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Abstract

We study speech-to-speech translation (S2ST)001
that translates speech from one language into002
another language and focuses on building sys-003
tems to support languages without standard text004
writing systems. We use English-Taiwanese005
Hokkien as a case study, and present an end-006
to-end solution from training data collection,007
modeling choices to benchmark dataset release.008
First, we present efforts on creating human an-009
notated data, automatically mining data from010
large unlabeled speech datasets, and adopting011
pseudo-labeling to produce weakly supervised012
data. On the modeling, we take advantage of013
recent advances in applying self-supervised dis-014
crete representations as target for prediction in015
S2ST and show the effectiveness of leveraging016
additional text supervision from Mandarin, a017
language similar to Hokkien, in model training.018
Finally, we release an S2ST benchmark set to019
facilitate future research in this field.020

1 Introduction021

Speech-to-speech translation (S2ST) aims at trans-022

lating speech from one language into speech in023

another language. S2ST technology can not only024

enable communication between people speaking025

different languages but also help knowledge shar-026

ing across the world. Conventionally, S2ST can027

be achieved via the concatenation of three sys-028

tems: automatic speech recognition (ASR), ma-029

chine translation (MT) and text-to-speech synthesis030

(TTS) (Lavie et al., 1997; Nakamura et al., 2006).031

In recent years, the advancement from end-to-032

end speech-to-text translation (S2T) (Bérard et al.,033

2016) or text-to-speech translation (T2ST) (Zhang034

et al., 2020; Lee et al., 2022a) have simplified the035

S2ST pipeline into two stages, which reduces error036

propagation issues and improves efficiency (Lee037

et al., 2022a). Most recently, researchers have038

built one-stage S2ST systems (Jia et al., 2019) that039

jointly optimize intermediate text generation and040

target speech generation steps (Kano et al., 2021;041

Jia et al., 2022b; Anonymized) or further remove 042

the dependency on text completely (Tjandra et al., 043

2019; Lee et al., 2022a,b). Directly conditioning 044

on the source speech during the generation pro- 045

cess allows the systems to transfer non-linguistic 046

information, such as speaker voice, directly (Jia 047

et al., 2022b). Not relying on text generation as 048

an intermediate step allows the systems to support 049

translation into languages that do not have standard 050

or widely used text writing systems (Tjandra et al., 051

2019; Zhang et al., 2020; Lee et al., 2022b). 052

While more than 40% of the languages in the 053

world do not have text written forms1, S2ST for 054

unwritten languages still remains a research area 055

with little exploration mainly due to the lack of 056

training data. The majority of the previous work on 057

this topic conducts experiments on datasets built 058

from applying TTS on S2T corpora to generate 059

synthetic target speech for model training (Tjandra 060

et al., 2019; Zhang et al., 2020). Lee et al. (2022b) 061

presents the first textless S2ST system trained on 062

real S2ST data, while it only investigates transla- 063

tion between high-resource and similar language 064

pairs (English↔Spanish, English↔French). 065

In this work, we take Taiwanese Hokkien as an 066

example of an unwritten language and study S2ST 067

between English (En) and Taiwanese Hokkien. Tai- 068

wanese Hokkien (hereafter Hokkien) is one of the 069

official languages in Taiwan spoken by over 70% 070

of the population (approximately 15.8 million peo- 071

ple). Hokkien lacks a unitary writing system that is 072

widely adopted by its native speakers, though a few 073

possible writing systems exist, e.g. Chinese charac- 074

ters (Hanji), or romanization systems such as Peh- 075

ōe-jı̄ (POJ) and Tâi-lô, etc. In addition, Hokkien is 076

a tonal language that has complex tone sandhi 077

rules (Cheng, 1968). Wang et al. (2004) investi- 078

gates Mandarin-Taiwanese Hokkien S2ST with a 079

cascaded template matching approach. In our work, 080

we focus on En↔Hokkien, a distant language pair, 081

1https://www.ethnologue.com
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and build one-stage S2ST systems.082

We take advantage of the discrete unit-based083

S2ST approach (Lee et al., 2022a), which applies084

a self-supervised speech encoder to convert the085

target speech into a sequence of integers and trans-086

lates source speech into target discrete units, to087

build the En↔Hokkien systems. First, to sup-088

port En→Hokkien translation, we extend HuBERT-089

based discrete unit extraction (Hsu et al., 2021) and090

examine the feasibility of unit-to-waveform gen-091

eration (Polyak et al., 2021) for tonal languages.092

Second, we leverage the unit-based speech normal-093

ization technique proposed in Lee et al. (2022b)094

to remove the non-linguistic variations in speech095

from multiple speakers. The original study takes096

advantage of synthetic speech generated from TTS097

as the reference target for normalization, while we098

build the normalizer with real Hokkien speech data.099

Last but not least, we study two S2ST model train-100

ing strategies, speech-to-unit translation (S2UT)101

with a single decoder (Lee et al., 2022a) or a two-102

pass decoding process (Anonymized) that lever-103

ages Mandarin (Zh) as a written language similar104

to Hokkien to provide extra text supervision.105

As no En↔Hokkien S2ST dataset is available,106

we also leverage Mandarin to assist the S2ST data107

creation process and create a 60-hr human anno-108

tated training set and an open benchmark set. Nev-109

ertheless, this is still a low-resource problem. To110

tackle the data scarcity issue, we further apply111

En↔Zh MT to create weakly supervised data (Pop-112

uri et al., 2022; Dong et al., 2022) and learn a joint113

embedding space for English and Hokkien through114

Mandarin to support data mining from unlabeled115

English and Hokkien data (Duquenne et al., 2021).116

The contributions of this work are as follows:117

• We present empirical studies that consoli-118

date various state-of-the-art techniques for119

S2ST that were previously studied in a con-120

trolled setup with synthetic speech and verify121

their effectiveness in En↔Hokkien transla-122

tion, where Hokkien is a language without a123

widely adopted standard text writing system.124

• A benchmark set on En↔Hokkien S2ST and125

the evaluation model for Hokkien speech will126

be released to encourage future research in127

this direction.128

• To the best of our knowledge, we are the first129

to build one-stage S2ST systems for an un-130

written language in a real-world scenario.131

2 Related Work 132

Existing S2ST models can be categorized in sev- 133

eral aspects. First, Jia et al. (2019, 2022a,b) di- 134

rectly predict spectrogram as the model output, 135

while Lee et al. (2022a,b); Huang et al. (2022); 136

Popuri et al. (2022); Anonymized leverage self- 137

supervised speech model such as HuBERT (Hsu 138

et al., 2021) to encode the target speech into a 139

sequence of discrete units and apply knowledge 140

from speech-to-text modeling to S2ST. Second, Jia 141

et al. (2019, 2022b) require extra supervision from 142

target text or phonemes during model training, 143

while Tjandra et al. (2019); Lee et al. (2022b); 144

Popuri et al. (2022) show the possibility of model 145

training with speech data only. Finally, Kano 146

et al. (2021); Anonymized concatenate multiple de- 147

coders learned with additional text targets or speech 148

units with different granularity and perform multi- 149

pass decoding during inference. 150

While the modeling choices vary, S2ST model 151

training often faces the challenge of data scarcity. 152

Jia et al. (2022c) applies high-quality English TTS 153

and creates an X→En S2ST dataset with synthetic 154

target speech for 21 languages. To create S2ST 155

datasets with real speech, Wang et al. (2021a) 156

aligns ASR transcripts for more than 100 language 157

pairs, and Duquenne et al. (2022a) applies distance- 158

based bitext mining to audio, producing a mined 159

S2ST dataset between 17 European languages. 160

Weakly supervised data created from TTS (Jia et al., 161

2022a) or a cascaded pipeline with ASR and MT 162

models (Dong et al., 2022; Popuri et al., 2022) is 163

often combined with the S2ST data. In addition, 164

self-supervised pre-training with large-scale unla- 165

beled data also effectively improves S2ST model 166

performance (Jia et al., 2022a; Popuri et al., 2022). 167

3 Methods 168

In this section, we first present two types of back- 169

bone architectures for S2ST modeling. Then, we 170

describe our efforts on creating parallel S2ST train- 171

ing data from human annotations as well as leverag- 172

ing speech data mining (Duquenne et al., 2021) and 173

creating weakly supervised data through pseudo- 174

labeling (Popuri et al., 2022; Jia et al., 2022a). 175

3.1 Model architectures 176

As illustrated in Fig. 1, we study one model archi- 177

tecture that applies a single-pass decoding process 178

and directly translates source speech to the target, 179

and the second one relies on target text (Mandarin 180
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Two-pass decoder

Wav2vec 2.0 
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Unit mBART decoder

Text mBART 
decoder

Text 
Encoder

Unit 
Decoder

Single-pass decoder

3 2 87 44 90 
91 56 33 …

Discrete unit

first-pass text
En->Hok: ▁我的 回答 是 …
(Zh text)

Hok->En: ▁My ▁answer ▁is …
(En text)

(target language)

Figure 1: Model architecture of S2ST with single-pass and two-pass decoder. The blocks in shade illustrate the
modules that are pre-trained. Text in italic is the training objective.

text in the case of Hokkien speech) to provide extra181

supervision and performs two-pass decoding. Both182

architectures predict discrete units as the target, and183

the speech encoder and text or unit decoders are184

pre-trained with unlabeled speech or text data.185

3.1.1 Speech-to-unit translation (S2UT)186

We follow the S2UT approach proposed in Lee187

et al. (2022a) and adopt HuBERT (Hsu et al., 2021)188

to convert target speech into discrete units via189

k-means on intermediate representation. While190

Hokkien→En systems can be trained on target En-191

glish speech generated from single-speaker TTS192

to remove variations in accents from multiple193

speakers or noises from different recording con-194

ditions, when training En→Hokkien systems, we195

first apply a unit-based speech normalizer (Lee196

et al., 2022b) on the real Hokkien target speech.197

The speech normalizer is built by applying Con-198

nectionist Temporal Classification (CTC) (Graves199

et al., 2006) finetuning with the Hokkien HuBERT200

model using multi-speaker speech as input and the201

corresponding discrete units extracted from real202

Hokkien speech from a reference speaker as target.203

The resulting S2ST system consists of a204

sequence-to-sequence S2UT model and a unit-205

based HiFi-GAN vocoder (Polyak et al., 2021)206

for unit-to-waveform conversion. For both207

model architectures, we pre-train the speech en-208

coder with Conformer-based (Gulati et al., 2020)209

wav2vec 2.0 (Baevski et al., 2020; Popuri et al.,210

2022) using a large amount of unlabeled speech.211

To speed up model training, we replace the multi-212

layer convolutional feature encoder with the pre-213

computed 80-dimensional log-mel filterbank fea-214

tures. Preliminary experiments show no perfor-215

mance degradation with filterbank input.216

3.1.2 Single-pass decoding S2UT217

Lee et al. (2022a) proposes to use a single unit218

decoder, which can be trained with standard cross- 219

entropy loss. Following Popuri et al. (2022), we 220

apply mBART training (Liu et al., 2020), a denois- 221

ing autoencoder trained with monolingual text in 222

multiple langauges, using discrete units extracted 223

from unlabeled speech with consecutive duplicate 224

units removed, and use the pre-trained decoder to 225

initialize the unit decoder. During decoding, we 226

perform beam search with the unit decoder. 227

3.1.3 Two-pass decoding S2UT: UnitY 228

UnitY model (Anonymized) also performs speech- 229

to-unit translation, while it includes a target text 230

decoder and a target text to target unit encoder- 231

decoder and incorporates an auxiliary target text 232

prediction task during training. All the modules 233

are trained jointly. In En→Hokkien direction, we 234

use Mandarin as the target text due to its proxim- 235

ity to Hokkien and abundance in text data. We 236

follow Anonymized to apply R-Drop (Wu et al., 237

2021) regularization during training as well as ini- 238

tializing the target text decoder with a text mBART 239

model (Liu et al., 2020) pre-trained on the combi- 240

nation of En and Zh monolingual text data. 241

3.2 Training data 242

In the following sections, we describe three differ- 243

ent efforts on creating parallel En↔Hokkien data 244

for model training. 245

3.2.1 Supervised human annotated data 246

Since En↔Hokkien bilingual speakers are scarce, 247

we use Mandarin as a pivot language during the 248

data creation process whenever possible. We sam- 249

ple from the following data sources and adopt dif- 250

ferent strategies to create human annotated par- 251

allel data: (1) Hokkien dramas, which include 252

Hokkien speech and aligned Mandarin subtitles 253

(2) Taiwanese Across Taiwan (TAT) (Liao et al., 254

2020), a Hokkien read speech dataset containing 255
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transcripts in Tâi-lô and Hanji, and (3) MuST-C256

v1.2 En-Zh S2T data (Cattoni et al., 2021).257

We ask Zh-En bilinguals to translate the subti-258

tles of the Hokkien dramas into English to create259

Hokkien→En S2T data. For the TAT dataset, we260

leverage a small group of En↔Hokkien bilinguals261

to translate the Hokkien speech and transcripts di-262

rectly into English text. For MuST-C, we ask Zh-263

Hokkien bilinguals to translate the Mandarin text264

into a mix of Tâi-lô and Hanji script and then record265

the Hokkien speech2. The non-standardized script266

helps to improve the fluency and accuracy of the267

recorded Hokkien speech, while no Hokkien tran-268

scripts are used during S2ST training.269

In the end, we build S2ST training sets,270

where the En→Hokkien set is from MuST-C. For271

Hokkien→En training, we apply an English text-272

to-unit (T2U) model (Lee et al., 2022b), which is a273

sequence-to-sequence Transformer model trained274

on English characters as input and units extracted275

from the corresponding speech as target, on the En-276

glish text collected for Hokkien dramas and TAT,277

as well as the English transcriptions provided in278

MuST-C, to convert the text into units.279

3.2.2 Mined data280

To build a shared embedding space for Hokkien and281

English speech and text data for performing speech-282

to-text or speech-to-speech mining at scale, we283

again take advantage of Mandarin text as the bridge284

between the two languages. First, to encode En285

and Zh text in the same embedding space, we apply286

the method proposed in Duquenne et al. (2022b)287

to finetune XLM-R LARGE (Conneau and Lam-288

ple, 2019) to fit LASER (Artetxe and Schwenk,289

2019) English text space using Zh-En parallel MT290

data. Then, we minimize the mean squared er-291

ror (MSE) loss between the max-pooled output292

of the learned text encoder and that of a speech293

encoder using aligned Hokkien speech and Man-294

darin or English text3. The text encoder is fixed295

during speech encoder training, where the latter296

is initialized with Conformer-based wav2vec 2.0297

pre-trained with Hokkien speech, and this process298

further encodes the Hokkien speech, Mandarin and299

English text in the same embedding space. Sim-300

ilarly, we also leverage the fixed text encoder to301

train an En speech encoder using speech and text302

2The annotators pointed out that it is easier to leverage
both systems, which is another evidence of Hokkien lacking a
commonly adopted text writing system.

3A subset of the Hokkien dramas data has English subtitles.

Data source
Source Target

speech (hrs) speech (hrs)

Hokkien→En
Hokkien dramas 5.8∗ synthetic

TAT 4.6 (74M, 86F) synthetic

MuST-C
51 (8M, 14F) synthetic

En→Hokkien 35∗ 51 (8M, 14F)

Table 1: Statistics of the human annotated training sets.
(M: male, F: female, ∗: no gender information available)

# samples Duration (hrs) # speakers

Dev
En

722
1.62 10 (5 M, 5 F)

Hokkien 1.46 10 (8 M, 2 F)

Test
En

686
1.47 10 (5 M, 5 F)

Hokkien 1.42 10 (3 M, 7 F)

Table 2: Statistics of the TAT-S2ST benchmark set. (M:
male, F: female)

pairs from En ASR data. In the end, we create a 303

shared embedding space for En speech and text, 304

Mandarin text, and Hokkien speech, which sup- 305

ports En text and Hokkien speech or En speech and 306

Hokkien speech mining based on cosine similarity. 307

3.2.3 Weakly supervised data 308

We take advantage of cascaded systems to cre- 309

ate weakly supervised data from ASR and 310

S2T data (Popuri et al., 2022; Dong et al., 311

2022). For En→Hokkien, we apply En→Zh 312

MT on the En ASR transcriptions, followed by 313

a Zh→Hokkien text-to-unit-translation (T2UT) 314

model, which is a Transformer-based sequence-to- 315

sequence model trained with Mandarin characters 316

as input and the corresponding Hokkien normal- 317

ized units as targets. For Hokkien→En, we ap- 318

ply the Zh→En MT model on the Hokkien drama 319

Mandarin subtitle, followed by En T2U to create 320

pseudo-labeled data. 321

4 Experimental Setup 322

In this section, we describe the data, model training 323

details, as well as baseline systems and the evalua- 324

tion protocol. All experiments are conducted using 325

fairseq (Ott et al., 2019). 326

4.1 Data 327

4.1.1 Supervised human annotated data 328

We carry out the annotation process in Sec. 3.2.1, 329

and Table 1 summarizes the statistics of the train- 330

ing data. In the end, we create a 61.4-hr human 331

annotated training set for Hokkien→En, and 35-hr 332

for En→Hokkien. We do not combine the synthetic 333

English speech created for Hokkien→En with the 334

real En→Hokkien S2ST dataset during training. 335

4



4.1.2 TAT-S2ST: En↔Hokkien S2ST336

evaluation dataset337

As a part of the effort on creating human anno-338

tated data, we also create an En↔Hokkien S2ST339

benchmark set to facilitate future research in the340

field. The English text translation we collect for341

the TAT dev and test sets are proofread first, and342

we recruit native speakers to record the English343

text translations, producing En↔Hokkien parallel344

speech data. Table 2 shows the statistics of this345

benchmark set. While Hokkien does not have a346

standardized and widely adopted writing system,347

TAT provides Tâi-lô transcripts, which is a stan-348

dardized romanization system for Hokkien, which349

can be leveraged as reference text in evaluation350

(Sec. 4.4).351

4.1.3 Mined data352

We train the En and Zh joint text encoder on CCMa-353

trix (Schwenk et al., 2019), the Hokkien speech en-354

coder on Hokkien dramas, and the English speech355

encoder on English ASR data from Common-356

Voice (Ardila et al., 2020), CoVoST-2 (Wang et al.,357

2021b), Europarl-ST (Iranzo-Sánchez et al., 2020),358

MuST-C (Di Gangi et al., 2019), Voxpopuli (Wang359

et al., 2021a) and Librispeech (Panayotov et al.,360

2015). The learning rate is set to 10−4, with an in-361

verse square root schedule. The maximum number362

of tokens is set to 640k (equivalent to 40 seconds363

with 16kHz sampling rate), with a maximum num-364

ber of sentences set to 32. We train the models with365

48 GPUs for 60k steps.366

With the trained text and speech encoders, we367

perform data mining between Hokkien speech368

from Hokkien dramas and English Common Crawl369

text, and between the former and Librivox English370

audio4. We post-process the mined data in or-371

der to have a maximum of 20% overlap between372

any two audio segments. In the end, we obtain373

8.1k-hr Hokkien→En S2T mined data and 197-hr374

En↔Hokkien S2ST mined data. The difference in375

the volume is mainly due to the domain mismatch376

in audiobooks from Librivox and Hokkien dramas.377

4.1.4 Weakly supervised data378

For En→Hokkien, we apply En→Zh MT on379

the combination of the English transcripts from380

Librispeech (Panayotov et al., 2015) and TED-381

LIUM3 (Hernandez et al., 2018), totaling 1.5k-382

hr of English speech. The En→Zh MT model is383

4https://librivox.org/api/

a 12-layer Transformer model trained on CCMa- 384

trix (Schwenk et al., 2019) using disjoint BPEs 385

for En and Zh encoded by the sentencepiece 386

toolkit (Kudo and Richardson, 2018), each of size 387

32768. We use 16 GPUs, a batch size of 14,336 388

tokens and a learning rate of 10−3 during training. 389

The Zh→Hokkien T2UT model following the 390

En→Zh translation step is trained on Hokkien dra- 391

mas and the aligned Mandarin subtitles. We filter 392

out speech containing Mandarin code-switching by 393

applying Mandarin ASR and computing the Lev- 394

enshtein distance between the ASR output and the 395

subtitles, as well as short sentences with less than 396

three characters, resulting in 1k-hr Hokkien speech 397

for training. 398

For Hokkien→En, we apply Zh→En MT on the 399

Mandarin subtitles from 8k-hr Hokkien drama data, 400

followed by an En T2U trained on LJSpeech (Ito 401

and Johnson, 2017). The Zh→En MT is trained 402

with the same setup as En→Zh MT. 403

4.2 Model training 404

4.2.1 Hokkien HuBERT units 405

To encode En target speech, we use the multilingual 406

HuBERT model, the k-means quantizer and the unit 407

vocoder released from Lee et al. (2022b). Below 408

we focus on how we build Hokkien units and the 409

corresponding unit-based speech normalizer and 410

unit vocoder. 411

We train a Hokkien HuBERT model using 412

the combination of 10k-hr Mandarin speech 413

from WenetSpeech (Zhang et al., 2022) and 414

2k-hr Hokkien speech from the combina- 415

tion of Hokkien dramas, TAT and 600-hr of 416

Hokkien speech with various accents in addition to 417

Taiwanese Hokkien, licensed from SpeechOcean5. 418

When modeling Hokkien speech as discrete units, 419

we empirically find that combining Mandarin 420

with Hokkien speech during HuBERT training 421

allows the units to better capture the tones and 422

produce higher-quality speech output in the 423

unit-to-waveform conversion stage. 424

The HuBERT model is of the BASE architecture 425

and pre-trained for three iterations following Hsu 426

et al. (2021); Lakhotia et al. (2021). In the begin- 427

ning of each iteration, we randomly sample 300-hr 428

Mandarin and Hokkien speech, respectively, for 429

k-means clustering, and apply temperature sam- 430

pling to balance the amount of speech from the 431

two languages during training. We use T = 20, 432

5https://en.speechocean.com/
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and the probability of sampling from a language433

l is p̃l =
p

1
T
l∑
i p

1
T
i

, where pi = ni∑
j nj

, and ni is434

the number of samples from a language. No ex-435

tra language information is required during pre-436

training. In each iteration, model weights are ran-437

domly initialized and optimized for 400k steps. We438

use K = 2500 with features from the 12-th layer439

of the model from the third iteration for extracting440

Hokkien units.441

The Hokkien speech normalizer is trained on 2-442

hr speech from TAT. We select speaker THF022 as443

the reference speaker, i.e. the normalization target,444

and create speech pairs by sampling from other445

speakers reading the same content in TAT. We use446

mask probability of 0.5, mask channel probability447

of 0.25 and learning rate of 3 × 10−5 and train448

for 25k updates. Finally, the Hokkien unit-based449

HiFi-GAN vocoder is trained on the TTS subset of450

the TAT dataset, which contains a total of 36 hours451

of clean speech from two male and two female452

speakers, following the training procedure in Lee453

et al. (2022a).454

4.2.2 Wav2vec 2.0 encoder455

We pre-train the Conformer En wav2vec 2.0456

LARGE encoder (Baevski et al., 2020) with the457

Libri-light corpus (Kahn et al., 2020), which con-458

tains around 54k hours of read speech audio. The459

encoder is trained with a batch size of 2.1-hr for460

1M updates, with 32k warmup steps and a peak461

learning rate of 5× 10−4. For masking, we sample462

a probability of 0.065 of all time-steps to be start-463

ing indices and mask the subsequent 10 time steps.464

For the Hokkien wav2vec 2.0 encoder, we pre-train465

it with 30k-hr Hokkien drama data using the same466

hyper-parameters as the En wav2vec 2.0 encoder.467

4.2.3 Single-pass decoding S2UT468

The Hokkien unit mBART is trained with 30k-hr469

Hokkien dramas and 10k-hr Mandarin data from470

WenetSpeech. The model is trained on 64 GPUs471

with a batch size of 3072 units, learning rate of472

3× 10−4 with Adam and 10k warmup steps. The473

model is trained with 500k updates with dropout474

0.1. We use the En unit mBART released by Popuri475

et al. (2022) for training Hokkien→En models.476

With the pre-trained wav2vec 2.0 encoder and477

the unit mBART decoder, we follow the best fine-478

tuning strategy in Popuri et al. (2022), where the479

whole encoder and the LayerNorm and both en-480

coder and self attention in the decoder are finetuned481

with the parallel S2ST data. The models are trained 482

on 32 GPUs with a batch size of 160k tokens. We 483

used 0.1 dropout for all models and 0.2 Layer- 484

Drop (Fan et al., 2019). The models are trained 485

using Adam optimizer with 3× 10−4 learning rate, 486

10k warmup steps an 50k maximum updates. 487

4.2.4 Two-pass decoding S2UT: UnitY 488

The text mBART model is pre-trained on the combi- 489

nation of Mandarin and English text data from CC- 490

100 (Conneau et al., 2019), Newscrawl (Akhbardeh 491

et al., 2021), Leipzig Corpora (Goldhahn et al., 492

2012), NewsCommentary (Tiedemann, 2012). 493

There are 2B English sentences and 230M Man- 494

darin sentences. We learn BPE of size 65536 jointly 495

on both languages and apply temperature sampling 496

with 1
T = 0.7 during training. 497

We combine the pre-trained wav2vec 2.0 en- 498

coder, the text mBART decoder, and two randomly 499

initialized Transformer layers for the text encoder 500

and the unit decoder, respectively, to build the 501

UnitY model. We train our two-pass models on 502

16 GPUs with a batch size of 120k tokens, dropout 503

0.1 for all models except for the human annotated 504

data only setup where we use dropout 0.3. We use 505

LayerDrop (Fan et al., 2019) 0.1 and label smooth- 506

ing 0.1, and train the model with a learning rate 507

of 5 × 10−4, 2k warmup steps, and a maximum 508

update of 50k steps. The weight on the auxiliary 509

loss from the text decoder is set to 8.0. 510

4.3 Baselines 511

We build two-stage and three-stage cascaded base- 512

line systems for both En↔Hokkien directions. The 513

two-stage cascaded system consists of a source 514

speech (En or Hokkien) to target text (Mandarin 515

or En) end-to-end S2T model and a target text 516

to target speech unit T2U model (T2UT in the 517

case of Zh→Hokkien). The three-stage cascaded 518

system further breaks down the En→Zh S2T 519

model into En ASR followed by En→Zh MT, 520

and the Hokkien→En S2T model is split into a 521

Hokkien→Zh S2T step and a Zh→En MT step. 522

All the speech encoders for the En ASR and 523

S2T models are initialized with wav2vec 2.0 524

(Sec. 4.2.2). The text decoders of S2T models 525

are initialized with the text mBART (Sec. 4.2.4). 526

We use the En↔Zh MT models, the En T2U model 527

and the Zh→Hokkien T2UT model described in 528

Sec. 4.1.4 for building the cascaded systems. 529
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4.4 Evaluation530

To evaluate the translation quality, we com-531

pute ASR-BLEU on the TAT-S2ST evaluation532

set (Sec. 4.1.2) by applying ASR on the gener-533

ated speech and computing 4-gram BLEU against534

the reference text using SACREBLEU (Post,535

2018). We use an open-sourced En ASR536

model6 when evaluating Hokkien→En systems.537

For En→Hokkien systems, we build an ASR538

model to transcribe Hokkien speech into Tâi-539

lô. The Hokkien ASR is initialized with a w2v-540

BERT (Chung et al., 2021) LARGE model pre-541

trained on 10k-hr Mandarin speech from Wenet-542

Speech and 30k-hr Hokkien speech from Hokkien543

drama, followed by finetuning with CTC loss on544

480-hr Hokkien speech and Tâi-lô scripts from545

TAT (Liao et al., 2020). Each Tâi-lô syllable is split546

into initial and final with tone as the target. The547

resulting Hokkien ASR model achieves 6.8% sylla-548

ble error rate (SER) on the TAT-Vol1-test-lavalier549

set. To evaluate En→Hokkien translation quality,550

we compute syllable-level ASR-BLEU.551

To evaluate the naturalness of the speech output,552

we collect mean opinion scores (MOS) ranges from553

1 (the worst) to 5 (the best) from human listening554

tests. Each item is labeled by three annotators.555

5 Results556

5.1 Single-pass vs. two-pass decoding557

We first study the model architecture choice in558

both En↔Hokkien directions. Table 3 summarizes559

the results. We include ASR-BLEU from the tar-560

get reference speech as a indication of the effect561

from the unit vocoder and the ASR errors (row562

7). We start from training on human annotated563

data, and it results in very low BLEU score in both564

directions (row 3, 5), indicating that pre-training,565

including wav2vec 2.0 and unit or text mBART,566

is not enough for building a S2ST system under567

low-resource for distant language pairs. With ex-568

tra supervision from text, the UnitY model works569

slightly better than single-pass S2UT by 3.7 BLEU570

in Hokkien→En (row 3 vs. 5).571

We then combine the human annotated data with572

weakly supervised data. Both systems achieve573

significant gain (6.2-7.5 BLEU) in both direc-574

tions, indicating the effectiveness of combining575

self-supervised pre-training and data augmentation576

6https://huggingface.co/facebook/
wav2vec2-large-960h-lv60-self

with weakly supervised data in low-resource S2ST 577

for a distant language pair. 578

In addition, we find that UnitY outperforms 579

single-pass S2UT in Hokkien→En direction (row 580

4 vs. 6) by 2.9 BLEU. However, in En→Hokkien, 581

UnitY is merely 0.4 BLEU higher than single-pass 582

S2UT. The larger impact from the additional text 583

supervision in Hokkien→En may be due to the fact 584

that the target text and speech are of the same lan- 585

guage, or the larger amount of training data avail- 586

able. As the focus of this work is to present a data 587

creation and model training strategy, we leave the 588

investigation to future work. 589

For the cascaded baselines, the two-stage sys- 590

tem is worse than the three-stage system in both 591

En↔Hokkien directions (row 1 vs. 2). Our best 592

one-stage system performs similarly to the best 593

cascaded systems (row 2 vs. 6). 594

For MOS, the cascaded systems and single-stage 595

S2UT systems have similar naturalness in both 596

En→Hokkien and Hokkien→En directions. 597

5.2 Mined data 598

In this section, we study how to leverage mined 599

Hokkien→En S2T and En↔Hokkien S2ST data. 600

5.2.1 Leveraging mined En↔Hokkien S2ST 601

in En→Hokkien direction 602

In Table 4, we show the results of lever- 603

aging the mined En↔Hokkien S2ST data in 604

En→Hokkien direction. In order to train the 605

UnitY model, we apply Hokkien→Zh S2T to gen- 606

erate pseudo-labeled Mandarin text for the mined 607

Hokkien speech as the auxiliary task target. 608

We first train both one-stage models with mined 609

data and the human annotated data. While the 610

single-pass decoding S2UT model still yields very 611

low BLEU score (row 8), the UnitY model achieves 612

4.8 BLEU improvement with the extra 197-hr of 613

mined S2ST data (row 5 vs. 10), showing that noisy 614

Mandarin text generated from pseudo-labeling still 615

provides useful signals in model training. We then 616

further combine with weakly supervised data but do 617

not see significant gain with the additional mined 618

data (row 4 vs. 9, 6 vs. 11). Note that the size 619

of mined data is only 13% of the total amount of 620

weakly supervised data we have. As discussed 621

in Sec. 4.1.3, the limited amount of mined data 622

available is mainly due to the domain mismatch 623

issue. In the future, we plan to explore mined data 624

from more similar domains and aim to increase the 625

amount of data for better S2ST performance. 626
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Table 3: Dev / test ASR-BLEU on TAT-S2ST dataset. MOS results are reported with 95% confidence interval. (∗:
synthetic Hokkien speech is generated by applying unit vocoder on the normalized units extracted from the ground
truth Hokkien speech, while synthetic En speech is generated by applying En T2U followed by the unit vocoder on
the ground truth En text. ∗∗: Human annotated TAT data (2-hr) is not included in the training data of Hokkien→Zh
S2T system due to lack of Mandarin translation.)

En→Hokkien Hokkien→En
Training data ASR-BLEU MOS Training data ASR-BLEU MOS

ID Model
Human Weakly

Dev Test Test
Human Weakly

Dev Test Test
(35-hr) (1.5k-hr) (61.4-hr) (8k-hr)

Cascaded systems:
1 Three-stage ✓ ✓ 8.9 7.5 3.54 ± 0.05 ✓∗∗ ✓ 10.7 10.0 3.22 ± 0.06
2 Two-stage ✓ ✓ 8.4 6.9 3.52 ± 0.05 ✓ ✓ 11.4 8.1 3.09 ± 0.06

Single-stage S2UT systems:
3 Single-pass decoding ✓ ✗ 0.1 0.0 - ✓ ✗ 0.1 0.1 -
4 Single-pass decoding ✓ ✓ 8.6 7.4 3.58 ± 0.05 ✓ ✓ 8.1 7.1 3.06 ± 0.06
5 Two-pass decoding (UnitY) ✓ ✗ 1.0 0.3 - ✓ ✗ 4.2 3.8 -
6 Two-pass decoding (UnitY) ✓ ✓ 9.3 7.8 3.69 ± 0.05 ✓ ✓ 11.8 10.0 3.15 ± 0.06
7 Synthetic target∗ ✗ ✗ 61.9 61.8 3.85 ± 0.05 ✗ ✗ 76.4 78.5 3.24 ± 0.05

Table 4: Results of En→Hokkien models trained with
mined En↔Hokkien S2ST data. We report dev / test
ASR-BLEU on TAT-S2ST dataset.

Training data ASR-BLEU

ID Model
Human Weakly Mined

Dev Test
(35-hr) (1.5k-hr) (197-hr)

3 ✓ ✗ ✗ 0.1 0.0
8 Single-pass ✓ ✗ ✓ 0.1 0.1
4 decoding ✓ ✓ ✗ 8.6 7.4
9 ✓ ✓ ✓ 7.2 7.3
5 ✓ ✗ ✗ 1.0 0.3
10 Two-pass ✓ ✗ ✓ 5.9 5.1
6 (UnitY) ✓ ✓ ✗ 9.3 7.8
11 ✓ ✓ ✓ 9.0 7.7

Table 5: ASR-BLEU scores on TAT-S2ST test set from
Hokkien→En UnitY models trained with mined data
filtered at different thresholds (t) for the similarity score.
Amount of mined data (hr) per threshold is listed.

Data combined No filter t=1.08 t=1.07 t=1.065 t=1.06
with mined (0-hr) (356-hr) (2274-hr) (4732-hr) (8101-hr)

human (61.4-hr) 4.7 7.4 6.3 7.1 3.8
human (61.4-hr)

10.0 9.9 10.7 10.5 10.8
+ weakly (8k-hr)

We convert the mined Hokkien→En S2T data to627

S2ST data with the En T2U model and train UnitY628

models with the combination of human annotated629

data and optionally the 8k-hr weakly supervised630

data to examine the effect of mined data on model631

performance. Table 5 shows the ASR-BLEU scores632

on the TAT-S2ST test set with respect to different633

thresholds on the similarity scores of the mined634

pairs.635

We see that adding 4.7k-hr mined S2T data636

(t = 1.065) in Hokkien→En is the most helpful637

and improves the model quality by 3.6 BLEU when638

only human annotated data is available. With 8.1k-639

hr mined data (t = 1.06), the BLEU gain drops640

to 0.9 BLEU. In addition, it is 5.3 BLEU lower641

than the UnitY model trained with human anno-642

tated data and 8k-hr of weakly supervised data 643

(Table 3 row 6). As the Hokkien speech for both 644

weakly supervised data and mined data come from 645

the same Hokkien dramas dataset, the gap implies 646

that pseudo-labeling is a generally effective data 647

augmentation technique for low-resource scenarios, 648

while the quality of the mined data is constrained by 649

the content of the data available for mining. How- 650

ever, combining all three types of data together 651

is still beneficial. We obtain 0.8 BLEU gain by 652

adding 8.1k-hr mined data to the combination of 653

human annotated and weakly supervised data. 654

6 Conclusions 655

We present the first En↔Hokkien S2ST systems, 656

where Hokkien is an oral language that does not 657

have standard and widely adopted text writing sys- 658

tems, i.e. an unwritten language. To tackle the 659

challenges of speech translation for unwritten lan- 660

guages and the lack of parallel training data, we 661

present an end-to-end study. First, we explore three 662

options of training data creation including human 663

annotation, weakly supervised data from pseudo- 664

labeling and data mining. Second, we investigate 665

two modeling choices including direct speech-to- 666

unit translation with a single speech unit decoder 667

and two-pass decoding that leverages extra super- 668

vision from target text. Experimental results show 669

that leveraging a similar high-resource written lan- 670

guage (Mandarin in the case of Hokkien) is effec- 671

tive in both the data creation process and model 672

training. Finally, we release the benchmark dataset 673

and ASR evaluation model to facilitate research in 674

this field. In the future, we aim to expand study 675

and establish an S2ST model building strategy that 676

works for a diverse set of unwritten languages. 677
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