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Abstract
Conventional knowledge graph embedding001
methods learn semantic representations for en-002
tities considering their intrinsic interactions003
through powerful graph neural networks. How-004
ever, previous methods represent each node005
solely with a coarse-grained unique represen-006
tation, regardless of the variance of empha-007
sis of entity semantics by different relations.008
To tackle this problem, we propose ReadE, a009
method to learn relation-dependent entity rep-010
resentations of which the semantic information011
is emphasized by varied relations types. First,012
we propose a relation-controlled gating mecha-013
nism targeting on utilizing the relation to con-014
trol the information flow in the aggregation step015
of the graph neural network. Second, we pro-016
pose a contrastive learning method with mix-017
ing both relation-level and entity-level nega-018
tive samples to enhance semantics preserved in019
relation-dependent entity representations. Ex-020
periments on three benchmarks show that our021
proposed model outperforms all strong base-022
lines. The code will be made open-sourced on023
Github.024

1 Introduction025

Knowledge graph (KG) is a semantic network and026

can be used to represent the relations of different027

entities in the real world. Due to the existence of028

huge amount of potential facts, existing KGs, like029

NELL (Carlson et al., 2010) and YAGO3 (Mahdis-030

oltani et al., 2015), mostly face the problem of031

completing the missing relations, which is known032

as the knowledge graph completion (KGC) task.033

In this work, we mainly focus on the task of how034

to predict the missing entity in incomplete triplets035

like < entity, relation, ? >.036

To complete the KG, a fundamental task is to037

learn informative and meaningful representations038

for the entities and relations in KG, based on which039

the missing links can be predicted. Given a triplet040

< e1, r, e2 >, TransE (Bordes et al., 2013) pro-041

posed to learn the representations that satisfy the042

property of translation invariance e1 + r ≈ e2. 043

To increase the model’s representational ability, 044

in ConvE (Dettmers et al., 2018), a multi-layer 045

convolution network is used to predict missing en- 046

tities. However, all these methods process each 047

triplet independently, ignoring the the neighbor- 048

hood information of a given entity in the KG. To 049

leverage the connection structure information of 050

a graph, many methods have proposed to include 051

the neighbor’s information into the entity represen- 052

tation by using various kinds of graph neural net- 053

works (GNNs), like using graph attention network 054

(GAT) in Nathani et al. (2019), weighted graph con- 055

volutional network (WGCN) in Shang et al. (2019) 056

and the heterogeneous relation attention network 057

(HRAN) in Li et al. (2021). 058

Intuitively, an entity could contain informa- 059

tion from many different aspects. For exam- 060

ple, the entity MichaelJordan, who was born in 061

Brooklyn in 1963, contains information about 062

the date of birth and place of birth simultane- 063

ously. Therefore, when an incomplete triplet 064

< MichaelJordan,YearOfBirth, ? > is given, if 065

the information related to the relation YearOfBirth 066

among many different aspects of information in the 067

entity MichaelJordan can be emphasized, it would 068

be easier to predict the ground-truth missing entity 069

1963. Therefore, it is important for every entity 070

to have a representation that is dependent on the 071

concrete relation. That is, when interacting with 072

different relations, an entity need to show different 073

representations. However, existing methods only 074

learn a static representation for an entity, irrespec- 075

tive of different relations they may interact with. 076

For relation-irrelevant representations, obviously, 077

different aspects of information cannot be shown 078

when interacting with different relations. 079

In this paper, we propose the representa- 080

tion learning method ReadE, a method to learn 081

Relation-dependent Entity representations. In the 082

proposed method, the representation of an entity 083
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can vary according to the relation that is inter-084

acted with. To this end, we first propose a relation-085

controlled gating mechanism that is used to con-086

trol which and how much information can flow087

into the interested entity’s representation during088

the aggregation step. Since a good relation rep-089

resentation can make the relation-controlled gat-090

ing mechanism work better, in contrast to previous091

methods, an similarity-preserving relation represen-092

tation is learned for every relation through GCN,093

hoping that similar relations(e.g., PlaceOfBorn and094

PlaceOfResidence) in the graph can share similar095

representations, capturing the correlation among096

different relations. Moreover, we further propose097

to use contrastive learning to enhance the semantic098

information in our relation-dependent entity rep-099

resentation, in which a novel two-level generation100

process of negative samples are proposed. Exten-101

sive experiments are conducted on three bench-102

marks for the knowledge graph completion task.103

The experiments show that our ReadE outperforms104

all strong baselines and further analyses verify the105

validity of each proposed component.106

2 Preliminary107

Due to the strong ability to learn commonalities108

among adjacent nodes for graph-structured data,109

graph neural networks (GNN) have been widely110

used to learn the entity representations of knowl-111

edge graphs in recent years (Nathani et al., 2019;112

Shang et al., 2019; Li et al., 2021). The GNN-based113

models generally share the common architecture114

of using a GNN to learn the entity representation115

and then applying a score function to evaluate the116

matching degree of a triplet <head entity, relation,117

tail entity>. Because of the similarity among these118

methods, here we take the SACN (Shang et al.,119

2019) as an example to illustrate the basic princi-120

ples behind the GNN-based entity representation121

learning methods.122

By viewing the KG as a entity graph Ge, in123

which each node and edge represents an entity124

and relation, respectively, SACN applies a L-layer125

weighted graph convolutional network onto graph126

Ge to obtain entity representations127

zl
i=σ

 ∑
j∈Ne(i)

αi,jz
l−1
j W l−1 +zl−1

i W l−1

 , (1)128

where ℓ = 1, 2, · · ·L denotes the ℓ-th layer of129

GNN; Ne(i) represents the neighbors of entity i130

in graph Ge; zℓ
i denotes the embedding of i-th en- 131

tity ei obtained at the ℓ-th layer, with the initial 132

embeding z0
i ∈ Rde initialized from random Gaus- 133

sian noise; W l ∈ Rde×de is the network parameter 134

at (ℓ − 1)-th layer; the coefficient αi,j is used to 135

control the interaction strength between node i and 136

j; and σ(·) is the sigmoid activation function. zL
i 137

from the L-th layer is then used to represent the 138

final embeding of the i-th entity ei, that is, 139

zi = zL
i . (2) 140

Besides the entity embedding zi, SACN also learns 141

an embedding for every relation r. For the k-th 142

relation rk, its embedding hk ∈ Rde is directly 143

initialized from a random Gaussian noise. 144

Using the entity embeddings zi and relation 145

embeddings h obtained above, for a given triplet 146

< ei, rk, ej >, the SACN evaluates a matching 147

score for it with a scoring function of the form 148

φ(zi,hk, zj) = CNN ([zi;hk])W
czT

j , (3) 149

where CNN(·) denotes a convolutional network 150

applied to a 2 × de matrix [zi;hk]. The model 151

will compute the probability that the given triplet 152

< ei, rk, ej > is true as 153

p(ei, rk, ej) = σ(φ(zi,hk, zj)). (4) 154

Given a training dataset containing both of true 155

and false triplets, the model parameters and initial 156

embeddings can be optimized by minimizing the 157

following cross-entropy loss 158

Lc=
−1

N

N∑
n=1

(yn log pn+(1−yn) log(1−pn)) (5) 159

where pn denotes the probability of truth for the 160

n-th triplet computed according to (4); and yn is 161

the ground-truth label, which is 1 for true triplet 162

and 0 otherwise. 163

3 Methodologies 164

In this section, we propose our ReadE. First, we 165

present how to learn relation-dependent entity rep- 166

resentations through a relation-controlled gating 167

mechanism, then introduce a novel contrastive 168

learning method with mixing both relation-level 169

and entity-level negative samples to enhance the 170

entities’ semantic information. 171
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Figure 1: The overall framework of our de-
signed relation-dependent entity representation learning
method.

3.1 Relation-Dependent Entity172

Representation Learning173

Existing methods mainly focus on how to learn174

good representations for the entities and relations175

so that the relevance among the entities and rela-176

tions in true triplets can be retained as much as177

possible. However, in all of these existing meth-178

ods, the learned representation of an entity is never179

dependent on the relations, that is, the represen-180

tation maintains one appearance under different181

relations. However, no matter the problem is to pre-182

dict the tail entity given the head entity and relation183

< ei, rk, ? >, or to predict the head entity given184

the tail entity and relation <?, rk, ej >, the rela-185

tion is always available. Thus, if we learn for every186

entity a collection of representations, with each187

corresponding to a relation, when facing the entity188

prediction task < ei, rk, ? > or <?, rk, ej >, we189

can always choose to use the entity representation190

under the specific relation rk. To the convenience191

of presentation, in the following, we denote the192

representation of i-th entity ei under relation r as193

zi(r).194

The relation-dependent entity representation un-195

der relation r can be learned with a GNN as196

zl
i(r) =

1

|Ne(i)|
∑

j∈Ne(i)

f(hr, z
l−1
j (r))W l−1197

+ f(hr, z
l−1
i (r))W l−1. (6)198

Here, f(·, ·) is the interaction function between the199

entity and relation and is designed as200

f(hr, z
l−1
i (r))=σ

(
W fhr + gf

)
⊙ zl−1

i (r),

(7)201

where W f ∈ Rde×dr , gf ∈ Rde are parameters202

to be learned, ⊙ is the feature-wise product. The203

final entity representation zi(r) is obtained by ap-204

plying the sigmoid function σ to the output at the205

last layer, i.e., zi(r) = σ(zL
i (r)). The function206
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Figure 2: The illustration of our graph construction
methods of Gr and Ge.

f(·, ·) plays a role of relation-controlled gate that 207

can determine which dimension’s information in 208

the entity representation zℓ−1
i can be flowed into 209

neighboring nodes. If the relevance between the 210

relation and an entity is weak, the σ(·) function 211

will output a value close to zero, cutting off the 212

information flowing into to the entity’s neighbors. 213

The reason why we design this relation- 214

controlled gate function is that KGs are usually 215

densely connected Lovelace et al. (2021), making 216

a GCN-based encoder prone to aggregate from its 217

neighbors the irrelevant information w.r.t. the con- 218

sidered relation. Thus, as illustrated in Fig 1, as 219

aggregating the information from neighbors, we 220

first let the relation control which and how much 221

information can flow into the interested entity’s 222

representation, making the entity have different 223

representations under different relations. 224

Similarity-preserving Relation Representation 225

Learning The relation dependence in the pro- 226

posed entity representations is achieved by incor- 227

porating the relation representations hk into the 228

entities’ representation updating process through 229

a gating mechanism. However, the relation repre- 230

sentations used in the gating function (7) do not 231

contain any correlation information among differ- 232

ent relations as they are directly obtained from their 233

initial embeddings without going through any infor- 234

mation exchanging process. In practice, different 235

relations are related, rather than isolated, to each 236

other. For example, in KG, the relation PlaceOf- 237

Born and PlaceOfResidence are both related to the 238

city entity, suggesting they should share some com- 239

mon semantic information in their representations. 240

To have the relation representations to reflect this 241

kind of similarities, we propose to construct a rela- 242

tional graph Gr from the KG by representing every 243

relation as a node and adding an edge between two 244

relations if they refer to a common entity, as illus- 245

trated in Fig 2. With the relation graph Gr, we can 246
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now apply the graph neural networks (e.g., GCN)247

on the graph to obtain relation representations248

hl
r =σ

 ∑
j∈Nr(r)

hl−1
j W l−1

r + hl−1
r W l−1

r

 , (8)249

where ℓ = 1, 2, · · · , L′ denotes the ℓ-th layer of250

GCN; the initial embedding h0
r is initialized by ran-251

dom Gaussian noise; Nr(·) denotes the set of the252

neighbors of relation r in Gr; and W l
r ∈ Rdr×dr253

is the GCN parameter. We set the output hL′
r from254

the last layer as the final relation representation,255

that is,256

hr = hL′
r . (9)257

Thanks to the message-passing process during the258

learning, the representation of a relation is not iso-259

lated anymore, but is related to other relations that260

share common entities. In this way, the common261

information of different relations or their similarity262

information can be manifested in the learned repre-263

sentations. By substituting the similarity-preserved264

relation representation (9) into entity representation265

updating equation (6), the final relation-dependent266

entity representation updating method is obtained.267

3.2 Enhancing Semantics of Entity268

Representation with Contrastive Learning269

The link prediction task is to predict the missing270

head or tail entity given the other two components.271

Thus, similar to the classification tasks in images272

and texts, if more semantic information of entities273

are preserved in their representations, better pre-274

diction performance can be expected. Technically,275

contrastive learning can be understood as finding276

pairs of positive and negative instances and then277

trying to reducing the distance between positive278

pairs while enlarging that between negative ones279

under different contrast losses. Among them, the280

NT-Xent contrast loss below is used most widely281

l = − log
D(u

(1)
i ,u

(2)
i )

D(u
(1)
i ,u

(2)
i ) +

∑
j ̸=i,m=1,2

D(u
(1)
i ,u

(m)
j )

,282

where u
(m)
i represents the m-th view of the i-th283

instance. Different views from the same instances284

are generally treated as positive pairs, while views285

from different instances are considered as negative286

pairs. The key of using contrastive learning lies at287

how to find effective positive and negative pairs,288

which can determine whether semantic information289

can be well preserved in the representations. For 290

images, both of the positive and negative pairs can 291

be easily obtained by applying transformations to 292

the same or different images. However, for graphs, 293

especially for knowledge graphs that contain the 294

additional information of relation, generating effec- 295

tive positive and negative pairs is not that straight- 296

forward at all. 297

To generate positive pairs, inspired by the works 298

that apply self-supervised learning on general 299

graphs (Velickovic et al., 2019; Xia et al., 2021; 300

Yu et al., 2021), we perturb the knowledge graph 301

by randomly dropping some nodes and edges and 302

then apply the aforementioned methods on the per- 303

turbed graph to obtain the entities’ representations 304

z′
i. Then, the representations zi and z′

i can be 305

viewed as a positive pair. For convenience of pre- 306

sentation, the two representations zi and z′
i are 307

deemed as two views of entity i, and are denoted 308

as z(1)
i and z

(2)
i . The concrete steps to perturb the 309

KG are described in the Appendix B. 310

As for the generation of negative pairs, a com- 311

mon method is to treat views of other entities as 312

negative samples. However, in order to learn more 313

meaningful semantic information in KG, we sug- 314

gest to collect negative samples in two different 315

levels, i.e., the relation level and the entity level. 316

Relation-Level Negative Samples For a relation- 317

dependent entity representation zi(r), we hope it 318

can retain discriminative semantic information of 319

entity i under the specific relation of r. To strength 320

the objective that the semantic information con- 321

tained in zi(r) is exclusive to the relation r, we 322

propose to generate negative samples under the 323

same entity by using different relations r′ with 324

r′ ̸= r. Specifically, for the representation of entity 325

ei under the relation r, i.e., zi(r), its relation-level 326

negative samples is defined to be from the follow- 327

ing set 328

Zneg
i (r) =

{
z
(1)
i (r′), z

(2)
i (r′)

∣∣∣ r′ ̸= r
}
. (10) 329

Entity-Level Negative Samples For an entity 330

representation zi(r), in addition to include ex- 331

clusive semantic information comparing to entity 332

representations under other relations zi(r
′) with 333

r′ ̸= r, it should also contain exclusive semantic 334

information when comparing with other entities. 335

Therefore, we define the entity-level negative sam- 336

ples of zi(r) as 337

Z̃neg
i (r) =

{
z
(1)
j (r), z

(2)
j (r)

∣∣∣ j ̸= i
}
, (11) 338
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where we require the relation in other entities to339

be the same as the considered entity. In the imple-340

mentation, the entity j can just be the other entities341

from the same mini-batch.342

With the two negative sample sets, we can define343

the final contrastive learning loss as344

ℓ
(1)
i =− log

Dpos

Dpos +
∑

u∈Zi(r)

D(z
(1)
i (r),u)

, (12)345

where Zi(r) ≜ Zneg
i (r) ∪ Z̃neg

i (r); and Dpos ≜346

D(z
(1)
i (r), z

(2)
i (r)). Here, D(z

(1)
i (k), z

(2)
i (k)) is347

calculated as348

D(z
(1)
i (k), z

(2)
i (k)) = esim(z

(1)
i (k),z

(2)
i (k))/τ ,

(13)349

where sim(·, ·) denotes the cosine similarity be-350

tween vectors, and τ is a temperature parameter351

controlling the concentration level of the distribu-352

tion (Hinton et al., 2015). By averaging over a353

mini-batch of size N , the final contrastive loss Lcl354

is355

Lcl =
1

2N

N∑
i=1

(ℓ
(1)
i + ℓ

(2)
i ). (14)356

By minimizing Lcl with both the relation-level and357

entity-level negative samples, our ReadE can learn358

a entity representation preserving more meaningful359

semantics. Finally, we unify the objective of the360

KGC task and the contrastive learning as:361

L = Lc + λLcl, (15)362

where λ is a hyper-parameter used to control the363

trade-off between the loss function.364

4 Experiments365

4.1 Datasets, Evaluation and Baselines366

Datasets We evaluate the proposed ReadE model367

on three benchmark datasets from different do-368

mains. 1) FB15k-237 (Toutanova and Chen, 2015)369

contains the knowledge base relation triplets in-370

cluding real-world named entities and the relation.371

The FB15k-237 is the subset of the FB15K (Bor-372

des et al., 2013), which is originally collected from373

Freebase. Different from the FB15K, the inverse re-374

lations are removed from FB15k-237. 2) WN18RR375

consists of English phrases and the correspond-376

ing semantic relations, which is derived from the377

WN18 (Bordes et al., 2013). Similar to FB15k-237,378

the inverse relations and the leaky data are removed379

Dataset FB15k-237 WN18RR UMLS

Entities 14541 40943 135
Relations 237 11 46
Train Edges 272115 86835 5216
Dev Edges 17535 3034 652
Test Edges 20466 652 661

Table 1: The statistics of the three benchmark datasets.

from the WN18RR. 3) UMLS (Kok and Domingos, 380

2007), named Unified Medical Language System, 381

is a medical KG dataset. It contains 135 medical en- 382

tities and 46 semantic relations. Statistics of these 383

three datasets are listed in Table 1. 384

Evaluation Metrics In this work, we evaluate 385

the performance of our ReadE model on the link 386

prediction task, i.e., predicting the missing entity. 387

In the inference phase, given an incomplete triplet, 388

our model takes all the entities as the candidates 389

and outputs the probabilities over all the candi- 390

dates. Then each candidate is re-ranked according 391

to their probabilities to calculate the Mean rank 392

(MR), Mean reciprocal rank (MRR), and Hits@N. 393

MR is the average of the rankings of entities pre- 394

dicted correctly over all triplets while MRR targets 395

at the average of reciprocal rankings. Hits@N de- 396

notes the ratio of those predicted correctly entities 397

which are ranked in top-N. Also, We follow Shang 398

et al. (2019) to use the filtered setting Bordes et al. 399

(2013), which will filter out all valid triplets before 400

ranking. 401

In addition, we follow Sun et al. (2020) to adopt 402

the “RANDOM” protocol to handle the situation 403

that the ground-truth triplets have the same scores 404

as the negative triplets, which is caused by the float 405

precision problem. Namely, the rankings of triplets 406

with the same scores will be randomly determined. 407

Baselines We compare our model with follow- 408

ing strong baselines: TransE (Bordes et al., 409

2013), DistMult (Yang et al., 2015), Com- 410

plEx (Trouillon et al., 2016), ConvE (Dettmers 411

et al., 2018), ConvKB (Nguyen et al., 2018), R- 412

GCN (Schlichtkrull et al., 2018), RotatE (Sun 413

et al., 2019), SACN (Shang et al., 2019), In- 414

teractE (Vashishth et al., 2020), TorusE (Ebisu 415

and Ichise, 2020), PairRE (Chao et al., 2021), 416

HRAN (Li et al., 2021). 417
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FB15k-237 WN18RR UMLS
Hits Hits Hits

Model @10 @1 MRR @10 @1 MRR @10 MR
TransE 0.441 0.198 0.279 0.532 0.043 0.243 0.989 1.84

DistMult 0.446 0.199 0.281 0.504 0.412 0.444 0.846 5.52
ComplEx 0.450 0.194 0.278 0.530 0.409 0.449 0.967 2.59

ConvE 0.497 0.225 0.312 0.531 0.419 0.456 0.990∗ 1.00∗

ConvKB 0.421 0.155 0.243 0.520 0.400 0.430 — —
R-GCN 0.300 0.100 0.164 0.207 0.080 0.123 — —
RotatE 0.533 0.241 0.338 0.571 0.428 0.476 — —
SACN 0.536 0.261 0.352 0.535 0.427 0.470 — —

InteractE 0.535 0.263 0.354 0.528 — 0.463 — —
TorusE 0.484 0.217 0.316 0.512 0.422 0.452 — —
PairRE 0.544 0.256 0.351 — — — — —
HRAN 0.541 0.263 0.355 0.542 0.450 0.479 — —
ReadE 0.562 0.275 0.371 0.555 0.460 0.490 0.993 1.43

Improvements 3.3% 4.6% 4.5% 2.4% 2.2% 2.3% — —

Table 2: Performances on FB15k-237, WN18RR, and UMLS datasets. The performances of ConvE in the UMLS
dataset are taken from the author’s Github and are marked with *.

4.2 Experimental Results418

The experimental results of our ReadE and the419

strong baselines on FB15k-237, WN18RR, and420

UMLS are shown in Table 2. From the table, the421

proposed ReadE outperforms the strongest base-422

line HRAN significantly, with relative MRR im-423

provement of 4.5% and 2.3% on FB15K-237 and424

WN18RR, respectively. Among all the baselines,425

SACN is the most similar one to our model. SACN426

and our ReadE both utilize the Conv-TransE model427

to predict the missing entity, and the main dif-428

ference is that SACN learns a unique representa-429

tion for each entity while ReadE learns a relation-430

dependent entity representation instead. It can be431

seen that our model outperforms SACN by 5.4%432

and 4.3% in MRR on FB15K-237 and WN18RR re-433

spectively, showing the effectiveness of the relation-434

dependent entity representation.435

On UMLS, ReadE shows comparable perfor-436

mance with baselines. However, it is undeniable437

that ConvE outperforms our model on UMLS un-438

der the MR criterion. This may be due to the small439

size of UMLS, which leads to the over-fitting issue440

when injecting the graph structure information into441

the entity representation. However, On FB15k-237442

and WN18RR with the more complex graph struc-443

ture, our ReadE outperforms ConvE by 18.9% and444

7.5% under the MRR criterion.445

4.3 Impacts of Different Components 446

In this section, we give a deep insight into how 447

much improvement different components con- 448

tribute to the model performance. To do this, we 449

evaluate the performance of variants of ReadE that 450

exclude one or more components that have a large 451

impact on the performance. 452

Specifically, three components included in 453

ReadE are considered, and we follow our model’s 454

pipeline to describe the three components in turn: 455

(1) Component C . It uses the relation to Control 456

the neighborhood information aggregation during 457

the GCN-based encoding stage to generate the 458

relation-dependent entity representation. Without 459

it, every entity will be assigned a unique represen- 460

tation instead. (2) Component R. It means the 461

similarity-preserving Relation representation learn- 462

ing component which obtains the relation repre- 463

sentation by applying GCN on Gr. Without it, the 464

relation representation degenerates the one ignor- 465

ing its similarity information. (3) Component D. 466

The contrastive learning component with Double 467

levels of negative samples is designed to enhance 468

the semantics of the relation-dependent entity rep- 469

resentation. Dropping this component means that 470

we remove the contrastive loss Lcl. Please note that 471

the D component is based on the C component, if 472

we drop the C component, the D component will 473

be dropped simultaneously. Based on the above- 474
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Figure 3: Performances of variants of ReadE that exclude one or more components on FB15k-237 and WN18RR.

defined components, we propose four variants of475

ReadE: ReadE w/o R, ReadE w/o D, ReadE w/o476

C, ReadE w/o RC. The four variants are com-477

pared with the original ReadE on FB15k-237 and478

WN18RR and results are shown in Fig 3.479

From the result, we can have the following ob-480

servations. First, ReadE w/o C which removes the481

most basic component C will induce a significant482

performance drop when compared with the com-483

plete ReadE, suggesting the importance of taking484

the relation into account when learning the entity485

representation. Second, without using the proposed486

CL component (i.e., ReadE w/o D), an immedi-487

ate performance drop is observed on FB15k-237488

and WN18RR, which demonstrates the necessity489

of utilizing the designed CL method to further im-490

prove our relation-dependent entity representation.491

Third, ReadE w/o C is better than ReadE w/o RC,492

demonstrating that even if we solely learn a unique493

relation-independent entity representation as pre-494

vious methods do, improving the quality of the495

relation representation can still improve the per-496

formance. Also, ReadE w/o R works worse than497

ReadE, which indicates that similarity-preserving498

relation representations can better control the in-499

formation aggregation from the entity’s neighbors.500

Last but not least, if we remove all three compo-501

nents (i.e., ReadE w/o RC), the performance is502

poorest, confirming the validity of the proposed503

ReadE.504

4.4 Impacts of Different Levels of Negative505

Samples506

In this section, we evaluate the influence of relation-507

level and entity-level negative samples in the508

denominator of (14). MRR on FB15-237 and509

WN18RR datasets when using one of these two510

FB15-237 WN18RR
w/o Entire Lcl 0.364 0.484

+ Relation-Level 0.369 0.488
+ Entity-Level 0.366 0.486

+ Entire Lcl 0.371 0.490

Table 3: MRR when using one of the relation-level
and entity-level negative samples on FB15-237 and
WN18RR.

kinds of negative samples are shown in Table 3. 511

Note that no matter which negative samples we use, 512

the positive samples are unchanged and always be 513

considered when calculating the contrastive loss. 514

We can see that the performances brought by 515

CL with solely relation-level negative samples are 516

more excellent than the ones brought by CL with 517

solely entity-level negative samples on both FB15k- 518

237 and WN18RR. In this paper, given an entity, 519

CL with relation-level negative samples aims to 520

increase the distances between different relation- 521

dependent entity representations of it among differ- 522

ent relations, which is consistent with our motiva- 523

tion of learning an entity representation of which se- 524

mantics will vary depending on its relation. There- 525

fore, it may explain why CL with relation-level neg- 526

ative samples achieves a greater result. Also, the 527

model performs best if two levels of negative sam- 528

ples are considered together at the same time, indi- 529

cating the credibility of the proposed CL method 530

to enhance the entity’s semantics. 531

4.5 Impacts of Parameter λ 532

In ReadE, we introduce the hyper-parameter λ , 533

which controls the trade-off between the cross- 534

entropy loss and the contrastive loss. In this section, 535

we investigate the sensitivity of λ. We manually 536
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Figure 4: MRR and Hits@1 of ReadE under different
values of λ on FB15k-237 and WN18RR.

select the values of λ from {0.01, 0.05, 0.1, 0.2,537

0.5}. MRR and Hits@1 w.r.t λ on FB15k-237 and538

WN18RR datasets are illustrated in Fig 4.539

It is shown that as λ grows up, the performance540

of ReadE first increases and reaches the peak when541

λ = 0.05 and 0.1 on FB15k-237 and WN18RR re-542

spectively. Afterwards, if λ is larger, the improve-543

ment is neutralized and lost. This phenomenon544

shows that the performance is sensitive to the hyper-545

parameter λ. And in practice, we suggest that the546

loss weight for the contrastive loss can be set to547

[0.01, 0.1] for exploiting the potentialities of the548

model.549

5 Related Work550

Nowadays, knowledge graph embedding (KGE)551

methods play an important role in KGC. Given a552

triplet < e1, r, e2 >, TransE (Bordes et al., 2013)553

learns the representation of the entity and relation554

according to the translation-based constraint of555

e1 + r ≈ e2. Later, TransH (Wang et al., 2014),556

TransR (Lin et al., 2015), and TransD (Ji et al.,557

2015) extend the translation-based constraint to558

model more complex features. To further learn559

more expressive representation, ConvE (Dettmers560

et al., 2018) adopts multi-layer CNN architecture561

to capture the deeper correlation between e1 and562

r. Then, ConvKB (Nguyen et al., 2018) further563

extends ConvE to consider correlation between564

the entire triplet (e1, r, e2). InteractE (Vashishth565

et al., 2020) introduces more types of interactions566

between entity and relation in ConvE. For more567

details, we refer interested readers to some sur-568

veys (Wang et al., 2017; Nguyen, 2020).569

Although good performance can be observed570

in the above method, these methods process each571

triplet independently and ignore the latent informa-572

tion in the neighborhood of a given entity in the573

KG. To address this, Nathani et al. (2019) adopt574

the graph attention network to aggregate the infor- 575

mation from neighbors to obtain a meaningful en- 576

tity representation. Similarly, SACN (Shang et al., 577

2019) adopts the weighted graph convolutional net- 578

work to learn better entity representation. Further, 579

HRAN (Li et al., 2021) divides the KG into sub- 580

graph levels, where each sub-graph contains all the 581

entities but only 1 relation, to capture the hetero- 582

geneous features. Although these methods prove 583

the effectiveness of the introduction of encoders, 584

they only assign a unique representation to each 585

entity. In this paper, we aim at learning a relation- 586

dependent entity representation of which semantics 587

information will vary depending on the relation in 588

a given triplet. 589

Another approach to KGE is to adopt the Trans- 590

former architecture (Vaswani et al., 2017), e.g., KG- 591

BERT (Yao et al., 2019) and StAR (Wang et al., 592

2021). These models adopt the deep Transformer 593

architecture to learn a more meaningful representa- 594

tion and then advance the KGC, but they are usually 595

urgent for huge computing resources. 596

The intuition of our work seems somewhat sim- 597

ilar to TransR (Lin et al., 2015), but in fact quite 598

different from it. The TransR (Lin et al., 2015) 599

first assigns each entity a unique representation and 600

then projects the entity representation into the rela- 601

tion space. But in our work, instead of learning an 602

identical entity representation, we let the relation 603

deeply take part in the whole GCN-based encoding 604

stage to control the neighborhood aggregation, and 605

consequently produce the relation-dependent entity 606

representation. 607

6 Conclusion 608

In this paper, we proposed a novel knowledge graph 609

embedding method, namely ReadE. In ReadE, we 610

managed to introduce the relation-controlled gate 611

mechanism to control the information flow in the 612

aggregation step of the graph neural network, and 613

thus obtained relation-dependent entity representa- 614

tions. Further, we proposed a contrastive learning 615

method with both relation-level and entity-level 616

negative samples for the particular purpose of en- 617

hancing the meaningful semantic information of 618

entities’ representations. Extensive experiments 619

have shown that ReadE significantly outperformed 620

existing baselines. 621
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A Training Details771

According to the performance observed on the vali-772

dation set, We determine the batch size from {4, 32,773

128, 256, 1024}, the embedding size from {100,774

200, 300}, the learning rate from {1e-3, 5e-4, 5e-5,775

1e-5, 5e-6}, the dropout rate from {0.1, 0.3, 0.5},776

the temperature τ from {0.1, 0.5, 1, 2, 10}, and777

the λ from {0.01, 0.05, 0.1, 0.2, 0.5}, with the best778

used for evaluation on the test set. All experiments779

are conducted on a single 11G NVIDIA 2080Ti780

GPU. Each experiment is repeated 10 times, and781

the average results are reported.782

B KG Data Augmentations for Creating 783

Positive Pairs 784

In CL, a popular way to construct the positive pair 785

on graph-structure data is to corrupt the graph struc- 786

ture to change the adjacency information of each 787

entity, therefore defining the different views of 788

the same node as the positive pair. Inspired by 789

GraphCL (You et al., 2020), we design two types 790

of knowledge-graph-level data augmentations to 791

realize the corruption. 792

Entity Dropping. Given the knowledge graph Ge, 793

edge dropping will randomly discard certain por- 794

tion of entities (i.e., nodes) and all the edges asso- 795

ciated with them. Specifically, the probability of 796

an entity to be chosen is defined as: 797

pc(ei) ∝
1

d(i)
3
4

, (16) 798

where d(i) is the degree of the entity ei. The reason 799

for using the reciprocal is that removing nodes 800

with higher degree will impact more on the graph 801

structure. 802

Relation Dropping. Relation dropping will first 803

randomly choose a certain ratio of non-repetitive 804

relations and remove all the edges that are included 805

in these chosen relations. The definition of prob- 806

ability that a relation r to be chosen is similar to 807

(16) with replacing the degree with the number of 808

the edges that associated with r. 809

For each iteration, the random augmentations are 810

operated twice and two different views of an entity 811

ei will be generated. Also,we repeatedly random 812

sample entities and relations without replacement 813

to make sure that a certain ratio (named ad β) of 814

entities and relations are dropped. 815
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