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Abstract

Human anatomy plays a pivotal role in modern medicine as many diseases or pathological
conditions take the form of anatomical derangements. Nowadays, state-of-the-art medical
imaging technologies such as Computed Tomography (CT) are widely used to evaluate these
conditions in a noninvasive fashion. However, these medical images are typically displayed
as grayscale images, which require a well-trained professional to interpret. Color cues, which
are sometimes essential to facilitate diagnosis and preoperative planning, are clearly lacking
in these images. We hereby propose a framework to bridge the gap between CT images
and cross-sectional cryosection represented by an RGB image. We formulate the problem
as an image-to-image translation task, where both the CT and structural information
corresponding to critical contours (i.e., fat and bone border) are the inputs, and the cross-
sectional RGB image is the output. We train our model with an adversarial training scheme
to overcome the lack of paired training input and output data. Moreover, two procedures
are designed to force training focusing on the interior of the body and critical contours.
Specially, we compute Sobel image gradient in the ranges of CT values corresponding to fat
and bone. Although our model is trained on a small dataset due to a lack of training data,
our approach is designed to generate realistic cross-sectional color images given unseen CT
images. Our experimental results demonstrate the effectiveness of our proposed framework
in both quantitative and qualitative aspects for both within the dataset and cross-dataset
settings. To investigate the proposed framework’s applicability, we also acquire feedback
from both doctors and general people by conducting a human perceptual study. The
feedback shows a strong potential for educational and clinical communication purposes
between doctors and students, and doctors and patients, respectively.

Keywords: Generative Model, Image-to-Image Translation, CT Image, Image Coloriza-
tion

1. Introduction

Human anatomy is the foundation stone of modern medicine; a better understanding of
the anatomy and improved reading of medical images may further translate into a supe-
rior clinical care quality, especially during surgical or interventional procedures. Medical
students learn human anatomy first by numerous color atlas and correlate the memorized
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knowledge with cadavers or live human bodies (Turney, 2007). Nevertheless, these kinds of
anatomical information, especially the color and texture of tissues, could not be obtained
from non-invasive imaging modalities preoperatively, most commonly computed tomogra-
phy (CT) and magnetic resonance imaging (MRI). Cadavers, on the other hand, provide
a valuable opportunity for hands-on learning of human anatomy. The extent of anatomi-
cal structures, the texture, and the color (although the preservation measures of cadavers
might alter them) could be appreciated from cadavers. However, the cadavers could not
be indefinitely accessed by medical students and trainees due to their scarcity and cost.
As stated previously, learning from the non-invasive images lacks the information of tissue
color and texture, which might be troublesome for less-experienced medical students and
residents to correlate the image findings with live surgical scenes. It has come to our mind
that would it be possible to transform CT images into realistic colorized images that would
further help in medical education or even in clinical communication with patients?

In this paper, we aim to transform the CT image into the corresponding cadaveric cross-
sectional cryosection represented by an RGB image, which is denoted as CT2RGB. This
task is similar to Image-to-Image translation (Zhang et al., 2016; Isola et al., 2017; Zhu
et al., 2017) with two unique challenges. There is a considerable difference in intensity
range between CT and RGB images (i.e., [−1000 ∼ 3096] vs. [0 ∼ 255]), and RGB images
of cadaveric cross-sectional cryosection are severely lacking. Inspired by EdgeConnect (Naz-
eri et al., 2019), we leverage an intermediate representation corresponding to the critical
contours to bridge the gap between CT and RGB domains. Specifically, we compute Sobel
image gradient in the ranges of CT values1 corresponding to fat and bone. Our framework
combines the Sobel in ranges of CT and the CT images as the input. In this way, the image
gradient provides strong guidance for the network to inpaint the human tissue in between
fat and bone regions. Moreover, we train our model with an adversarial training scheme
to alleviate the lack of paired training data. The trained model is expected to generalize
across datasets.

We conduct experiments on the male dataset provided from the Visible Human Project
(Ackerman, 1998) and achieve the best performance compared with the other baselines.
Furthermore, we test the cross-dataset ability on the female dataset of Visible Human, the
DeepLesion (Yan et al., 2018), and CT-ORG (Blaine Rister and Rubin., 2019) dataset. The
qualitative results show that our proposed framework can transform CT into RGB images
precisely in both within the dataset and cross-dataset settings. In addition, to investigate
our approach’s applicability, we conduct user studies with both doctors and general people.
The feedback indicates that our framework can help facilitate the education of our internal
body and communication with patients.

2. Related Work

Generative Adversarial Network. Generative Adversarial Networks (GANs) (Goodfel-
low et al., 2014) consist of two main modules: the generator and the discriminator. The
key to the success of GANs is due to the design of the adversarial loss term (Gui et al.,
2021). It trains the discriminator to classify whether an input image is real or not, while

1. CT image is reconstructed based on the tissue density.
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simultaneously encouraging the generator to generate a better quality image to fool the
discriminator.

Image-to-Image Translation. Problem converting one input representation of an image
to another representation can be formulated as an image-to-image translation task. To
be more specific, given an input domain X, and an output domain Y , it aims to learn a
mapping G : X → Y . The usage of image-to-image translation is broad, such as image style
transfer (Gatys et al., 2016; Isola et al., 2017; Zhu et al., 2017; Johnson et al., 2016), photo
colorization (Zhang et al., 2016) and medical image synthesis (Wolterink et al., 2017; Jin
et al., 2019).

Medical Image Colorization. Medical images like CT and MRI are mostly rendered
in grayscale. However, since colorful images present more evident contour and describe
better content information than grayscale ones, humans often recognize RGB images better.
Previous works have already applied colorization on medical images (Khan et al., 2017;
Zeng et al., 2020). Nevertheless, these works only segment the region of medical images with
different colors rather than colorizing medical images to the native color of the human part
(e.g., the color of cadavers slides). Compared with previous works, our approach directly
learns the mapping between the CT image and the native color of the cadaveric cryosection,
which could potentially provide important color cues for faster learning and more effective
communication with patients.

3. Method

We propose CT2RGB that colorizes a cross-sectional CT slice to the corresponding ca-
daveric cross-sectional cryosection represented by an RGB image. There are two unique
challenges: 1) a considerable difference in dynamic range between CT and RGB images
(i.e., [−1000 ∼ 3096] vs. [0 ∼ 255]), and 2) lacking of paired CT and RGB images. In
Sec. 3.1, we design preprocessing steps (Fig. 1-(a)) to guidance our model focusing on criti-
cal contours which is important under considerable difference in dynamic range. To address

Figure 1: The system architecture of CT2RGB.
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the lack of paired data, we train a generator G with a discriminator D under several losses
including an adversarial loss (see Sec. 3.2 and Fig. 1-(b)).

3.1. Preprocessing

Sobel in Range. Inspired by EdgeConnect, G takes the image gradient of the CT image
computed by the Sobel operator (Kanopoulos et al., 1988) (I) as additional input to reduce
the difference in dynamic range between CT and RGB images. Instead of using the entire
contour of the CT images, we only select the range of the CT values where critical tissues
(i.e., fat and bone) locate to compute the image gradient.
Body Mask. Since we only want to generate the RGB value of the human body, we use
Otsu’s method (Otsu, 1979) to automatically select the corresponding threshold to filter
out the background. In the following, the background is ignored during both training and
inference.

3.2. Model Training

The generator G translates the input x, concatenation of CT image and the critical contours,
into an RGB image. The mapping is denoted as ŷ = G(x, I), where ŷ is the predicted RGB
image. With the adversarial training scheme, the objective of the generator G is to generate
an indistinguishable output to confuse the discriminator D, while the discriminator keeps
confronting it. The adversarial loss which G tries to minimize while D tries to maximize is
formulated as

Ladv(G,D) = Ex,y[log(D(x, y))] + Ex,y[log(1−D(x, ŷ))] , (1)

where y is the ground truth RGB cadaveric cryosection image.
We also add the perceptual loss (Johnson et al., 2016) to make sure the output image

is perceptually close to the ground truth image. We use the ResNet-50 (He et al., 2016)
pre-trained on ImageNet dataset (Deng et al., 2009) to extract the perceptual features. The
perceptual loss is defined as

Lperc(G) = Ex,y

∑
i∈Lp

∥ϕi(y)− ϕi(ŷ)∥1

 , (2)

where Lp is the set of layers we extract and ϕi is the extracted feature of specific layer i
in ResNet-50. In order to prevent a degenerated solution, the standard reconstruction loss
Lrec is used as defined as

Lrec(G) = Ex,y[∥y − ŷ∥1] . (3)

The final objective is formulated as

min
G

max
D

Ladv(G,D) + λpercLperc(G) + λrecLrec(G) , (4)

where λperc and λrec are regularization parameters. In our experiments, we set λperc = 10
and λrec = 10.
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4. Experiments

Dataset and Implementation Detail. We use the dataset of the male cadaver (Spitzer
et al., 1996) from the Visible Human Project, which provides pairwise 2D CT images and
corresponding cadaveric cross-sectional cryosections. The dataset is divided into two parts:
the part of the head and the part of the body. Each part is trained on a distinct model, and
both parts were split into 95% for training and 5% for testing. As for the implementation
of the network, G and D are based on the pix2pix (Isola et al., 2017), but we change the
number of filters of G into 128. To stabilize the training, we replace the adversarial loss in
Eq. 1 with the least-squares loss proposed by (Mao et al., 2017). We use Adam optimizer
on training with learning rate = 1× 10−4 for both G and D. The model was trained with
a batch size of 4 for 1000 epochs.

Comparison and Evaluation Metrics. We compare our method, CT2RGB, with two
ablation variants of our method: 1) the method denoted as CT2RGB-direct, which di-
rectly maps a CT image into an RGB image without “Sobel in range” and 2) the method
same as CT2RGB-direct but without the adversarial loss term, which is denoted as
CT2RGB-supervised. We evaluate the quantitative performance using two traditional
methods: the root mean square error (RMSE) and the structural similarity (SSIM) in-
dex (Zhou Wang et al., 2004). We also measure the perceptual similarity by the learned
perceptual image patch similarity (LPIPS) metric (Zhang et al., 2018) (with version 0.1).

4.1. Quantitative Results

Table 1 shows the quantitative results. AlthoughCT2RGB-supervised performed well on
the traditional evaluation metrics (RMSE and SSIM), it failed at the perceptual similarity
(LPIPS) compared to our method (see Fig. 2). Since there is no discriminator to capture the
high-frequency structure, the CT2RGB-supervised tends to produce much more blurry
images (Isola et al., 2017; Pathak et al., 2016). On the other hand, with adversarial training
and critical contour information, our approach achieves the best LPIPS performance, which
shows that the human perceptual similarity of our generated results is close to the ground
truth images.

4.2. Qualitative Results

Fig. 3 (Top) shows the qualitative result of our method. The “Robel in Range” image
gradient extracts the critical contour information from the input CT slice such that our
generator leverages it to colorize the input CT slice into a corresponding realistic-like RGB

Figure 2: Comparison between our method and CT2RGB-supervised.
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Table 1: Quantitative result of CT2RGB-supervised, CT2RGB-direct, and
CT2RGB on male cadaver from the Visible Human Project. (The text
highlighted in bold indicates the best results.)

Part Method RMSE (×100) SSIM LPIPS (×100)

Head
CT2RGB-supervised 1.782± 0.012 0.9838± 0.0003 1.192± 0.024

CT2RGB-direct 1.955± 0.022 0.9815± 0.0004 0.854± 0.016
CT2RGB 1.998± 0.010 0.9804± 0.0001 0.837± 0.033

Body
CT2RGB-supervised 3.617± 0.023 0.9257± 0.0007 5.945± 0.016

CT2RGB-direct 4.239± 0.033 0.9033± 0.0015 4.267± 0.098
CT2RGB 4.245± 0.066 0.9030± 0.0010 3.811± 0.162

image. We also compare the qualitative performance of our method withCT2RGB-direct.
Fig. 3 (Bottom) shows that even though CT2RGB-direct achieves competitive quantita-
tive performance, it generated inaccurate details. Since there is a significant difference in
the intensity range between CT and color images, these details cannot be recovered without
the guide of the contour information. On the other hand, our method colorizes the CT
image based on the contour information by leveraging the image gradient, which provides
contour cues for our generator. Considering medical images used for educational and clin-
ical communication purposes, they should be precise to avoid misleading the doctors and
students or patients, the qualitative results show our method can colorize the CT slices into
corresponding RGB cadaveric cryosections meticulously and precisely.

4.3. Cross-dataset Setting

The model trained on the male cadaver is applied on unseen datasets to evaluate its gener-
alization ability. We use the female cadaver from the Visible Human Project, the CT-ORG,
and the DeepLesion as the unseen datasets. Fig. 4 shows the qualitative results. The results
on Female and DeepLesion are reasonably good. However, some results on CT-ORG suf-
fer more with blurry contour. In order to further improve the generalization performance,
unsupervised domain adaptation can be applied and studied in the future.
Evaluation of Body Mask and Sobel in Range. Our preprocessing steps are important
for achieving reasonably good generalization ability on Female and DeepLesion datasets.
In Fig. 5, we show results in different settings of the body mask and the Sobel in range.
“Without Both” uses the median of the CT value in the 10 pixels by 10 pixels square on the
top left corner, where the background noises are usually located, as the threshold to filter
out the background noise and uses the entire contour of the CT images as the additional
input. “Body Mask” is “Without Both” but uses the value found by Otsu’s method as the
threshold. “Both” uses both Otsu’s method and Sobel in range.

4.4. Human Perceptual Study

We acquired the human perceptual study feedback from 13 doctors (all of them are at-
tending physicians) and 36 general people. Given the prediction of our framework with the
corresponding ground truth RGB image, the tester had unlimited time to choose which one
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Figure 3: (Top) Qualitative results of our method.
(Bottom) Qualitative comparison between our method and CT2RGB-direct.
The result shows that compared with the CT2RGB-direct, our method gener-
ates detail much precisely and stays in line with the ground truth RGB output.

is the “real” corresponding RGB image. The output of our framework is realistic enough
that the doctors incorrectly choose our prediction image as their answers on 71.4% of trials;
on the other hand, the error rate of the general people is 56.7%. There are 11 (84.6% of)
doctors and 27 (75% of) people saying that this work helps the doctor to explain patients’
health condition to them. Moreover, there are 13 (all of) doctors saying that this technology
helps to learn medical images. One doctor mentioned, “Cadaveric cross-sectional cryosec-
tion images can help one not familiar with CT images to learn human Anatomy faster.”
One general person mentioned, “Although I don’t understand exactly the RGB images, it
encourages me to know more about my own body.” We will release the full feedback with
the publication.
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Figure 4: Qualitative results of our method evaluated in the cross-dataset setting.

Figure 5: The importance of body mask and Sobel in range in the cross-dataset setting.

5. Conclusion

In this paper, we propose CT2RGB, a novel approach to colorize a 2D CT slice into a
corresponding cross-sectional cryosection represented by an RGB image. Our framework
extracts the critical contour information from the original input CT image and further
leverages it to synthesize the RGB output. The experiment’s results demonstrate the effec-
tiveness of our method compared with other ablation variants of our method in both dataset
and cross-dataset settings. To prove the potential of our framework, we further conduct
a human perceptual study. The feedback shows a strong potential for educational and
clinical communication purposes between doctors and students, and doctors and patients,
respectively.
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Appendix A. Quantitative result on cross-dataset

We present one more quantitative result on the female part of the Visible Human Project
as shown in Table 2. (Only it has the axial anatomical images among the cross-datasets we
used.)

Table 2: Quantitative result of CT2RGB-supervised, CT2RGB-direct, and
CT2RGB on female cadaver from the Visible Human Project. (The text
highlighted in bold indicates the best results.)

Part Method RMSE (×100) SSIM LPIPS (×100)

Head
CT2RGB-supervised 10.773± 0.143 0.7489± 0.0034 22.948± 0.653

CT2RGB-direct 11.358± 0.206 0.7471± 0.0082 26.436± 0.633
CT2RGB 9.751± 0.033 0.8504± 0.0001 13.092± 0.016

Body
CT2RGB-supervised 20.731± 0.174 0.3678± 0.0022 47.109± 0.555

CT2RGB-direct 20.838± 0.171 0.3350± 0.0009 50.146± 0.183
CT2RGB 17.860± 0.071 0.6804± 0.0001 29.872± 0.019
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