 further demonstrates the effectiveness of our method in specifically targeting RL-phase data
 contamination.

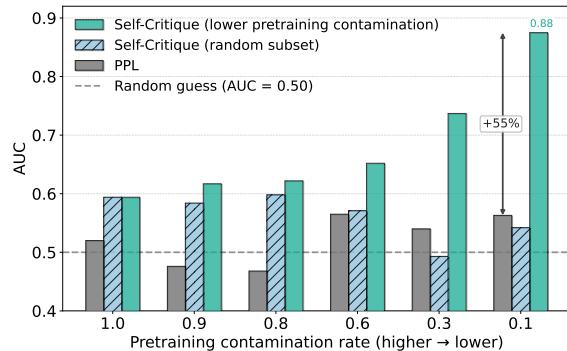


Figure 3: Dual-stage contamination analysis. Self-Critique on the lower-pretraining-contamination subset (green) improves sharply as the rate decreases.

⁴Actually, the setting is the same as the quick start in verl, which makes it easy to reproduce the results.

432 5.5 ABLATION STUDIES
433434 Table 3: Detection performance on K&K with Qwen2.5-3B-Instruct trained by different RL algo-
435 rithms. AVG column reports the mean AUC across three RL algorithms.

Method	PPO		GRPO		DAPO		AVG
	F1 score	AUC	F1 score	AUC	F1 score	AUC	
PPL (Gonen et al., 2023)	0.65	0.41	0.63	0.46	0.61	0.51	0.46
Min-K% (Shi et al., 2024)	0.43	0.50	0.58	0.54	0.64	0.46	0.50
Min-K%++ (Zhang et al., 2025b)	0.39	0.50	0.61	0.52	0.26	0.49	0.51
Recall (Xie et al., 2024b)	0.61	0.46	0.35	0.49	0.55	0.50	0.48
CDD (Dong et al., 2024)	0.66	0.53	0.65	0.51	0.60	0.49	0.51
Entropy-Temp	0.41	0.55	0.53	0.60	0.57	0.59	0.58
Entropy-Noise	0.64	0.59	0.43	0.52	0.60	0.49	0.53
Self-Critique(Ours)	0.67	0.61	0.67	0.61	0.64	0.60	0.60 (↑ 18%)

437 **Contaminate with Different RL Algorithms** Table 3 reports results on the K&K task using
438 Qwen2.5-3B-Instruct trained with three RL algorithms, including PPO (Schulman et al., 2017),
439 GRPO (Shao et al., 2024a), and DAPO (Yu et al., 2025). Across all algorithms, **Self-Critique** is
440 the most reliable detector: it attains the best AUC for each algorithm and the highest average AUC
441 (0.60). Entropy-based probes are consistently stronger than likelihood-based methods: Entropy-
442 Temp is the next best on average (0.58), while likelihood baselines (PPL, Min-K%, Min-K%++) are
443 around 0.46–0.51. These trends suggest that our probe, measuring path dependence via entropy sim-
444 ilarity, captures an RL-induced rigidity signal that is *algorithm-agnostic*. F1 scores follow the same
445 pattern, further indicating that Self-Critique yields both better ranking (AUC) and better thresholded
446 decisions. [We also provide a discussion on different alignment algorithms under the RLHF paradigm](#)
447 in Appendix B.3.

448 **Ablation on Top- K Entropy Approximation** As LLM vocabularies are large, it is often imprac-
449 tical to obtain the full next-token distribution at every decoding step to compute exact entropy. In
450 many APIs, only Top- K token probabilities are available, so we approximate entropy using those
451 Top- K masses. We conduct an ablation on the choice of K (Table 4). Reducing K does not harm
452 performance; even in the extreme case $K = 3$, the AUC drops only slightly. We attribute this to
453 the long-tailed nature of next-token distributions: most probability mass concentrates on a small
454 set of tokens, and the tail contributes little to entropy. Hence, Top- K entropy is both efficient and
455 accurate enough for our detector. [Considering practical applications, we also include a discussion](#)
456 [on inference cost in Appendix G.2](#).

457 Table 4: Ablation on Top- K entropy approximation (Qwen2.5-7B-Instruct). We report AUC for
458 different K and the row-wise variance across $K \in \{3, 5, 10, 20, 50\}$.

Dataset	$K=3$	$K=5$	$K=10$	$K=20$	$K=50$	Variance
AIME25	0.7022	0.7111	0.7111	0.7156	0.7156	2.39×10^{-5}
K&K	0.6460	0.6572	0.6636	0.6608	0.6584	3.62×10^{-5}

459 We also provide additional ablation studies about why self-critique probing is better, the sampling
460 strategy [and sensitivity to meta-instructions](#) in Appendix C.

471 6 CONCLUSION
472

473 In this paper, we presented the first systematic study of data contamination in the overlooked RL
474 post-training stage, demonstrating that existing data contamination detection methods are ill-suited
475 for this reward-driven paradigm. To address this gap, we proposed Self-Critique, a novel method
476 that identifies RL-induced policy collapse by actively probing the model’s reasoning path dependen-
477 cies using token-level entropy. To validate our method in a controlled setting, we also developed
478 RL-MIA, a new benchmark for RL-phase contamination. Experiments show that Self-Critique con-
479 sistently outperforms baselines, improving the average AUC by up to 30%, and its ability to isolate
480 RL-specific signals is further highlighted in dual-contamination scenarios, where performance im-
481

486 proves by up to 55%. As the community’s understanding of RL post-training grows, we expect that
 487 more detectors tailored to this unique setting will emerge.
 488

489 **ETHICS STATEMENT**
 490

491 All authors have read and adhered to the ICLR Code of Ethics. The primary objective of our work
 492 is to enhance the integrity and reliability of Large Language Model evaluations. We address this
 493 by developing Self-Critique, a method to detect data contamination in the Reinforcement Learning
 494 (RL) post-training phase, aiming to prevent misleading performance claims and promote transparent
 495 research practices. Our method is a specific application of Membership Inference Attack (MIA)
 496 techniques, and we acknowledge the potential dual-use concerns regarding data privacy. However,
 497 our study is carefully scoped to mitigate these risks. The goal of our work is defensive—providing
 498 a validation tool for researchers—and it is applied exclusively to public, non-sensitive benchmarks
 499 (AIME, K&K, SAT, GSM8K) that contain no personal data. We believe the societal benefit of
 500 ensuring robust and honest model evaluation significantly outweighs the minimal risk of misuse in
 501 this context.

502
 503 **REPRODUCIBILITY STATEMENT**
 504

505 We are committed to ensuring the full reproducibility of our research. To facilitate this, we have
 506 made our code and the newly constructed RL-MIA benchmark anonymously available at <https://anonymous.4open.science/r/Data-Contamination-in-RL>. This repository in-
 507 cludes the implementation of our proposed Self-Critique method, baseline methods, and scripts to
 508 run the experiments. A formal, step-by-step description of the Self-Critique algorithm is provided
 509 in Appendix A (Algorithm 1). The specific prompts used for the self-critique probing mechanism
 510 are detailed in Appendix E. Details regarding the construction of the RL-MIA benchmark, includ-
 511 ing dataset sources, injection methods, and data splits, are described in Section 5.1 and further
 512 elaborated in Appendix F (Table 6). The key training hyperparameters for all RL models and algo-
 513 rithms are provided in Appendix F (Table 7), ensuring that our training process can be accurately
 514 replicated. Our evaluation metrics are standard in the field and are defined in Section 5.1.
 515

516
 517 **REFERENCES**

518 Nicholas Carlini, Chang Liu, Úlfar Erlingsson, Jernej Kos, and Dawn Song. The secret sharer: Eval-
 519 uating and testing unintended memorization in neural networks. In *USENIX Security Symposium*,
 520 pp. 267–284, 2019.

522 Daixuan Cheng, Shaohan Huang, Xuekai Zhu, Bo Dai, Wayne Xin Zhao, Zhenliang Zhang, and
 523 Furu Wei. Reasoning with exploration: An entropy perspective. *arXiv preprint arXiv:2506.14758*,
 524 2025.

525 Tianzhe Chu, Yuexiang Zhai, Jihan Yang, Shengbang Tong, Saining Xie, Dale Schuurmans, Quoc V
 526 Le, Sergey Levine, and Yi Ma. Sft memorizes, rl generalizes: A comparative study of foundation
 527 model post-training. *arXiv preprint arXiv:2501.17161*, 2025.

529 Ganqu Cui, Lifan Yuan, Ning Ding, Guanming Yao, Wei Zhu, Yuan Ni, Guotong Xie, Zhiyuan Liu,
 530 and Maosong Sun. Ultrafeedback: Boosting language models with high-quality feedback. 2023.

532 Ganqu Cui, Yuchen Zhang, Jiacheng Chen, Lifan Yuan, Zhi Wang, Yuxin Zuo, Haozhan Li, Yuchen
 533 Fan, Huayu Chen, Weize Chen, et al. The entropy mechanism of reinforcement learning for
 534 reasoning language models. *arXiv preprint arXiv:2505.22617*, 2025.

535 Jasper Dekoninck, Mark Müller, and Martin Vechev. Constat: Performance-based contamination
 536 detection in large language models. *Advances in Neural Information Processing Systems*, 37:
 537 92420–92464, 2024.

539 Thomas J DiCiccio and Bradley Efron. Bootstrap confidence intervals. *Statistical science*, 11(3):
 189–228, 1996.

540 Yihong Dong, Xue Jiang, Huanyu Liu, Zhi Jin, Bin Gu, Mengfei Yang, and Ge Li. Generalization
 541 or memorization: Data contamination and trustworthy evaluation for large language models. In
 542 Lun-Wei Ku, Andre Martins, and Vivek Srikumar (eds.), *Findings of the Association for Compu-*
 543 *tational Linguistics: ACL 2024*, pp. 12039–12050, Bangkok, Thailand, August 2024. Association
 544 for Computational Linguistics.

545 Yihong Dong, Xue Jiang, Yongding Tao, Huanyu Liu, Kechi Zhang, Lili Mou, Rongyu Cao, Ying-
 546 wei Ma, Jue Chen, Binhu Li, et al. RL-plus: Countering capability boundary collapse of llms in
 547 reinforcement learning with hybrid-policy optimization. *arXiv preprint arXiv:2508.00222*, 2025.

548 Michael Duan, Anshuman Suri, Niloofar Mireshghallah, Sewon Min, Weijia Shi, Luke Zettlemoyer,
 549 Yulia Tsvetkov, Yejin Choi, David Evans, and Hannaneh Hajishirzi. Do membership inference
 550 attacks work on large language models? *arXiv preprint arXiv:2402.07841*, 2024.

551 Bradley Efron. Bootstrap methods: another look at the jackknife. In *Breakthroughs in statistics:*
 552 *Methodology and distribution*, pp. 569–593. Springer, 1992.

553 Ronen Fluss, David Faraggi, and Benjamin Reiser. Estimation of the youden index and its associated
 554 cutoff point. *Biometrical Journal: Journal of Mathematical Methods in Biosciences*, 47(4):458–
 555 472, 2005.

556 Wenjie Fu, Huandong Wang, Chen Gao, Guanghua Liu, Yong Li, and Tao Jiang. Practical member-
 557 ship inference attacks against fine-tuned large language models via self-prompt calibration. *arXiv*
 558 *preprint arXiv:2311.06062*, 2023.

559 Wenjie Fu, Huandong Wang, Chen Gao, Guanghua Liu, Yong Li, and Tao Jiang. Membership
 560 inference attacks against fine-tuned large language models via self-prompt calibration. *Advances*
 561 *in Neural Information Processing Systems*, 37:134981–135010, 2024.

562 Hila Gonen, Srinivas Iyer, Terra Blevins, Noah Smith, and Luke Zettlemoyer. Demystifying prompts
 563 in language models via perplexity estimation. In Houda Bouamor, Juan Pino, and Kalika Bali
 564 (eds.), *Findings of the Association for Computational Linguistics: EMNLP 2023*, pp. 10136–
 565 10148, Singapore, December 2023. Association for Computational Linguistics. doi: 10.18653/
 566 v1/2023.findings-emnlp.679.

567 Aaron Grattafiori, Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey, Abhishek Kadian, Ahmad
 568 Al-Dahle, Aiesha Letman, Akhil Mathur, Alan Schelten, Alex Vaughan, et al. The llama 3 herd
 569 of models. *arXiv preprint arXiv:2407.21783*, 2024.

570 Etash Guha, Ryan Marten, Sedrick Keh, Negin Raoof, Georgios Smyrnis, Hritik Bansal, Marianna
 571 Nezhurina, Jean Mercat, Trung Vu, Zayne Sprague, Ashima Suvarna, Benjamin Feuer, Liangyu
 572 Chen, Zaid Khan, Eric Frankel, Sachin Grover, Caroline Choi, Niklas Muennighoff, Shiye Su,
 573 Wanja Zhao, John Yang, Shreyas Pimpalgaonkar, Kartik Sharma, Charlie Cheng-Jie Ji, Yichuan
 574 Deng, Sarah Pratt, Vivek Ramanujan, Jon Saad-Falcon, Jeffrey Li, Achal Dave, Alon Albalak,
 575 Kushal Arora, Blake Wulfe, Chinmay Hegde, Greg Durrett, Sewoong Oh, Mohit Bansal, Saadia
 576 Gabriel, Aditya Grover, Kai-Wei Chang, Vaishaal Shankar, Aaron Gokaslan, Mike A. Merrill,
 577 Tatsunori Hashimoto, Yejin Choi, Jenia Jitsev, Reinhard Heckel, Maheswaran Sathiamoorthy,
 578 Alexandros G. Dimakis, and Ludwig Schmidt. OpenThoughts: Data recipes for reasoning models,
 579 2025. URL <https://arxiv.org/abs/2506.04178>.

580 Daya Guo, Dejian Yang, Haowei Zhang, Junxiao Song, Ruoyu Zhang, Runxin Xu, Qihao Zhu,
 581 Shirong Ma, Peiyi Wang, Xiao Bi, et al. Deepseek-r1: Incentivizing reasoning capability in llms
 582 via reinforcement learning. *arXiv preprint arXiv:2501.12948*, 2025.

583 Alexander Havrilla, Yuqing Du, Sharath Chandra Raparthi, Christoforos Nalmpantis, Jane Dwivedi-
 584 Yu, et al. Teaching large language models to reason with reinforcement learning. *arXiv preprint*
 585 *arXiv:2403.04642*, 2024.

586 Jujie He, Jiacai Liu, Chris Yuhao Liu, Rui Yan, Chaojie Wang, Peng Cheng, Xiaoyu Zhang, Fuxiang
 587 Zhang, Jiacheng Xu, Wei Shen, et al. Skywork open reasoner 1 technical report. *arXiv preprint*
 588 *arXiv:2505.22312*, 2025.

594 Aaron Jaech, Adam Kalai, Adam Lerer, Adam Richardson, Ahmed El-Kishky, Aiden Low, Alec
 595 Helyar, Aleksander Madry, Alex Beutel, Alex Carney, et al. Openai o1 system card. *arXiv*
 596 *preprint arXiv:2412.16720*, 2024.

597

598 Robert Kirk, Ishita Mediratta, Christoforos Nalmpantis, Jelena Luketina, Eric Hambro, Edward
 599 Grefenstette, and Roberta Raileanu. Understanding the effects of rlhf on llm generalisation and
 600 diversity. In B. Kim, Y. Yue, S. Chaudhuri, K. Fragkiadaki, M. Khan, and Y. Sun (eds.), *Interna-*
 601 *tional Conference on Representation Learning*, volume 2024, pp. 20620–20653, 2024.

602

603 Qingbin Li, Rongkun Xue, Jie Wang, Ming Zhou, Zhi Li, Xiaofeng Ji, Yongqi Wang, Miao Liu,
 604 Zheming Yang, Minghui Qiu, et al. Cure: Critical-token-guided re-concatenation for entropy-
 605 collapse prevention. *arXiv preprint arXiv:2508.11016*, 2025.

606

607 Xiao Liang, Zhongzhi Li, Yeyun Gong, Yelong Shen, Ying Nian Wu, Zhijiang Guo, and Weizhu
 608 Chen. Beyond pass@ 1: Self-play with variational problem synthesis sustains rlvr. *arXiv preprint*
 609 *arXiv:2508.14029*, 2025.

610

611 Huanyu Liu, Jia Li, Hao Zhu, Kechi Zhang, Yihong Dong, and Ge Li. Saturn: Sat-based reinforce-
 612 ment learning to unleash language model reasoning. *arXiv preprint arXiv:2505.16368*, 2025.

613

614 Justus Mattern, Fatemehsadat Mireshghallah, Zhijing Jin, Bernhard Schölkopf, Mrinmaya Sachan,
 615 and Taylor Berg-Kirkpatrick. Membership inference attacks against language models via neigh-
 616 bourhood comparison. *arXiv preprint arXiv:2305.18462*, 2023.

617

618 Fatemehsadat Mireshghallah, Kartik Goyal, Archit Uniyal, Taylor Berg-Kirkpatrick, and Reza
 619 Shokri. Quantifying privacy risks of masked language models using membership inference at-
 620 tacks. In *Conference on Empirical Methods in Natural Language Processing (EMNLP)*, pp.
 621 8332–8347, 2022a.

622

623 Fatemehsadat Mireshghallah, Archit Uniyal, Tianhao Wang, David K Evans, and Taylor Berg-
 624 Kirkpatrick. An empirical analysis of memorization in fine-tuned autoregressive language
 625 models. In *2022 Conference on Empirical Methods in Natural Language Processing (EMNLP)*, pp.
 626 1816–1826, 2022b.

627

628 Iman Mirzadeh, Keivan Alizadeh-Vahid, Hooman Shahrokhi, Oncel Tuzel, Samy Bengio, and
 629 Mehrdad Farajtabar. Gsm-symbolic: Understanding the limitations of mathematical reasoning
 630 in large language models. In Y. Yue, A. Garg, N. Peng, F. Sha, and R. Yu (eds.), *International*
 631 *Conference on Representation Learning*, volume 2025, pp. 94743–94765, 2025.

632

633 Brendan O’Donoghue, Remi Munos, Koray Kavukcuoglu, and Volodymyr Mnih. Combining policy
 634 gradient and q-learning. *arXiv preprint arXiv:1611.01626*, 2016.

635

636 Qwen, An Yang, Baosong Yang, Beichen Zhang, Binyuan Hui, Bo Zheng, Bowen Yu, Chengyuan
 637 Li, Dayiheng Liu, Fei Huang, Haoran Wei, Huan Lin, Jian Yang, Jianhong Tu, Jianwei Zhang,
 638 Jianxin Yang, Jiaxi Yang, Jingren Zhou, Junyang Lin, Kai Dang, Keming Lu, Keqin Bao, Kexin
 639 Yang, Le Yu, Mei Li, Mingfeng Xue, Pei Zhang, Qin Zhu, Rui Men, Runji Lin, Tianhao Li,
 640 Tianyi Tang, Tingyu Xia, Xingzhang Ren, Xuancheng Ren, Yang Fan, Yang Su, Yichang Zhang,
 641 Yu Wan, Yuqiong Liu, Zeyu Cui, Zhenru Zhang, and Zihan Qiu. Qwen2.5 technical report, 2025.
 642 URL <https://arxiv.org/abs/2412.15115>.

643

644 Rafael Rafailov, Archit Sharma, Eric Mitchell, Christopher D Manning, Stefano Ermon, and Chelsea
 645 Finn. Direct preference optimization: Your language model is secretly a reward model. *Advances*
 646 *in Neural Information Processing Systems*, 36:53728–53741, 2023.

647

648 Oscar Sainz, Jon Campos, Iker García-Ferrero, Julen Etxaniz, Oier Lopez de Lacalle, and Eneko
 649 Agirre. Nlp evaluation in trouble: On the need to measure llm data contamination for each
 650 benchmark. In *Findings of Conference on Empirical Methods in Natural Language Processing*
 651 (*EMNLP*), pp. 10776–10787, 2023.

652

653 John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. Proximal policy
 654 optimization algorithms. *arXiv preprint arXiv:1707.06347*, 2017.

648 Zhihong Shao, Peiyi Wang, Qihao Zhu, Runxin Xu, Junxiao Song, Xiao Bi, Haowei Zhang,
 649 Mingchuan Zhang, YK Li, Yang Wu, et al. Deepseekmath: Pushing the limits of mathemati-
 650 cal reasoning in open language models. *arXiv preprint arXiv:2402.03300*, 2024a.
 651

652 Zhihong Shao, Peiyi Wang, Qihao Zhu, Runxin Xu, Junxiao Song, Mingchuan Zhang, Y. K. Li,
 653 Y. Wu, and Daya Guo. Deepseekmath: Pushing the limits of mathematical reasoning in open
 654 language models. *CoRR*, abs/2402.03300, 2024b.

655 Guangming Sheng, Chi Zhang, Zilingfeng Ye, Xibin Wu, Wang Zhang, Ru Zhang, Yanghua Peng,
 656 Haibin Lin, and Chuan Wu. Hybridflow: A flexible and efficient rlhf framework. In *Proceedings*
 657 of the Twentieth European Conference on Computer Systems, pp. 1279–1297, 2025.

658 Weijia Shi, Anirudh Ajith, Mengzhou Xia, Yangsibo Huang, Daogao Liu, Terra Blevins, Danqi
 659 Chen, and Luke Zettlemoyer. Detecting pretraining data from large language models. In B. Kim,
 660 Y. Yue, S. Chaudhuri, K. Fragkiadaki, M. Khan, and Y. Sun (eds.), *International Conference on*
 661 *Representation Learning*, volume 2024, pp. 51826–51843, 2024.

662 Reza Shokri, Marco Stronati, Congzheng Song, and Vitaly Shmatikov. Membership inference at-
 663 tacks against machine learning models. In *IEEE Symposium on Security and Privacy (SP)*, pp.
 664 3–18, 2017.

665 Yuda Song, Julia Kempe, and Remi Munos. Outcome-based exploration for llm reasoning. *arXiv*
 666 preprint *arXiv:2509.06941*, 2025.

667 Hongze Tan and Jianfei Pan. Gtpo and grp0-s: Token and sequence-level reward shaping with policy
 668 entropy. *arXiv preprint arXiv:2508.04349*, 2025.

669 Xinyu Tang, Zhenduo Zhang, Yurou Liu, Wayne Xin Zhao, Zujie Wen, Zhiqiang Zhang, and Jun
 670 Zhou. Towards high data efficiency in reinforcement learning with verifiable reward. *arXiv*
 671 preprint *arXiv:2509.01321*, 2025.

672 Abdullah Vanlioglu. Entropy-guided sequence weighting for efficient exploration in rl-based llm
 673 fine-tuning. *arXiv preprint arXiv:2503.22456*, 2025.

674 Shenzhi Wang, Le Yu, Chang Gao, Chujie Zheng, Shixuan Liu, Rui Lu, Kai Dang, Xionghui Chen,
 675 Jianxin Yang, Zhenru Zhang, et al. Beyond the 80/20 rule: High-entropy minority tokens drive
 676 effective reinforcement learning for llm reasoning. *arXiv preprint arXiv:2506.01939*, 2025a.

677 Xinyi Wang, Antonis Antoniades, Yanai Elazar, Alfonso Amayuelas, Alon Albalak, Kexun Zhang,
 678 and William Yang Wang. Generalization vs memorization: Tracing language models’ capabilities
 679 back to pretraining data. In *International Conference on Learning Representations (ICLR)*, 2025b.

680 Yiping Wang, Qing Yang, Zhiyuan Zeng, Liliang Ren, Liyuan Liu, Baolin Peng, Hao Cheng, Xuehai
 681 He, Kuan Wang, Jianfeng Gao, et al. Reinforcement learning for reasoning in large language
 682 models with one training example. *arXiv preprint arXiv:2504.20571*, 2025c.

683 Mingqi Wu, Zhihao Zhang, Qiaole Dong, Zhiheng Xi, Jun Zhao, Senjie Jin, Xiaoran Fan, Yuhao
 684 Zhou, Huijie Lv, Ming Zhang, et al. Reasoning or memorization? unreliable results of reinforce-
 685 ment learning due to data contamination. *arXiv preprint arXiv:2507.10532*, 2025.

686 Chulin Xie, Yangsibo Huang, Chiyuan Zhang, Da Yu, Xinyun Chen, Bill Yuchen Lin, Bo Li, Badih
 687 Ghazi, and Ravi Kumar. On memorization of large language models in logical reasoning. *arXiv*
 688 preprint *arXiv:2410.23123*, 2024a.

689 Roy Xie, Junlin Wang, Ruomin Huang, Minxing Zhang, Rong Ge, Jian Pei, Neil Zhenqiang Gong,
 690 and Bhuwan Dhingra. Recall: Membership inference via relative conditional log-likelihoods.
 691 *arXiv preprint arXiv:2406.15968*, 2024b.

692 Cheng Xu, Shuhao Guan, Derek Greene, M Kechadi, et al. Benchmark data contamination of large
 693 language models: A survey. *arXiv preprint arXiv:2406.04244*, 2024a.

694 Ruijie Xu, Zengzhi Wang, Run-Ze Fan, and Pengfei Liu. Benchmarking benchmark leakage in large
 695 language models. *arXiv preprint arXiv:2404.18824*, 2024b.

702 An Yang, Beichen Zhang, Binyuan Hui, Bofei Gao, Bowen Yu, Chengpeng Li, Dayiheng Liu, Jian-
 703 hong Tu, Jingren Zhou, Junyang Lin, et al. Qwen2.5-math technical report: Toward mathematical
 704 expert model via self-improvement. *arXiv preprint arXiv:2409.12122*, 2024.

705

706 Qiying Yu, Zheng Zhang, Ruofei Zhu, Yufeng Yuan, Xiaochen Zuo, Yu Yue, Weinan Dai, Tiantian
 707 Fan, Gaohong Liu, Lingjun Liu, Xin Liu, Haibin Lin, Zhiqi Lin, Bole Ma, Guangming Sheng,
 708 Yuxuan Tong, Chi Zhang, Mofan Zhang, Wang Zhang, Hang Zhu, Jinhua Zhu, Jiaze Chen,
 709 Jiangjie Chen, Chengyi Wang, Hongli Yu, Yuxuan Song, Xiangpeng Wei, Hao Zhou, Jingjing
 710 Liu, Wei-Ying Ma, Ya-Qin Zhang, Lin Yan, Mu Qiao, Yonghui Wu, and Mingxuan Wang. Dapo:
 711 An open-source llm reinforcement learning system at scale. *arXiv preprint arXiv:2501.12948*,
 712 2025.

713 Yang Yue, Zhiqi Chen, Rui Lu, Andrew Zhao, Zhaokai Wang, Shiji Song, and Gao Huang. Does re-
 714 enforcement learning really incentivize reasoning capacity in llms beyond the base model? *arXiv*
 715 *preprint arXiv:2504.13837*, 2025.

716 Shenglai Zeng, Yixin Li, Jie Ren, Yiding Liu, Han Xu, Pengfei He, Yue Xing, Shuaiqiang Wang,
 717 Jiliang Tang, and Dawei Yin. Exploring memorization in fine-tuned language models. In *Annual*
 718 *Meeting of the Association for Computational Linguistics (ACL)*, pp. 3917–3948, 2024a.

719 Yongcheng Zeng, Guoqing Liu, Weiyu Ma, Ning Yang, Haifeng Zhang, and Jun Wang. Token-level
 720 direct preference optimization. *International Conference on Machine Learning*, 2024b.

721

722 Hengxiang Zhang, Songxin Zhang, Bingyi Jing, and Hongxin Wei. Fine-tuning can help detect
 723 pretraining data from large language models. In Y. Yue, A. Garg, N. Peng, F. Sha, and R. Yu
 724 (eds.), *International Conference on Learning Representations*, volume 2025, pp. 60902–60921,
 725 2025a.

726 Hugh Zhang, Jeff Da, Dean Lee, Vaughn Robinson, Catherine Wu, William Song, Tiffany Zhao,
 727 Pranav Raja, Charlotte Zhuang, Dylan Slack, et al. A careful examination of large language model
 728 performance on grade school arithmetic. *Advances in Neural Information Processing Systems*, 37:
 729 46819–46836, 2024a.

730

731 Jingyang Zhang, Jingwei Sun, Eric Yeats, Yang Ouyang, Martin Kuo, Jianyi Zhang, Hao Yang,
 732 and Hai Li. Min-k%++: Improved baseline for pre-training data detection from large language
 733 models. In Y. Yue, A. Garg, N. Peng, F. Sha, and R. Yu (eds.), *International Conference on*
 734 *Representation Learning*, volume 2025, pp. 64845–64862, 2025b.

735 Weichao Zhang, Ruqing Zhang, Jiafeng Guo, Maarten de Rijke, Yixing Fan, and Xueqi Cheng.
 736 Pretraining data detection for large language models: A divergence-based calibration method.
 737 *arXiv preprint arXiv:2409.14781*, 2024b.

738

739 Han Zhong, Zikang Shan, Guhao Feng, Wei Xiong, Xinle Cheng, Li Zhao, Di He, Jiang Bian, and
 740 Liwei Wang. Dpo meets ppo: Reinforced token optimization for rlhf. *International Conference*
 741 *on Machine Learning*, 2025.

742

743

744

745

746

747

748

749

750

751

752

753

754

755

756	APPENDIX CONTENTS	
757		
758	A Algorithm of Self-Critique	16
759		
760	B Additional Results	16
761		
762	B.1 Additional Results on Qwen2.5-7B-Math Other Models	16
763		
764	B.2 Numerical Results for Dual-Stage Contamination	16
765	B.3 Additional Results on RLHF Paradigm	17
766		
767	C Additional Ablations	18
768		
769	C.1 Why Self-Critique Probing is a Better Detector	18
770	C.2 Ablation on Sampling Strategy	18
771	C.3 Ablation on Meta-Instruction	18
772		
773	D Visualization of Contamination Score Distribution	19
774		
775	E Instructions	19
776		
777	F Benchmark Detail & Training Settings	21
778		
779	G Discussion	22
780		
781	G.1 Discussion on Result Variability and Error Bars	22
782		
783	G.2 Discussion on Inference Cost	22
784		
785	H Limitations and Future Work	23
786		
787	I LLM Usage Statement	23
788		
789		
790		
791		
792		
793		
794		
795		
796		
797		
798		
799		
800		
801		
802		
803		
804		
805		
806		
807		
808		
809		

810 A ALGORITHM OF SELF-CRITIQUE
811812 **Algorithm 1** Self-Critique Contamination Detection
813814 **Require:** Model \mathcal{M} (black-box with per-token log-prob access or top- k probs), meta-prompt
815 I_{critique} , problem q 816 **Ensure:** Contamination score $\text{Score}(q)$ 817 **Deterministic decoding.** Use greedy decoding (temperature = 0) in all generations.

- 818 1: **(Initial response)** Construct $P_1 \leftarrow T(q)$ and generate $r_1 \leftarrow \mathcal{M}(P_1)$.
- 819 2: Compute token-level entropy sequence $E_1 \leftarrow \{H_t(r_1)\}_{t=1}^{|r_1|}$ using per-token probabilities.
- 820 3: **(Self-critique response)** Form $q' \leftarrow q \oplus I_{\text{critique}}(r_1)$; construct $P_2 \leftarrow T(q')$ and generate $r_2 \leftarrow \mathcal{M}(P_2)$.
- 821 4: Compute entropy sequence $E_2 \leftarrow \{H_t(r_2)\}_{t=1}^{|r_2|}$.
- 822 5: **(Similarity)** Pad the shorter sequence with zeros: $\tilde{E}_1 \leftarrow \text{pad}(E_1)$, $\tilde{E}_2 \leftarrow \text{pad}(E_2)$.
- 823 6: Compute cosine similarity $s \leftarrow \cos(\tilde{E}_1, \tilde{E}_2)$.
- 824 7: Compute length penalty $\lambda \leftarrow \frac{\min(|E_1|, |E_2|)}{\max(|E_1|, |E_2|)}$.
- 825 8: **return** $\text{Score}(q) \leftarrow s \times \lambda$.

830 B ADDITIONAL RESULTS
831832 B.1 ADDITIONAL RESULTS ON QWEN2.5-7B-MATH OTHER MODELS
833

834 To better demonstrate the generalization of our method across different models, we provide additional experiments on Qwen2.5-7B-Math (Yang et al., 2024) and Llama-3.1-8B-Instruct (Grattafiori
835 et al., 2024). As shown in Table 5, on Qwen2.5-7B-Math, Self-Critique achieves the best AUC on
836 both AIME24 (0.76) and AIME25 (0.72), and the highest average AUC (0.74). The two entropy
837 baselines are competitive, while likelihood-based methods (PPL, Min-K%, Min-K%++) and Recal-
838 l/CDD are clearly weaker here. We do not report K&K and SAT for this model because we could
839 not get stable RL training on these synthetic datasets with a non-instruct base; such setups typically
840 require more careful RL hyperparameters and data curation. This engineering detail is outside the
841 scope of our study. The experimental results on Llama-3.1-8B-Instruct are presented in Table 6.
842 Consistent with our previous findings, Self-Critique achieves the highest AUC on both K&K (0.61)
843 and SAT (0.62) datasets, significantly outperforming likelihood-based baselines which remain close
844 to random guessing.

845 Table 5: Detection results on Qwen2.5-7B-Math under RL-MIA (higher is better). AVG reports
846 mean AUC across AIME24 and AIME25.
847

848 849 850 Method	851 AIME24		852 AIME25		853 AVG
	854 F1 score	855 AUC	856 F1 score	857 AUC	
PPL(Gonen et al., 2023)	0.71	0.59	0.60	0.55	0.57
Min-K%(Shi et al., 2024)	0.72	0.41	0.63	0.45	0.43
Min-K%++(Zhang et al., 2025b)	0.69	0.48	0.58	0.46	0.47
Recall(Xie et al., 2024b)	0.45	0.55	0.32	0.49	0.52
CDD(Dong et al., 2024)	0.67	0.51	0.67	0.43	0.47
Entropy-Temp	0.72	0.50	0.70	0.63	0.56
Entropy-Noise	0.70	0.64	0.67	0.51	0.57
Self-Critique (Ours)	0.81	0.76	0.71	0.72	0.74 (↑ 30%)

859 B.2 NUMERICAL RESULTS FOR DUAL-STAGE CONTAMINATION
860

862 For completeness, we provide the numerical data corresponding to the dual-stage contamination
863 analysis presented in Figure 3 of the main paper. The results, detailed in Table 7, quantify the trend
864 shown in the figure: as the pretraining contamination signal is reduced (i.e., when evaluating on

864
 865 Table 6: Detection results on Llama-3.1-8B-Instruct under RL-MIA (higher is better). AVG reports
 866 mean AUC across K&K and SAT. Self-Critique consistently outperforms baselines on both logic
 867 datasets.

Method	K&K		SAT		AVG
	F1 score	AUC	F1 score	AUC	
PPL(Gonen et al., 2023)	0.52	0.47	0.67	0.53	0.50
Min-K%(Shi et al., 2024)	0.66	0.50	0.50	0.46	0.48
Min-K%++(Zhang et al., 2025b)	0.45	0.44	0.51	0.47	0.46
Recall(Xie et al., 2024b)	0.67	0.53	0.68	0.55	0.54
CDD(Dong et al., 2024)	0.67	0.53	0.67	0.51	0.52
Entropy-Temp	0.68	0.56	0.67	0.53	0.55
Entropy-Noise	0.67	0.52	0.68	0.57	0.55
Self-Critique (Ours)	0.69	0.61	0.70	0.62	0.62 (↑ 15%)

880 subsets with lower PPL scores), the AUC of Self-Critique on these filtered subsets increases sharply
 881 from 0.59 to 0.88, confirming its effectiveness at isolating RL-specific signals.

882 Table 7: Numerical AUC results for the dual-stage contamination analysis. The header row indicates
 883 the quantile of pretraining contamination retained.

Method	1.0	0.9	0.8	0.6	0.3	0.1
PPL	0.52	0.48	0.47	0.56	0.54	0.56
Self-Critique (random subset)	0.59	0.58	0.60	0.57	0.49	0.54
Self-Critique (lower pretraining contamination)	0.59	0.62	0.62	0.65	0.74	0.88

B.3 ADDITIONAL RESULTS ON RLHF PARADIGM

893 While our primary investigation in the main text focuses on the Reinforcement Learning with Verifiable
 894 Rewards (RLVR) paradigm due to its rising prominence in reasoning tasks, we acknowledge the
 895 critical role of Reinforcement Learning with Human Feedback (RLHF) in the broader post-training
 896 landscape. To demonstrate the generalizability of our method, we extended our experiments to the
 897 standard RLHF setting. Following the experimental setup of Zhong et al. (2025), we utilized Llama-
 898 3-8B-Instruct trained on the UltraFeedback dataset (Cui et al., 2023) under four distinct alignment
 899 algorithms: PPO (Schulman et al., 2017) (representing traditional reward modeling), DPO (Rafailov
 900 et al., 2023) (representing implicit reward alignment), TDPO (Zeng et al., 2024b) and RTO (Zhong
 901 et al., 2025) (representing token-level reward modeling).

902 Table 8: Detection results (AUC) on the UltraFeedback dataset across different RLHF alignment
 903 algorithms. Self-Critique consistently outperforms baselines regardless of the alignment method.

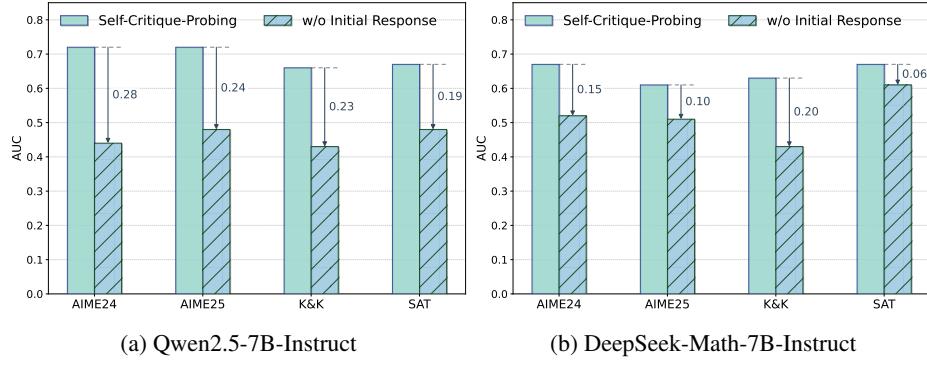
Method	PPO	DPO	TDPO	RTO
	(Schulman et al., 2017)	(Rafailov et al., 2023)	(Zeng et al., 2024b)	(Zhong et al., 2025)
PPL(Gonen et al., 2023)	0.56	0.45	0.49	0.53
Min-K%(Shi et al., 2024)	0.40	0.53	0.49	0.45
Min-K%++(Zhang et al., 2025b)	0.47	0.52	0.51	0.44
Recall(Xie et al., 2024b)	0.58	0.58	0.60	0.56
CDD(Dong et al., 2024)	0.56	0.46	0.44	0.44
Entropy-Temp	0.54	0.53	0.54	0.52
Entropy-Noise	0.53	0.51	0.53	0.59
Self-Critique (Ours)	0.62	0.62	0.64	0.70

915 The detection results are presented in Table 8. We observe that Self-Critique consistently maintains
 916 its effectiveness across all four paradigms, achieving the highest AUC scores ranging from 0.62 to
 917 0.70. In contrast, baseline methods such as PPL and CDD often perform near random guessing
 (AUC ≈ 0.50) or exhibit instability. This suggests that the phenomenon of policy collapse is a

918 fundamental characteristic of alignment training, regardless of whether the reward signal is sparse,
 919 implicit, or token-level.
 920

921 C ADDITIONAL ABLATIONS

924 C.1 WHY SELF-CRITIQUE PROBING IS A BETTER DETECTOR



936 (a) Qwen2.5-7B-Instruct (b) DeepSeek-Math-7B-Instruct
 937
 938 Figure 4: Self-critique probing vs. no self-critique.

939 As our self-critique idea asks the model to propose an alternative reasoning path given its initial
 940 response, a naive variant is to skip the initial response and simply tell the model to “answer using
 941 an unusual technique”⁵. The results in Figure 4 show that without the initial response as an
 942 anchor, performance collapses to near random guess. This variant fails because it removes the
 943 anchor that makes the probe meaningful: without conditioning on the initial answer, the “alternative”
 944 path is unconstrained, instruction following is noisy, and both members and non-members produce
 945 heterogeneous trajectories whose entropy sequences are not comparable. Moreover, RL can induce
 946 mode-seeking even on unseen items, so we end up measuring two arbitrary paths rather than the
 947 deviation from a memorized one. Self-critique fixes a concrete baseline and probes deviation from
 948 it—hence the large AUC gains over the no-response variant.

949 C.2 ABLATION ON SAMPLING STRATEGY

950 We perform an ablation study of the sampling strategies used to generate model responses. Specifically,
 951 we experiment with three settings: (1) using greedy sampling for both the initial response and
 952 the second self-critique response; (2) using greedy sampling for the initial response and temperature
 953 sampling for the self-critique response; and (3) using temperature sampling for both the initial
 954 response and the self-critique response. For temperature sampling, we test multiple temperatures.
 955 The ablation results, shown in Figure 5, indicate that the best performance is achieved when both
 956 the initial and self-critique responses are generated by greedy sampling. This is because greedy
 957 sampling eliminates the effect of randomness, thereby better revealing the sharp policy distributions
 958 caused by entropy collapse from RL post-training.

959 C.3 ABLATION ON META-INSTRUCTION

960 To address the concern that our method’s behavior might be tied to a specific prompt template, we
 961 conducted an ablation study to test its sensitivity to the Self-Critique instruction. We evaluated five
 962 paraphrased variations of our original meta-instruction (detailed as Variations 1–5 in Appendix E).

963 The results, presented in Table 9, demonstrate that Self-Critique is exceptionally stable across different
 964 templates. The standard deviation in AUC across all meta-prompts is remarkably low (0.0251 on
 965 AIME25 and 0.0254 on K&K). This quantitative evidence confirms that the detection signal is
 966 driven by the underlying policy collapse mechanism rather than the specific phrasing of the instruc-
 967 tion.

971 ⁵Detail prompt is shown in Appendix E Prompt 1

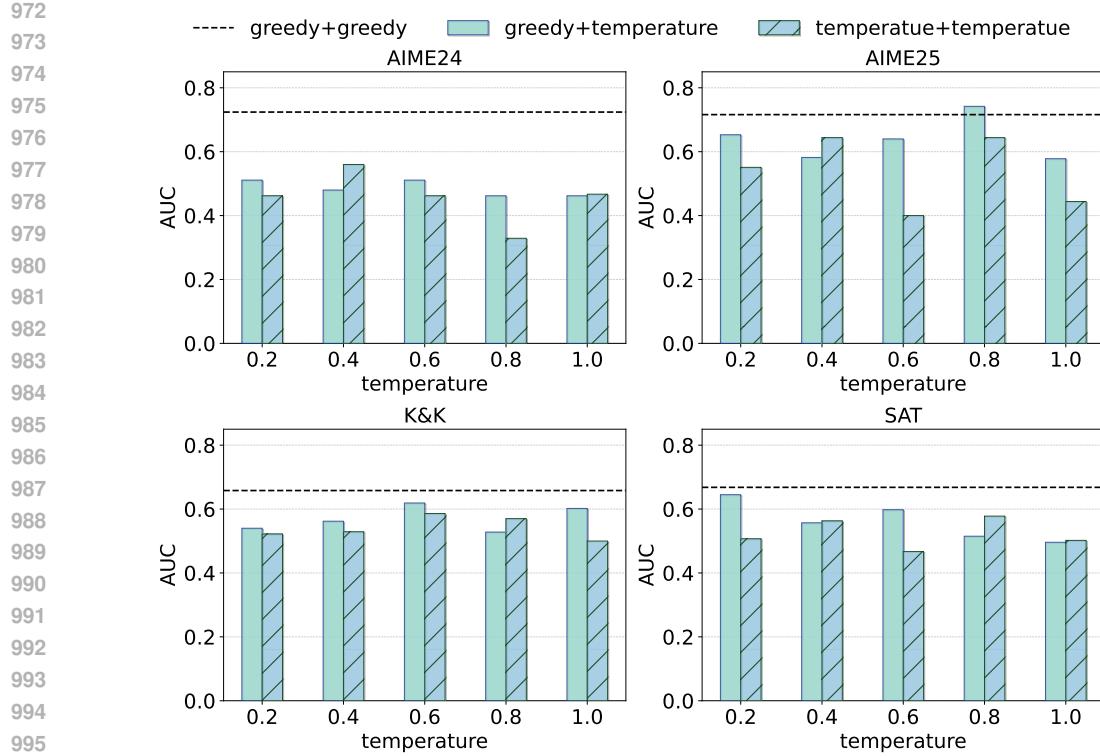


Figure 5: Ablation on Sampling Strategy

Table 9: [Ablation study on different Self-Critique meta-instructions](#). The method shows high robustness to prompt variations, as indicated by the low standard deviation.

Meta-Instruction	AIME25		K&K	
	F1 score	AUC	F1 score	AUC
Original	0.7647	0.7156	0.6866	0.6584
Variation 1	0.7179	0.6978	0.6992	0.6464
Variation 2	0.7879	0.7600	0.6763	0.6432
Variation 3	0.7429	0.6978	0.7302	0.7016
Variation 4	0.7500	0.7422	0.7009	0.6640
Variation 5	0.7500	0.7333	0.6809	0.6272
Mean	0.7522	0.7244	0.6957	0.6568
Std	0.0233	0.0251	0.0195	0.0254

D VISUALIZATION OF CONTAMINATION SCORE DISTRIBUTION

For the contaminated and uncontaminated samples in the AIME and AIME25 dataset, we computed their Self-Critique similarity scores, and present the histograms in Figure 6. Through Kernel Density Estimation (KDE), we observe a clear difference in the distribution of Self-Critique similarity scores between contaminated and uncontaminated samples, demonstrating the effectiveness of our proposed Self-Critique method for data contamination detection.

E INSTRUCTIONS

We present here the prompts used in the data contamination detection process. We employ Prompt 1 to encourage the model to generate responses that deviate from conventional reasoning. In particular,

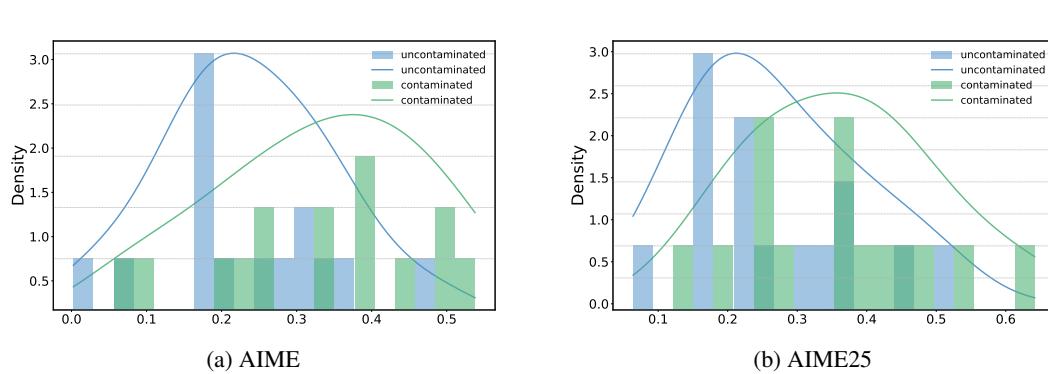


Figure 6: Histograms and Kernel Density Estimation (KDE) of Self-Critique similarity scores between contaminated and uncontaminated samples.

for the Self-Critique process, we use Prompt 2 to guide the model to regenerate a second response that differs as much as possible from the initial one. [For the ablation study on template sensitivity, we additionally employed five paraphrased variations \(Variations 1–5\) detailed below.](#)

Prompt 1: Unconventional Reasoning

Answer using a technique you'd typically avoid or a deliberately unconventional line of reasoning.

Prompt 2: Self-Critique Instruction (Original)

A possible answer is provided below (it may or may not be correct). Please provide a response that follows a different reasoning path or provides an alternative solution:

—
{Initial Response}
—

Please now provide your new, different response:

Prompt 3: Self-Critique Variation 1

A potential answer is shown below (it may or may not be correct). Please give a response that uses a different reasoning approach or offers an alternative solution:

—
{Initial Response}
—

Please now give your new, different response:

Prompt 4: Self-Critique Variation 2

An answer attempt is provided below (it may or may not be correct). Please provide a response that takes a different reasoning path or presents an alternative solution:

—
{Initial Response}
—

Please now provide your new, alternative response:

1080
1081**Prompt 5: Self-Critique Variation 3**1082
1083
1084

A candidate answer is provided below (it may or may not be correct). Please give a response that employs a different reasoning path or supplies an alternative solution:

1085
1086
1087

—
{Initial Response}
—

Please now give your new, distinct response:

1088
1089
1090**Prompt 6: Self-Critique Variation 4**1091
1092
1093

A potential solution is presented below (it may or may not be correct). Please provide a response that adopts a different reasoning path or offers an alternative solution:

1094
1095
1096

—
{Initial Response}
—

Please now provide your new, varied response:

1097
1098
1099**Prompt 7: Self-Critique Variation 5**1100
1101
1102

A tentative answer is provided below (it may or may not be correct). Please provide a response that uses a different reasoning path or presents an alternative solution:

1103
1104
1105

—
{Initial Response}
—

Please now provide your new, alternative response:

F BENCHMARK DETAIL & TRAINING SETTINGS1111
1112

This section provides a detailed breakdown of the RL-MIA benchmark construction and the specific training configurations used in our experiments.

1113
1114
1115
1116
1117
1118
1119

To create a controlled environment for evaluating data contamination in the RL phase, we constructed the RL-MIA benchmark. The methodology involves injecting a known subset of test samples (contaminated items) into a larger base corpus for RL post-training. The detection task is then to distinguish these injected samples from clean, unseen samples. Table 10 summarizes the data splits for each source dataset, detailing the size of the base RL corpus, the number of injected items, the total size of the final training set, the number of times each contaminated item appears (Occurrences), and the total number of items in the final detection task (Contaminated + Clean).

1120
1121
1122

For reproducibility, we also provide the key hyperparameters used during RL post-training. Table 11 lists the shared training parameters for our two primary experimental models: Qwen2.5-7B-Instruct and Deepseek-math-7b-Instruct.

1123
1124
1125

Table 10: RL-MIA data splits for training and evaluation. The last column reports the total number of evaluation items (Contam + Clean).

1126
1127
1128
1129
1130
1131
1132

Source	Base RL Corpus (size)	Injected items	Train Size	Occurrences	Detection Tasks
AIME24	OpenR1-Math-46K	15	46K + 30	2	30
AIME25		15			30
K&K	K&K train: 950	K&K test: 50	950 + 50	3	100
SAT	SAT train: 450	SAT test: 50	450 + 50		100
GSM8K	GSM8K train: 7473	GSM8K test: 659	7473 + 659	4	1319

1133

Due to the 4,096 context length of DeepSeek-Math-7B-Instruct, we set its maximum generation length to 3,072 (with a 1,024-token prompt). For other models (Qwen2.5-7B-Math, Qwen2.5-

Table 11: Shared training hyperparameters

Parameter	Qwen2.5-7B-Instruct	Deepseek-Math-7B-Instruct
Actor learning rate	1.0×10^{-6}	1.0×10^{-6}
Batch size (train / val)	128 / 512	128 / 512
Max prompt length	1024	1024
Max generation length	4096	3072
Temperature (train / val)	1.0 / 0.6	1.0 / 0.6
Samples per prompt (n)	8	8
Tensor model parallel (TP)	2	2
micro / mini-batch	2 / 2	2 / 2
Max tokens per GPU	16384	16384
Use KL loss	No	No
Entropy coefficient	0.001	0.001

3B-Instruct, and Qwen2.5-0.5B-Instruct), the settings are essentially the same as for Qwen2.5-7B-Instruct. Full details are available in the training scripts included with our released code.

G DISCUSSION

G.1 DISCUSSION ON RESULT VARIABILITY AND ERROR BARS

In Table 2, we observed variability in the performance of baseline methods across different models, particularly for Entropy-Noise on the SAT dataset. This variability largely stems from the nature of the probing mechanism: Entropy-Noise injects a random, non-member prefix to disrupt the context. Different models react differently to these out-of-distribution prefixes—some models robustly ignore them, while others may become unstable or hallucinate, leading to erratic entropy shifts that do not consistently correlate with contamination. In contrast, Self-Critique uses a semantically meaningful instruction, guiding the model into a more predictable state, which results in more stable detection.

Table 12: Bootstrap analysis (1,000 resamples) on the SAT dataset. We report Mean \pm Std and the [95% Confidence Interval]. Self-Critique shows stable performance significantly above random guessing.

Method	Qwen2.5-7B-Instruct		DeepSeek-Math-7B	
	Mean \pm Std	95% CI	Mean \pm Std	95% CI
PPL(Gonen et al., 2023)	0.50 ± 0.06	[0.38, 0.63]	0.64 ± 0.06	[0.52, 0.75]
Min-K%(Shi et al., 2024)	0.50 ± 0.06	[0.37, 0.61]	0.35 ± 0.06	[0.24, 0.47]
Min-K%++(Zhang et al., 2025b)	0.31 ± 0.05	[0.21, 0.42]	0.49 ± 0.06	[0.38, 0.61]
Recall(Xie et al., 2024b)	0.62 ± 0.06	[0.51, 0.72]	0.62 ± 0.06	[0.50, 0.74]
CDD(Dong et al., 2024)	0.47 ± 0.06	[0.36, 0.58]	0.50 ± 0.02	[0.46, 0.54]
Entropy-Temp	0.69 ± 0.05	[0.58, 0.78]	0.61 ± 0.06	[0.49, 0.72]
Entropy-Noise	0.77 ± 0.05	[0.67, 0.86]	0.45 ± 0.06	[0.33, 0.56]
Self-Critique (Ours)	0.67 ± 0.05	[0.56, 0.76]	0.67 ± 0.06	[0.55, 0.77]

To rigorously quantify this stability, we performed a bootstrap analysis (Efron, 1992) (resampling 1,000 times) to calculate the mean AUC and 95% Confidence Intervals (CI) (DiCiccio & Efron, 1996) for the SAT dataset. As shown in Table 12, while baseline performance fluctuates significantly (e.g., Min-K%++ varies from 0.21 to 0.42 on Qwen), Self-Critique demonstrates robust performance with confidence intervals that consistently surpass the likelihood-based methods.

G.2 DISCUSSION ON INFERENCE COST

A practical consideration for deployment is the trade-off between detection performance and computational budget. We categorize detection methods into *passive* (e.g., PPL, Min-K%) and *active* (e.g., Recall, CDD, Self-Critique) approaches. **1 Passive Methods:** These are computationally cheapest, requiring only a single forward pass of the text. However, as demonstrated in our experiments (Table

1188 2), they are largely ineffective for RL post-training contamination because the likelihood signal is
 1189 decoupled from the reward-driven training objective. **② Active Methods:** These require additional
 1190 computation to probe the model but are necessary for valid detection in this regime. Among active
 1191 methods, Self-Critique offers the best balance. It requires two generations (initial + critique). In
 1192 comparison, Recall also requires two passes but generally achieves lower AUC. CDD typically re-
 1193 quires a large number of samples (e.g., $N = 50$) to estimate the edit distance distribution reliably. If
 1194 we limit CDD to just two samples to match Self-Critique’s budget, its estimation of the edit distance
 1195 distribution becomes noisy and unreliable, leading to meaningless results.

1196 Regarding the overhead of computing token-level entropy, our ablation study in Table 4 demon-
 1197 strates that approximating entropy using only the Top- K (e.g., $K = 5$) probabilities is sufficient.
 1198 This avoids the need to materialize the full vocabulary distribution, making the entropy calculation
 1199 overhead negligible compared to the generation cost.

1200 H LIMITATIONS AND FUTURE WORK

1201 While our work presents a robust framework for detecting contamination in the RL post-training
 1202 phase, we acknowledge several avenues for future research that build upon our findings.

1203 **Generalization Across Diverse Domains.** Our experiments primarily focused on mathematical
 1204 and logical reasoning tasks, as these are prominent domains where RL has demonstrated significant
 1205 benefits. However, the unique characteristics of RL-induced contamination may vary across differ-
 1206 ent problem domains. For instance, in areas such as code generation, where a wider diversity of
 1207 valid solutions is common, the signature of policy collapse might manifest differently. Future work
 1208 could extend the evaluation of Self-Critique and other reward-aware detection methods to these and
 1209 other domains, thereby assessing the broader applicability and potential domain-specific adaptations
 1210 of our method.

1211 **Scalability to Larger Models.** The models used in our study, ranging from 0.5B to 7B parameters,
 1212 are representative of a widely used class of open-source LLMs. However, the landscape of foun-
 1213 dation models is rapidly evolving, with state-of-the-art proprietary and open-source models now
 1214 exceeding hundreds of billions of parameters. While we have no reason to believe our method’s
 1215 core principles would not apply, the dynamics of policy collapse and memorization at such scales
 1216 are not yet fully understood. Investigating the effectiveness of Self-Critique on these frontier models
 1217 represents an important next step in ensuring the reliability of the entire LLM ecosystem.

1222 I LLM USAGE STATEMENT

1223 In preparing this manuscript, we use LLMs to aid and polish the writing. Specifically, LLMs improve
 1224 clarity, grammar, and phrasing, ensuring the text is concise and readable. The use of LLMs does
 1225 not influence the technical contributions or the interpretation of experimental findings. All content
 1226 polished by LLMs is carefully checked by the authors.