
1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

Game-theoretic Counterfactual Explanation for Graph Neural
Networks

Anonymous Author(s)
∗

ABSTRACT

Graph Neural Networks (GNNs) have been a powerful tool for node

classification tasks in complex networks. However, their decision-

making processes remain a black-box to users, making it challeng-

ing to understand the reasoning behind their predictions. Coun-

terfactual explanations (CFE) have shown promise in enhancing

the interpretability of machine learning models. Prior approaches

to compute CFE for GNNS often are learning-based approaches

that require training additional graphs. In this paper, we propose a

semivalue-based, non-learning approach to generate CFE for node

classification tasks, eliminating the need for any additional training.

Our results reveals that computing Banzhaf values requires lower

sample complexity in identifying the counterfactual explanations

compared to other popular methods such as computing Shapley

values. Our empirical evidence indicates computing Banzhaf values

can achieve up to a fourfold speed up compared to Shapley values.

We also design a thresholding method for computing Banzhaf val-

ues and show theoretical and empirical results on its robustness

in noisy environments, making it superior to Shapley values. Fur-

thermore, the thresholded Banzhaf values are shown to enhance

efficiency without compromising the quality (i.e., fidelity) in the

explanations in three popular graph datasets.

KEYWORDS

Explainable AI, Counterfactual Explanation, Graph Neural Network

ACM Reference Format:

Anonymous Author(s). 2018. Game-theoretic Counterfactual Explanation

for Graph Neural Networks. In Proceedings of Make sure to enter the correct
conference title from your rights confirmation emai (Conference acronym ’XX).
ACM, New York, NY, USA, 12 pages. https://doi.org/XXXXXXX.XXXXXXX

1 INTRODUCTION

Graph Neural Networks (GNNs) have recieved substantial attention

in recent years due to their remarkable success in diverse domains,

including computational biology and drug discovery [10, 11], nat-

ural language processing [40, 46], and computer security [44, 48].

However, GNNs are seen as black-box models, making model ex-

plainability a crucial aspect for their practical deployment. Counter-

factual explanations (CFE) have emerged as a significant approach

for elucidating the predictions of GNN models and providing algo-

rithmic recourse [14]. CFE’s primary objective is to find the mini-

mum input modifications required to change the model’s prediction,

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than ACM

must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,

to post on servers or to redistribute to lists, requires prior specific permission and/or a

fee. Request permissions from permissions@acm.org.

Conference acronym ’XX, June 03–05, 2018, Woodstock, NY
© 2018 Association for Computing Machinery.

ACM ISBN 978-1-4503-XXXX-X/18/06. . . $15.00

https://doi.org/XXXXXXX.XXXXXXX

offering valuable insight in applications where human oversight is

indispensable[47].

Existing learning-based approaches for CFE often necessitate

the training of additional graphs, which can be computationally

intensive and the procedures themselves might lack interpretablity.

For instance, CF-GNNExplainer [25] requires a model training with

the negative log-likelihood loss. In this work, we concentrate on

designing a non-learning-based approach grounded in semivalues

[8], such as Shapley and Banzhaf values. Semivalues have seen

widespread application in explaining machine learning models in

various domains and have also found utility in similar fields like data

valuation [20, 22, 39]. In essence, semivalues can provide effective

solutions to problems that can be formulated as cooperative games.

Given that the problem of CFE generation for node classification (as

shown in Fig. 1) can be formulated into this category, we propose a

method for utilizing semivalues to address this problem.

Most prior work in the area of explainable AI (XAI) that applies

semivalues formulates the problem of attribution as cooperative

game theory where the utility𝑈 needs to be divided among some

players 𝑁 . These can be nodes of a graph or tree, features of models,

etc. Most of them, with a few notable exceptions [6, 17, 49], use

Shapley values [36] for this attribution. However, more recently

it has been shown that Shapley values may not be best choice

because of their lack of mathematical and human-centric intuition

suitable for attributing explanations [19]. Therefore, in this work,

we focus on another popular semivalue called Banzhaf values [4]

and show that they have desirable properties such as robustness

in the presence of noise and computational efficiency. We provide

both theoretical and empirical evidence supporting the idea that our

method using Banzhaf values offers robustness and computational

efficiency, which is also consistent with prior work [39].

We introduce the idea of using semivalues in combination with

thresholded utility functions. We provide intuition for how adding

a threshold to the utility functions can make semivalues more

reliable. We also examine the concept of a safety margin from

Wang and Jia [39], which represents the minimum amount of noise

needed in the worst case to change the influence of any two edges

in a node’s edge set. We show that thresholding does not alter

the safety margin for any semivalue due to our use of a hinge

function to perform the thresholding. Since Wang and Jia [39]

show that Banzhaf values achieve a higher safety margin than

Shapley, it follows that thresholded Banzhaf values are also superior

to thresholded Shapley. Our experimental results show that, in

addition to adding robustness, using thresholding can reduce the

computation time for Banzhaf values.

Our contributions can be summarized as follows:

• We propose a semivalues-based, non-learning based method for

generating CFE for node classification task. Our method does

not require additional training of a GNN model.

• We show that Banzhaf values have a lower sample complex-

ity of finding the best 𝑘-explanations than Shapley values. Our

1

https://doi.org/XXXXXXX.XXXXXXX
https://doi.org/XXXXXXX.XXXXXXX

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

Conference acronym ’XX, June 03–05, 2018, Woodstock, NY Anon.

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

Figure 1: Figure contains two graphs. Each nodes in the graph

belong to either the class pink (nodes that are present in

the 5-node cycle motif) or green. Deleting the edge in the

graph (right) leads to flip in the classification of node B (pink

becomes green). Here, the deleted edge is the counterfactual

explanation for node B.

experimental results also validate that our method based on com-

puting Banzhaf values is up to 4 times faster in finding the best

𝑘 explanations than computing Shapley values.

• We demonstrate both theoretically and empirically that our

thresholding method for computing Banzhaf values is more ro-

bust than Shapley values in the presence of noise. Our theoret-

ical analysis on thresholding can be applied to any semivalue.

However, we prefer Banzhaf values because of its efficiency,

robustness and intuitive power.

• We empirically show that, apart from robustness, adding the

thresholded Banzhaf values can gain in efficiency over non-

thresholded Banzhaf values computing the CFEs without com-

promising on fidelity values in most cases. In many cases with

noisy GNN classifiers, the fidelity is also improved.

2 PRELIMINARIES AND NOTATION

2.1 Graph neural networks

Consider a graph, denoted as 𝐺 = (𝑉 ,𝐴), consisting of a set of

nodes (𝑉) and a set of edges (𝐸). Let 𝑋 ∈ R𝑛×𝑑
represent the 𝑑-

dimensional features of 𝑛 nodes in 𝑉 , while 𝐴 ∈ {0, 1}𝑛×𝑛 is the

adjacency matrix specifying edges in the edge set 𝐸. Graph Neural

Networks (GNNs) [13, 18, 38] have proven to be effective in making

predictions on such graphs by learning relevant low-dimensional

node representations through a message-passing mechanism.

During message passing, each node (𝑢 ∈ 𝑉) updates its rep-

resentation by aggregating information from itself and its set of

neighbors 𝑁 (𝑢). Mathematically, the update in 𝑙-th step can be

represented as follows:

ℎ
(𝑙)
𝑢 = 𝐴𝐺𝐺𝑅(ℎ (𝑙−1)

𝑢 , {ℎ (𝑙−1)
𝑖

|𝑖 ∈ 𝑁 (𝑢)}) (1)

where ℎ
(𝑙)
𝑢 is the updated representation of node 𝑢 at iteration 𝑙 ,

obtained by applying the aggregation operation (𝐴𝐺𝐺𝑅) to combine

its previous representation (ℎ
(𝑙−1)
𝑢) with those of its neighboring

nodes. The representation at the 0-th step is the initial feature

set of the nodes. GNNs iteratively apply this equation to refine

the node representations, capturing the structural patterns and

dependencies within the graph for a wide range of tasks such as

node classification, link prediction, and graph. classification. For a

more detailed introduction and applications of GNN we refer the

reader to the survey [51].

2.2 General Definitions of Semivalues

In this work, we utilize cooperative game theoretic techniques to

build a counterfactual explainer for GNNs. More specifically, we

utilize semivalues to compute the impact of each edge that are

edited in generating the counterfactual explanation. While existing

counterfactual explainers often require additional training, com-

puting semivalues can circumvent this need, making it a preferable

choice in practice. Here, we introduce the general definition of

semivalues and two popular approaches, namely Banzhaf [4] and

Shapley values [36].

2.2.1 General Semivalues. Cooperative game theory offers a math-

ematical framework for analyzing the distribution of gains or con-

tributions among a coalition of agents or players while satisfying

some desired properties in the resulting distribution. For exam-

ple, the Shapley value (denoted by 𝜙 here) satisfies the following

properties [12, 15]:

(1) Linearity: 𝜙 (𝑣1 + 𝑣2) = 𝜙 (𝑣1) + 𝜙 (𝑣2)
(2) Dummy player: If 𝑈 (𝑆 ∪ 𝑖) = 𝑈 (𝑆) + 𝑐 for all 𝑆 ⊆ 𝑁 \ {𝑖} and

some 𝑐 ∈ R, then 𝜙𝑖 (𝑈) = 𝑐 .
(3) Symmetry: If 𝑣 (𝐶 ∪{𝑖}) = 𝑣 (𝐶 ∪{ 𝑗}) for all𝐶 ⊆ 𝑁 \ {𝑖, 𝑗}, then

𝜙𝑖 (𝑣) = 𝜙 𝑗 (𝑣).
(4) Efficiency: for every𝑈 ,

∑
𝑖∈𝑁 𝜙𝑖 (𝑈) = 𝑈 (𝑁)

Mathematically, semivalues satisfy all these properties except the

efficiency property. A semivalue is defined as a function 𝜙𝑠𝑒𝑚𝑖 that

maps a coalition 𝑆 ⊆ 𝑁 , where 𝑁 is the set of all agents, to a

real number 𝜙𝑠𝑒𝑚𝑖 (𝑆), representing the value or contribution of

the coalition 𝑆 . Due to their appealing properties, many variants

of semivalues have been proposed in the literature [5, 12, 17, 20,

21, 31, 37, 45]. We state the following result which gives a useful

characterization of the form of semivalues.

Theorem 1. (Dubey and Shapley [8]). A value function 𝜙semi is a
semivalue, if and only if, there exists a weight function𝑤 : [𝑛] → R

such that
∑𝑛

𝑗=1

(
𝑛 − 1

𝑗 − 1

)
𝑤 (𝑗) = 𝑛 and the value function 𝜙semi can

be expressed as follows:

𝜙semi (𝑖;𝑈 ,𝑤) :=

𝑛∑︁
𝑗=1

𝑤 (𝑗)
𝑛

∑︁
𝑆⊆𝑁 \{𝑖 }, |𝑆 |=𝑗−1

[𝑈 (𝑆 ∪ 𝑖) −𝑈 (𝑆)] (2)

2.2.2 Shapley Value. The Shapley value [36] is a well-known semi-

value that has been popular to compute the importance of the

features in machine learning models[17]. It provides a fair way of

distributing the value generated by a coalition among its members.

The Shapley value of an agent 𝑖 is calculated as:

𝜙𝑖 =
∑︁

𝑆⊆𝑁 \{𝑖 }

(|𝑆 |!(|𝑁 | − |𝑆 | − 1)!)
(|𝑁 | − 1)! (𝑈 (𝑆 ∪ {𝑖}) −𝑈 (𝑆)) (3)

where |𝑆 | represents the size of the coalition 𝑆 , |𝑁 | is the total
number of agents, 𝑈 (𝑆) represents the worth of coalition 𝑆 , and

𝑈 (𝑆∪{𝑖}) represents the worth of coalition 𝑆 with the agent 𝑖 when
𝑖 ∉ 𝑆 . The Shapley value 𝜙𝑖 quantifies the average contribution of

the agent 𝑖 in all possible coalitions involving 𝑖 .

2.2.3 Banzhaf Index. The Banzhaf index (𝛽) [4] is another popular
semivalue in cooperative game theory. It measures the influence or

2

233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

Game-theoretic Counterfactual Explanation for Graph Neural Networks Conference acronym ’XX, June 03–05, 2018, Woodstock, NY

291

292

293

294

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

331

332

333

334

335

336

337

338

339

340

341

342

343

344

345

346

347

348

power of an agent in a cooperative game. The Banzhaf index (𝛽𝑖)

of agent 𝑖 is computed as:

𝛽𝑖 =
1

2
(|𝑁 |−1)

∑︁
𝑆⊆𝑁 \{𝑖 }

(𝑈 (𝑆 ∪ {𝑖}) −𝑈 (𝑆))

where the terms have the same meanings as in Eq. 3. Intuitively,

𝛽𝑖 quantifies marginal value of agent 𝑖’s presence, considering all

possible coalitions.

In this work, we employ both the Shapley and Banzhaf values

to assign contributions to individual edges regarding the classifi-

cation decisions made by GNNs while leveraging their properties.

Nevertheless, our theoretical and empirical analyses (Sec. 4 and

5) suggest that the Banzhaf values offer superior performance in

terms of interpretability, robustness, and complexity.

3 PROBLEM DEFINITION

Our objective is to address the problem of generating concise coun-

terfactual explanations for the predictions given by graph neural

networks (GNNs) on node classification tasks. In a given graph

𝐺 = (𝑉 , 𝐸), each node 𝑣 ∈ 𝑉 is associated with a feature vector

𝑥𝑣 ∈ R𝑑
. Furthermore, 𝐿(𝑣) : 𝑣 → 𝐶 is a function that maps each

node 𝑣 to its true class label drawn from a set𝐶 . Now there exists a

classifier GNN Φ that has been trained on𝐺 . For the node classifica-

tion task, given an input node 𝑣 ∈ 𝑉 , we assume Φ(𝐺, 𝑣, 𝑐) outputs
a probability distribution over class labels 𝑐 ∈ 𝐶 . The predicted

class label is therefore the class with the highest probability, which

we denote as 𝐿Φ (𝐺, 𝑣) = arg max𝑐∈𝐶 {Φ(𝐺, 𝑣, 𝑐)}.
The idea is to delete a few edges from the graph such that the

predictions of the GNN for the node 𝑣 changes to a different one

from the original prediction. The set of deleted edges becomes the

counterfactual instance for classifying that particular node 𝑣 .

Problem Statement 1 (Counterfactual Explanation for

Node Classification). Given an input graph 𝐺 = (𝑉 , 𝐸), a budget
𝑘 , a node 𝑣 , a GNNmodelΦ, we aim to identify a set of edges 𝑆∗ (where
|𝑆∗ | = 𝑘 and 𝑆∗ ⊂ 𝐸) to be deleted such that 𝐿Φ (𝐺∗, 𝑣) ≠ 𝐿Φ (𝐺, 𝑣)
and 𝐺∗ = (𝑉 , 𝐸 \ 𝑆∗).

We aim to design an algorithm to produce a solution set of edges

that act as a counterfactual explanation. This set of edges will be

evaluated based on the well-known measures for explanations such

as Fidelity [25] which is the proportion of nodes whose predicted

class remains the same after the explanation set of edges is deleted.

Importance functions from cooperative games. Problem

1 asks for a set of edges as a counterfactual explanation. A com-

mon method to formalize the explanations in machine learning

models involves feature importance function [26]. In our problem

context, “feature” refers to the edges within the given graph. Thus,

we change our original objective in Problem 1 and simplify our

objective in selecting 𝑘 edges such that the importance of the set

𝑆∗ is maximized. We can write our objective as follows:

𝑆∗ = arg max

𝑆⊂𝐸, |𝑆 |=𝑘

∑︁
𝑒∈𝑆

𝐼𝑀𝑃 (𝑒)

where 𝐼𝑀𝑃 is the importance function. However, coming up with

a good importance function is difficult as the interactions between

the edges needs to be captured in it. For example, while both edges

𝑒1 and 𝑒2 might be important but they also have to be complimen-

tary, so that their combined effect is visible in the task when they

are deleted simultaneously. Note that this simplified objective is

effective in producing counterfactuals in practice (Sec. 5.2).

We design the importance function from the utility functions in
cooperative game theory. The edges in 𝐸 represent all the players in

the corresponding game. Given the node 𝑣 and its initial predicted

class by Φ is 𝑐; the utility function for any set of edges 𝑆 is the

reduction in the initial prediction probability when 𝑆 is deleted

from the graph. More formally, the utility function is𝑈 : 2
𝐸 → 𝑅

takes any subset of edges 𝑆 ∈ 𝐸 and maps it to the decrease in

probability of the current assigned class:

𝑈 (𝑆) = Φ(𝐺, 𝑣, 𝑐) − Φ(𝐺 ′, 𝑣, 𝑐),where 𝐺 ′ = (𝑉 , 𝐸 \ 𝑆) (4)

Our goal is to find the set of edges 𝑆∗ (where |𝑆∗ | ≤ 𝑘) such that

𝑈 (𝑆∗) is maximized. While prior work has computed the similar

objective for feature importance using Shapley values [26], we

theoretically and empirically show that for CFE, Banzhaf values

produce results with higher quality and robustness (Secs. 4 and 5).

4 OUR METHOD: THRESHOLDED BANZHAF

VALUES

In this section, we design our algorithm based on Banzhaf values

and describe its advantages over using Shapley values. The theo-

retical results suggest that Banzhaf values have several advantages

over Shapley values such as computational efficiency and robust-

ness. Formally, Banzhaf value of player 𝑖 in cooperative game is the

average of all marginal utilities Δ𝑖 = 𝑈 (𝑆 ∪ 𝑖) −𝑈 (𝑆) of player 𝑖 .
For counterfactual explanations, the 𝑈 (𝑆) is the decrease in clas-

sification probability for the current (undesired) class caused by

deletion of a set or coalition of edges.

Besides the above advantages, Banzhaf values are more intuitive

than Shapley values in our problem context. Banzhaf values take

an expectation over the marginal contribution in all the coalitions

whereas Shapley values take an expectation over the average con-

tribution in all possible orders the coalition could have formed.

That is, Banzhaf values can be more intuitive for counterfactual

explanation because they can be directly seen as expected drop in
the probability caused by an edge 𝑖 in various coalitions. On the other

hand, Shapley values are hard to interpret because it considers all

possible ordering of coalitions and adding different edges.

In the subsequent sections, we discuss the advantages of Banzhaf

values. In Sec. 4.1, we discuss the advantage of computational effi-

ciency and explain why the Banzhaf value computation has lower

time complexity. Next, we discuss that Banzhaf values can be made

even more efficient and scalable by adding thresholding to the util-

ity function (Sec 4.2). We also validate emperically that Banzhaf

values with thresholding lead to a significant improvement in com-

putational efficiency. Finally, we prove that that Banzhaf values

with a threshold keep the same robustness properties of vanilla

Banzhaf values (Sec 4.3).

4.1 Computational Efficiency

In this subsection, we demonstrate that one of the primary advan-

tages of Banzhaf values over Shapley values lies in their computa-

tional efficiency. Specifically, sicne the CFE problem necessitates

3

349

350

351

352

353

354

355

356

357

358

359

360

361

362

363

364

365

366

367

368

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

385

386

387

388

389

390

391

392

393

394

395

396

397

398

399

400

401

402

403

404

405

406

Conference acronym ’XX, June 03–05, 2018, Woodstock, NY Anon.

407

408

409

410

411

412

413

414

415

416

417

418

419

420

421

422

423

424

425

426

427

428

429

430

431

432

433

434

435

436

437

438

439

440

441

442

443

444

445

446

447

448

449

450

451

452

453

454

455

456

457

458

459

460

461

462

463

464

identifying the top-𝑘 edges as the explanation set, we illustrate that

determining the top-𝑘 Banzhaf values involves a complexity that is

lower by a factor of 𝑂 (𝑛) compared to the computation of Shapley

values. To this end, we first outline the methodology for obtaining

the Banzhaf values and subsequently provide sample complexity

required to derive the final solution set.

Much like the Shapley value and other data value concepts based

on semivalues, the precise computation of the Banzhaf value can

be prohibitively expensive due to its dependence on an exponential

number of utility function evaluations and the need to eliminate

an exponentially large number of coalition combinations. To ad-

dress this issue, we introduce the Monte Carlo estimator 𝜙𝑀𝐶 for

estimating both the Banzhaf and Shapley values. Furthermore, we

leverage the Maximum Sample Reuse (MSR) estimator 𝜙𝑀𝑆𝑅 for

the Banzhaf values as proposed by [39], which results in improved

time complexity for Banzhaf calculations. .

Monte Carlo Estimator. For estimating Banzhaf and Shapley, the

Monte Carlo approach is a standard approach. Since the compu-

tation is similar for Shapley values, we just briefly describe the

Banzhaf value computation as per equation (5). The Banzhaf value

for an edge 𝑖 , can be approximated by randomly sampling data sub-

sets from the power set of edges 2
𝑁
, excluding the edges of interest 𝑖

as 𝜙MC (𝑖) = 1

|𝑆𝑖 |
∑
𝑆∈𝑆𝑖 [𝑈 (𝑆 ∪ {𝑖}) −𝑈 (𝑆)]. This straightforward

Monte Carlo method involves sampling subsets uniformly and then

computing the contributions of these subsets to the value. The re-

sulting approximated semivalue vector, denoted as 𝜙MC, consists

of the estimated Banzhaf values for each edge 𝑖 .

𝜙
Banzhaf

(𝑖) = E[𝑆 ∼ Unif(2𝑁 \{𝑖 })] [𝑈 (𝑆 ∪ {𝑖}) −𝑈 (𝑆)] (5)

MSR Estimator. The MSR estimator addresses the sub-optimality

of the simple Monte Carlo (MC) method for estimating Banzhaf

values. In the simple MC method, each sample value of 𝑈 (𝑆) and
𝑈 (𝑆 ∪ 𝑖) is used only for estimating the Banzhaf values of edge

𝑖; where as in MSR estimate, the 𝑈 (𝑆) and 𝑈 (𝑆 ∪ 𝑖) are used to

estimate for all 𝑖 ∈ 𝑆 . Using linearity of expectation, we can write

the Banzhaf value 𝜙
Banzhaf

(𝑖) for the edge 𝑖 as:
𝜙
Banzhaf

(𝑖) = E[𝑈 (𝑆 ∪ 𝑖)] − E[𝑈 (𝑆)]
The MSR estimator, denoted as 𝜙MSR (𝑖), estimates 𝜙

Banzhaf
(𝑖) for

the edge 𝑖 with:

𝜙MSR (𝑖) =
1

|𝑆∈𝑖 |
∑︁

𝑆∈𝑆∈𝑖
𝑈 (𝑆) − 1

|𝑆∉𝑖 |
∑︁
𝑆∈𝑆∉𝑖

𝑈 (𝑆)

where 𝑆∋𝑖 = {𝑆 ∈ 𝑆 : 𝑖 ∈ 𝑆} and 𝑆∌𝑖 = {𝑆 ∈ 𝑆 : 𝑖 ∉ 𝑆} = 𝑆 \ (𝑆∋𝑖).
If either |𝑆∋𝑖 | or |𝑆∌𝑖 | is 0, 𝜙MSR (𝑖) is set to 0. The MSR estimator

maximizes sample reuse and significantly reduces sample com-

plexity compared to the simple MC method, making computation

of Banzhaf values computationally efficient. The algorithm is de-

scribed by Algorithm 1. A similar estimator for the Shapley values

is not effective due to numerical stability issues [39] and so the

sample complexity of Shapley value is 𝑛 (the number of edges)

times more than Banzhaf values .

Sample Complexity. Next, we show the sample complexity to

compute 𝜙𝑀𝑆𝑅 which is used to obtain the Banzhaf values and

compare it with 𝜙𝑀𝐶 which is used to compute the Shapley values.

We first begin by analyzing the sample complexity for correctly

Algorithm 1 MSR Estimator for Banzhaf Values

Require: Set of samples 𝑆 = {𝑆1, . . . , 𝑆𝑚}, where each 𝑆𝑖 is drawn
i.i.d. from𝑈𝑛𝑖 𝑓 (2𝑁)

Ensure: Banzhaf value estimate
ˆ𝜙𝑀𝑆𝑅 (𝑖) for each data point 𝑖 ∈ 𝑁

1: for 𝑖 ∈ 𝑁 do

2: Divide 𝑆 into 𝑆∋𝑖 ∪ 𝑆∌𝑖 where 𝑆∋𝑖 = {𝑆 ∈ 𝑆 : 𝑖 ∈ 𝑆} and
𝑆∌𝑖 = {𝑆 ∈ 𝑆 : 𝑖 ∉ 𝑆} = 𝑆 \ 𝑆∋𝑖

3: if |𝑆∋𝑖 | > 0 and |𝑆∌𝑖 | > 0 then

4: Compute
ˆ𝜙𝑀𝑆𝑅 (𝑖) = 1

|𝑆∋𝑖 |
∑
𝑆∈𝑆∋𝑖 𝑈 (𝑆) −

1

|𝑆∌𝑖 |
∑
𝑆∈𝑆∌𝑖 𝑈 (𝑆)

5: else

6: Set
ˆ𝜙𝑀𝑆𝑅 (𝑖) = 0

ranking pairs of edges whose Banzhaf values are sufficiently well

separated.
1

Lemma 1. Using ˆ𝜙𝑀𝐶 , with probability at least 1 − 𝛿 , all edges 𝑖
and 𝑗 with 𝛽𝑖 > 𝛽 𝑗 + 𝜖 are correctly ranked after 4𝑛

𝜖2
ln

(
2𝑛
𝛿

)
calls to

the𝑈 (.) function.

Proof. Let 𝑖 and 𝑗 be given with 𝛽𝑖 > 𝛽 𝑗 + 𝜖 . Then ˆ𝛽𝑖 > ˆ𝛽 𝑗 , or

ˆ𝛽𝑖 − 𝛽𝑖 > ˆ𝛽 𝑗 − 𝛽𝑖 , if ˆ𝛽𝑖 − 𝛽𝑖 > ˆ𝛽 𝑗 − 𝛽 𝑗 − 𝜖 . For this it suffices that

ˆ𝛽𝑖 − 𝛽𝑖 > −𝜖/2 and
ˆ𝛽 𝑗 − 𝛽 𝑗 < 𝜖/2.

This holds for all such pairs 𝑖 and 𝑗 if | ˆ𝛽𝑖 − 𝛽𝑖 | < 𝜖/2 for all 𝑖 .

Via a union bound, it suffices that 𝑃 (| ˆ𝛽𝑖 − 𝛽𝑖 | ≥ 𝜖/2) ≤ 𝛿/𝑛.. Via
a Hoeffding bound, we need the number of samples𝑚 to satisfy

2𝑒𝑥𝑝 (−𝑚𝜖2/2) ≤ 𝛿/𝑛, or𝑚 ≥ 2/𝜖2𝑙𝑛(2𝑛/𝛿). Each sample requires

2 calls to the𝑈 (.) function and these samples are used to estimate

a single edge so we need 𝑛 times as many to form estimates for all

edges. □

This lemma immediately provides for the correct identification

of the top-𝑘 Banzhaf values with the number of samples based on

the gap between the 𝑘th and 𝑘 + 1st values.

Corollary 1. WLOG Let 𝛽1 > 𝛽2 > . . . > 𝛽𝑛 . If 𝛽𝑘 > 𝛽𝑘+1
+ 𝜖

then after 4𝑛
𝜖2

ln

(
2𝑛
𝛿

)
calls to the 𝑈 (.) function the top 𝑘 edges are

correctly identified with probability at least 1 − 𝛿 using the 𝜙𝑀𝐶

estimator. That is, for all 𝑖 ≤ 𝑘 and 𝑗 > 𝑘 , ˆ𝛽𝑖 > ˆ𝛽 𝑗 .

Next we show that, Maximum Sample Reuse estimator
ˆ𝜙𝑀𝑆𝑅

requires asymptotically less samples by an 𝑂 (𝑛) factor than ˆ𝜙𝑀𝐶

for estimating all comparison, and thus also the top-𝐾 values.

Lemma 2. Using ˆ𝜙𝑀𝑆𝑅 , with probability at least 1 − 𝛿 , all edges 𝑖
and 𝑗 with 𝛽𝑖 > 𝛽 𝑗 + 𝜖 are correctly ranked after 128

𝜖2
ln

(
5𝑛
𝛿

)
calls to

the𝑈 (.) function.

Proof. As before we need to find the number of samples 𝑚

so that 𝑃 (| ˆ𝛽𝑖 − 𝛽𝑖 | ≥ 𝜖/2) ≤ 𝛿/𝑛. From the proof of theorem 4.9

Wang and Jia [39] for the MSR estimate, it suffices to choose 𝑚

to satisfy 5𝑒𝑥𝑝 (−𝑚𝜖2/128) ≤ 𝛿/𝑛, or𝑚 ≥ 128/𝜖2𝑙𝑛(5𝑛/𝛿). Each
1
Wang and Jia [39] provide a sample complexity analysis for a different notion of

approximation quality which does not immediately imply our desired propery of

correctly estimating the top 𝑘 , so for completeness we provide a full analysis.

4

465

466

467

468

469

470

471

472

473

474

475

476

477

478

479

480

481

482

483

484

485

486

487

488

489

490

491

492

493

494

495

496

497

498

499

500

501

502

503

504

505

506

507

508

509

510

511

512

513

514

515

516

517

518

519

520

521

522

Game-theoretic Counterfactual Explanation for Graph Neural Networks Conference acronym ’XX, June 03–05, 2018, Woodstock, NY

523

524

525

526

527

528

529

530

531

532

533

534

535

536

537

538

539

540

541

542

543

544

545

546

547

548

549

550

551

552

553

554

555

556

557

558

559

560

561

562

563

564

565

566

567

568

569

570

571

572

573

574

575

576

577

578

579

580

sample now requires a single call to the𝑈 (.) function and is used

in all 𝑛 estimates. □

In conclusion, computing Banzhaf values is practical in terms

of number of samples and is faster than computing Shapley values

using theMSR estimator since computing the later is more computa-

tionally expensive because of the sample complexity dependency’s

on additional factor of 𝑂 (𝑛)

4.2 Thresholding

In a Practical Context: Our goal is to generate counterfactual

explanations for a graph neural network (GNN) classifier. One of

the major challenges is that in GNNs, noise can arise from various

sources, including stochastic or noisy edges, targeted adversarial at-

tacks by adding noise to the data, or inherent variability introduced

during classifier retraining via the stochastic gradient descent pro-

cess. This variability can result in slightly different utility functions

for our problem setting, where these utility values are based on the

prediction probabilities (see Section 3). Furthermore, in practice,

many coalitions of edges may yield low utility values. Sampling

such coalitions can lead to high time complexity without providing

much information about the contribution of the edges. Additionally,

the aggregation of these low-utility coalitions could potentially re-

sult in the incorrect computation of the importance of individual

edges, ultimately leading to erroneous Banzhaf values.

Introducing a threshold. To address these challenges, we intro-

duce a (small) constant threshold in the transformed the utility

function. This modification is designed to alleviate the impact of

noise and diminish the influence of coalitions with low utility value.

Specifically, we transform the utility function in Equation (4) into a

hinge function:𝑈 (𝑆) = max(𝑈 (𝑆) −𝐵, 0). It is noteworthy that this
thresholding approach deviates from the conventional practice in

voting games, where utility functions assume values of 0 and 1 be-

low and above a certain threshold value, respectively [1, 52]. Clearly,

in the conventional approaches, the utility value after thresholding

lacks smoothness. Therefore, slight variations in the threshold value

can result in substantially different utility values. As a result, such

a utility function will produce Banzhaf values that are highly sensi-

tive to the threshold. Conversely, our thresholding via the hinge

function overcomes this issue and fits better in our problem setting.

The smoothness of the hinge utility function avoids abrupt changes

in measuring the Banzhaf values, ensuring a robust assessment of

the importance of the edges in the explanation set.

Pruning ofCoalitions.Apart from the above advantages, thresh-

olding for Banzhaf values can help in identifying "dummy" coali-

tions which do not contribute the computation of Banzhaf values.

This can especially be true for large coalitions where a single edge

might not contribute too much and small coalitions which where

adding one or two edges may not contribute any utility. In such

cases, we can stop sampling coalitions of particular size or particular

edges beyond a certain limit and considerably save the computation

time. Our experimental results validates this in multiple datasets

(Sec. 5.2). Besides, pruning these coalitions leads to faster computa-

tion for Banzhaf values. Our experimental results demonstrate that
the thresholding can yield speed up in running time while maintaining
the quality of the explanations (Sec. 5.2).

4.3 Better Robustness

In this section, we discuss the robustness of the thresholding Banzhaf

values with the presence of noise. In particular, we prove that adding

a reasonable amount of threshold to Banzhaf values will not lead

to any changes in the explanations even in the presence of noise.

Banzhaf values are known to be to noise-tolerant [39]. We show

that Banzhaf values with thresholding also have the same property.

Our analysis on thresholding semivalues however is more general

and can be applied to any semivalue. Here, we introduce only the

key concepts. For detailed definitions of the robustness framework

and related background, refer to Appendix A.1.

Our theorem demonstrates that thresholding does not alter the

safety margin derived by [39] as it is smooth around the threshold.

The safety margin measures the largest amount of noise that can be

added to the semivalues (e.g., Banzhaf values) without altering the

ranking of any two players (e.g., the edges) 𝑖 and 𝑗 in the worst case.

A large safety margin indicates that the semivalue is more tolerant

to noise. This analysis is pivotal in establishing the consistency

and resilience of the safety margin in the presence of thresholded

utilities, thereby extending the findings presented in [39] to the

case of thresholded semivalues.

Theorem 2. Adding the threshold to the utility function doesn’t
change the safety margin for any semivalue𝑤 .

Remark. The proof of Theorem 2 is in Appendix A.1. The proof

shows that, in the worst case that defines the safety margin, adding

a threshold to the utility function doesn’t affect the amount of noise.

Since [39] show that the Banzhaf value achieves the largest

safety margin among all semivalues and Theorem 2 shows that the

safety margin remains the same in the case of thresholding, we can

conclude that Banzhaf values still achieve largest safety margin.

Theorem 2 shows that in the worst case, the threshold doesn’t

have any effect on the utility function. However, in the general the

first inequality in Equation (8) of the proof is strict and adding the

threshold helps reduce noise in the utility function. Our experi-

mental results show that in many cases the fidelity improves after

thresholding is applied in the noisy GNN.

5 EXPERIMENTAL RESULTS

5.1 Setup

In this section, we specify the experimental setup for our experi-

ments, including the datasets, the base models, the compared base-

lines, the evaluation metrics, and the parameters. Our code is in

Python and all the experiments have been executed on a Tesla T4

GPU with 16GB RAM.

5.1.1 Datasets. We evaluate our algorithms on three datasets [47]:

BA-SHAPES, TREE-CYCLES, and TREE-GRIDS. All the three datasets

are synthetic datasets with ground truth which will help us to eval-

uate the quality of the explanations. Each dataset consists of a base

graph, a particular type of motif attached to random nodes of the

base graph and additional edges added between randomly chosen

node pairs in the graph. These datsets are used in the node classifica-

tion task, i.e., to predict whether a node belongs to that pre-defined

motif or not. The datasets are described in the Appendix (Sec. A.2).

5

581

582

583

584

585

586

587

588

589

590

591

592

593

594

595

596

597

598

599

600

601

602

603

604

605

606

607

608

609

610

611

612

613

614

615

616

617

618

619

620

621

622

623

624

625

626

627

628

629

630

631

632

633

634

635

636

637

638

Conference acronym ’XX, June 03–05, 2018, Woodstock, NY Anon.

639

640

641

642

643

644

645

646

647

648

649

650

651

652

653

654

655

656

657

658

659

660

661

662

663

664

665

666

667

668

669

670

671

672

673

674

675

676

677

678

679

680

681

682

683

684

685

686

687

688

689

690

691

692

693

694

695

696

Budget Baseline Fidelity Time Taken (s)

Random 0.59 3.835

TopK 0.58 11.73

Greedy 0.54 27.34

3 Shapley 0.22 789.31

Banzhaf (𝑏=0) 0.24 224.44

Banzhaf (𝑏=0.01) 0.25 204.63

Banzhaf (𝑏=0.05) 0.25 184.43

Random 0.66 3.776

TopK 0.65 11.69

Greedy 0.65 28.25

4 Shapley 0.28 795.04

Banzhaf (𝑏=0) 0.23 451.72

Banzhaf (𝑏=0.01) 0.24 443.70

Banzhaf (𝑏=0.05) 0.25 387.76

Random 0.67 3.841

TopK 0.66 11.66

Greedy 0.66 28.34

5 Shapley 0.31 778.41

Banzhaf (𝑏=0) 0.32 746.10

Banzhaf (𝑏=0.01) 0.33 702.37

Banzhaf (𝑏=0.05) 0.33 639.52

Table 1: Results on Fidelity (lower is better) and Running
Time (lower is better) for different budgets in TREE-GRID. For

our method (Banzhaf), the results are shown with different

values of thresholds.

5.1.2 Base Model. As the base models to be explained, we train a

3-layer GCN model for BA-SHAPES and a 2-layer model for TREE-

CYCLES and TREE-GRIDS. The different number of layers lead to

better accuracy in the specific settings. Subsequently, we explain

the models that are more accurate.

5.1.3 Baselines. We compare our method of Banzhaf values (de-
noted as Banzhaf from now onwards) with thresholds against four

baselines. Note that our method is non-neural and does not in-

volve any form of training for itself. Thus, we choose to compare

against non-neural baselines to have a fair comparison. All the

baselines algorithms produce a solution set with 𝑘 edges as the

final explanation edges and they are as follows:

• Random: It selects the 𝑘 edges randomly from the graph.

• TopK: This approach selects the 𝑘 edges with highest utility

values and returns them.

• Greedy: This approach selects the best edge based on the utility

value iteratively at each step and adds it to the set of explanation

edges, simultaneously removing it from the graph. The algorithm

runs for 𝑘 steps to select 𝑘 edges.

• Shapley: For the shapley value, we use the Monte Carlo estima-

tor as mentioned in the Sec. 4. In particular, to have an efficient

method, we follow the procedure in [29].

5.1.4 Evaluation Metrics. We evaluate our algorithms on Fidelity

[25], which is the proportion of nodeswhose predicted class remains

the same after the edges in the explanation set is deleted. Since we

are generating counterfactual explanations, a lower value of Fidelity

Budget Baseline Fidelity Time Taken (s)

Random 0.46 2.36

TopK 0.46 6.47

Greedy 0.42 13.34

3 Shapley 0.38 187.75

Banzhaf (𝑏=0) 0.28 46.27

Banzhaf (𝑏=0.01) 0.30 44.09

Banzhaf (𝑏=0.05) 0.29 39.64

Random 0.45 2.49

TopK 0.44 6.64

Greedy 0.42 13.70

4 Shapley 0.37 185.98

Banzhaf (𝑏=0) 0.39 68.43

Banzhaf (𝑏=0.01) 0.40 66.16

Banzhaf (𝑏=0.05) 0.39 60.59

Random 0.45 2.37

TopK 0.44 6.51

Greedy 0.42 13.85

5 Shapley 0.41 183.40

Banzhaf (𝑏=0) 0.38 83.51

Banzhaf (𝑏=0.01) 0.39 80.47

Banzhaf (𝑏=0.05) 0.37 71.99

Table 2: Results on Fidelity (lower is better) and Running Time
(lower is better) for different budgets in TREE-CYCLES. For

our method (Banzhaf), the results are shown with different

values of thresholds.

is better. We also compare the running times of our algorithm and

the baselines (in seconds).

5.1.5 Parameters: It is important to note that Shapley Value and

Banzhaf Value are not learning algorithms, and therefore they do

not have hyperparameters. Instead they have parameters that are

not learnable. We have the following parameters:

Budget (𝑘): All the algorithms take the budget as an input. The

set of explanation edges returned by all the algorithms has size as

the budget. This also can be seen as the explanation size.

Threshold (𝑏): Following our theoretical results in Sec. ??,

we vary the threshold parameter values in our experiments. The

threshold values are based on the utility values of a coalition. We

choose the coalitions based on the threshold value. We compute

the ratio between the utility of a coalition to the probability value

of the predicted class for the node. If the threshold is 0.1, then the

selected coalitions have this mentioned ratio ≥ 0.1.

Other settings.We describe other settings such as the coalition

size, the number of coalitions, and how to choose the candidate

set of edges in the Appendix (Sec. A.3). In all the experiments, the

number of sampled coalitions sampled is 1500 and the coalition size

for computing Banzhaf Values is equal to the budget unless specified

otherwise (please see Sec. A.3 in the Appendix for more details). We

also vary the coalition size and the number of sampled coalitions in

the experiments (Sec. 5.4). To compute the performance measures,

we randomly sample 50% of nodes of a given graph three times. We

report the average of the results over these runs. We compute the

6

697

698

699

700

701

702

703

704

705

706

707

708

709

710

711

712

713

714

715

716

717

718

719

720

721

722

723

724

725

726

727

728

729

730

731

732

733

734

735

736

737

738

739

740

741

742

743

744

745

746

747

748

749

750

751

752

753

754

Game-theoretic Counterfactual Explanation for Graph Neural Networks Conference acronym ’XX, June 03–05, 2018, Woodstock, NY

755

756

757

758

759

760

761

762

763

764

765

766

767

768

769

770

771

772

773

774

775

776

777

778

779

780

781

782

783

784

785

786

787

788

789

790

791

792

793

794

795

796

797

798

799

800

801

802

803

804

805

806

807

808

809

810

811

812

Shapley value of an edge as the average marginal contribution over

the sampled permutations (we set it to 50).

5.2 Efficacy & Efficiency

We compare our proposedmethod using Banzhaf valueswith thresh-

olding against the baselines using Fidelity. We also compute the

running time of all the algorithms to illustrate their efficiency. Ta-

bles 1, 2, and 7 show the results for TREE-GRID, TREE-CYCLES,

BA-SHAPES respectively (please see the Appendix for the results

on BA-SHAPES).

We make a few interesting observations: (1) Our method based

on Banzhaf values outperforms the other baselines in almost all

cases as it captures the combinatorial effect of the deletions to

produce a better counterfactual set. Random, TopK, and Greedy do

not take into account this combinatorial effect. While Shapley takes

into account this effect to some extent, it is an inferior method as

can been seen from our theoretical results (Sec. 4). (2) Our method,

Banzhaf consistently takes less running time than Shapley. This

difference is further amplified with thresholding and we gain up to

10 times more efficiency. This is also consistent with our theoretical

results where we show Banzhaf uses a lower number of samples.

5.3 Banzhaf vs Shapley: With Random Noise

In this section, we present the results of our method, Banzhaf and

the best baseline Shapley with the presence of noise in the graph.

We inject noise by adding edges between randomly sampled pairs of

nodes in the graph and retrain the base GCN model. For this exper-

iment, we add 5% of the total number of present edges randomly to

the graph. Tables 3 and 4 present the results for TREE-CYCLES and

BA-SHAPES respectively. We observe that, under noise, Banzhaf

outperforms Shapley in most cases while being faster than Shapley.

Similar results were observed for TREE-GRID dataset in Table 6

and 5. This is also consistent with our theoretical results in section.

4.3 that Banzhaf with thresholding is robust with the presence of

noise. In terms of efficiency, Banzhaf is much faster than Shapley.

For instance, in the case of budget 𝑘 = 3, Banzhaf with 𝑏 = .1 is

more than 30 times faster than Shapley.

5.4 Parameter variation

5.4.1 Number of Coalitions. A naive way to compute Banzhaf Val-

ues is to use all possible coalitions. However, this is not feasible as

the number of possible coalitions is exponential in |𝐸 |, where |𝐸 | is
the number of candidate edges. Thus, we sample a fixed number of

coalitions using the MSR principle as described in Sec. 4.1. Here,

we vary the number of coalitions and evaluate the impact on Fi-

delity values. Figures 2a and 2b show Fidelity value as a function of

number of coalitions for TREE-CYCLES and BA-SHAPES datasets

respectively. We observe that variations in the coalition sizes pro-

duce similar results indicating they do not have a significant impact

on the Fidelity value.

5.4.2 Size of Coalitions. Sampling the coalitions for calculating

the Banzhaf value requires choosing the size of the coalition. We

present the results of varying the coalition size as a function of the

budget where coalition size = 𝑘 ± 1. Figures 3a and 3b show the

Fidelity value as a function of the coalition size for the budget 𝑘 = 4.

Budget Baseline Fidelity Values Time Taken (s)

Shapley 0.37 310.51

3 Banzhaf (𝑏=0) 0.30 89.42

Banzhaf (𝑏=0.01) 0.31 83.90

Banzhaf (𝑏=0.1) 0.30 62.62

Shapley 0.36 299.98

4 Banzhaf (𝑏=0) 0.34 168.71

Banzhaf (𝑏=0.01) 0.33 162.73

Banzhaf (𝑏=0.1) 0.36 121.68

Shapley 0.36 300.46

5 Banzhaf (𝑏=0) 0.37 235.06

Banzhaf (𝑏=0.01) 0.36 233.07

Banzhaf (𝑏=0.1) 0.35 195.44

Table 3: With Noise (ratio = 5%): Fidelity and running time

results in TreeCycles. Banzhaf outperforms Shapley in al-

most all cases while being faster. It shows the robustness of

Banzhaf towards noise.

Budget Baseline Fidelity Values Time Taken (s)

Shapley 0.43 627.02

3 Banzhaf (𝑏=0) 0.40 383.78

Banzhaf (𝑏=0.01) 0.40 104.83

Banzhaf (𝑏=0.1) 0.42 26.85

Shapley 0.39 645.55

4 Banzhaf (𝑏=0) 0.37 555.61

Banzhaf (𝑏=0.01) 0.37 283.83

Banzhaf (𝑏=0.1) 0.39 58.42

Shapley 0.40 636.01

5 Banzhaf (𝑏=0) 0.40 632.71

Banzhaf (𝑏=0.01) 0.40 419.11

Banzhaf (𝑏=0.1) 0.41 114.36

Table 4: With Noise (ratio = 5%): Fidelity and running time

results in BA-SHAPES. Banzhaf outperforms Shapley in al-

most all cases while being faster. It shows the robustness of

Banzhaf towards noise. For budget 𝑘 = 3, Banzhaf with 𝑏 = .1

is more than 30 times faster than Shapley.

Similar to Sec. 5.4.1, we observe that varying the size of coalitions

does not produce a significant difference in the Fidelity value.

6 RELATEDWORK

Explainability in GNNs While graph neural networks (GNNs)

have gained significant attention recently due to their remarkable

performance in various domains, such as natural language process-

ing [43], their complex non-linear models make it challenging to

understand the reasons behind their predictions. To address this,

numerous explainability methods have been proposed; we refer the

reader to a recent survey [16] for a detailed overview. Explainers

for GNNs can be broadly classified into Factual and Counterfactual

explainers. In our work, we focus on counterfactual explanations

7

813

814

815

816

817

818

819

820

821

822

823

824

825

826

827

828

829

830

831

832

833

834

835

836

837

838

839

840

841

842

843

844

845

846

847

848

849

850

851

852

853

854

855

856

857

858

859

860

861

862

863

864

865

866

867

868

869

870

Conference acronym ’XX, June 03–05, 2018, Woodstock, NY Anon.

871

872

873

874

875

876

877

878

879

880

881

882

883

884

885

886

887

888

889

890

891

892

893

894

895

896

897

898

899

900

901

902

903

904

905

906

907

908

909

910

911

912

913

914

915

916

917

918

919

920

921

922

923

924

925

926

927

928

(a) TREE-CYCLES (b) BA-SHAPES

Figure 2: Results on Fidelity while varying the number of

coalitions for three different thresholds in the (a) TREE-

CYCLE and (b) BA-SHAPES datasets. We observe that the

variation in the number of coalitions produce similar results

for our Banzhaf method with budget (𝑘 = 5).

(a) TREE-CYCLES (b) BA-SHAPES

Figure 3: (a) Results on Fidelity while varying the size of coali-

tion for three different thresholds in the (a) TREE-CYCLE

and (b) BA-SHAPES datasets. We observe that slight varia-

tion in the size of coalition produce similar results for our

Banzhaf method with budget (𝑘 = 4).

which have applications in areas such as drug discovery [25]. How-

ever, unlike most prior works which develop learning based meth-

ods [27, 47, 49], we focus on a non-learning based method which

does not require training another graph.

Factual Explainers for GNNs. Factual explainers usually pro-

vide a subset of the input features as explanations. Unlike coun-

terfactual ones, factual explanations seek to answer the reasoning

question from the existing data:what are the input features𝑋 that are
responsible for the current output𝑌 ? These features could be any sub-
structure such as nodes, edges or subgraphs. For example, gradient-
based methods such as guided-bp [3] and grad-CAM[34] measure

how sensitive the output is to the input features. They use gradi-

ents to rank the input features. GraphSVX[9], ReLex[50], DnX[33]

are surrogate-based methods and use a simpler surrogate model

to explain the output. Perturbation-based methods compute expla-

nations by introducing small changes in the input features to see

how the output changes. These methods include GraphMask[35],

GNNExplainer[47], and PGExplainer[27]. Generation-based meth-
ods [23, 24, 41] use generative methods to construct graphs that

act as explanations. Our work is complementary to these meth-

ods since it aims to identify counterfactual explanations which are

responsible for changing the current predictions.

Counterfactual Explainers for GNNs Counterfactual expla-

nation aims to answer - How should we change the input 𝑋 to 𝑋 ′

so that output changes from 𝑌 to 𝑌 ′
. Existing counterfactual ex-

plainers of GNNs include CF-GNNExplainer [25], which generates

minimal perturbations to the input graph data to change the predic-

tion, and RCExplainer [2], which produces robust counterfactual

explanations by modeling the common decision logic of GNNs on

similar input graphs. Search-basedmethods such asMMACE[42] and

MEG[30] search the counterfactual space of candidates and gener-

ate explanations.Neural Network based methods such as CLEAR[28]

use neural networks to generate the counterfactual explanations

with causality by identifying a subset of edges which when re-

moved change the prediction. Global Counterfactual Explainer [14]

addresses the limitations of instance-specific local reasoning by

studying global counterfactual explainability of GNNs.

Game-theoretic Methods in GNN Explanations. Previous

research has proposed multiple methods inspired by game theory to

generate explanations that make use of semivalues. GraphSVX [9]

is a post-hoc local model-agnostic explanation method specifically

designed for GNNs. It uses Shapley values to capture the “fair” con-

tribution of each feature and node towards the explained prediction.

Another method, GStarX [49], leverages graph structure informa-

tion to improve explanations by defining a scoring function based

on a new structure-aware value from cooperative game theory.

Both of these are factual explainers whereas we focus on building

counterfactual explanation. Broadly speaking, Semivalues offer a

versatile framework for assessing the contributions of individual

agents in cooperative settings, and the choice of utility functions

can be tailored to the specific context. For instance, in data valua-

tion problems, the utility function often represents the quality or

importance of a subset of data points, where the utility is deter-

mined by metrics like test accuracy, information gain, or relevance

to a particular task [20, 20, 39]. In voting games, the utility function

is typically associated with the voting power of players, quantified

by their influence on the collective decision-making process [7, 32].

To the best of our knowledge, our work is the first to employ Banzhaf
values to generate counterfactual explanations for GNNs.

7 CONCLUSIONS

Graph Neural Networks (GNNs) have proven to be a valuable

tool for prediction tasks in complex networks. Nevertheless, their

decision-making processes have remained somewhat black-box to

the users, posing challenges in understanding their prediction out-

comes. To address this interpretability issue, we have introduced

a novel approach to build a counterfactual explainer using thresh-

olded Banzhaf Values for the node classification task. While several

methods have been proposed in the literature, they mostly depend

on learning-based approaches that needs additional training, where

as, our approach does not require training. We also have shown

that our proposed method based on Banzhaf is faster than other

game-theoretic measure such as Shapley value and more robust

in the presence of noise despite the wide-spread usage of later. In

practice, our method Banzhaf produces high-quality results either

better or comparable to Shapley while being up to 10 times faster.

As a future direction, it will be interesting to see if Banzhaf value-

based method can be effective for building counterfactual explainer

for other tasks.

8

929

930

931

932

933

934

935

936

937

938

939

940

941

942

943

944

945

946

947

948

949

950

951

952

953

954

955

956

957

958

959

960

961

962

963

964

965

966

967

968

969

970

971

972

973

974

975

976

977

978

979

980

981

982

983

984

985

986

Game-theoretic Counterfactual Explanation for Graph Neural Networks Conference acronym ’XX, June 03–05, 2018, Woodstock, NY

987

988

989

990

991

992

993

994

995

996

997

998

999

1000

1001

1002

1003

1004

1005

1006

1007

1008

1009

1010

1011

1012

1013

1014

1015

1016

1017

1018

1019

1020

1021

1022

1023

1024

1025

1026

1027

1028

1029

1030

1031

1032

1033

1034

1035

1036

1037

1038

1039

1040

1041

1042

1043

1044

REFERENCES

[1] Yoram Bachrach, Evangelos Markakis, Ezra Resnick, Ariel D Procaccia, Jeffrey S

Rosenschein, and Amin Saberi. 2010. Approximating power indices: theoretical

and empirical analysis. Autonomous Agents and Multi-Agent Systems 20 (2010),
105–122.

[2] Mohit Bajaj, Lingyang Chu, Zi Yu Xue, Jian Pei, LanjunWang, Peter Cho-Ho Lam,

and Yong Zhang. 2021. Robust Counterfactual Explanations on Graph Neural

Networks. In Advances in Neural Information Processing Systems, M. Ranzato,

A. Beygelzimer, Y. Dauphin, P.S. Liang, and J. Wortman Vaughan (Eds.), Vol. 34.

Curran Associates, Inc., 5644–5655. https://proceedings.neurips.cc/paper_files/

paper/2021/file/2c8c3a57383c63caef6724343eb62257-Paper.pdf

[3] Federico Baldassarre and Hossein Azizpour. 2019. Explainability Techniques for

Graph Convolutional Networks. arXiv:1905.13686 [cs.LG]

[4] John F Banzhaf III. 1965. Weighted voting doesn’t work: A mathematical analysis.

Rutgers L. Rev. 19 (1965), 317.
[5] Javier Castro, Daniel Gómez, and Juan Tejada. 2009. Polynomial Calculation of

the Shapley Value Based on Sampling. Computers & Operations Research 36, 5

(May 2009), 1726–1730.

[6] Amnon Catav, Boyang Fu, Yazeed Zoabi, Ahuva Libi Weiss Meilik, Noam Shom-

ron, Jason Ernst, Sriram Sankararaman, and Ran Gilad-Bachrach. 2021. Marginal

contribution feature importance-an axiomatic approach for explaining data. In

International Conference on Machine Learning. PMLR, 1324–1335.

[7] Daphne Cornelisse, Thomas Rood, Yoram Bachrach, Mateusz Malinowski,

and Tal Kachman. 2022. Neural Payoff Machines: Predicting Fair and

Stable Payoff Allocations Among Team Members. In Advances in Neu-
ral Information Processing Systems, S. Koyejo, S. Mohamed, A. Agarwal,

D. Belgrave, K. Cho, and A. Oh (Eds.), Vol. 35. Curran Associates, Inc.,

25491–25503. https://proceedings.neurips.cc/paper_files/paper/2022/file/

a38df2dd882bf7059a1914dd5547af87-Paper-Conference.pdf

[8] Pradeep Dubey and Lloyd S Shapley. 1979. Mathematical properties of the

Banzhaf power index. Mathematics of Operations Research 4, 2 (1979), 99–131.

[9] Alexandre Duval and Fragkiskos D Malliaros. 2021. Graphsvx: Shapley value

explanations for graph neural networks. In Joint European Conference on Machine
Learning and Knowledge Discovery in Databases. Springer, 302–318.

[10] David K Duvenaud, Dougal Maclaurin, Jorge Iparraguirre, Rafael Bombarell,

Timothy Hirzel, Alán Aspuru-Guzik, and Ryan P Adams. 2015. Convolutional

networks on graphs for learning molecular fingerprints. In Advances in neural
information processing systems. 2224–2232.

[11] Evan N Feinberg, Harsh Suratia, and Amir Saffari. 2018. PotentialNet for molec-

ular property prediction. Journal of chemical information and modeling 58, 6

(2018), 1194–1201.

[12] Amirata Ghorbani and James Zou. 2019. Data Shapley: Equitable Valuation of

Data for Machine Learning. In International Conference on Machine Learning.
PMLR, 2242–2251.

[13] William L. Hamilton, Rex Ying, and Jure Leskovec. 2017. Inductive Representation

Learning on Large Graphs. In Proceedings of the 31st International Conference on
Neural Information Processing Systems (Long Beach, California, USA) (NIPS’17).
Curran Associates Inc., 1025–1035.

[14] Zexi Huang, Mert Kosan, Sourav Medya, Sayan Ranu, and Ambuj Singh. 2023.

Global Counterfactual Explainer for Graph Neural Networks. In Proceedings
of the Sixteenth ACM International Conference on Web Search and Data Mining.
141–149.

[15] Ruoxi Jia, David Dao, Boxin Wang, Frances Ann Hubis, Nezihe Merve Gurel, Bo

Li, Ce Zhang, Costas Spanos, and Dawn Song. 2019. Efficient Task-Specific Data

Valuation for Nearest Neighbor Algorithms. Proceedings of the VLDB Endowment
12, 11 (July 2019), 1610–1623.

[16] Jaykumar Kakkad, Jaspal Jannu, Kartik Sharma, Charu Aggarwal, and Sourav

Medya. 2023. A Survey on Explainability of Graph Neural Networks.

arXiv:2306.01958 [cs.LG]

[17] Adam Karczmarz, Anish Mukherjee, Piotr Sankowski, and Piotr Wygocki.

2021. Improved Feature Importance Computations for Tree Models: Shapley vs.

Banzhaf. arXiv preprint arXiv:2108.04126 (2021).
[18] Thomas N Kipf and Max Welling. 2016. Semi-supervised classification with

graph convolutional networks. arXiv preprint arXiv:1609.02907 (2016).

[19] I Elizabeth Kumar, Suresh Venkatasubramanian, Carlos Scheidegger, and Sorelle

Friedler. 2020. Problems with Shapley-value-based explanations as feature im-

portance measures. In International Conference on Machine Learning. PMLR,

5491–5500.

[20] Yongchan Kwon and James Zou. 2022. Beta Shapley: A Unified and Noise-

Reduced Data Valuation Framework for Machine Learning. In Proceedings of the
25th International Conference on Artificial Intelligence and Statistics (AISTATS),
Vol. 151. PMLR, Valencia, Spain, 1234–1245.

[21] Yongchan Kwon and James Zou. 2022. Data-OOB: Out-of-Bag Estimate as a

Simple and Efficient Data Value. In Proceedings of the 40th International Conference
on Machine Learning (ICML).

[22] Yongchan Kwon and James Y Zou. 2022. WeightedSHAP: analyzing and improv-

ing Shapley based feature attributions. Advances in Neural Information Processing

Systems 35 (2022), 34363–34376.
[23] Wenqian Li, Yinchuan Li, Zhigang Li, Jianye HAO, and Yan Pang. 2023. DAGMat-

ters! GFlowNets Enhanced Explainer for Graph Neural Networks. In The Eleventh
International Conference on Learning Representations. https://openreview.net/

forum?id=jgmuRzM-sb6

[24] Wanyu Lin, Hao Lan, and Baochun Li. 2021. Generative Causal Explanations for

Graph Neural Networks. In Proceedings of the 38th International Conference on
Machine Learning (Proceedings of Machine Learning Research, Vol. 139), Marina

Meila and Tong Zhang (Eds.). PMLR, 6666–6679. https://proceedings.mlr.press/

v139/lin21d.html

[25] Ana Lucic, Maartje A Ter Hoeve, Gabriele Tolomei, Maarten De Rijke, and

Fabrizio Silvestri. 2022. Cf-gnnexplainer: Counterfactual explanations for graph

neural networks. In International Conference on Artificial Intelligence and Statistics.
PMLR, 4499–4511.

[26] Scott M Lundberg and Su-In Lee. 2017. A unified approach to interpreting model

predictions. Advances in neural information processing systems 30 (2017).
[27] Dongsheng Luo,Wei Cheng, Dongkuan Xu,Wenchao Yu, Bo Zong, Haifeng Chen,

and Xiang Zhang. 2020. Parameterized Explainer for Graph Neural Network.

In Advances in Neural Information Processing Systems, H. Larochelle, M. Ran-

zato, R. Hadsell, M.F. Balcan, and H. Lin (Eds.), Vol. 33. Curran Associates,

Inc., 19620–19631. https://proceedings.neurips.cc/paper_files/paper/2020/file/

e37b08dd3015330dcbb5d6663667b8b8-Paper.pdf

[28] Jing Ma, Ruocheng Guo, Saumitra Mishra, Aidong Zhang, and Jundong Li. 2022.

CLEAR: Generative Counterfactual Explanations on Graphs. arXiv preprint
arXiv:2210.08443 (2022).

[29] Sourav Medya, Tiyani Ma, Arlei Silva, and Ambuj Singh. 2020. K-Core Minimiza-

tion: A Game Theoretic Approach. arXiv:1901.02166 [cs.SI]

[30] Danilo Numeroso and Davide Bacciu. 2021. MEG: Generating Molecular Coun-

terfactual Explanations for Deep Graph Networks. arXiv:2104.08060 [cs.LG]

[31] Ramin Okhrati and Aldo Lipani. 2021. A Multilinear Sampling Algorithm to

Estimate Shapley Values. In 25th International Conference on Pattern Recognition
(ICPR 2020). IEEE, 7992–7999.

[32] Roma Patel, Marta Garnelo, Ian Gemp, Chris Dyer, and Yoram Bachrach. 2021.

Game-theoretic Vocabulary Selection via the Shapley Value and Banzhaf Index. In

Proceedings of the 2021 Conference of the North American Chapter of the Association
for Computational Linguistics: Human Language Technologies. Association for

Computational Linguistics, Online, 2789–2798. https://doi.org/10.18653/v1/

2021.naacl-main.223

[33] Tamara Pereira, Erik Nascimento, Lucas E. Resck, Diego Mesquita, and Amauri

Souza. 2023. Distill n’ Explain: explaining graph neural networks using sim-

ple surrogates. In Proceedings of The 26th International Conference on Artificial
Intelligence and Statistics (Proceedings of Machine Learning Research, Vol. 206),
Francisco Ruiz, Jennifer Dy, and Jan-Willem van de Meent (Eds.). PMLR, 6199–

6214. https://proceedings.mlr.press/v206/pereira23a.html

[34] Phillip E. Pope, Soheil Kolouri, Mohammad Rostami, Charles E. Martin, and

Heiko Hoffmann. 2019. Explainability Methods for Graph Convolutional Neural

Networks. In Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition (CVPR).

[35] Michael Sejr Schlichtkrull, Nicola De Cao, and Ivan Titov. 2022. Inter-

preting Graph Neural Networks for NLP With Differentiable Edge Masking.

arXiv:2010.00577 [cs.CL]

[36] Lloyd S Shapley. 1953. A value for n-person games. Contributions to the Theory
of Games 2, 28 (1953), 307–317.

[37] Stelios Triantafyllou, Adish Singla, and Goran Radanovic. 2021. On Blame

Attribution for Accountable Multi-Agent Sequential Decision Making. Advances
in Neural Information Processing Systems 34 (2021), 15774–15786.

[38] Petar Veličković, Guillem Cucurull, Arantxa Casanova, Adriana Romero, Pietro

Liò, and Yoshua Bengio. 2018. Graph Attention Networks. In International
Conference on Learning Representations. https://openreview.net/forum?id=

rJXMpikCZ

[39] Jiachen TWang and Ruoxi Jia. 2023. Data banzhaf: A robust data valuation frame-

work for machine learning. In International Conference on Artificial Intelligence
and Statistics. PMLR, 6388–6421.

[40] XibinWang, Liang Jiang, Sujian Liu, Zhihua Cui, and Shuming Yang. 2019. Graph

convolutional networks for sentiment classification. In Proceedings of the 57th
Annual Meeting of the Association for Computational Linguistics. 1431–1441.

[41] Xiaoqi Wang and Han-Wei Shen. 2023. GNNInterpreter: A Proba-

bilistic Generative Model-Level Explanation for Graph Neural Networks.

arXiv:2209.07924 [cs.LG]

[42] Geemi P. Wellawatte, Aditi Seshadri, and Andrew D. White. 2022. Model agnostic

generation of counterfactual explanations for molecules. Chem. Sci. 13 (2022),
3697–3705. Issue 13. https://doi.org/10.1039/D1SC05259D

[43] Lingfei Wu, Yu Chen, Kai Shen, Xiaojie Guo, Hanning Gao, Shucheng Li, Jian Pei,

and Bo Long. 2022. Graph Neural Networks for Natural Language Processing: A

Survey. arXiv:2106.06090 [cs.CL]

[44] Zongda Wu, Shirui Pan, Guodong Long, Jing Jiang, Xiaojun Chang, and Chengqi

Zhang. 2020. Graph adversarial networks: Protecting information against ad-

versarial attacks. In Proceedings of the AAAI Conference on Artificial Intelligence,

9

https://proceedings.neurips.cc/paper_files/paper/2021/file/2c8c3a57383c63caef6724343eb62257-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2021/file/2c8c3a57383c63caef6724343eb62257-Paper.pdf
https://arxiv.org/abs/1905.13686
https://proceedings.neurips.cc/paper_files/paper/2022/file/a38df2dd882bf7059a1914dd5547af87-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2022/file/a38df2dd882bf7059a1914dd5547af87-Paper-Conference.pdf
https://arxiv.org/abs/2306.01958
https://openreview.net/forum?id=jgmuRzM-sb6
https://openreview.net/forum?id=jgmuRzM-sb6
https://proceedings.mlr.press/v139/lin21d.html
https://proceedings.mlr.press/v139/lin21d.html
https://proceedings.neurips.cc/paper_files/paper/2020/file/e37b08dd3015330dcbb5d6663667b8b8-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2020/file/e37b08dd3015330dcbb5d6663667b8b8-Paper.pdf
https://arxiv.org/abs/1901.02166
https://arxiv.org/abs/2104.08060
https://doi.org/10.18653/v1/2021.naacl-main.223
https://doi.org/10.18653/v1/2021.naacl-main.223
https://proceedings.mlr.press/v206/pereira23a.html
https://arxiv.org/abs/2010.00577
https://openreview.net/forum?id=rJXMpikCZ
https://openreview.net/forum?id=rJXMpikCZ
https://arxiv.org/abs/2209.07924
https://doi.org/10.1039/D1SC05259D
https://arxiv.org/abs/2106.06090

1045

1046

1047

1048

1049

1050

1051

1052

1053

1054

1055

1056

1057

1058

1059

1060

1061

1062

1063

1064

1065

1066

1067

1068

1069

1070

1071

1072

1073

1074

1075

1076

1077

1078

1079

1080

1081

1082

1083

1084

1085

1086

1087

1088

1089

1090

1091

1092

1093

1094

1095

1096

1097

1098

1099

1100

1101

1102

Conference acronym ’XX, June 03–05, 2018, Woodstock, NY Anon.

1103

1104

1105

1106

1107

1108

1109

1110

1111

1112

1113

1114

1115

1116

1117

1118

1119

1120

1121

1122

1123

1124

1125

1126

1127

1128

1129

1130

1131

1132

1133

1134

1135

1136

1137

1138

1139

1140

1141

1142

1143

1144

1145

1146

1147

1148

1149

1150

1151

1152

1153

1154

1155

1156

1157

1158

1159

1160

Vol. 34. 12721–12729.

[45] Tom Yan and Ariel D Procaccia. 2021. If you like shapley then you’ll love the

core. In Proceedings of the AAAI Conference on Artificial Intelligence, Vol. 35.
5751–5759.

[46] Liang Yao, Chengsheng Mao, Yuan Luo, Yansong Huang, Zhiyuan Li, Xiaoyong

Dong, and Jie Zhou. 2019. Graph convolutional networks for text classification. In

Proceedings of the AAAI Conference on Artificial Intelligence, Vol. 33. 7370–7377.
[47] Zhitao Ying, Dylan Bourgeois, Jiaxuan You, Marinka Zitnik, and Jure Leskovec.

2020. Gnnexplainer: Generating explanations for graph neural networks. In

Proceedings of the 35th International Conference on Machine Learning. 6214–6223.
[48] Muhan Zhang, Zhiwei Cui, Marion Neumann, and Yixin Chen. 2019. Graph

convolutional networks: A comprehensive review. In Proceedings of the IEEE,
Vol. 107. 1656–1683.

[49] Shichang Zhang, Yozen Liu, Neil Shah, and Yizhou Sun. 2022. Gstarx: Explaining

graph neural networks with structure-aware cooperative games. Advances in
Neural Information Processing Systems 35 (2022), 19810–19823.

[50] Yue Zhang, David Defazio, and Arti Ramesh. 2021. RelEx: A Model-Agnostic

Relational Model Explainer. In Proceedings of the 2021 AAAI/ACM Conference
on AI, Ethics, and Society (Virtual Event, USA) (AIES ’21). Association for Com-

puting Machinery, New York, NY, USA, 1042–1049. https://doi.org/10.1145/

3461702.3462562

[51] Jie Zhou, Ganqu Cui, Zhengyan Zhang, and Cheng Yang. 2018. Graph Neural Net-

works: A Review of Methods and Applications. arXiv preprint arXiv:1812.08434
(2018).

[52] Michael Zuckerman, Piotr Faliszewski, Yoram Bachrach, and Edith Elkind. 2008.

Manipulating the Quota in Weighted Voting Games.. In AAAI, Vol. 8. 215–220.

10

https://doi.org/10.1145/3461702.3462562
https://doi.org/10.1145/3461702.3462562

1161

1162

1163

1164

1165

1166

1167

1168

1169

1170

1171

1172

1173

1174

1175

1176

1177

1178

1179

1180

1181

1182

1183

1184

1185

1186

1187

1188

1189

1190

1191

1192

1193

1194

1195

1196

1197

1198

1199

1200

1201

1202

1203

1204

1205

1206

1207

1208

1209

1210

1211

1212

1213

1214

1215

1216

1217

1218

Game-theoretic Counterfactual Explanation for Graph Neural Networks Conference acronym ’XX, June 03–05, 2018, Woodstock, NY

1219

1220

1221

1222

1223

1224

1225

1226

1227

1228

1229

1230

1231

1232

1233

1234

1235

1236

1237

1238

1239

1240

1241

1242

1243

1244

1245

1246

1247

1248

1249

1250

1251

1252

1253

1254

1255

1256

1257

1258

1259

1260

1261

1262

1263

1264

1265

1266

1267

1268

1269

1270

1271

1272

1273

1274

1275

1276

A APPENDIX

A.1 Robustness Framework

As mentioned earlier, we use the robustness framework from [39]

to show the effect of thresholding on semivalues. In particular, we

use the following definitions.

Definition 1. The scaled difference between two edges 𝑖 and 𝑗 is

𝐷𝑖, 𝑗 (𝑈 ;𝑤) := 𝑛(𝜙 (𝑖;𝑤) − 𝜙 (𝑗 ;𝑤))

=

𝑛−1∑︁
𝑘=1

(𝑤 (𝑘) +𝑤 (𝑘 + 1))
(
𝑛 − 2

𝑘 − 1

)
Δ
𝑖, 𝑗

𝑘
(𝑈),

where Δ𝑖, 𝑗
𝑘
(𝑈) :=

∑︁
|𝑆 |=𝑘−1

𝑆⊆𝑁 \{𝑖, 𝑗 }

[𝑈 (𝑆 ∪ {𝑖}) −𝑈 (𝑆 ∪ { 𝑗})] .

Δ
𝑖, 𝑗

𝑘
(𝑈) represents the average distinguishability between 𝑖 and

𝑗 on size-𝑘 sets using the noiseless utility function𝑈 . Let𝑈 denote

a noisy estimate of𝑈 .

Definition 2. We say a pair of edges (𝑖, 𝑗) is 𝜏-distinguishable
by𝑈 if and only if Δ𝑖, 𝑗

𝑘
(𝑈) ≥ 𝜏 for all 𝑘 ∈ {1, . . . , 𝑛 − 1}.

Definition 3. Given 𝜏 > 0, we define the safety margin of a
semivalue for a pair of edges (𝑖, 𝑗) as
Safe𝑖, 𝑗 (𝜏 ;𝑤) := min

𝑈 ∈𝑈 (𝜏)𝑖,𝑗
min

𝑈 ∈{𝑈 :𝐷𝑖,𝑗 (𝑈 ;𝑤)𝐷𝑖,𝑗 (𝑈 ;𝑤)≤0}
| |𝑈 −𝑈 | |.

(6)

And the safety margin of a semivalue is defined as

Safe(𝜏 ;𝑤) := min

𝑖, 𝑗∈𝑁,𝑖≠𝑗
Safe𝑖, 𝑗 (𝜏 ;𝑤) . (7)

Now, we are ready to show the proof of Theorem 2 that uses

the definitions mentioned above. We begin by introducing some

notations for our theoretical analysis. Let𝑈 , denote the noisy utility

function and let 𝑥 = 𝑈 −𝑈 denote the noise. We also assume the 𝐵

vector with the same dimension as𝑈 and for all 𝑏𝑖 ∈ 𝐵 𝑏𝑖 = 𝑏 where
𝑏 is the constant threshold. Now after applying the threshold, let

𝑈 ′ =𝑚𝑎𝑥 (𝑈 −𝐵, 0) and𝑈 ′ =𝑚𝑎𝑥 (𝑈 −𝐵, 0). Finally, let 𝑥 ′ = 𝑈 ′−𝑈 ′
.

Theorem 2. Adding the threshold to the utility function doesn’t
change the safety margin for any semivalue𝑤 .

Proof.

𝐷𝑖, 𝑗 (𝑈 ;𝑤) = 𝑎𝑇𝑈
where each entry of 𝑎 corresponds to a subset 𝑆 ⊆ 𝑁 . We use

𝑎[𝑆] to denote the value of 𝑎 ’s entry corresponds to 𝑆 . For all

𝑆 ⊆ 𝑁 \{𝑖, 𝑗}, 𝑎[𝑆 ∪ 𝑖] = 𝑤 (|𝑆 | + 1) + 𝑤 (|𝑆 | + 2) and 𝑎[𝑆 ∪ 𝑗] =

−(𝑤 (|𝑆 | + 1) +𝑤 (|𝑆 | + 2)), and for all other subsets 𝑎[𝑆] = 0. Let

matrix 𝐴 = 𝑎𝑎𝑇 .

𝐷𝑖, 𝑗 (𝑈 ′
;𝑤)𝐷𝑖, 𝑗 (𝑈 ′

;𝑤) =
(
𝑎𝜏𝑈 ′) (𝑎𝑇𝑈 ′

)
=

(
𝑎𝑇𝑈 ′

)𝑇 (
𝑎𝑇𝑈 ′

)
= 𝑈 ′𝑇𝑎𝑎𝑇𝑈 ′

= 𝑈 ′𝑇𝐴𝑈 ′

= 𝑈 ′𝑇𝐴(𝑈 ′ − 𝑥 ′)

Now, from the definition of x’ and x, we can see that | |𝑥 ′ | | = | |𝑥 | |
for the case where ∀𝑢 ∈ 𝑈 ,𝑢 > 𝑏. Further if ∃𝑢 ∈ 𝑈 where 𝑢 < 𝑏

or ∃𝑢 ∈ 𝑈 where 𝑢 < 𝑏 then | |𝑥 ′ | | < | |𝑥 | |. This means adding the

threshold to the utility function leads to | |𝑥 ′ | | ≤ | |𝑥 | |. Combining

the above analysis of threshold with the proof of lemma C.1 from

[39], -

| |𝑥 | | ≥ | |𝑥 ′ | | ≥

√√√���𝑈 ′𝑇𝐴𝑈 ′
���

𝑎𝑇𝑎
(8)

Since the safety margin considers minimum required perturbation

value of 𝑥 ′, we can consider the case where 𝑥 ′ = 𝑥 (i.e thresholds

have no effect on𝑈 −𝑈 and | |𝑥 ′ | | = | |𝑥 | |).

𝑆𝑎𝑓 𝑒 (𝜏 ;𝑤) = 𝜏

√√√√√√√√√√√
(∑𝑛−1

𝑘=1

(
𝑛 − 2

𝑘 − 1

)
(𝑤 (𝑘) +𝑤 (𝑘 + 1))

)
2

∑𝑛−1

𝑘=1

(
𝑛 − 2

𝑘 − 1

)
(𝑤 (𝑘) +𝑤 (𝑘 + 1))2

(9)

for any 𝜏 > 0 □

A.2 Description of Datasets

BA-SHAPES: This consists of a base Barabasi-Albert (BA) graph

consisting of 300 nodes. The motif is a house shaped motif con-

sisting of five nodes. There are three types of nodes in the house

motif corresponding to their position: one node is at the top, two

nodes in the middle and the remaining two nodes at the bottom.

The graph has 80 motifs and the nodes belong to four different

classes including presence in the base graph and other 3 classes are

for the three types of nodes in the house motif.

TREE-CYCLES: This consists of a base balanced binary tree graph

consisting of 511 nodes. The motif is a cycle containing 6 nodes and

there are 60 motifs in the graph. The nodes in the dataset belong to

2 classes: nodes in the base graph are assigned class 0 and nodes in

the motif are assigned class 1.

TREE-GRID: The base graph is same as in TREE-CYCLES and the

nodes are in two different classes. The motif is a 3x3 grid containing

nine nodes and there are 80 motifs in the graph.

A.3 Other Settings

Here, we elaborate on additional details of other parameters in

Banzhaf and Shapley:

Coalition size: As stated in Sec. 5.4.2,when calculating the

Banzhaf value, we need to sample coalitions of edges. The num-

ber of edges in a sampled coalition is given by the Coalition size

parameter.

Number of Coalitions: From Sec. 5.4, we infer that we need to

sample a fixed number of coalitions to calculate the Banzhaf value

to avoid running into exponential running time. This number is

given by the Number of Coalitions parameter.

Hop Size: This parameter controls the no of candidate explana-

tion edges. In particular, we find the induced subgraph of the node

under consideration upto a fixed number of hops. All the edges in

the induced subgraph are the candidate explanation edges.

11

1277

1278

1279

1280

1281

1282

1283

1284

1285

1286

1287

1288

1289

1290

1291

1292

1293

1294

1295

1296

1297

1298

1299

1300

1301

1302

1303

1304

1305

1306

1307

1308

1309

1310

1311

1312

1313

1314

1315

1316

1317

1318

1319

1320

1321

1322

1323

1324

1325

1326

1327

1328

1329

1330

1331

1332

1333

1334

Conference acronym ’XX, June 03–05, 2018, Woodstock, NY Anon.

1335

1336

1337

1338

1339

1340

1341

1342

1343

1344

1345

1346

1347

1348

1349

1350

1351

1352

1353

1354

1355

1356

1357

1358

1359

1360

1361

1362

1363

1364

1365

1366

1367

1368

1369

1370

1371

1372

1373

1374

1375

1376

1377

1378

1379

1380

1381

1382

1383

1384

1385

1386

1387

1388

1389

1390

1391

1392

Budget Threshold Fidelity Total Time Taken

Shapley 0.37 787.86

3 Banzhaf (𝑏=0.) 0.31 219.25

Banzhaf (𝑏=0.01) 0.30 233.92

Banzhaf (𝑏=0.1) 0.29 88.64

Shapley 0.35 852.82

4 Banzhaf (𝑏=0.) 0.30 276.38

Banzhaf (𝑏=0.01) 0.30 202.28

Banzhaf (𝑏=0.1) 0.29 109.28

Shapley 0.30 891.91

5 Banzhaf (𝑏=0) 0.25 330.86

Banzhaf (𝑏=0.01) 0.24 258.99

Banzhaf (𝑏=0.1) 0.23 127.16

Table 6: With Noise (ratio = 5%): Fidelity and running time

results in TREE-GRIDS. Banzhaf outperforms Shapley in

almost all cases while being faster. It shows the robustness of

Banzhaf towards noise. For budget 𝑘 = 3, Banzhaf with 𝑏 = .1

is more than 10 times faster than Shapley.

Budget Baseline Fidelity Time Taken (s)

Random 0.53 2.87

TopK 0.51 20.38

Greedy 0.36 56.53

3 Shapley 0.46 520.27

Banzhaf (𝑏=0) 0.35 309.88

Banzhaf (𝑏=0.01) 0.35 108.75

Banzhaf (𝑏=0.05) 0.35 35.82

Random 0.58 2.85

TopK 0.59 20.40

Greedy 0.40 69.85

4 Shapley 0.39 506.85

Banzhaf (𝑏=0) 0.39 469.24

Banzhaf (𝑏=0.01) 0.39 290.24

Banzhaf (𝑏=0.05) 0.39 97.19

Random 0.55 2.84

TopK 0.58 20.67

Greedy 0.35 80.57

5 Shapley 0.35 552.31

Banzhaf (𝑏=0) 0.36 506.04

Banzhaf (𝑏=0.01) 0.36 381.31

Banzhaf (𝑏=0.05) 0.35 251.87

Table 7: Results on Fidelity (lower is better) and Running
Time (lower is better) for different budgets in BA-SHAPES. For

our method (Banzhaf), the results are shown with different

values of thresholds.

A.4 Additional Experimental Results

In this section, we present additional results of efficacy(Sec.5.2) and

random noise(Sec. 5.3).

Efficacy and efficiency. Table 7 presents the fidelity and time

values of running our algorithm Banzhaf with threshold against

other baseline algorithms(Sec. 5.1.3) on the BA-SHAPES dataset.

Consistent with our observations in Section 5.2, we observe that

Banzhaf performs better than all the baselines in almost all the

cases while consistently having a much lower running time than

Shapley value.

With random noise. Tables 5 and 6 show the results of adding

noise on the TREE-GRID dataset for noise ratios 10% and 5% respec-

tively. Again, consistent with our observations in Section 5.3, we

observe that Banzhaf consistently gives better fidelity value than

Shapley while having a much lower running time. This proves that

Banzhaf is robust in the presence of noise.

Budget Threshold Fidelity Total Time Taken

Shapley 0.41 632.13

3 Banzhaf (𝑏=0) 0.32 77.91

Banzhaf (𝑏=0.01) 0.29 57.81

Banzhaf (𝑏=0.1) 0.28 34.96

Shapley 0.42 657.28

4 Banzhaf (𝑏=0) 0.40 114.43

Banzhaf (𝑏=0.01) 0.37 71.41

Banzhaf (𝑏=0.1) 0.35 38.94

Shapley 0.41 680.41

5 Banzhaf (𝑏=0) 0.38 128.03

Banzhaf (𝑏=0.01) 0.34 90.11

Banzhaf (𝑏=0.1) 0.32 44.46

Table 5: With Noise (ratio = 10%): Fidelity and running time

results in TREE-GRIDS. Banzhaf outperforms Shapley in

almost all cases while being faster. It shows the robustness of

Banzhaf towards noise. For budget 𝑘 = 3, Banzhaf with 𝑏 = .1

is more than 10 times faster than Shapley.

12

	Abstract
	1 Introduction
	2 Preliminaries and Notation
	2.1 Graph neural networks
	2.2 General Definitions of Semivalues

	3 Problem definition
	4 Our Method: Thresholded Banzhaf Values
	4.1 Computational Efficiency
	4.2 Thresholding
	4.3 Better Robustness

	5 Experimental Results
	5.1 Setup
	5.2 Efficacy & Efficiency
	5.3 Banzhaf vs Shapley: With Random Noise
	5.4 Parameter variation

	6 Related work
	7 Conclusions
	References
	A Appendix
	A.1 Robustness Framework
	A.2 Description of Datasets
	A.3 Other Settings
	A.4 Additional Experimental Results

