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Abstract

This paper focuses on solving a stochastic variational inequality (SVI) problem under relaxed
smoothness assumption for a class of structured non-monotone operators. The SVI problem
has attracted significant interest in the machine learning community due to its immediate
application to adversarial training and multi-agent reinforcement learning. In many such
applications, the resulting operators do not satisfy the smoothness assumption. To address
this issue, we focus on a weaker generalized smoothness assumption called α-symmetric.
Under p-quasi sharpness and α-symmetric assumptions on the operator, we study clipped
projection (gradient descent-ascent) and clipped Korpelevich (extragradient) methods. For
these clipped methods, we provide the first almost-sure convergence results without making
any assumptions on the boundedness of either the stochastic operator or the stochastic
samples. We also provide the first in-expectation unbiased convergence rate results for these
methods under a relaxed smoothness assumption for α ≤ 1

2 .

1 Introduction

This paper focuses on the stochastic variational inequality (SVI) problem, which consists of finding a point
u∗ ∈ U , such that

〈F (u∗), u − u∗〉 ≥ 0 for all u ∈ U,

where the operator F (·) is specified as the expected value of a stochastic operator Φ(·, ·) : U × Ξ → Rm, i.e.,

F (u) = E[Φ(u, ξ)] for all u ∈ U,

where ξ ∈ Ξ is a random vector. Variational Inequality (VI) problems encompass many practical applications,
such as optimization, min-max problems, and multi-agent games. In particular, they play a vital role in
modeling equilibrium problems where it’s important to capture an interaction between many agents. In
machine learning literature, the increasing focus on VIs is due to their relevance to generative adversarial
networks (GANs) Gemp & Mahadevan (2018); Gidel et al. (2019), actor-critic methods Pfau & Vinyals (2016),
adversarial training, and multi-agent reinforcement learning Sokota et al. (2022); Kotsalis et al. (2022). In
many such applications, the corresponding operator is defined as an expected value of stochastic or finite sum
of operators, which motivates us to study SVIs. One of the pivotal works Nemirovski (2004); Juditsky et al.
(2011) on SVIs proposed and studied the celebrated Mirror-Prox method under assumptions on monotonicity
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and Lipschitz continuity of an operator.1 These assumptions become classical for the analysis of first-order
methods for solving SVIs Beznosikov et al. (2022); Hsieh et al. (2019; 2020); Loizou et al. (2021).

In adversarial and multi-agent training, where the corresponding operator is a gradient of a highly non-
linear neural network model, these classical assumptions might not be satisfied. It is well-known that one
possible remedy for such non-convergent behavior is in clipping, normalization, or adaptive stepsizes, such as
ADAM (Kingma & Ba, 2015). This effect might be explained by the experiment conducted in Zhang et al.
(2020). In this work, authors observed that when training deep neural network, the norm of the hessian of
the loss function correlates with a norm of a gradient along the optimization trajectory.

This observation motivated Zhang et al. (2020) to introduce a new and more realistic assumption on the linear
growth of the hessian. This led to a great number of works in optimization investigating new assumptions on
generalized smoothness and convergence behavior of classical gradient (Li et al., 2023), normalized (Chen
et al., 2023), clipped (Koloskova et al., 2023), and adaptive methods (Wang et al., 2023; Zhang et al., 2024).
Despite this progress in optimization, there are only a few works on generalized smooth min-max (Xian et al.,
2024) and VI (Vankov et al., 2024) problems. This motivates us to delve into investigation of the first-order
methods for generalized smooth SVIs.

1.1 Related work

Weaker Assumption on SVIs. More work has focused on stochastic methods for SVI under more relaxed
assumptions to develop and analyze the methods applicable to broader problem classes. In particular, some
studies have explored SVIs under pseudo-monotonicity Kannan & Shanbhag (2019), quasi-monotonicity Loizou
et al. (2021), co-coercivity Beznosikov et al. (2023) and quasi-sharpness Vankov et al. (2023). Diakonikolas
et al. (2021) showed that such conditions may not be satisfied even in two played Markov games and introduced
the weakest known structured non-monotone assumption. Later, weak Minty SVIs were studied Pethick
et al. (2023); Choudhury et al. (2023); Alacaoglu et al. (2024) under Lipschitz continuity assumption on the
operator. In our work, we consider the generalized smooth assumption that goes beyond the existing settings.

Normalized and Clipped Methods for SVIs. Jelassi et al. (2022) studied the performance of normalized
stochastic gradient descent-ascent and ADAM and suggested the crucial role of normalization for training
GANs. It is worth noting that, with the right clipping parameters, clipped and normalized step sizes are
equivalent up to a constant. Another line of works Gorbunov et al. (2022) focuses on smooth SVIs under
heavy-tail noise. Using Lipschitz’s continuity of operator and the right choice of clipping parameters, the
authors showed a high probability convergence rate for the clipped stochastic Korpelevich method. Recent
work Xian et al. (2024) considered generalized smooth stochastic nonconvex strongly-concave min-max
problems and provided O( 1√

K
) convergence rates for variants of stochastic gradient descent-ascent (SGDA)

with normalized stepsizes. Due to the specific structure of the minmax problem and the fact that the gradient
of the corresponding function is nonmonotone in one variable and strongly monotone in another, it is difficult
to compare this work with ours. Moreover, in this work, the crucial part of the analysis is in the fact that the
norm of a gradient can be upper bounded by a function residual. One can not use such bounds in SVIs due
to the absence of function values. In our analysis, we develop a new technique to bound the operator norm in
almost sure (a.s.) sense and in expectation.

Stochastic Analysis of Clipped Methods for Generalized Smooth Optimization. In Zhang et al.
(2020), authors analyzed clipped gradient method under a.s. bounded error assumption. Koloskova et al.
(2023) showed that the gradient method with standard clipping may not converge to a solution even with
small stepsizes. The authors analyzed clipped gradient descent as a biased method and provided a convergence
rate for non-convex functions. Later, Li et al. (2024) developed a new technique allowing to bound stochastic
gradients by the function value residual along the optimization trajectory, which helps to find the convergence
rate for the gradient with the right choice of stepsizes. In our work, we do not make an assumption on a.s.

1The well-studied Mirror-Prox method Nemirovski (2004) has been proven to be optimal for solving VIs under strong
monotonicity and Lipschitz continuity assumptions. In fact, this method is the stochastic version of the classical extragradient
method.
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bounded noise and bounded stochastic gradients. Furthermore, we provide not only in-expectations but also
a.s. convergence of the considered clipped methods.

Contributions. In light of the existing literature, we consider stochastic VIs with p-quasi sharp generalized
smooth α-symmetric operators. We assume a bounded variance of the noise and do not use a restrictive
assumption of bounded stochastic operators or bounded samples. Our key contributions are summarized
below (see also Table 1):

• We provide the first known analysis of the clipped stochastic projection method (clipped SGDA)
for solving stochastic generalized smooth VIs with p-quasi sharp and α-symmetric operators. The
key feature of our analysis is the use of cleverly chosen clipped stochastic stepsizes γk. We use two
different samples of stochastic the operator, one for clipping stepsizes γk and another for the direction
of the method update. This choice allows us to separate the clipping part from the stochastic error
and analyze the method in an unbiased manner. To show a.s. convergence, we prove that the series
of clipped stochastic stepsizes is not summable a.s., i.e. P(

∑∞
k=0 γk = ∞) = 1.

• We also provide convergence rate for stochastic clipped projection method for α ≤ 1/2. For p = 2
we achieve O(k−1) last iterate convergence. For p > 2, we show the best iterate convergence rate of
O(k−2(1−q)/p), where 1 > q > 1/2 is a parameter of the stepsize choice.

• We provide the first known analysis of the stochastic clipped Korpelevich method for solving stochastic
generalized smooth VIs with p-quasi sharp and α-symmetric operators. By reusing clipping stepsizes
γk for both iterates updates hk and uk, we separate stochastic stepsize from the stochastic error,
similar to the projection method analysis. To show a.s. convergence, we prove that the series of
clipped stochastic stepsizes is not summable a.s., i.e. P(

∑∞
k=0 γk = ∞) = 1.

• Moreover, we prove in-expectation convergence rates for the stochastic clipped Korpelevich methods
for α ≤ 1/2. For p = 2, we show the last iterate sublinear convergence rate O(k−1). For p > 2, we
show the best iterate convergence rate of O(k−2(1−q)/p), where 1 > q > 1/2 is a parameter of the
stepsize choice.

• Finally, we present numerical experiments where we compare the performance of the methods with
proposed stochastic clipping for different stepsize parameter q > 1/2 and quasi-sharpness parameter p.

Stochastic Projection Stochastic Korpelevich
p > 0, α ∈ (0, 1] Asym (Thm 3.2) Asym (Thm 4.2)

p = 2, α ∈ (0, 1
2 ] O

(
D0

k2 + σ2(CF + σ)2

µ2k

)
O
(

(CF + σ)2K2D0

µ2k2 + (σ2 + K1σ2α)(CF + σ)2

µ2k

)
p > 2, α ∈ (0, 1

2 ] O
(

(D0 + σ2)2/p(CF + σ)2/p

µ2/pk2(1−q)/p

)
O
(

σ4/p(D0 + σ2 + K1σ2α)2/p(CF + σ)2/p

µ2/pk2(1−q)/p

)
Table 1: Summary of convergence rate results showing the decrease of certain performance measures with
the number k of iterations. We use “Asym" as an abbreviation for asymptotic almost sure convergence
results. For p-quasi sharp operators, with p = 2, and for stochastic projection and Korpelevich methods,
the performance measures are Dk = E[dist2(uk, U∗)] and Dk = E[dist2(hk, U∗)], respectively. For p > 2,
the performance measure for both methods is D̄k = E[dist2(ūk, U∗)], ūk = (

∑k
t=0 βt)−1∑k

t=0 βtut. The
constant CF denotes the upper bound on E[‖F (uk)‖] and E[‖F (hk)‖] for stochastic projection and Korpelevich
methods, respectively.

The rest of the paper is organized as follows. In Section 2, we provide the assumption on the operator class
we consider and the first-order methods we focus on. In Section 3 we show the almost sure convergence result
of clipped stochastic projection method. In Section 4, we provide a.s. convergence results and in-expectation
convergence rates for the clipped stochastic Korpelevich method. In Section 5, we conduct experiments
on solving generalized smooth SVIs and compare the performance of the stochastic clipped projection and
Korpelevich method for different problem and stepsize parameters. Section 6 concludes our work and presents
some further research directions.
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2 Preliminaries

In this section, we provide the necessary concepts and assumptions for the considered SVI problem. We start
with a standard definition; the operator F is said to be Lipschitz continuous on a set U if there exists L > 0
such that

‖F (u) − F (v)‖ ≤ L‖u − v‖ for all u, v ∈ U. (1)

So far, the Lipschitz continuity of the operator was the most common assumption to study SVIs Nemirovski
(2004); Yousefian et al. (2014; 2017); Hsieh et al. (2019); Loizou et al. (2021); Alacaoglu et al. (2024).

However, this assumption does not hold in modern deep-learning applications. Based on the experiments on
neural network training provided in Zhang et al. (2020), the norm of Jacobian of the operator correlates with
the norm of the operator. Motivated by this observation, Zhang et al. (2020) proposed a new, more realistic,
and weaker assumption named (L0, L1)-smooth: a differentiable operator F is (L0, L1)-smooth operator on a
set U when the following relation holds

‖∇F (u)‖ ≤ L0 + L1‖F (u))‖ for all u ∈ U. (2)

When the operator F (·) is L-Lipschitz continuous, it satisfies (2) with L0 = L and L1 = 0. Recent work Chen
et al. (2023) generalized a class of (L0, L1)-smooth operators and introduced a new class termed α-symmetric.
The class of α-symmetric operators includes the class of (L0, L1)-smooth operators and coincides with it
when the operator is differentiable for α = 1. Given that the class of α-symmetric operators includes
(L0, L1)-smooth and Lipschitz continuous operators, we focus on this class in our work.
Assumption 2.1. Given a convex set U ⊆ Rm, the operator F (·) : U → Rm is α-symmetric over U , i.e., for
some α ∈ (0, 1] and L0, L1 ≥ 0, we have for all u, v ∈ U ,

‖F (u) − F (v)‖ ≤
(

L0 + L1 max
θ∈(0,1)

‖F (wθ)‖α

)
‖u − v‖, (3)

where wθ = θu + (1 − θ)v.

An alternative characterization of α-symmetric operators has been proved in Chen et al. (2023), as given in
the following proposition.
Proposition 2.2 (Chen et al. (2023), Proposition 1). Let U ⊆ Rm be a nonempty convex set and let
F : U → Rm be an operator. Then, the following statements hold:

(a) F (·) is α-symmetric with α ∈ (0, 1) and constants L0, L1 ≥ 0 if and only if the following relation
holds for all y, y′ ∈ U ,

‖F (y) − F (y′)‖ ≤ ‖y − y′‖(K0 + K1‖F (y′)‖α + K2‖y − y′‖α/(1−α)), (4)

where K0 = L0(2α2/(1−α) + 1), K1 = L12α2/(1−α)3α, and K2 = L
1/(1−α)
1 2α2/(1−α)3α(1 − α)α/(1−α).

(b) F (·) is α-symmetric with α = 1 and constants L0, L1 ≥ 0 if and only if the following relation holds
for all y, y′ ∈ U ,

‖F (y) − F (y′)‖ ≤ ‖y − y′‖(L0 + L1‖F (y′)‖) exp(L1‖y − y′‖). (5)

Proposition 2.2 is useful for our analysis, since it describes an α-symmetric operator by using two points
y, y′ ∈ U , and bypasses the evaluation of maxθ∈(0,1) ‖F (wθ)‖α. The solution set for the variational inequality
problem defined by the set U and operator F , denoted U∗, is given by

U∗ = {u∗ ∈ U | 〈F (u∗), u − u∗〉 ≥ 0 for all u ∈ U}.

Throughout this paper, we make the following assumption on the set U and the solution set.
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Assumption 2.3. The set U ⊆ Rm is a nonempty closed convex set, and the solution set U∗ is nonempty
and closed.

In our analysis we assume that operator F is p-quasi sharp Vankov et al. (2023).
Assumption 2.4. The operator F : U → Rm has a p-quasi sharpness property over U relative to the solution
set U∗, i.e., for some p > 0, µ > 0, and for all u ∈ U and u∗ ∈ U∗,

〈F (u), u − u∗〉 ≥ µ distp(u, U∗). (6)

In the optimization community, such assumptions are called error bounds and are widely studied Zhou &
So (2017). This class of operators encompasses strongly monotone, p-monotone Facchinei & Pang (2003);
Lin & Jordan (2025), strongly quasi-monotone Loizou et al. (2021) and strongly coherent Song et al. (2020)
operators and aligns with the class of operators that satisfy the saddle-point metric subregularity Wei et al.
(2021) for p > 2. The are many applications where operator satisfy (6), for example robust learning Wang
et al. (2023); Zarifis et al. (2024), network congestion games Xiao & Shanbhag (2025).

Assumption 2.4 is one of the most general assumptions with the positive inner product between an operator
value F (u) and u − u∗, which is crucial in our analysis.

For solving the SVI problem, we consider stochastic variants of projection and Korpelevich (1976) methods,
where stochastic approximations Φ(uk, ξk) and Φ(hk, ξ1

k) are used, respectively, instead of the directions
F (uk) and F (hk). The iterates of each of the stochastic methods are defined as follows:

Stochastic projection method:
uk+1 = PU (uk − γkΦ(uk, ξk)), (7)

Stochastic Korpelevich method:
uk = PU (hk − γkΦ(hk, ξ1

k)),
hk+1 = PU (hk − γkΦ(uk, ξ2

k)),
(8)

where {γk} is a sequence of stochastic positive stepsizes, and u0, h0 ∈ U are arbitrary deterministic initial
points2. At each operator evaluation of these stochastic methods, a random sample ξk is drawn according to
the distribution of the random variable ξ. We assume that the stochastic approximation error Φ(u, ξ) − F (u)
is unbiased and has finite variance, leading to the following formal assumption.
Assumption 2.5. The random sample ξ is such that for all u ∈ U ,

E[Φ(u, ξ) − F (u)] = 0, E[‖Φ(u, ξ) − F (u)‖2] ≤ σ2.

Our proof techniques in the following sections can be applied to analyze the a.s. convergence and convergence
rate of the stochastic Popov (Popov, 1980) method with an appropriate selection of stochastic clipping.
However, due to space constraints, we leave this exploration for future research.

3 Stochastic Clipped Projection Method

Common approaches to developing convergent methods for generalized smooth optimization and VI problems
are normalized or clipping stepsizes. We focus on the latter one and present stepsizes for the stochastic
projection method (7) applied to α-symmetric operators:

γk = βk min
{

1,
1

‖Φ(uk, ξ2
k)‖

}
, (9)

where βk > 0 for all k ≥ 0 and ξ2
k is a random variable, such that ξ2

k and ξk are independent conditionally
on uk. In other words, at every iteration of the projection method, having uk, two independent samples of

2The results easily extend to the case when the initial points are random as long as E[‖u0‖2] and E[‖h0‖2] are finite.
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the stochastic operator are drawn: (1) Φ(uk, ξk) for the direction of update and (2) Φ(uk, ξ2
k) for clipping

stepsize γk. We define the sigma-algebra Fk for the method:

Fk = {ξ0, ξ2
0 , . . . , ξk, ξ2

k} for all k ≥ 0, (10)

with F−1 = ∅. In the sequel, we provide important results on the behavior of the iterates of the clipped
stochastic projection method.

3.1 Almost sure convergence

The following lemma establishes a key relation for the iterate sequence {uk} generated by the stochastic
projection method with stochastic clipping stepsizes. Its proof is in Appendix B.1
Lemma 3.1. Let Assumptions 2.1, 2.3, 2.4, 2.5 hold, and {uk} be the iterate sequence generated by stochastic
projection method (7) with stepsizes γk defined in (9). Let parameter βk be such that

∑∞
k=0 βk = ∞ and∑∞

k=0 β2
k < ∞. Then, the following relation holds almost surely for all k ≥ 0,

E[‖uk+1 − u∗‖2 | Fk−1 ∪ ξ2
k] ≤ ‖uk − u∗‖2 − 2µγkdistp(uk, U∗) + 3β2

k(2σ2 + 1). (11)

Furthermore, almost surely, we have
∞∑

k=0
γk distp(uk, U∗) < ∞, (12)

and the sequence {‖uk − u∗‖} is bounded almost surely for all u∗ ∈ U∗.

In the conventional analysis of the methods for SVIs with Lipschitz continuous operators, the sequence {γk}
of stepsizes is deterministic and such that

∑∞
k=0 γk = ∞. In our case, γk is a random variable, and to show

a.s. convergence we have to show that the series
∑∞

k=0{γk} is not summable. We do so, providing a sequence
of lower bounds for the series and by showing that random variable ‖F (uk)‖ is a.s. upper bounded for all
k ≥ 0 and constructing. Moreover, we separate the series into

∞∑
k=0

γk =
∞∑

k=0
(γk − Sk) +

∞∑
k=0

Sk,

where {Sk} is a convergent martingale. In the next theorem, we present the first results on a.s. convergence
of the stochastic projection method.
Theorem 3.2. Let Assumptions 2.1, 2.3, 2.4, and 2.5 hold, and {uk} be the iterate sequence generated by
stochastic projection method (7) with stepsizes γk defined in (9). Let parameter βk be such that

∑∞
k=0 βk = ∞

and
∑∞

k=0 β2
k < ∞. Then, the iterates uk converge almost surely to a point ū such that ū ∈ U∗ almost surely.

The proof of Theorem 3.2 can be found in Appendix B.2. Notice that in an unconstrained setting (U = Rm)
according to Theorems 3.1 and 3.2 in Koloskova et al. (2023), for any clipping parameters β > 0, c > 0, there
exist a stochastic gradient operator ∇f(·, ξ) which satisfies Assumptions 2.1, 2.4 (with p = 2), 2.5 for which
there exists a fixed point v̂ of a standard clipping with one-sample which there exists a solution

Eξ[βk min{1,
c

‖∇f(v̂, ξ)‖}v̂] = 0 and ‖Eξ[∇f(v̂, ξ)]‖ ≥ σ2/12,

where c > 0 is a constant independent from a step sizes parameter βk. This observation leads to an unavoidable
bias in one-sample clipped SGD (Koloskova et al., 2023). In contrast, by using two samples in clipped
projection method, we overcome this problem and provide a.s. convergence to a solution.

3.2 Convergence rate

The difficulty of the convergence rate analysis is in the randomness of stepsizes γk. To show in-expectation
convergence, we can take a total expectation on both sides of equation (11) of Lemma 3.1. However, since γk

is a random variable, we have to provide a lower bound on E[γkdistp(uk, U∗)]. With this goal in mind, in the
next lemma we show that the sequence {E[‖F (uk)‖]} of expected norms is bounded. The proof of the lemma
is in Appendix B.3.
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Lemma 3.3. Let Assumption 2.1 hold, with α ∈ (0, 1/2], Assumptions 2.3, 2.4, and 2.5 hold, and let {uk}
be the iterate sequence generated by stochastic projection method (7) with stepsizes γk defined in (9). Let
parameter βk be such that

∑∞
k=0 βk = ∞, and

∑∞
k=0 β2

k < ∞. Then, the sequence {E[‖F (uk)‖]} is bounded
by some constant CF > 0.

To prove the preceding lemma, we show that the expected norms of the operator are bounded by some
constant CF on the trajectory of the method. Unfortunately, even though the sequence {‖F (uk)‖} is bounded
almost surely, it does not imply that {E[‖F (uk)‖]} is bounded. To show this, we rely on the properties of the
method and the generalized smoothness of the operator in Proposition 2.2 to obtain that for all k ≥ 0, and
arbitrary solution v∗,

‖F (uk)‖ ≤ ‖F (uk) − F (v∗)‖ + ‖F (v∗)‖
≤ ‖uk − v∗‖(K0 + K1‖F (v∗)‖α + K2‖uk − v∗‖α/(1−α)) + ‖F (v∗)‖. (13)

Notice that by taking an expectation in (13), the RHS is undefined for α > 1/2. For α ∈ (0, 1/2], using (13)
and boundedness of E[‖uk − v∗‖], that follows from taking an expectation in (11), we achieve the desired
bound on E[‖F (uk)‖]. Using this result, in the next theorem, we provide a convergence rate for the projection
method with clipping.
Theorem 3.4. Let Assumption 2.1, with α ∈ (0, 1/2], and Assumptions 2.3, 2.4, and 2.5 hold. Let
{uk} be the sequence generated by stochastic projection method (7) with stepsizes γk defined in (9). Let
Dk = E[dist2(uk, U∗)] and CF be an upperbound on E[‖F (uk)‖]. Then, we have:

Case p = 2. Let βk = 2
a(2+k) with a = µ min

{
1, 1

2(CF +σ)

}
. Then, the following inequality holds

Dk+1 ≤ 8D0

k2 + 6(2σ2 + 1)
a2k

for all k ≥ 1. (14)

Case p ≥ 2. Let βk = b
(k+1)q , where 1/2 < q < 1 and b > 0. Then, the following inequality holds

D̄k ≤
(1 − q)2/p

(
D0 + 3b2(2σ2 + 1)/(2q − 1)

)2/p

(ab)2/p ((k + 1)1−q − 21−q)2/p
for all k ≥ 1, (15)

where D̄k = E[dist2(ūk, U∗)], ūk = (
∑k

t=0 βt)−1∑k
t=0 βtut, and a = µ min

{
1, 1

2(CF +σ)

}
.

To derive the convergence rate in terms of E[dist2(uk, U∗)] we need to relate the progress at each iteration,
measured by E[γkdistp(uk, U∗)] to E[dist2(uk, U∗)]. Using the boundedness of E[‖F (uk)‖], we first bound
E[γkdistp(uk, U∗)] in terms of E[distp(uk, U∗)]. Finally, we estimate E[distp(uk, U∗)] through E[dist2(uk, U∗)]
by applying Jensen’s inequality, which holds for p ≥ 2. The proof of Theorem 3.4 is in Appendix B.4.

For the simplicity of convergence rate comparison, assume 2(CF + σ) ≥ 1. Then, from Theorem 3.4 we obtain
O(D0

k2 + σ2(CF +σ)2

µ2k ) last iterate convergence rate for p = 2, and O( (D0+σ2)2/p(CF +σ)2/p

µ2/pk2(1−q)/p ) average (or best)
iterate convergence rate for p > 2 with q ∈ (1/2, 1). It is worth mentioning that obtained rates are unbiased,
unlike the analysis in Koloskova et al. (2023). However, it comes with the price of two oracle calls per iteration.
For p = 2, the rate from Theorem 3.4 matches the rate O( 1

k ) obtained in Theorem 4.3 (Loizou et al., 2021)
for SGDA under stronger assumption on quasi-strong monotonicity and Lipschitz continuity of the operator.
Interestingly, for p = 2, the parameter µ appears in the rate as 1

µ2 in both (Loizou et al., 2021) and in our
Theorem 3.4, which is known to be the optimal dependence on µ (Beznosikov et al., 2022). The rate for p > 2
is new in the stochastic case and generalizes the convergence results in deterministic setting (Vankov et al.,
2024). From a theoretical perspective, the clipped projection method and its two-sample variant differ in
several key aspects. In terms of asymptotic convergence, the standard clipped projection method suffers from
an unavoidable bias, whereas our clipped projection method with two samples per iteration enjoys almost
sure convergence. For convergence rates, our theorem shows a sublinear rate for the two-sample variant,
while there are no known results for the standard clipped projection method in the setting of stochastic VIs.
This makes the two-sample clipped projection method more favorable from a theoretical point of view. We
also compare the performance of the two methods in the numerical experiments section.
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4 Stochastic Clipped Korpelevich Method

The stepsizes for the stochastic Korpelevich method for α-symmetric operators are as given below

γk = βk min
{

1,
1

‖Φ(hk, ξ1
k)‖

}
, (16)

where βk > 0 for all k ≥ 0 and ξ1
k is a random variable associated with the stochastic approximation Φ(hk, ξ1

k)
of F (hk). We define the sigma-algebra Fk for the method, as follows:

Fk = {ξ1
0 , ξ2

0 , . . . , ξ1
k, ξ2

k} for all k ≥ 0, (17)

with F−1 = ∅. Notice that to obtain hk+1 from a point uk, the stepsize γk clips Φ(hk, ξ1
k), not the stochastic

approximation Φ(uk, ξ2
k) of the operator at point uk, i.e., the update for hk+1 in relation (8) is given by

uk = PU (hk − βk min
{

1,
1

‖Φ(hk, ξ1
k)‖

}
Φ(hk, ξ1

k)),

hk+1 = PU

(
hk − βk min

{
1,

1
‖Φ(hk, ξ1

k)‖

}
Φ(uk, ξ2

k)
)

.

(18)

Thus, sample ξ2
k is drawn after ξ1

k, and Φ(hk, ξ1
k) is completely determined when Fk−1 ∪ {ξ1

k} is given, thus
the stepsize is determined as well. This property of the stochastic Korpelevich method with clipping stepsizes
γk is crucial for further convergence analysis of the method. In the sequel, we provide important results on
the behavior of the iterates of the stochastic clipped Korpelevich method.

4.1 Almost sure convergence

In the forthcoming lemma, we provide some basic relations that hold almost surely for the iterates of the
stochastic Korpelevich method with clipped stochastic stepsize.
Lemma 4.1. Let Assumptions 2.1, 2.3, 2.4, and 2.5 hold. Also, let {hk} and {uk} be iterates generated
by stochastic Korpelevich method (8) with stepsizes γk defined in (16) and with parameter βk such that∑∞

k=0 βk = ∞ and
∑∞

k=0 β2
k < ∞. Let vk = ‖hk − u∗‖2 + 1

2 ‖hk−1 − uk−1‖2 + 2γkµdistp(uk, U∗), then the
following relation holds almost surely.

E[vk+1 | Fk−1] ≤ vk − 1
2‖hk−1 − uk−1‖2 − 2µγk−1distp(uk−1, U∗)

+ 6β2
k(σ2 + Ce(βk, α)σ2α) for all k ≥ 0,

(19)

where Ce(βk, α) = K1, when α ∈ (0, 1), and Ce(βk, α) = exp(L1βk), when α = 1. Moreover, the following
relations hold almost surely,

∞∑
k=0

γkdistp(uk, U∗) < ∞,

∞∑
k=0

‖hk − uk‖2 < ∞. (20)

Furthermore, the sequence {‖hk − u∗‖} is bounded almost surely for all u∗ ∈ U∗.

The proof of Lemma 4.1 is in Appendix C.1.

In the standard analysis of the Korpelevich method for SVIs with Lipschitz operators Kannan & Shanbhag
(2019); Vankov et al. (2023), a.s. convergence results were achieved for a deterministic stepsize sequence {γk}.
In our case, similarly to projection method analysis, {γk} is a sequence of random variables, which makes the
analysis of the methods more difficult and involved. By the choice of stepsizes γk as given in (16) and the
iterated expectation rule, the following relation holds true

E[γk〈Φ(uk, ξ2
k) − F (uk), uk − u∗〉 | Fk−1] = 0 for all k ≥ 0. (21)

8
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To prove (21) for the stochastic Korpelevich method, we note that the clipping stepsize is using ‖Φ(hk, ξ1
k)‖,

which decouples from Φ(uk, ξ2
k) by properly using conditional expectation. Specifically, we first take the

expectation conditioned on Fk−1 ∪ ξ1
k and observe that γk is completely determined given Fk−1 ∪ ξ1

k. Then,
we use Assumption 2.5 for the sample ξ2

k, and the relation (21) follows by the law of iterated expectation.
Interestingly, we do not have to take another sample for the clipping in the stochastic Korpelevich method,
as we have done in the stochastic projection method. Thus, to perform one iteration, we use two oracle calls
in both methods.

Using Lemma 4.1, we next present the almost sure convergence of the stochastic clipped Korpelevich method.
Theorem 4.2. Let Assumptions 2.1, 2.3, 2.4, and 2.5 hold and {hk}, {uk} be iterates generated by stochastic
Korpelevich method (8) with stepsizes γk defined in (16). Let parameter βk be such that

∑∞
k=0 βk = ∞, and∑∞

k=0 β2
k < ∞. Then, the iterates hk and uk converge almost surely to a point ū such that ū ∈ U∗ almost

surely.

To prove a.s. convergence, we firstly show that
∑∞

k=0 γk = ∞ a.s., by providing a sequence of lower bounds on
γk, using a.s. boundedness of ‖hk − u∗‖ of Lemma 4.1, and proving that ‖F (hk)‖ is a.s. bounded. Similarly
to the proof of 3.2, we separate the series into

∞∑
k=0

γk =
∞∑

k=0
(γk − Sk) +

∞∑
k=0

Sk,

where {Sk} is a convergent martingale. The full proof can be found in Appendix C.2.

4.2 Convergence rate

We start our analysis by taking the total expectation on both sides of equation (19) from Lemma 4.1. For
further analysis, similar to the stochastic clipped projection method, the challenge lies in the randomness of
the stepsizes γk. To handle this, firstly, we establish a lower bound for E[γkdistp(uk, U∗)] by showing that
the sequence {E[|F (uk)|]} of expected norms remains bounded, as shown in the next lemma. The proof of
the lemma can be found in Appendix B.3.
Lemma 4.3. Let Assumption 2.1, with α ∈ (0, 1/2], and Assumptions 2.3, 2.4, 2.5 hold. Let {uk}, {hk} be
iterates generated by stochastic Korpelevich method (8) with stepsizes γk defined in (16) and the parameter βk

such that
∑∞

k=0 βk = ∞ and
∑∞

k=0 β2
k < ∞. Then, E[‖F (hk)‖] is bounded by some constant CF > 0 for all

k ≥ 0.

Similarly to the analysis presented in Section 3, we bound F (hk) by using a triangle inequality and the
property of α-symmetric operators, and by taking the total expectation, we obtain

E[‖F (uk)‖] ≤ K0E[‖uk − v∗‖] + K2E[‖uk − v∗‖α/(1−α))] + ‖F (v∗)‖ + K1‖F (v∗)‖α. (22)

We can show that the preceding bound has a finite expectation only for 0 < α ≤ 1/2, which motivates the
restriction on α in Lemma 4.3. Equipped with the boundedness of the sequence {E[‖F (hk)‖} of expected
norms of the operator along the iterates {hk}, we present the next convergence rate theorem.
Theorem 4.4. Let Assumption 2.1, with α ∈ (0, 1/2], and Assumptions 2.3, 2.4, and 2.5 hold. Let {uk},
{hk} be the iterate sequences generated by stochastic clipped Korpelevich method (8) with stepsizes γk defined
in (16). Let Dk = E[dist2(hk, U∗)] and CF be an upperbound on E[‖F (hk)‖] then the following results holds:

Case p = 2. Let βk = 2
a( 2d

a + k)
, with a = µ min

{
1, 1

2(CF +σ)

}
, d = max{4µ, 2

√
3(K0 + K1 + K2)} where

K0, K1, and K2 are from Proposition 2.2(a). Then, the following relation holds

Dk+1 ≤ 8d2D0

a2k2 + 12(σ2 + K1σ2α)
a2k

for all k ≥ 1. (23)

9
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Case p ≥ 2. Let βk = b
(k+1)q , where 1/2 < q < 1 and 0 < b ≤ min

{
1

4µ , 1
2

√
3(K0+K1+K2)

}
. Then, the

following inequality holds for all k ≥ 1,

D̄k ≤
22(p−2)/p(1 − q)2/p

(
D0 + 6b2(σ2 + K1σ2α)(2σ2 + 1)/(2q − 1)

)2/p

(ab)2/p ((k + 1)1−q − 21−q)2/p
, (24)

where D̄k = E[dist2(ūk, U∗)], ūk = (
∑k

t=0 βt)−1∑k
t=0 βtut, and a = µ min

{
1, 1

2(CF +σ)

}
.

Similarly to the proof of Theorem 3.4, to derive the convergence rate in terms of E[dist2(hk, U∗)] we need
to relate the progress at each iteration, measured by E[γkdistp(hk, U∗)] to E[dist2(hk, U∗)]. Using the
boundedness of E[‖F (hk)‖] and applying Jensen’s inequality, which holds for p ≥ 2 we obtain the final rates.
The proof of Theorem 4.4 is provided in Appendix C.4.

For the simplicity of convergence rate comparison, assume 2(CF + σ) ≥ 1 and K0 + K1 + K2 ≥ 2µ√
3 . Then

by denoting K = K0 + K2 + K3, from Theorem 4.4, we obtain O( (CF +σ)2K2D0
µ2k2 + (σ2+K1σ2α)(CF +σ)2

µ2k ) last
iterate convergence for p = 2, and O

(
σ4/p(D0+σ2+K1σ2α)2/p(CF +σ)2/p

µ2/pk2(1−q)/p

)
average (or best) iterate convergence

rate for p > 2 with q ∈ (1/2, 1). In both cases p = 2 and p > 2 the convergence rate of clipped stochastic
projection method in Theorem 3.4 and the rate of stochastic clipped Korpelevich method in Theorem 4.4
have the same dependency in k. For p = 2 the rate from Theorem 4.4 matches the rate O( 1

k ) obtained in
Proposition 5 (Kannan & Shanbhag, 2019) for stochastic Korpelevich method under stronger assumption on
strong pseudo monotonicity and Lipschitz continuity of the operator. Interestingly, for p = 2, the parameter
µ appears in the rate as 1

µ2 in both Kannan & Shanbhag (2019) and in our Theorem 4.4, which is known to
be the optimal dependence on µ (Beznosikov et al., 2022). For p > 2, the obtained rate is new in stochastic
case and generalizes the results in deterministic setting for Lipschitz continuous operators (Wei et al., 2021)
and α-symmetric operators (Vankov et al., 2024).

5 Numerical Experiments

We study the performance of the stochastic clipped projection and Korpelevich methods, for different values
of parameters α > 0 and p > 0. Despite the absence of analysis, we also implement the stochastic clipped
Popov method with γk = βk min{1, 1

‖F (hk)‖ , 1
(‖uk−hk−1‖+1)α/(1−α) }:

uk+1 = PU (uk − γkΦ(hk, ξk)), hk+1 = PU (uk+1 − γk+1Φ(hk, ξk)),

where u0, h0 ∈ U are arbitrary deterministic initial. We consider an unconstrained minmax game:

min
u1

max
u2

1
p

‖u1‖p + 〈u1, u2〉 − 1
p

‖u2‖p,

with p > 1, and u1 ∈ Rd, u2 ∈ Rd. Then, the corresponding operator F : R2d → R2d is defined by

F (u) =
[
‖u1‖p−2u1 + u2
‖u2‖p−2u2 − u1

]
. (25)

We assume that we have an access only to a noise evaluation of the corresponding operator and aim to solve
unconstrained SVI(R2d, F ) with the following stochastic operator Φ(u, ξ) = F (u) + ξ, where ξ is a random
vector with independent zero-mean Gaussian entries and with variance σ2 = 1. Then, F (u) = E[Φ(u, ξ)]
is an α-symmetric and p-quasi sharp operator due to Vankov et al. (2024). We set these parameters to be
{(α ≈ 0.33, p = 2.5), (α ≈ 0.5, p = 3.0), (α ≈ 0.8, p = 6.0)}. We also compare our results with the projection
method that uses the same sample clipping, meaning stepsizes γk clip ‖Φ(uk, ξk)‖ instead of a different sample
‖Φ(uk, ξ2

k)‖.

In Figure 1, we plot an average distance to solution from the current iterate over twenty runs to the solution
set as a function of the number of iterations. In particular, the stepsizes for clipped stochastic projection
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(a) (α ≈ 0.33, p = 1.5)
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(b) (α ≈ 0.33, p = 2.5)
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(c) (α ≈ 0.8, p = 4.0)
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(d) (α ≈ 0.8, p = 6.0)

Figure 1: Comparison of the clipped stochastic projection, same-sample projection, Korpelevich, and Popov
methods with βk = 100/(100 + k1/2+ε).
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(c) (α ≈ 0.8, p = 4.0)
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Figure 2: Comparison of the clipped stochastic projection, same-sample projection, Korpelevich, and Popov
methods with βk = 100/(100 + k1−ε).

and Korpelevich methods are chosen according to Theorems 3.4 and 4.4, respectively, with βk = 100
100+kq for

q = 1/2 + ε with ε > 0. Note that, according to Theorems 3.4 and 4.4, the parameter q should be greater
than 1/2; meanwhile, the rates in these theorems are better for smaller choices of q. We also set βk = 100

100+kq

for stochastic clipped Popov method and the stochastic clipped projection method using the same sample
Φ(uk, ξk) for clipping.

Based on this experiment, we made three important observations. Firstly, the stochastic clipped projection
method and the same-sample stochastic clipped projection method show similar results, despite the fact
that the latter has a biased error. We speculate that this is because the biased error is relatively small,
and in practice dominated by the term γkdistp(uk, U∗). Secondly, although in the stochastic Lipschitz SVI
setting the Korpelevich method outperforms the projection method, we do not observe this advantage in the
generalized smooth SVI setting. This aligns with our theoretical results, since both methods have the same
complexity and require two oracle calls per iteration. Moreover, even in the standard Lipschitz continuous
strongly monotone case, both methods achieve the same order O(1/k) rate in the leading stochastic term,
with the Korpelevich method enjoying a smaller non-leading term because it can use a larger stepsize of
1
L Beznosikov et al. (2022) compared to µ

L2 for the projection method Loizou et al. (2021). However, in the
generalized smooth case, where stepsizes are clipped, the Korpelevich method no longer benefits from larger
stepsizes.

Next, we investigate the performance of the methods for larger values of q. In Figure 2, we set q = 1 − ε,
βk = 100

100+k1−ε , and run all four methods for the same problem parameter setting. We observe that for
all considered α, despite the theory, a larger choice of q improved the performance of all methods in the
σ-neighborhood.

For the same setting, in Figures 3 and 4, now we plot the distance to the solution from the average iterate
ūk = (

∑k
i=0 βi)−1∑k

i=0 βiui. In terms of average iterates, we observed that smaller values of q are preferable.
Interestingly, the clipped projection methods outperform the clipped Korpelevich method, even though both
enjoy the same convergence guarantee of order O(1/k2(1−q)/p).

11



Published in Transactions on Machine Learning Research (09/2025)

0 2500 5000 7500 10000 12500 15000 17500 20000
Number of iterations

100

101

Di
st

an
ce

 to
 so

lu
tio

n

Convergence
Projection
Projection-Same
Popov
Korpelevich

(a) (α ≈ 0.33, p = 1.5)

0 2500 5000 7500 10000 12500 15000 17500 20000
Number of iterations

10 1

100

101

Di
st

an
ce

 to
 so

lu
tio

n

Convergence
Projection
Projection-Same
Popov
Korpelevich

(b) (α ≈ 0.33, p = 2.5)
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(c) (α ≈ 0.8, p = 4.0)
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Figure 3: Comparison of the clipped stochastic projection, same-sample projection, Korpelevich, and Popov
methods with βk = 100/(100 + k1/2+ε) for averaged iterates.

0 2500 5000 7500 10000 12500 15000 17500 20000
Number of iterations

101

Di
st

an
ce

 to
 so

lu
tio

n

Convergence
Projection
Projection-Same
Popov
Korpelevich

(a) (α ≈ 0.33, p = 1.5)
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(b) (α ≈ 0.33, p = 2.5)
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(c) (α ≈ 0.8, p = 4.0)
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Figure 4: Comparison of the clipped stochastic projection, same-sample projection, Korpelevich, and Popov
methods with βk = 100/(100 + k1−ε) for averaged iterates.

6 Conclusion

This paper studied the SVI problem under generalized smooth and structured non-monotone assumptions.
Specifically, we consider α-symmetric and p-quasi-sharp operators, a class of generalized smooth and structured
non-monotone operators for SVIs. For this wide class of operators, we proved the first-known almost sure
convergence of stochastic clipped projection and Korpelevich methods for all parameters p. We also provided
O(1/k) convergence rate for both considered methods when the operator is p-quasi sharp with p = 2. For
p > 2 we provided O(k−2(1−q)/p) average (or best) iterate convergence rate for both methods, where q is a
stepsize parameter 1/2 < q < 1. Despite the generality of our results, there are still open questions that
remain. In particular, it would be interesting to know if it is possible to show in-expectation convergence
rates for α-smooth SVI for α > 1/2. Another attractive direction of further research in generalized smooth
SVIs is in the relaxation of p-quasi sharpness assumption to Minty (µ = 0) or weak Minty conditions (µ < 0).
We also believe that our technique for proving almost sure convergence and in-expectation rates can be used
for the analysis of other methods whose stepsizes are random variables, for example, stochastic clipped Popov
method or first-order methods with adaptive stepsizes.
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A Technical Lemmas

In our analysis, we use the properties of the projection operator PU (·) given in the following lemma.
Lemma A.1. (Theorem 1.5.5 and Lemma 12.1.13 in Facchinei & Pang (2003)) Given a nonempty convex
closed set U ⊂ Rm, the projection operator PU (·) has the following properties:

〈v − PU (v), u − PU (v)〉 ≤ 0 for all u ∈ U, v ∈ Rm, (26)

‖u − PU (v)‖2 ≤ ‖u − v‖2 − ‖v − PU (v)‖2 for all u ∈ U, v ∈ Rm, (27)

‖PU (u) − PU (v)‖ ≤ ‖u − v‖ for all u, v ∈ Rm. (28)

In the forthcoming analysis, we use Lemma 11 Polyak (1987), which is stated below.
Lemma A.2. [Lemma 11 Polyak (1987)] Let {vk}, {zk}, {ak}, and {bk} be nonnegative random scalar
sequences such that almost surely for all k ≥ 0,

E[vk+1 | Fk] ≤(1 + ak)vk − zk + bk, (29)

where Fk = {v0, . . . , vk, z0, . . . , zk, a0, . . . , ak, b0, . . . , bk}, and a.s.
∑∞

k=0 ak < ∞,
∑∞

k=0 bk < ∞. Then,
almost surely, limk→∞ vk = v for some nonnegative random variable v and

∑∞
k=0 zk < ∞.

As a direct consequence of Lemma A.2, when the sequences {vk}, {zk}, {ak}, {bk} are deterministic, we obtain
the following result.
Lemma A.3. Let {v̄k}, {z̄k}, {āk}, {b̄k} be nonnegative scalar sequences such that for all k ≥ 0,

v̄k+1 ≤(1 + āk)v̄k − z̄k + b̄k, (30)

where
∑∞

k=0 āk < ∞ and
∑∞

k=0 b̄k < ∞. Then, limk→∞ v̄k = v̄ for some scalar v̄ ≥ 0 and
∑∞

k=0 z̄k < ∞.
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Lemma A.4. Let X be a non-negative random variable such that E[Xρ] is defined for some ρ ≥ 1, and
E[Xρ] 6= 0, then for every a > 0 it holds

P(X > a(E[Xρ])1/ρ) ≤ 1
aρ

. (31)

Proof. Let Y = Xρ. By the conditions of the lemma, the expectation E[Y ] = E[Xρ] is well defined. Then, by
Markov’s inequality:

P(X > a(E[Xρ])1/ρ) = P(Y > aρE[Xρ])

≤ E[Xρ]
aρE[Xρ] .

�

Lemma A.5. Let a1, a2 be nonnegative scalar and p > 0. Then the following inequality holds:

(a1 + a2)p ≤ 2p−1(ap
1 + ap

2).

Proof. Let a = (a1, a2), b = (1, 1), then by Hölder inequality:

a1 + a2 = ‖ab‖
≤ ‖a‖p‖b‖p/(p−1)

≤ (ap
1 + ap

2)1/p(1 + 1)(p−1)/p.

Raising the inequality in the power p we get the desired relation. �

A.1 Auxiliary Results

In our analysis we make use of Lemma 3 and Lemma 7 from Stich (2019), as well as the sequences provided
in the proofs in Stich (2019).
Lemma A.6. Let {rk} and {sk} be nonnegative scalar sequences that satisfy the following relation

rk+1 ≤ (1 − aαk)rk − bαksk + cγ2
k for all k ≥ 0,

where a > 0, b > 0, c ≥ 0, and
γk = 2

a
( 2d

a + k
) for all k ≥ 0,

where d ≥ a. Then, for any given K ≥ 0, the following relation holds:

b

WK

K∑
k=0

wksk + arK+1 ≤ 8d2

aK2 r0 + 2c

aK
,

where wk = 2d/a + k, 0 ≤ k ≤ K, and WK =
∑K

k=0 wk.
Lemma A.7. For 1 > q ≥ 1/2 and K ≥ 1, we have

K∑
t=0

1
(t + 1)q

≥ 1
1 − q

((K + 1)1−q − 21−q). (32)

For q = 1/2 and K ≥ 1,
K∑

t=0

1
(t + 1)2q

≤ log(K + 1). (33)

For q > 1/2 and K ≥ 1,
K∑

t=0

1
(t + 1)2q

≤ 1
2q − 1 . (34)
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Proof. Let 1 > q ≥ 1/2 and K ≥ 1. Then, it holds
K∑

t=0

1
(t + 1)q

≥
∫ K

s=1

ds

(s + 1)q
= 1

1 − q
((K + 1)1−q − 21−q). (35)

When q = 1/2 and K ≥ 1, then
K∑

t=0

1
t + 1 ≤

∫ K

s=0

ds

s + 1 = log(K + 1). (36)

When q > 1/2 and K ≥ 1, we have that
K∑

t=0

1
(t + 1)2q

≤
∫ K

s=0

ds

(s + 1)2q
= 1

2q − 1 − 1
(2q − 1)(K + 1)2q−1 <

1
2q − 1 . (37)

�

B Projection Method Analysis

B.1 Proof of Lemma 3.1

Proof. Let k ≥ 0 be arbitrary but fixed. From the definition of uk+1 in (7), we have ‖uk+1 − y‖2 =
‖PU (uk − γkΦ(uk, ξk)) − y‖2 for all y ∈ U . Using the non-expansiveness property of projection operator (28)
we obtain for all y ∈ U and k ≥ 0,

‖uk+1 − y‖2 ≤ ‖uk − γkΦ(uk, ξk) − y‖2

= ‖uk − y‖2 − 2γk〈Φ(uk, ξk), uk − y〉 + γ2
k‖Φ(uk, ξk)‖2

= ‖uk − y‖2 + γ2
k‖Φ(uk, ξk)‖2

− 2γk〈F (uk), uk − y〉 + 2γk〈ek, uk − y〉, (38)

where ek = F (uk) − Φ(uk, ξk). By the definition of the stepsizes (9), γk = βk min{1, 1
‖Φ(uk,ξ2

k
)‖ }, then the

term γ2
k‖Φ(uk, ξk)‖2 can be upper bounded as follows

γ2
k‖Φ(uk, ξk)‖2 = γ2

k‖Φ(uk, ξk) − F (uk) + F (uk) − Φ(uk, ξ2
k) + Φ(uk, ξ2

k)‖2

≤ β2
k min

{
1,

1
‖Φ(uk, ξ2

k)‖2

}
3(‖ek‖2 + ‖e2

k‖2 + ‖Φ(uk, ξ2
k)‖2)

≤ 3β2
k‖ek‖2 + 3β2

k‖e2
k‖2 + 3β2

k, (39)

where ek = Φ(uk, ξk) − F (uk), e2
k = Φ(uk, ξ2

k) − F (uk). Thus,

‖uk+1 − y‖2 ≤ ‖uk − y‖2 − 2γk〈F (uk), uk − y〉
+ 2γk〈ek, uk − y〉 + 3β2

k(‖ek‖2 + ‖e2
k‖2 + 1). (40)

Plugging in y = u∗ ∈ U∗, where u∗ is an arbitrary solution, and using p-quasi sharpness we get:

‖uk+1 − u∗‖2 ≤ ‖uk − u∗‖2 − 2µγkdistp(uk, U∗)
+ 2γk〈ek, uk − u∗〉 + 3β2

k(‖ek‖2 + ‖e2
k‖2 + 1). (41)

Using stochastic properties of ξk and ξ2
k imposed by Assumption 2.5, and the conditional independence of ξk

and ξ2
k, we have:

E[γk〈ek, uk − u∗〉|Fk−1] = E[γk | Fk−1]〈E[ek | Fk−1], uk − u∗〉 = 0.
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E[‖ek‖2 | Fk−1] ≤ σ2, E[‖e2
k‖2 | Fk−1] ≤ σ2.

Thus, by taking the conditional expectation on Fk−1 ∪ ξ2
k = {ξ0, ξ2

0 , . . . , ξk−1, ξ2
k−1, ξ2

k} in relation (41) we
obtain for all u∗ ∈ U∗ and for all k ≥ 0:

E[‖uk+1 − u∗‖2 | Fk−1 ∪ ξ2
k] ≤ ‖uk − u∗‖2 + 3β2

k(2σ2 + 1) − 2µβk min
{

1,
1

‖Φ(uk, ξ2
k)‖

}
distp(uk, U∗). (42)

The equation (42) satisfies the condition of Lemma A.2 with

vk = ‖uk − u∗‖2, ak = 0, zk = 2µγk | distp(uk, U∗), bk = 3β2
k(2σ2 + 1). (43)

By Lemma A.2, it follows that the sequence {vk} converges a.s. to a non-negative scalar for any u∗ ∈ U∗,
and almost surely we have

∞∑
k=0

γk distp(uk, U∗) < ∞. (44)

Since the sequence {‖uk − u∗‖2} converges a.s. for all u∗ ∈ U∗, it follows that the sequence {‖uk − u∗‖} is
bounded a.s. for all u∗ ∈ U∗. �

B.2 Proof of Theorem 3.2

Lemma B.1. Let γk are given by (9) then the series of {γk} is non-summable almost surely,

∞∑
k=0

γk = ∞ a.s. (45)

Proof. We will show that
∑∞

k=0 βk min
{

1, 1
‖Φ(uk,ξ2

k
)‖

}
= ∞ almost surely by the sequences of lower bound

on this series. Consider the following event:

Ak = {‖e2
k‖ ≤ 2σ},

where e2
k = Φ(uk, ξ2

k) − F (uk) is a stochastic error from the sample for the clipping stepsize γk. Define
xk = min

{
1, 1

‖Φ(uk,ξ2
k

)‖

}
, then,

xk = xkI(Ak) + xkI(Ak) ≥ xkI(Ak), (46)

where the random variable I(Ak) = is the indicator function of the event Ak taking value 1 when the event
occurs, and taking value 0 otherwise.

By the definition of xk, the triangle inequality and definition of I(Ak), we have

xkI(Ak) = min
{

1,
1

‖Φ(uk, ξ2
k)‖

}
I(Ak)

≥ min
{

1,
1

‖F (uk)‖ + ‖e2
k‖

}
I(Ak)

≥ min
{

1,
1

‖F (uk)‖ + 2σ

}
I(Ak).

(47)
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By combining the resulting relation with (47), using the definition of γk, and adding and subtracting
E[I(Ak) | Fk−1], we have the following lower bound

∞∑
k=0

βkxk ≥
∞∑

k=0
βk min

{
1,

1
‖F (uk)‖ + 2σ

}
(I(Ak) − E[I(Ak) | Fk−1])

+
∞∑

k=0
βk min

{
1,

1
‖F (uk)‖ + 2σ

}
E[I(Ak) | Fk−1]. (48)

To bound pk := E[I(Ak)|Fk−1] = P(Ak | Fk−1) we provide an upperbound on P(Ak | Fk−1) using Markov’s
inequality and Assumption 2.5:

P(Ak | Fk−1) = P(‖e1
k‖ > 2E[‖e1

k‖ | Fk−1]}) ≤ E[‖e1
k‖ | Fk−1]

2E[‖e1
k‖ | Fk−1]) = 1

2 . (49)

This implies E[I(Ak)|Fk−1] ≥ 1
2 . Define Sn =

∑n
k=0 βk(I(Ak) − E[I(Ak)|Fk−1]), by construction, Sn is a

martingale:

E[Sn+1 | S0, . . . , Sn] = Sn + E[βn+1(I(An+1) − E[I(An+1)|Fn]) | S0, . . . , Sn] = Sn.

We want to show that limn→∞ Sn → S < ∞ almost surely. We provide an upper bound for E[S2
n]:

E[S2
n] =

n∑
k=0

β2
kE[(I(Ak) − pk)2] + 2

∑
0≤k<i≤n

β2
kE[(I(Ak) − pk)(I(Ai) − pi)] (50)

By the law of total expectation, and noting that E[I(Ak) − pk | Fk−1] = 0 for any k, we find that for all
0 ≤ k < i ≤ n,

E[(I(Ak) − pk)(I(Ai) − pi)] = E[(I(Ak) − pk)E[(I(Ai) − pi) | Fi−1]] = 0. (51)

implying that, for all n ≥ 0

E[S2
n] =

n∑
k=0

β2
kE[(I(Ak) − pk)2] (52)

Since E[(I(Ak) − pk)2 | Fk−1] = V ar(I(Ak) | Fk−1) and the random variable I(Ak) is a Bernoulli given Fk−1
with mean pk, then

E[(I(Ak) − pk)2 | Fk−1] = Var(I(Ak) | Fk−1) ≤ 1
4

By taking the total expectation we get E[(I(Ak) − pk)2] ≤ 1
4 , and combining the previous two relations, we

obtain

E[S2
n] ≤ 1

4

n∑
k=0

β2
k ≤ ∞ a.s.

From Theorem 4.4.6. in Durrett (2019) it follows that Sn converges to S < ∞ almost surely (and in L2).

To further lower bound xkI(Ak) we show a.s. boundedness of ‖F (uk)‖ for all k ≥ 0, using property of
α-symmetric operators. To estimate ‖F (uk)‖, we add and subtract F (v∗), where v∗ ∈ U∗ is an arbitrary but
fixed solution, and get

‖F (uk)‖ = ‖F (uk) − F (v∗) + F (v∗)‖ ≤ ‖F (uk) − F (v∗)‖ + ‖F (v∗)‖.

Define the following event:

A = {ω ∈ Ω : ∃ C(ω) ∈ R s.t.‖uk(ω) − v∗‖ < C(ω) ∀ k ≥ 0}.
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Based on Lemma 3.1, the sequence {‖uk − v∗‖} is bounded a.s., and thus P(A) = 1. Let ω ∈ A, now we can
estimate ‖F (uk(ω))‖ using the α-symmetric assumption on the operator.
Case α ∈ (0, 1).

‖F (uk(ω)) − F (v∗)‖ ≤ ‖uk(ω) − v∗‖(K0 + K1‖F (v∗)‖α + K2‖uk(ω) − v∗‖α/(1−α)). (53)

Since ω ∈ A, it follows that ‖uk(ω) − v∗‖ ≤ C(ω) for all k ≥ 0. Using this fact and (53) we obtain that for
all k ≥ 0,

‖F (uk(ω))‖ ≤ C(ω)(K0 + K1‖F (v∗)‖α + K2C(ω)α/(1−α)) + ‖F (v∗)‖. (54)

Therefore, the sequence {‖F (uk(ω))‖} is upper bounded by C1(ω) = C(ω)(K0 + K1‖F (v∗)‖α +
K2C(ω)α/(1−α)) + ‖F (v∗)‖.
Case α = 1.
For α = 1 by Proposition 2.2 we have

‖F (uk(ω)) − F (v∗)‖ ≤ ‖uk(ω) − v∗‖(L0 + L1‖F (v∗)‖) exp(L1‖uk(ω) − v∗‖). (55)

Therefore, for all k ≥ 0,

‖F (uk(ω))‖ ≤ ‖F (uk(ω)) − F (v∗)‖ + ‖F (v∗)‖
≤ ‖uk(ω) − v∗‖(L0 + L1‖F (v∗)‖) exp(L1‖uk(ω) − v∗‖) + ‖F (v∗)‖. (56)

Since ω ∈ A, we have ‖uk(ω) − v∗‖ ≤ C(ω) for all k ≥ 0, which when used in (56), implies that for all k ≥ 0,

‖F (uk(ω))‖ ≤ ‖uk(ω) − v∗‖(L0 + L1‖F (v∗)‖) exp(L1‖uk(ω) − v∗‖) + ‖F (v∗)‖
≤ C(ω)(L0 + L1‖F (v∗)‖) exp(L1C(ω)) + ‖F (v∗)‖. (57)

Hence, the sequence {‖F (uk(ω))‖} is upper bounded by C1(ω), where C1(ω) = C(ω)(L0 +
L1‖F (v∗)‖) exp(L1C(ω)) + ‖F (v∗)‖. Now, for both cases α ∈ (0, 1) and α = 1 in (54) and (57), respectively,
we have that ‖F (uk(ω))‖ is upper bounded by max{C1(ω), C1(ω)}. Thus

P(F (uk) is bounded) = 1.

Then almost surely we have (i) F (uk) is bounded (ii)
∑∞

k βk(I(Ak) − E[I(Ak) | Fk−1]) converges to S < ∞,
(iii) E[I(Ak) | Fk−1] ≥ 1

2 . Consider ω ∈ Ω such that (i), (ii), and (iii) hold, then in a view of (48) we have

∞∑
k=0

βkxk(ω) ≥ min
{

1,
1

C1(ω) + 2σ

}
S(ω) + 1

2 min
{

1,
1

C1(ω) + 2σ

} ∞∑
k=0

βk = ∞ (58)

where the last equality comes from
∑∞

k=0 βk = ∞, which concludes the proof.

�

Proof of Theorem 3.2.

Proof. By Lemma 3.1, we have
∞∑

k=0
γk distp(uk, U∗) < ∞ a.s. (59)

Due to Lemma B.1, the series
∑∞

k=0 γk = ∞ almost surely, then it follows that

lim inf
k→∞

distp(uk, U∗) = 0 a.s. (60)
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Since ‖uk −u∗‖ converges a.s. for any given u∗ ∈ U∗, the sequence {uk} is bounded a.s. and has accumulation
points a.s. Let {ki} be an index sequence, such that

lim
i→∞

distp(uki
, U∗) = lim inf

k→∞
distp(uk, U∗) = 0 a.s. (61)

We assume that the sequence {uki
} is convergent with a limit point ū; otherwise, we choose a convergent

subsequence. Therefore,
lim

i→∞
‖uki

− ū‖ = 0 a.s. (62)

Then, by (60), dist(ū, U∗) = 0, thus ū ∈ U∗ a.s. since U∗ is closed. Since the sequence {‖uk − u∗‖} converges
a. s. for all u∗ ∈ U∗, by (62) we have

lim
k→∞

‖uk − ū‖ = 0 a.s. (63)

�

B.3 Proof of Lemma 3.3

Proof. By taking the total expectation in (42) in Lemma 3.1 and using the definition of the stepsize γk, we
obtain for any solution u∗ ∈ U∗ and all k ≥ 0,

E[‖uk+1 − u∗‖2] ≤ E[‖uk − u∗‖2] − 2µE[γkdistp(uk, U∗)] + 3β2
k(2σ2 + 1). (64)

The equation (64) satisfies the conditions of Lemma A.3 with

v̄k = E[‖uk − u∗‖2], āk = 0, z̄k = 2µE[γk distp(uk, U∗)], b̄k = 3β2
k(2σ2 + 1). (65)

Thus, by Lemma A.3, it follows that the sequence {E[‖uk − u∗‖2]} converges to a non-negative scalar for
any u∗ ∈ U∗. Therefore, the sequence {E[‖uk − u∗‖2]} is bounded for all u∗ ∈ U∗. Next, using the property
of α-symmetric operators, we show that {E[‖F (uk)‖]} is bounded. Let v∗ ∈ U∗ be an arbitrary, but fixed
solution. Then, by the α-symmetric property of F , we have that

‖F (uk)‖ ≤ ‖F (uk) − F (v∗)‖ + ‖F (v∗)‖
≤ ‖uk − v∗‖(K0 + K1‖F (v∗)‖α + K2‖uk − v∗‖α/(1−α)) + ‖F (v∗)‖.

(66)

Taking expectation, we obtain

E[‖F (uk)‖] ≤ (K0 + K1‖F (v∗)‖α)E[‖uk − v∗‖] + K2E[‖uk − v∗‖1+α/(1−α)] + ‖F (v∗)‖. (67)

Notice, that E[‖uk − v∗‖1+α/(1−α))] = E[(‖uk − v∗‖2)1/2(1−α))], and for α ≤ 1/2, the quantity 1/2(1 − α) ≤ 1.
Thus, we can apply Jensen inequality for concave function

E[(‖uk − v∗‖2)1/2(1−α))] ≤ E[‖uk − v∗‖2]1/2(1−α).

Therefore, using these results and Jensen inequality for the first term in equation (67), we obtain

E[‖F (uk)‖] ≤ (K0 + K1‖F (v∗)‖α)E[‖uk − v∗‖2]1/2 + K2E[‖uk − v∗‖2]1/2(1−α) + ‖F (v∗)‖. (68)

Since E[‖uk − v∗‖2] is bounded, E[‖F (uk)‖] is bounded by some constant CF > 0 for all k ≥ 0. �

B.4 Proof of Theorem 3.4

Proof. Letting y = PU∗(uk) in equation (40) in Lemma 3.1 and using p-quasi sharpness we obtain

‖uk+1 − PU∗(uk)‖2 ≤ ‖uk − PU∗(uk)‖2 − 2µγkdistp(uk, U∗)
+ 2γk〈ek, uk − PU∗(uk)〉 + 3β2

k(‖ek‖2 + ‖e2
k‖2 + 1). (69)
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By the definition of the distance function, we have

dist2(uk+1, U∗) ≤ ‖uk+1 − PU∗(uk)‖2.

Thus,

dist2(uk+1, U∗) ≤ dist2(uk, U∗) − 2µγkdistp(uk, U∗)
+ 2γk〈ek, uk − PU∗(uk)〉 + 3β2

k(‖ek‖2 + ‖e2
k‖2 + 1). (70)

By Assumption 2.5 and the law of total expectation, and independence of samples ξk and ξ2
k, it follows that

E[γk〈ek, uk − PU∗(uk)〉] = E[E[γk〈ek, uk − PU∗(uk)〉 | Fk−1]]
= E[E[γk | Fk−1]〈E[ek | |Fk−1], uk − PU∗(uk)〉]
= 0. (71)

Also, we have E[E[‖e1
k‖ | Fk−1] ≤ σ2 and E[E[‖e2

k‖ | Fk−1] ≤ σ2. Thus, by taking the total expectation
in (70), we obtain

E[dist2(uk+1, U∗)] ≤ E[dist2(uk, U∗)] − 2µE[γkdistp(uk, U∗)] + 3β2
k(2σ2 + 1). (72)

We aim to upper bound 2µE[γkdistp(uk, U∗)]. To do so consider an event Ak, defined as follows:

Ak = {‖F (uk)‖ + ‖ek‖ ≤ 2(E[‖F (uk)‖] + E[‖ek‖])}.

Then, by the law of total expectation, we obtain

E[γkdistp(uk, U∗)] = E[γkdistp(uk, U∗)|Ak]P(Ak) + E[γkdistp(uk, U∗)|Ak]P(Ak), (73)

where A denotes the complement of an event A. We want to provide a lower bound on P(Ak). To do so, we
upperbound P(Ak) using Markov’s inequality, as follows:

P(Ak) = P ({‖F (uk)‖ + ‖ek‖ > 2(E[‖F (uk)‖] + E[‖ek‖])})

≤ E[‖F (uk)‖] + E[‖ek‖]
2(E[‖F (uk)‖] + E[‖ek‖])

= 1
2 . (74)

Thus,

E[γkdistp(uk, U∗)] = E[γkdistp(uk, U∗)|Ak](1 − P(Ak)) + E[γkdistp(uk, U∗)|Ak]P(Ak)

≥ 1
2E[γkdistp(uk, U∗)|Ak] + E[γkdistp(uk, U∗)|Ak]P(Ak)

≥ 1
2E[γkdistp(uk, U∗)|Ak]. (75)

By the definition of the event Ak, we have

E[γkdistp(uk, U∗)|Ak] = βkE
[
min

{
1,

1
‖Φ(uk, ξk)‖

}
distp(uk, U∗)|Ak

]
≥ βkE

[
min

{
1,

1
‖F (uk)‖ + ‖ek‖

}
distp(uk, U∗)|Ak]

]
≥ βk min

{
1,

1
2(E[‖F (uk)‖] + E[‖ek‖])

}
E[distp(uk, U∗)|Ak]. (76)

By Lemma 3.3, E[‖F (uk)‖] ≤ CF for all k ≥ 0, and by Assumption 2.5 and Jensen inequality, we have
E[‖ek‖] ≤ E[‖ek‖2]1/2 ≤ σ. Thus, it follows that

E[γkdistp(uk, U∗)] ≥ 1
2βk min

{
1,

1
2(CF + σ)

}
E[distp(uk, U∗)]. (77)
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Combining equations (72) and (77), and using a = µ min
{

1, 1
2(CF +σ)

}
, we obtain

E[dist2(uk+1, U∗)] ≤ E[dist2(uk, U∗)] − aβkE[distp(uk, U∗)] + 3β2
k(2σ2 + 1). (78)

Now let Dk = E[dist2(uk, U∗)], and consider the following two cases:

Case p = 2. When p = 2, equation (78) satisfies the assumptions of Lemma A.6 with

rk = Dk, αk = βk, sk = 0, d = a, c = 3(2σ2 + 1). (79)

Then, by Lemma A.6, we get the following convergence rate for all k ≥ 1,

Dk+1 ≤ 8D0

k2 + 6(2σ2 + 1)
a2k

. (80)

Case p > 2. When p ≥ 2, by applying telescoping sum to inequality (78) and rearranging the terms we
obtain

E[a
k∑

t=0
βkdistp(uk, U∗)] ≤ D0 − Dk+1 + 3(2σ2 + 1)

k∑
t=0

β2
k. (81)

Since p ≥ 2, the function distp(·, U∗) is convex, thus by defining ūk = (
∑k

t=0 βk)−1∑k
t=0 βkut and applying

Jensen inequality be obtain

(
k∑

t=0
βk)E[distp(ūk, U∗)] ≤ E[

k∑
t=0

βkdistp(uk, U∗)].

Since p ≥ 2, by applying Jensen inequality one more time, we obtain

(D̄k)p/2 =
(
E[dist2(ūk, U∗)]

)p/2 ≤ E
[(

dist2(ūk, U∗)
)p/2] = E[distp(ūk, U∗)].

Applying these estimates, we get

(D̄k)p/2
k∑

t=0
βt ≤

k∑
t=0

βtD
p/2
t ≤ 1

a

(
D0 − Dk+1 + 3(2σ2 + 1)

k∑
t=0

β2
t

)
. (82)

Since βk = b
(k+1)q , with b > 0, 1 > q > 1/2, then {βk} satisfies the conditions of Lemma 3.3. Also, by

Lemma A.7 the following inequalities hold: for all k ≥ 1,

k∑
t=0

βt ≥ b

1 − q
((k + 1)1−q − 21−q),

k∑
t=0

β2
t ≤ b2

2q − 1 . (83)

Combining equations (82) and (83), and omitting Dk+1, we obtain

(D̄k)p/2 ≤
(1 − q)

(
D0 + 3b2(2σ2 + 1)/(2q − 1)

)
ab ((k + 1)1−q − 21−q) . (84)

Raising both sides of the preceding inequality in power 2/p, we obtain

D̄k ≤
(1 − q)2/p

(
D0 + 3b2(2σ2 + 1)/(2q − 1)

)2/p

(ab)2/p ((k + 1)1−q − 21−q)2/p
. (85)

�
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C Korpelevich Method analysis

Lemma C.1. Let U be a closed convex set. Then, for the iterate sequences {uk} and {hk} generated by the
stochastic Korpelevich method (8) and y ∈ U and k ≥ 0,

‖hk+1 − y‖2 ≤ ‖hk − y‖2 − ‖hk − uk‖2 − 2γk〈F (uk), uk − y〉 − 2γk〈e2
k, uk − y〉

+ 3γ2
k‖F (hk) − F (uk)‖2 + 3γ2

k(‖e2
k‖2 + ‖e1

k‖2),

where e1
k = Φ(hk, ξ1

k) − F (hk), e2
k = Φ(uk, ξ2

k) − F (uk) for all k ≥ 0.

Proof. Let k ≥ 0 be arbitrary but fixed. By the definition of hk+1 in (8), we have ‖hk+1 − y‖ = ‖PU (hk −
γkΦ(uk, ξ2

k)) − y‖ for any y ∈ U . Using the projection inequality, we obtain for any y ∈ U ,

‖hk+1 − y‖2 ≤ ‖hk − γkΦ(uk, ξ2
k) − y‖2 − ‖hk+1 − hk + γkΦ(uk, ξ2

k)‖2

= ‖hk − y‖2 − ‖hk+1 − hk‖2 + 2γk〈Φ(uk, ξ2
k), y − hk+1〉.

(86)

Next, we consider the term ‖hk+1 − hk‖2, where we add and subtract uk, thus

‖hk+1 − hk‖2 = ‖hk+1 − uk‖2 + ‖hk − uk‖2 − 2〈hk+1 − uk, hk − uk〉. (87)

Adding and subtracting 2γk〈Φ(hk, ξ1
k), uk − hk+1〉, and combining (86) and (87) we obtain

‖hk+1 − y‖2 ≤ ‖hk − y‖2 − ‖hk+1 − uk‖2 − ‖hk − uk‖2 + 2〈hk+1 − uk, hk − uk〉
+ 2γk〈Φ(uk, ξ2

k), y − uk + uk − hk+1〉 + 2γk〈Φ(hk, ξ1
k) − Φ(hk, ξ1

k), uk − hk+1〉
≤ ‖hk − y‖2 − ‖hk+1 − uk‖2 − ‖hk − uk‖2 + 2〈hk+1 − uk, hk − γkΦ(hk, ξ1

k) − uk〉
+ 2γk〈Φ(uk, ξ2

k), y − uk〉 + 2γk〈Φ(hk, ξ1
k) − Φ(uk, ξ2

k), hk+1 − uk〉.

(88)

Since uk = PU (hk − γkΦ(hk, ξ1
k)) and hk+1 ∈ U , by the projection inequality in (26), it follows that

2〈hk+1 − uk, hk − γkΦ(hk, ξ1
k) − uk〉 ≤ 0.

Using Cauchy-Schwarz inequality and relation 2ab ≤ a2 + b2 for a, b ∈ R, we obtain

2γk〈Φ(hk, ξ1
k) − Φ(uk, ξ2

k), hk+1 − uk〉 ≤ 2γk‖Φ(hk, ξ1
k) − Φ(uk, ξ2

k)‖‖hk+1 − uk‖
≤ γ2

k‖Φ(hk, ξ1
k) − Φ(uk, ξ2

k)‖2 + ‖hk+1 − uk‖2.

Using triangle inequality and relation (
∑m

i=1 ai)2 ≤ m
∑m

i=1 a2
i we get

‖Φ(hk, ξ1
k) − Φ(uk, ξ2

k)‖2 = ‖Φ(hk, ξ1
k) − F (hk) + F (hk) − F (uk) + F (uk) − Φ(uk, ξ2

k)‖2

≤ 3(‖e1
k‖2 + ‖F (hk) − F (uk)‖2 + ‖e2

k‖2).

Combining the preceding three estimates with (88), we get the stated relation

‖hk+1 − y‖2 ≤ ‖hk − y‖2 − ‖hk − uk‖2 − 2γk〈F (uk), uk − y〉 − 2γk〈e2
k, uk − y〉

+ 3γ2
k‖F (hk) − F (uk)‖2 + 3γ2

k(‖e2
k‖2 + ‖e1

k‖2).

�

C.1 Proof of Lemma 4.1

Proof. By Lemma C.1 we have for all k ≥ 0 and for all y ∈ U ,

‖hk+1 − y‖2 ≤ ‖hk − y‖2 − ‖hk − uk‖2 − 2γk〈F (uk), uk − y〉 − 2γk〈e2
k, uk − y〉

+ 3γ2
k‖F (hk) − F (uk)‖2 + 3γ2

k(‖e2
k‖2 + ‖e1

k‖2),
(89)
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with e1
k = Φ(hk, ξ1

k) − F (hk) and e2
k = Φ(uk, ξ2

k) − F (uk) for all k ≥ 0. We want to estimate the term
‖F (hk) − F (uk)‖2 on the RHS of the inequality using the fact that F (·) is an α-symmetric operator for two
cases (a) α ∈ (0, 1) and (b) α = 1.

Case α ∈ (0, 1). Using the alternative characterization of α-symmetric operators from Proposition 2.2(a) (as
given in (4)), when α ∈ (0, 1), the next inequality holds for any k ≥ 0,

‖F (hk) − F (uk)‖ ≤ ‖hk − uk‖(K0 + K1‖F (hk)‖α + K2‖hk − uk‖α/(1−α)). (90)

We want to separate ‖F (hk)‖ into two parts: stochastic approximation of operator Φ(hk, ξ1
k) and error e1

k.
Recall that e1

k = F (hk) − Φ(hk, ξ1
k), then based on triangle inequality ‖F (hk)‖ ≤ ‖Φ(hk, ξ1

k)‖ + ‖e1
k‖, and

since α ≤ 1 we obtain

‖F (hk)‖α ≤ ‖Φ(hk, ξ1
k)‖α + ‖e1

k‖α. (91)

Thus, combining this fact with (90) we get the following estimation

‖F (hk) − F (uk)‖ ≤ ‖hk − uk‖(K0 + K1‖Φ(hk, ξ1
k)‖α + K1‖e1

k‖α + K2‖hk − uk‖α/(1−α)). (92)

By the projection property (27) and the stepsize choice (16), we have

‖hk − uk‖ ≤ γk‖Φ(hk, ξ1
k)‖ = βk min{1,

1
‖Φ(hk, ξ1

k)‖}‖Φ(hk, ξ1
k)‖ ≤ βk ≤ 1. (93)

Then, K2‖hk − uk‖α/(1−α) ≤ K2, and

γk‖F (hk) − F (uk)‖ ≤ γk(K0 + K1‖Φ(hk, ξ1
k)‖α + K1‖e1

k‖α + K2)‖hk − uk‖

≤ βk(K0 min{1,
1

‖Φ(hk, ξ1
k)‖} + K1 min{1,

1
‖Φ(hk, ξ1

k)‖}‖Φ(hk, ξ1
k)‖α)‖hk − uk‖

+ βk(K1‖e1
k‖α + K2 min{1,

1
‖Φ(hk, ξ1

k)‖})‖hk − uk‖

≤ βk(K0 + K1 + K2)‖hk − uk‖ + βkK1‖e1
k‖α‖hk − uk‖.

(94)

By inequality (93), we have ‖hk − uk‖ ≤ 1, and using this estimate in equation (94) we obtain

γk‖F (hk) − F (uk)‖ ≤ βk(K0 + K1 + K2)‖hk − uk‖ + βkK1‖e1
k‖α. (95)

Case α = 1. Based on the alternative characterization of α-symmetric operators from Proposition 2.2(b) (as
given in (16)), when α = 1, the following inequality holds for any k ≥ 0,

‖F (hk) − F (uk)‖ ≤ ‖hk − uk‖(L0 + L1‖F (hk)‖) exp(L1‖hk − uk‖). (96)

We upperbound ‖F (hk)‖ using equation (91) and get

‖F (hk) − F (uk)‖ ≤ ‖hk − uk‖(L0 + L1‖Φ(hk, ξ1
k)‖ + L1‖e1

k‖) exp(L1‖hk − uk‖). (97)

Note that relation in (93) holds irrespective of the value of α. Thus, since ‖hk − uk‖ ≤ 1, we have
exp(L1‖hk − uk‖) ≤ exp(L1βk), and we obtain

γk‖F (hk) − F (uk)‖ ≤ γk(L0 + L1‖Φ(hk, ξ1
k)‖ + L1‖e1

k‖) exp(L1βk)‖hk − uk‖

= exp(L1βk)L0βk min{1,
1

‖Φ(hk, ξ1
k)‖}‖hk − uk‖

+ exp(L1βk)L1βk min{1,
1

‖Φ(hk, ξ1
k)‖}‖Φ(hk, ξ1

k)‖‖hk − uk‖

+ exp(L1βk)L1βk min{1,
1

‖Φ(hk, ξ1
k)‖}‖e1

k‖‖hk − uk‖

≤ exp(L1βk)βk(L0 + L1 + L1‖e1
k‖)‖hk − uk‖.

(98)
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By inequality (93), we have ‖hk − uk‖ ≤ 1. Using this estimate in (98), we further obtain

γk‖F (hk) − F (uk)‖ ≤ exp(L1βk)βk(L0 + L1)‖hk − uk‖ + exp(L1βk)βk‖e1
k‖. (99)

Now, we are done with the cases of α values. Let

Ca(βk, α) =
{

(K0 + K1 + K2), when α ∈ (0, 1),
exp(L1βk)(L0 + L1), when α = 1.

(100)

Also, define

Ce(βk, α) =
{

K1, when α ∈ (0, 1),
exp(L1βk), when α = 1.

(101)

Then, by inequality (
∑m

i=1 ai)2 ≤ m
∑m

i=1 a2
i , for both cases we have

γ2
k‖F (hk) − F (uk)‖2 ≤ 2β2

kCa(βk, α)2‖hk − uk‖2 + 2β2
kCe(βk, α)2‖e1

k‖2α. (102)

Combining preceding inequality with (89) we obtain that for any k ≥ 0,

‖hk+1 − y‖2 ≤ ‖hk − y‖2 − (1 − 6β2
kCa(βk, α)2)‖hk − uk‖2 − 2γk〈F (uk), uk − y〉

− 2γk〈e2
k, uk − y〉 + 6β2

kCe(βk, α)2‖e1
k‖2α + 3γ2

k(‖e2
k‖2 + ‖e1

k‖2).
(103)

Next, we plug y = u∗, where u∗ ∈ U∗ is an arbitrary solution and use p-quasi sharpness of the operator F to
obtain

‖hk+1 − u∗‖2 ≤ ‖hk − u∗‖2 − (1 − 6β2
kCa(βk, α)2)‖hk − uk‖2 − 2γkµdistp(uk, U∗)

− 2γk〈e2
k, uk − u∗〉 + 6β2

kCe(βk, α)2‖e1
k‖2α + 3γ2

k(‖e2
k‖2 + ‖e1

k‖2).
(104)

By the stepsize choice γk ≤ βk, thus

‖hk+1 − u∗‖2 ≤ ‖hk − u∗‖2 − (1 − 6β2
kCa(βk, α)2)‖hk − uk‖2 − 2γkµdistp(uk, U∗)

− 2γk〈e2
k, uk − u∗〉 + 6β2

kCe(βk, α)2‖e1
k‖2α + 3β2

k(‖e2
k‖2 + ‖e1

k‖2).
(105)

Since
∑∞

k=0 β2
k < ∞, it follows that βk → 0. By definitions of Ca(βk, α) and Ce(βk, α) in (100) and (101),

respectively, there exists N ≥ 0 such that the stepsizes satisfy 1 − 6β2
kCa(βk, α)2 ≥ 1

2 and Ce(βk, α)2 ≤
max{K1, exp(L1βk)} ≤ max{K1, 2}. Thus, the following inequality holds for any k ≥ N ,

‖hk+1 − u∗‖2 ≤ ‖hk − u∗‖2 − 1
2‖hk − uk‖2 − 2γkµdistp(uk, U∗)

− 2γk〈e2
k, uk − u∗〉 + 3β2

k(‖e2
k‖2 + ‖e1

k‖2 + 2 max{K1, 2}‖e1
k‖2α).

(106)

By rearranging the terms, defining vk = ‖hk − u∗‖2 + 1
2 ‖hk−1 − uk−1‖2 + 2γkµdistp(uk, U∗) and adding, and

substituting 1
2 ‖hk−1 − uk−1‖2 + 2γk−1µdistp(uk−1, U∗) on the RHS we obtain

vk+1 ≤ vk − 1
2‖hk−1 − uk−1‖2 − 2γk−1µdistp(uk−1, U∗)

− 2γk〈e2
k, uk − u∗〉 + 3β2

k(‖e2
k‖2 + ‖e1

k‖2 + 2 max{K1, 2}‖e1
k‖2α).

(107)

Recalling that e1
k = Φ(hk, ξ1

k) − F (hk), e2
k = Φ(uk, ξ2

k) − F (uk) and using the stochastic properties of ξ1
k, ξ2

k

imposed by Assumption 2.5 and method’s updates, we have

E[γk〈e2
k, uk − u∗〉 | Fk−1] = E[γk〈E[e2

k | Fk−1 ∪ {ξ1
k}], uk − u∗〉 | Fk−1] = 0,

since stepsizes γk is measurable in Fk−1 ∪ {ξ1
k}. Also, it holds that for all k ≥ 0,

E[E[‖e2
k‖2 | Fk−1 ∪ {ξ1

k}]|Fk−1] ≤ σ2, and E[‖e1
k‖2 | Fk−1] ≤ σ2.
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Moreover, since α ≤ 1, the conditional expectation E[‖e1
k‖2α|Fk−1] is finite, and by Jensen inequality, it

follows that for all k ≥ 0,
E[‖e1

k‖2α|Fk−1] ≤ σ2α.

Therefore, by taking the conditional expectation on Fk−1 in relation (107), we obtain for all u∗ ∈ U∗ and for
all k ≥ N ,

E[vk+1 | Fk−1] ≤ vk − 1
2‖hk − uk‖2 − 2µγk−1distp(uk, U∗)

+ 6β2
k(σ2 + max{K1, 2}σ2α).

(108)

By Lemma A.2, it follows that the sequence {‖hk − u∗‖2} converges a.s. to a non-negative scalar for any
u∗ ∈ U∗, and almost surely we have

∞∑
k=0

γkdistp(uk, U∗) < ∞,

∞∑
k=0

‖hk − uk‖2 < ∞. (109)

Since the sequence {‖hk − u∗‖2} converges a.s. for all u∗ ∈ U∗, it follows that the sequence {‖hk − u∗‖} is
bounded a.s. for all u∗ ∈ U∗.

�

C.2 Proof of Theoreom 4.2

Lemma C.2. The stepsizes γk are given by (16) are nonsummable almost surely,
∞∑

k=0
γk = ∞ a.s. (110)

Proof. We will show that
∑∞

k=0 βk min
{

1, 1
‖Φ(hk,ξ1

k
)‖

}
= ∞ almost surely by the sequences of lower bound

on this series. Consider the following event:
Ak = {‖e1

k‖ ≤ 2σ},

where e1
k = Φ(hk, ξ1

k) − F (hk) is a stochastic error from the sample for the clipping stepsize γk. Define
xk = min

{
1, 1

‖Φ(hk,ξ1
k

)‖

}
, then,

xk = xkI(Ak) + xkI(Ak) ≥ xkI(Ak), (111)
where the random variable I(Ak) is the indicator function of the event Ak taking value 1 when the event
occurs, and taking value 0 otherwise.

By the definition of xk, the triangle inequality and definition of I(Ak), we have

xkI(Ak) = min
{

1,
1

‖Φ(hk, ξ1
k)‖

}
I(Ak)

≥ min
{

1,
1

‖F (hk)‖ + ‖e1
k‖

}
I(Ak)

≥ min
{

1,
1

‖F (hk)‖ + 2σ

}
I(Ak).

(112)
Adding and subtracting E[I(Ak)|Fk−1] and combining (111), (112) we have the following lower bound

∞∑
k=0

βkxk ≥
∞∑

k=0
βk min

{
1,

1
‖F (hk)‖ + 2σ

}
(I(Ak) − E[I(Ak)|Fk−1])

+
∞∑

k=0
βk min

{
1,

1
‖F (hk)‖ + 2σ

}
E[I(Ak)|Fk−1]. (113)
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To bound pk := E[I(Ak)|Fk−1] = P(Ak | Fk−1) we provide an upperbound on P(Ak | Fk−1) using Markov’s
inequality and Assumption 2.5:

P(Ak | Fk−1) = P(‖e1
k‖ > 2E[‖e1

k‖ | Fk−1]}) ≤ E[‖e1
k‖ | Fk−1]

2E[‖e1
k‖ | Fk−1]) = 1

2 . (114)

This implies E[I(Ak)|Fk−1] ≥ 1
2 . Define Sn =

∑n
k=0 βk(I(Ak) − E[I(Ak)|Fk−1]), by construction, {Sn} is a

martingale:

E[Sn+1 | S0, . . . , Sn] = Sn + E[βn+1(I(An+1) − E[I(An+1)|Fn]) | S0, . . . , Sn] = Sn.

We want to show that limn→∞ Sn → S < ∞ almost surely. We provide an upper bound for E[S2
n]:

E[S2
n] =

n∑
k=0

β2
kE[(I(Ak) − pk)2] + 2

∑
0≤k<i≤n

β2
kE[(I(Ak) − pk)(I(Ai) − pi)] (115)

By the law of total expectation,and noting that E[I(Ak) − pk | Fk−1] = 0 for any k, we find that for all
0 ≤ k < i ≤ n,

E[(I(Ak) − pk)(I(Ai) − pi)] = E[(I(Ak) − pk)E[(I(Ai) − pi) | Fi−1]] = 0, (116)

implying that, for all n ≥ 0,

E[S2
n] =

n∑
k=0

β2
kE[(I(Ak) − pk)2] (117)

Since E[(I(Ak) − pk)2 | Fk−1] = Var(I(Ak) | Fk−1) and the random variable I(Ak) is a Bernoulli given Fk−1
with mean pk, its variance cannot exceed 1/4, i.e.,

E[(I(Ak) − pk)2 | Fk−1] = Var(I(Ak) | Fk−1) ≤ 1
4 .

By taking the total expectation we get E[(I(Ak) − pk)2] ≤ 1
4 , and combining the preceding two relations, we

obtain
E[S2

n] ≤ 1
4

n∑
k=0

β2
k ≤ ∞.

From Theorem 4.4.6. in Durrett (2019) it follows that Sn converges to S < ∞ almost surely.

To further lower bound xkI(Ak) we show a.s. boundedness of ‖F (hk)‖ for all k ≥ 0, using property of
α-symmetric operators. To estimate ‖F (hk)‖, we add and subtract F (v∗), where v∗ ∈ U∗ is an arbitrary but
fixed solution, and get

‖F (hk)‖ = ‖F (hk) − F (v∗) + F (v∗)‖ ≤ ‖F (hk) − F (v∗)‖ + ‖F (v∗)‖.

Define the following event:

A = {ω ∈ Ω : ∃ C(ω) ∈ R s.t.‖hk(ω) − v∗‖ < C(ω) ∀ k ≥ 0}.

Based on Lemma 4.1, the sequence {‖hk − v∗‖} is bounded a.s., and thus P(A) = 1. Let ω ∈ A, now we can
estimate ‖F (hk(ω))‖ using the α-symmetric assumption on the operator.
Case α ∈ (0, 1).

‖F (hk(ω)) − F (u∗)‖ ≤ ‖hk(ω) − v∗‖(K0 + K1‖F (v∗)‖α + K2‖hk(ω) − v∗‖α/(1−α)). (118)
Since ω ∈ A, it follows that ‖hk(ω) − v∗‖ ≤ C(ω) for all k ≥ 0. Using this fact and (118) we obtain that for
all k ≥ 0,

‖F (hk(ω))‖ ≤ C(ω)(K0 + K1‖F (v∗)‖α + K2C(ω)α/(1−α)) + ‖F (v∗)‖. (119)
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Therefore, the sequence {‖F (hk(ω))‖} is upper bounded by C1(ω) = C(ω)(K0 + K1‖F (v∗)‖α +
K2C(ω)α/(1−α)) + ‖F (v∗)‖.
Case α = 1.
For α = 1 by Proposition 2.2 we have

‖F (hk(ω)) − F (v∗)‖ ≤ ‖hk(ω) − v∗‖(L0 + L1‖F (v∗)‖) exp(L1‖hk(ω) − v∗‖). (120)

Therefore, for all k ≥ 0,

‖F (hk(ω))‖ ≤ ‖F (hk(ω)) − F (v∗)‖ + ‖F (v∗)‖
≤ ‖hk(ω) − v∗‖(L0 + L1‖F (v∗)‖) exp(L1‖hk(ω) − v∗‖) + ‖F (v∗)‖. (121)

Since ω ∈ A, we have ‖hk(ω) − v∗‖ ≤ C(ω) for all k ≥ 0, which when used in (121), implies that for all k ≥ 0,

‖F (hk(ω))‖ ≤ ‖hk(ω) − v∗‖(L0 + L1‖F (v∗)‖) exp(L1‖hk(ω) − v∗‖) + ‖F (v∗)‖
≤ C(ω)(L0 + L1‖F (v∗)‖) exp(L1C(ω)) + ‖F (v∗)‖. (122)

Hence, the sequence {‖F (hk(ω))‖} is upper bounded by C1(ω), where C1(ω) = C(ω)(L0 +
L1‖F (v∗)‖) exp(L1C(ω)) + ‖F (v∗)‖. Now, for both cases α ∈ (0, 1) and α = 1 in (119) and (122), re-
spectively, we have that ‖F (hk(ω))‖ is upper bounded by max{C1(ω), C1(ω)}. Thus

P({F (hk)} is bounded) = 1.

Thus, almost surely we have (i) {F (hk)} is bounded, (ii)
∑n

k=0 βk(I(Ak) − E[I(Ak) | Fk−1]) converges to
S < ∞ as n → ∞, and (iii) E[I(Ak)|Fk−1] ≥ 1

2 . Now, consider ω ∈ Ω such that (i), (ii), and (iii) hold, then
in a view of (113) we have

∞∑
k=0

βkxk(ω) ≥ min
{

1,
1

C1(ω) + 2σ

}
S(ω) + 1

2 min
{

1,
1

C1(ω) + 2σ

} ∞∑
k=0

βk = ∞, (123)

where the last equality comes from
∑∞

k=0 βk = ∞, which concludes the proof.

�

Proof of Theorem 4.2

Proof. By Lemma 4.1, we almost surely have
∞∑

k=0
γkdistp(uk, U∗) < ∞. (124)

By Lemma C.2, we have
∑∞

k=0 γk = ∞ almost surely, than from (124) it follows that

lim inf
k→∞

distp(uk, U∗) = 0 a.s. (125)

By Lemma 4.1, the sequence {‖hk − u∗‖} converges a.s. for any given u∗ ∈ U∗. Thus, the sequence {hk} is
bounded a.s. and, consequently, it has accumulation points a.s. In view of relation (20) in Lemma 4.1, it
follows that

lim
k→∞

‖hk − uk‖ = 0 a.s. (126)

Therefore, the sequences {uk} and {hk} have the same accumulation points a.s.

Now, let {ki | i ≥ 1} be a (random) index sequence such that

lim
i→∞

distp(uki
, U∗) = lim inf

k→∞
distp(uk, U∗) = 0 a.s. (127)
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Without loss of generality, we may assume that {hki
} is a convergent sequence (for otherwise, we will select a

convergent subsequence), and let ū be its (random) limit point, i.e.,

lim
i→∞

‖hki − ū‖ = 0 a.s. (128)

By relation (20), it follows that limk→∞ ‖hk − uk‖ = 0 a.s., which in view of the preceding relation implies
that

lim
i→∞

‖uki
− ū‖ = 0 a.s.

By continuity of the distance function dist(·, U∗), from relation (127) we conclude that dist(ū, U∗) = 0
a.s., which implies that ū ∈ U∗ almost surely since the set U∗ is closed. Since the sequence {‖hk − u∗‖2}
converges a.s. for any u∗ ∈ U∗, it follows that limk→∞ ‖hk − ū‖ = 0 a.s. By relation (126) we conclude that
limk→∞ ‖uk − ū‖ = 0 a.s. �

C.3 Proof of Lemma 4.3

Proof. The choice of parameters βk, ensures that 1 − 6β2
k(K0 + K1 + K3)2 ≥ 1/2. Then, by taking the

expectation in (19) of Lemma 4.1 and using Assumption 2.5, and definition of Ce(βk, α) = K1 for α ∈ (0, 1),
we obtain

E[‖hk+1 − u∗‖2] ≤ E[‖hk − u∗‖2] − 1
2E[‖hk − uk‖2] − 2E[γkµdistp(uk, U∗)]

+ 6β2
k(σ2 + K1σ2α).

(129)

The equation (129) satisfies the condition of Lemma A.3 with

v̄k = E[‖uk − u∗‖2], āk = 0, b̄k = 6β2
k(σ2 + K1σ2α),

z̄k = 2µE[γk distp(uk, U∗)] + 1
2E[‖hk − uk‖2]. (130)

By Lemma A.2, it follows that the sequence E[‖hk − u∗‖2] converges to a non-negative scalar for any u∗ ∈ U∗.
Since the sequence {E[‖hk − u∗‖2]} converges for all u∗ ∈ U∗, it follows that the sequence {E[‖hk − u∗‖2]}
is bounded for all u∗ ∈ U∗. Next, using property of α-symmetric operators, we show that E[‖F (hk)‖] is
bounded for all k ≥ 0. Let v∗ ∈ U∗ be an arbitrary but fixed solution. Since α ≤ 1/2, it holds that

‖F (hk)‖ ≤ ‖F (hk) − F (v∗)‖ + ‖F (v∗)‖
≤ ‖hk − v∗‖(K0 + K1‖F (v∗)‖α + K2‖hk − v∗‖α/(1−α)) + ‖F (v∗)‖.

(131)

Taking the expectation, we obtain

E[‖F (hk)‖] ≤ (K0 + K1‖F (v∗)‖α)E[‖hk − v∗‖] + K2E[‖hk − v∗‖1+α/(1−α))] + ‖F (v∗)‖. (132)

Notice that E[‖hk − v∗‖1+α/(1−α))] = E[(‖hk − v∗‖2)1/2(1−α))] and, for α ≤ 1/2, the quantity 1/2(1 − α) ≤ 1.
Thus, we can apply Jensen inequality for concave function

E[(‖hk − v∗‖2)1/2(1−α))] ≤ E[‖hk − v∗‖2]1/2(1−α).

Therefore, using the preceding relation and Jensen inequality for the first term on the RHS of equation (132),
we obtain

E[‖F (hk)‖] ≤ (K0 + K1‖F (v∗)‖α)E[‖hk − v∗‖2]1/2 + K2E[‖hk − v∗‖2]1/2(1−α) + ‖F (v∗)‖. (133)

Since E[‖hk − v∗‖2] is bounded, it follows that E[‖F (hk)‖] is bounded by some constant CF > 0 for all
k ≥ 0. �
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C.4 Proof of Theorem 4.4

Proof. The choice of the parameters βk ensures that 1−6β2
k(K0 +K1+K2)2 ≥ 1

2 , then by letting u∗ = PU∗(hk)
in (106) in the proof of Lemma 4.1, with Ce(βk, α) = K1, we get

‖hk+1 − PU∗(hk)‖2 ≤ dist2(hk, U∗) − 1
2‖hk − uk‖2 − 2γkµdistp(uk, U∗)

− 2γk〈e2
k, uk − u∗〉 + 3β2

k(‖e2
k‖2 + ‖e1

k‖2 + 2K1‖e1
k‖2α).

(134)

By the definition of the distance function, we have

dist2(hk+1, U∗) ≤ ‖hk+1 − PU∗(hk)‖2.

Thus,
dist2(hk+1, U∗) ≤ dist2(hk, U∗) − 1

2‖hk − uk‖2 − 2γkµdistp(uk, U∗)

− 2γk〈e2
k, uk − u∗〉 + 3β2

k(‖e2
k‖2 + ‖e1

k‖2 + 2K1‖e1
k‖2α).

(135)

Next, we estimate the term distp(uk, U∗) in (135). By the triangle inequality, we have

‖hk − u∗‖ ≤ ‖uk − hk‖ + ‖uk − u∗‖ for all u∗ ∈ U∗,

and by taking the minimum over u∗ ∈ U∗ on both sides of the preceding relation, we obtain

dist(hk, U∗) ≤ ‖uk − hk‖ + dist(uk, U∗). (136)

Applying Lemma A.5 with p > 0 in equation (136) yields

distp(hk, U∗) ≤ (‖uk − hk‖ + dist(uk, U∗))p

≤ 2p−1‖uk − hk‖p + 2p−1 distp(uk, U∗).
(137)

Using projection inequality (27), and stepsizes choice (16), we obtain

‖uk − hk‖ ≤ ‖γkΦ(hk, ξ1
k)‖ ≤ 1.

Combining this result with equation (137), with p ≥ 2, we get

distp(hk, U∗) ≤ 2p−1‖uk − hk‖2+(p−2) + 2p−1distp(uk, U∗)
≤ 2p−1‖uk − hk‖2 + 2p−1 distp(uk, U∗).

(138)

By dividing the relation in (138) with 2p−1 and by rearranging the terms, we obtain the following relation

−distp(uk, U∗) ≤ ‖uk − hk‖2 − 21−p distp(hk, U∗). (139)

Combining the preceding inequality with (135), we find that for any k ≥ 0,

dist2(hk+1, U∗) ≤ dist2(hk, U∗) − 22−pµγkdistp(hk, U∗) − 1
2‖uk − hk‖2 + 2µγk ‖uk − hk‖2

− 2γk〈e2
k, uk − u∗〉 + 3β2

k(‖e2
k‖2 + ‖e1

k‖2 + 2K1‖e1
k‖2α).

(140)

By the choice of βk, we have βk = 2
a( 2d

a + k)
, where a = µ min

{
1, 1

2(CF +σ)

}
and d ≥ 4µ. Thus, for all k ≥ 0,

βk ≤ 1
d

≤ 1
4µ

=⇒ 2µβk ≤ 1
2 .
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By the definition of the stepsize γk, we always have γk ≤ βk. Therefore, 2µγk ≤ 2µβk ≤ 1
2 for all k ≥ 0, thus

implying that

−1
2‖uk − hk‖2 + 2µγk ‖uk − hk‖2 ≤ 0. (141)

Using the stochastic properties of ξk imposed by Assumption 2.5, we have for all k ≥ 0,

E[E[γkE[〈e2
k, uk − u∗〉 | Fk−1 ∪ {ξ1

k}] | Fk−1]] = 0,

E[E[‖e2
k‖2 | Fk−1 ∪ {ξ1

k}]] ≤ σ2, E[E[‖e1
k‖2 | Fk−1]] ≤ σ2. (142)

Moreover, since α ≤ 1 then the conditional expectation E[‖e1
k‖2α|Fk−1] is defined, and by Jensen inequality

E[‖e1
k‖2α|Fk−1] ≤ σ2α for all k ≥ 0. Thus, by taking the total expectation in relation (140) and using an

estimate from (141), we obtain for all u∗ ∈ U∗ and for all k ≥ 0,

E[dist2(hk+1, U∗)] ≤ E[dist2(hk, U∗)] − 22−pµE[γkdistp(hk, U∗)] + 6β2
k(σ2 + K1σ2α). (143)

The equation (143) is similar to equation (72) in the proof of Theorem 3.4, with the same stepsize structure.
Thus, by following the same arguments from equations (72) to equation (78) in the proof of Theorem 3.4, we
arrive at

E[dist2(hk+1, U∗)] ≤ E[dist2(hk, U∗)] − 22−pµβk min
{

1,
1

2(CF + σ)

}
E[distp(hk, U∗)]

+ 6β2
k(σ2 + K1σ2α),

(144)

where CF is an upperbound on E[‖F (hk)‖] from the statement of Lemma 4.3. Now let Dk = E[dist2(hk, U∗)],
and consider two cases p = 2 and p > 2.

Case p = 2.

We note that by the definition of a = µ min
{

1, 1
2(CF +σ)

}
and d, we have that d ≥ 4µ and µ ≥ a, implying that

d ≥ a. Hence, for p = 2, relation (144) satisfies the conditions of Lemma A.6 with the following identification

rk = Dk, a = µ min
{

1,
1

2(CF + σ)

}
, αk = βk, sk = 0, c = 6(σ2 + K1σ2α). (145)

Therefore, for the choice βk = 2
a( 2d

a + k)
, we get the following convergence rate for all k ≥ 1,

Dk+1 ≤ 8d2D0

a2k2 + 12(σ2 + K1σ2α)
a2k

. (146)

Case p ≥ 2.

When p ≥ 2, by applying telescoping sum to inequality (144) and rearranging the terms we obtain

E[22−pa

k∑
t=0

βkdistp(hk, U∗)] ≤ D0 − Dk+1 + 6(σ2 + K1σ2α)
k∑

t=0
β2

k. (147)

Since p ≥ 2, the function distp(·, U∗) is convex, thus by defining ūk = (
∑k

t=0 βk)−1∑k
t=0 βkht and applying

Jensen inequality be obtain

(
k∑

t=0
βk)E[distp(h̄k, U∗)] ≤ E[

k∑
t=0

βkdistp(hk, U∗)].

Since p ≥ 2, by applying Jensen inequality one more time, we obtain

(D̄k)p/2 =
(
E[dist2(h̄k, U∗)]

)p/2 ≤ E
[(

dist2(h̄k, U∗)
)p/2] = E[distp(h̄k, U∗)].
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(D̄k)p/2
k∑

t=0
βt ≤

k∑
t=0

βt(Dt)p/2 ≤
D0 − Dk+1 + 6(σ2 + K1σ2α)

∑k
t=0 β2

t

22−pa
. (148)

Now, we use the choice for βk, i.e., βk = b
(k+1)q , where 0 < b < 1

2
√

3(K0+K1+K2) and 1/2 < q < 1. Then, the
sequence {βk} satisfies the conditions of Lemma 4.3. Furthermore, by Lemma A.7, we have that for all k ≥ 1,

k∑
t=0

βt ≥ b

1 − q
((k + 1)1−q − 21−q),

k∑
t=0

β2
t ≤ b2

2q − 1 . (149)

Combining equations (148) and (149), and omitting Dk+1, we obtain for all k ≥ 1,

(D̄k)p/2 ≤
2p−2(1 − q)

(
D0 + 6b2(σ2 + K1σ2α)(2σ2 + 1)/(2q − 1)

)
ab ((k + 1)1−q − 21−q) . (150)

Raising both sides of the preceding inequality in power 2/p, we have that for all k ≥ 1,

D̄k ≤
22(p−2)/p(1 − q)2/p

(
D0 + 6b2(σ2 + K1σ2α)(2σ2 + 1)/(2q − 1)

)
)2/p

(ab)2/p ((k + 1)1−q − 21−q)2/p
. (151)

�

D Additional Experiments

We investigate the robustness of the methods for a larger choice of the initial parameter value β0. In Figure 5,
we set q = 1 − ε, and corresponding βk = 50

10+k1−ε , so the initial stepsize β0 ≈ 5 and run all four methods
for the same problem parameter choice. We observe that for a generalized smooth SVI when we increase
stepsizes, the performance of clipped stochastic Popov and Korpelevich is comparable to that of both clipped
stochastic versions. While in smooth SVI, the stepsizes for stochastic Korplevich and Popov methods can be
much larger than for stochastic projection methods, improving the convergence performance of stochastic
Korplevich and Popov methods.
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(a) (α ≈ 0.09, p = 2.5)
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(b) (α ≈ 0.5, p = 3.0)
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(c) (α ≈ 0.8, p = 6.0)

Figure 5: Comparison of the clipped stochastic projection, same-sample projection, Korpelevich, and Popov
methods with β = 50/(10 + k1−ε).
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