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Abstract

Conventional knowledge graph embedding
methods learn semantic representations for en-
tities considering their intrinsic interactions
through powerful graph neural networks. How-
ever, previous methods represent each node
solely with a coarse-grained unique represen-
tation, regardless of the variance of empha-
sis of entity semantics by different relations.
To tackle this problem, we propose ReadE, a
method to learn relation-dependent entity rep-
resentations of which the semantic information
is emphasized by varied relations types. First,
we propose a relation-controlled gating mecha-
nism targeting on utilizing the relation to con-
trol the information flow in the aggregation step
of the graph neural network. Second, we pro-
pose a contrastive learning method with mix-
ing both relation-level and entity-level nega-
tive samples to enhance semantics preserved in
relation-dependent entity representations. Ex-
periments on three benchmarks show that our
proposed model outperforms all strong base-
lines. The code will be made open-sourced on
Github.

1 Introduction

Knowledge graph (KG) is a semantic network and
can be used to represent the relations of different
entities in the real world. Due to the existence of
huge amount of potential facts, existing KGs, like
NELL (Carlson et al., 2010) and YAGO3 (Mahdis-
oltani et al., 2015), mostly face the problem of
completing the missing relations, which is known
as the knowledge graph completion (KGC) task.
In this work, we mainly focus on the task of how
to predict the missing entity in incomplete triplets
like < entity, relation,? >.

To complete the KG, a fundamental task is to
learn informative and meaningful representations
for the entities and relations in KG, based on which
the missing links can be predicted. Given a triplet
< ey1,r,ez >, TransE (Bordes et al., 2013) pro-
posed to learn the representations that satisfy the

property of translation invariance e; + r & eo.
To increase the model’s representational ability,
in ConvE (Dettmers et al., 2018), a multi-layer
convolution network is used to predict missing en-
tities. However, all these methods process each
triplet independently, ignoring the the neighbor-
hood information of a given entity in the KG. To
leverage the connection structure information of
a graph, many methods have proposed to include
the neighbor’s information into the entity represen-
tation by using various kinds of graph neural net-
works (GNNs), like using graph attention network
(GAT) in Nathani et al. (2019), weighted graph con-
volutional network (WGCN) in Shang et al. (2019)
and the heterogeneous relation attention network
(HRAN) in Li et al. (2021).

Intuitively, an entity could contain informa-
tion from many different aspects. For exam-
ple, the entity MichaelJordan, who was born in
Brooklyn in 1963, contains information about
the date of birth and place of birth simultane-
ously. Therefore, when an incomplete triplet
< MichaelJordan, YearOfBirth,? > is given, if
the information related to the relation YearOfBirth
among many different aspects of information in the
entity MichaelJordan can be emphasized, it would
be easier to predict the ground-truth missing entity
1963. Therefore, it is important for every entity
to have a representation that is dependent on the
concrete relation. That is, when interacting with
different relations, an entity need to show different
representations. However, existing methods only
learn a static representation for an entity, irrespec-
tive of different relations they may interact with.
For relation-irrelevant representations, obviously,
different aspects of information cannot be shown
when interacting with different relations.

In this paper, we propose the representa-
tion learning method ReadE, a method to learn
Relation-dependent Entity representations. In the
proposed method, the representation of an entity



can vary according to the relation that is inter-
acted with. To this end, we first propose a relation-
controlled gating mechanism that is used to con-
trol which and how much information can flow
into the interested entity’s representation during
the aggregation step. Since a good relation rep-
resentation can make the relation-controlled gat-
ing mechanism work better, in contrast to previous
methods, an similarity-preserving relation represen-
tation is learned for every relation through GCN,
hoping that similar relations(e.g., PlaceOfBorn and
PlaceOfResidence) in the graph can share similar
representations, capturing the correlation among
different relations. Moreover, we further propose
to use contrastive learning to enhance the semantic
information in our relation-dependent entity rep-
resentation, in which a novel two-level generation
process of negative samples are proposed. Exten-
sive experiments are conducted on three bench-
marks for the knowledge graph completion task.
The experiments show that our ReadE outperforms
all strong baselines and further analyses verify the
validity of each proposed component.

2 Preliminary

Due to the strong ability to learn commonalities
among adjacent nodes for graph-structured data,
graph neural networks (GNN) have been widely
used to learn the entity representations of knowl-
edge graphs in recent years (Nathani et al., 2019;
Shang et al., 2019; Li et al., 2021). The GNN-based
models generally share the common architecture
of using a GNN to learn the entity representation
and then applying a score function to evaluate the
matching degree of a triplet <head entity, relation,
tail entity>. Because of the similarity among these
methods, here we take the SACN (Shang et al.,
2019) as an example to illustrate the basic princi-
ples behind the GNN-based entity representation
learning methods.

By viewing the KG as a entity graph G, in
which each node and edge represents an entity
and relation, respectively, SACN applies a L-layer
weighted graph convolutional network onto graph
G. to obtain entity representations

zl=0 Zamzéflwl_l +2 w1
JENE(1)

where ¢ = 1,2,--- L denotes the /-th layer of
GNN; N,(i) represents the neighbors of entity 4

in graph Ge; zf denotes the embedding of i-th en-
tity e; obtained at the ¢-th layer, with the initial
embeding zg € R% initialized from random Gaus-
sian noise; W € R *9e is the network parameter
at (¢ — 1)-th layer; the coefficient ; ; is used to
control the interaction strength between node ¢ and
s and o(-) is the sigmoid activation function. z/
from the L-th layer is then used to represent the
final embeding of the i-th entity e;, that is,

z; = ziL. )
Besides the entity embedding z;, SACN also learns
an embedding for every relation r. For the k-th
relation ry, its embedding h;, € R% is directly
initialized from a random Gaussian noise.

Using the entity embeddings z; and relation
embeddings h obtained above, for a given triplet
< €, T, ej >, the SACN evaluates a matching
score for it with a scoring function of the form

©(zi, hi, zj) = CNN ([zs; b)) We=[,  (3)

where C NN (-) denotes a convolutional network
applied to a 2 x d, matrix [2z;; hg]. The model
will compute the probability that the given triplet
< €, Tk, €j > 1S true as

plei, Tk, e5) = o(p(2i, by, 25)). “4)

Given a training dataset containing both of true
and false triplets, the model parameters and initial
embeddings can be optimized by minimizing the
following cross-entropy loss

Lo=—7 (ynlogpn+(1=yn)log(1=pn)) (5)

n=1

where p,, denotes the probability of truth for the
n-th triplet computed according to (4); and vy, is
the ground-truth label, which is 1 for true triplet
and O otherwise.

3 Methodologies

In this section, we propose our ReadE. First, we
present how to learn relation-dependent entity rep-
resentations through a relation-controlled gating
mechanism, then introduce a novel contrastive
learning method with mixing both relation-level
and entity-level negative samples to enhance the
entities’ semantic information.
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Figure 1: The overall framework of our de-
signed relation-dependent entity representation learning
method.

3.1 Relation-Dependent Entity
Representation Learning

Existing methods mainly focus on how to learn
good representations for the entities and relations
so that the relevance among the entities and rela-
tions in true triplets can be retained as much as
possible. However, in all of these existing meth-
ods, the learned representation of an entity is never
dependent on the relations, that is, the represen-
tation maintains one appearance under different
relations. However, no matter the problem is to pre-
dict the tail entity given the head entity and relation
< e;,Tk, ! >, or to predict the head entity given
the tail entity and relation <7,7y,e; >, the rela-
tion is always available. Thus, if we learn for every
entity a collection of representations, with each
corresponding to a relation, when facing the entity
prediction task < e;,rg,? > or <7,rp,e; >, we
can always choose to use the entity representation
under the specific relation 7. To the convenience
of presentation, in the following, we denote the
representation of ¢-th entity e; under relation r as
zZ; (7")

The relation-dependent entity representation un-
der relation r can be learned with a GNN as

l

_ 1 -1 -1
Zi(r) - ‘Ne(l)’ ]E;(Z) f(hrv Zj (T))W
+ f (2 ()W (©)

Here, f(-, -) is the interaction function between the
entity and relation and is designed as

f(hy, 271 ) =o(Woh, 4 g7 ) @ 217 (),
(7
where W/ € Rdexdr g/ ¢ R are parameters
to be learned, © is the feature-wise product. The
final entity representation z;(r) is obtained by ap-
plying the sigmoid function o to the output at the

last layer, i.e., z;(r) = o(zF(r)). The function
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Figure 2: The illustration of our graph construction
methods of GG, and G..

f(-,-) plays a role of relation-controlled gate that
can determine which dimension’s information in
the entity representation szl can be flowed into
neighboring nodes. If the relevance between the
relation and an entity is weak, the o(-) function
will output a value close to zero, cutting off the

information flowing into to the entity’s neighbors.

The reason why we design this relation-
controlled gate function is that KGs are usually
densely connected Lovelace et al. (2021), making
a GCN-based encoder prone to aggregate from its
neighbors the irrelevant information w.rt. the con-
sidered relation. Thus, as illustrated in Fig 1, as
aggregating the information from neighbors, we
first let the relation control which and how much
information can flow into the interested entity’s
representation, making the entity have different
representations under different relations.

Similarity-preserving Relation Representation
Learning The relation dependence in the pro-
posed entity representations is achieved by incor-
porating the relation representations hj into the
entities’ representation updating process through
a gating mechanism. However, the relation repre-
sentations used in the gating function (7) do not
contain any correlation information among differ-
ent relations as they are directly obtained from their
initial embeddings without going through any infor-
mation exchanging process. In practice, different
relations are related, rather than isolated, to each
other. For example, in KG, the relation PlaceOf-
Born and PlaceOfResidence are both related to the
city entity, suggesting they should share some com-
mon semantic information in their representations.
To have the relation representations to reflect this
kind of similarities, we propose to construct a rela-
tional graph G, from the KG by representing every
relation as a node and adding an edge between two
relations if they refer to a common entity, as illus-
trated in Fig 2. With the relation graph G, we can



now apply the graph neural networks (e.g., GCN)
on the graph to obtain relation representations

hi=c| > RITWI 4 RIIWIN )

FEN(T)

where ¢ = 1,2,---, L' denotes the ¢-th layer of
GCN; the initial embedding kY is initialized by ran-
dom Gaussian noise; N, (-) denotes the set of the
neighbors of relation r in G,; and W} € R%dr
is the GCN parameter. We set the output hf’ from
the last layer as the final relation representation,
that is,

h, =h" )

Thanks to the message-passing process during the
learning, the representation of a relation is not iso-
lated anymore, but is related to other relations that
share common entities. In this way, the common
information of different relations or their similarity
information can be manifested in the learned repre-
sentations. By substituting the similarity-preserved
relation representation (9) into entity representation
updating equation (6), the final relation-dependent
entity representation updating method is obtained.

3.2 Enhancing Semantics of Entity
Representation with Contrastive Learning

The link prediction task is to predict the missing
head or tail entity given the other two components.
Thus, similar to the classification tasks in images
and texts, if more semantic information of entities
are preserved in their representations, better pre-
diction performance can be expected. Technically,
contrastive learning can be understood as finding
pairs of positive and negative instances and then
trying to reducing the distance between positive
pairs while enlarging that between negative ones
under different contrast losses. Among them, the
NT-Xent contrast loss below is used most widely

1 2
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where ugm) represents the m-th view of the i-th

instance. Different views from the same instances
are generally treated as positive pairs, while views
from different instances are considered as negative
pairs. The key of using contrastive learning lies at
how to find effective positive and negative pairs,
which can determine whether semantic information

can be well preserved in the representations. For
images, both of the positive and negative pairs can
be easily obtained by applying transformations to
the same or different images. However, for graphs,
especially for knowledge graphs that contain the
additional information of relation, generating effec-
tive positive and negative pairs is not that straight-
forward at all.

To generate positive pairs, inspired by the works
that apply self-supervised learning on general
graphs (Velickovic et al., 2019; Xia et al., 2021;
Yu et al., 2021), we perturb the knowledge graph
by randomly dropping some nodes and edges and
then apply the aforementioned methods on the per-
turbed graph to obtain the entities’ representations

z,. Then, the representations z; and z, can be

7
viewed as a positive pair. For convenience of pre-
sentation, the two representations z; and z; are
deemed as two views of entity ¢, and are denoted
as zi(l) and zi(2). The concrete steps to perturb the
KG are described in the Appendix B.

As for the generation of negative pairs, a com-
mon method is to treat views of other entities as
negative samples. However, in order to learn more
meaningful semantic information in KG, we sug-
gest to collect negative samples in two different

levels, i.e., the relation level and the entity level.

Relation-Level Negative Samples For a relation-
dependent entity representation z;(r), we hope it
can retain discriminative semantic information of
entity ¢ under the specific relation of r. To strength
the objective that the semantic information con-
tained in z;(r) is exclusive to the relation r, we
propose to generate negative samples under the
same entity by using different relations r’ with
r’ # r. Specifically, for the representation of entity
e; under the relation 7, i.e., z;(r), its relation-level
negative samples is defined to be from the follow-
ing set

Z"r) = {zgl)(r'), zl@(r')

v 4 r}. (10)

Entity-Level Negative Samples For an entity
representation z;(r), in addition to include ex-
clusive semantic information comparing to entity
representations under other relations z;(r’) with
r’ # r, it should also contain exclusive semantic
information when comparing with other entities.
Therefore, we define the entity-level negative sam-
ples of z;(r) as

Zrom = {200,270 £}, ap



where we require the relation in other entities to
be the same as the considered entity. In the imple-
mentation, the entity j can just be the other entities
from the same mini-batch.

With the two negative sample sets, we can define
the final contrastive learning loss as

Dpos

g
Dpos +Y D(2"(r),u)
’LLEZi(T)

, (12)

whete Z,(r) 2 20°9(7) U Z9(0); and Dy 2
Dz (1), 22 (r)). Here, D=1 (k), 2 (k) is

» %4
calculated as

D) (k), 27 (k) = e (=2 G/,

(13)
where sim(-,-) denotes the cosine similarity be-
tween vectors, and 7 is a temperature parameter
controlling the concentration level of the distribu-
tion (Hinton et al., 2015). By averaging over a
mini-batch of size IV, the final contrastive loss £
is

N
Lo = % ST + ). (14)
i=1
By minimizing £.; with both the relation-level and
entity-level negative samples, our ReadE can learn
a entity representation preserving more meaningful
semantics. Finally, we unify the objective of the
KGC task and the contrastive learning as:

L= £c + )\ﬁclv (15)
where ) is a hyper-parameter used to control the
trade-off between the loss function.

4 Experiments

4.1 Datasets, Evaluation and Baselines

Datasets We evaluate the proposed ReadE model
on three benchmark datasets from different do-
mains. /) FB15k-237 (Toutanova and Chen, 2015)
contains the knowledge base relation triplets in-
cluding real-world named entities and the relation.
The FB15k-237 is the subset of the FB15K (Bor-
des et al., 2013), which is originally collected from
Freebase. Different from the FB15K, the inverse re-
lations are removed from FB15k-237. 2) WNISRR
consists of English phrases and the correspond-
ing semantic relations, which is derived from the
WNI18 (Bordes et al., 2013). Similar to FB15k-237,
the inverse relations and the leaky data are removed

Dataset FB15k-237 WNI18RR UMLS
Entities 14541 40943 135
Relations 237 11 46
Train Edges 272115 86835 5216
Dev Edges 17535 3034 652
Test Edges 20466 652 661

Table 1: The statistics of the three benchmark datasets.

from the WN18RR. 3) UMLS (Kok and Domingos,
2007), named Unified Medical Language System,
is a medical KG dataset. It contains 135 medical en-
tities and 46 semantic relations. Statistics of these
three datasets are listed in Table 1.

Evaluation Metrics In this work, we evaluate
the performance of our ReadE model on the link
prediction task, i.e., predicting the missing entity.
In the inference phase, given an incomplete triplet,
our model takes all the entities as the candidates
and outputs the probabilities over all the candi-
dates. Then each candidate is re-ranked according
to their probabilities to calculate the Mean rank
(MR), Mean reciprocal rank (MRR), and Hits@N.
MR is the average of the rankings of entities pre-
dicted correctly over all triplets while MRR targets
at the average of reciprocal rankings. Hits@N de-
notes the ratio of those predicted correctly entities
which are ranked in top-N. Also, We follow Shang
et al. (2019) to use the filtered setting Bordes et al.
(2013), which will filter out all valid triplets before
ranking.

In addition, we follow Sun et al. (2020) to adopt
the “RANDOM?” protocol to handle the situation
that the ground-truth triplets have the same scores
as the negative triplets, which is caused by the float
precision problem. Namely, the rankings of triplets
with the same scores will be randomly determined.

Baselines We compare our model with follow-
ing strong baselines: TransE (Bordes et al.,
2013), DistMult (Yang et al., 2015), Com-
plEx (Trouillon et al., 2016), ConvE (Dettmers
et al., 2018), ConvKB (Nguyen et al., 2018), R-
GCN (Schlichtkrull et al., 2018), RotatE (Sun
et al.,, 2019), SACN (Shang et al., 2019), In-
teractE (Vashishth et al., 2020), TorusE (Ebisu
and Ichise, 2020), PairRE (Chao et al., 2021),
HRAN (Li et al., 2021).



FB15k-237 WN18RR UMLS
Hits Hits Hits
Model @10 \ @] MRR @10 \ @1 MRR @10 MR
TransE 0.441 | 0.198 | 0.279 | 0.532 | 0.043 | 0.243 0.989 1.84
DistMult 0.446 | 0.199 | 0.281 | 0.504 | 0412 | 0.444 0.846 5.52
ComplEx 0.450 | 0.194 | 0.278 | 0.530 | 0.409 | 0.449 0.967 2.59
ConvE 0497 | 0.225 | 0312 | 0.531 | 0.419 | 0.456 | 0.990* | 1.00*
ConvKB 0421 | 0.155 | 0.243 | 0.520 | 0.400 | 0.430 — —
R-GCN 0.300 | 0.100 | 0.164 | 0.207 | 0.080 | 0.123 — —
RotatE 0.533 | 0.241 | 0.338 | 0.571 | 0428 | 0.476 — —
SACN 0.536 | 0.261 | 0.352 | 0.535 | 0427 | 0.470 — —
InteractE 0.535 | 0.263 | 0.354 | 0.528 — 0.463 — —
TorusE 0.484 | 0.217 | 0316 | 0.512 | 0422 | 0.452 — —
PairRE 0.544 | 0.256 | 0.351 — — — — —
HRAN 0.541 | 0.263 | 0.355 | 0.542 | 0.450 | 0.479 — —
ReadE 0.562 | 0.275 | 0.371 | 0.555 | 0.460 | 0.490 0.993 1.43
Improvements | 3.3% | 4.6% | 45% | 24% | 22% | 2.3% — —

Table 2: Performances on FB15k-237, WN18RR, and UMLS datasets. The performances of ConvE in the UMLS
dataset are taken from the author’s Github and are marked with *.

4.2 Experimental Results

The experimental results of our ReadE and the
strong baselines on FB15k-237, WN18RR, and
UMLS are shown in Table 2. From the table, the
proposed ReadE outperforms the strongest base-
line HRAN significantly, with relative MRR im-
provement of 4.5% and 2.3% on FB15K-237 and
WNI18RR, respectively. Among all the baselines,
SACN is the most similar one to our model. SACN
and our ReadE both utilize the Conv-TransE model
to predict the missing entity, and the main dif-
ference is that SACN learns a unique representa-
tion for each entity while ReadE learns a relation-
dependent entity representation instead. It can be
seen that our model outperforms SACN by 5.4%
and 4.3% in MRR on FB15K-237 and WN18RR re-
spectively, showing the effectiveness of the relation-
dependent entity representation.

On UMLS, ReadE shows comparable perfor-
mance with baselines. However, it is undeniable
that ConvE outperforms our model on UMLS un-
der the MR criterion. This may be due to the small
size of UMLS, which leads to the over-fitting issue
when injecting the graph structure information into
the entity representation. However, On FB15k-237
and WN18RR with the more complex graph struc-
ture, our ReadE outperforms ConvE by 18.9% and
7.5% under the MRR criterion.

4.3 Impacts of Different Components

In this section, we give a deep insight into how
much improvement different components con-
tribute to the model performance. To do this, we
evaluate the performance of variants of ReadE that
exclude one or more components that have a large
impact on the performance.

Specifically, three components included in
ReadE are considered, and we follow our model’s
pipeline to describe the three components in turn:
(1) Component C' . It uses the relation to Control
the neighborhood information aggregation during
the GCN-based encoding stage to generate the
relation-dependent entity representation. Without
it, every entity will be assigned a unique represen-
tation instead. (2) Component R. It means the
similarity-preserving Relation representation learn-
ing component which obtains the relation repre-
sentation by applying GCN on G,.. Without it, the
relation representation degenerates the one ignor-
ing its similarity information. (3) Component D.
The contrastive learning component with Double
levels of negative samples is designed to enhance
the semantics of the relation-dependent entity rep-
resentation. Dropping this component means that
we remove the contrastive loss £;. Please note that
the D component is based on the C' component, if
we drop the C' component, the D component will
be dropped simultaneously. Based on the above-
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Figure 3: Performances of variants of ReadE that exclude one or more components on FB15k-237 and WN18RR.

defined components, we propose four variants of
ReadE: ReadE w/o R, ReadE w/o D, ReadE w/o
C, ReadE w/o RC. The four variants are com-
pared with the original ReadE on FB15k-237 and
WN18RR and results are shown in Fig 3.

From the result, we can have the following ob-
servations. First, ReadE w/o C' which removes the
most basic component C' will induce a significant
performance drop when compared with the com-
plete ReadE, suggesting the importance of taking
the relation into account when learning the entity
representation. Second, without using the proposed
CL component (i.e., ReadE w/o D), an immedi-
ate performance drop is observed on FB15k-237
and WN18RR, which demonstrates the necessity
of utilizing the designed CL method to further im-
prove our relation-dependent entity representation.
Third, ReadE w/o C is better than ReadE w/o RC,
demonstrating that even if we solely learn a unique
relation-independent entity representation as pre-
vious methods do, improving the quality of the
relation representation can still improve the per-
formance. Also, ReadE w/o R works worse than
ReadE, which indicates that similarity-preserving
relation representations can better control the in-
formation aggregation from the entity’s neighbors.
Last but not least, if we remove all three compo-
nents (i.e., ReadE w/o RC'), the performance is
poorest, confirming the validity of the proposed
ReadE.

4.4 TImpacts of Different Levels of Negative
Samples

In this section, we evaluate the influence of relation-
level and entity-level negative samples in the
denominator of (14). MRR on FB15-237 and
WNI18RR datasets when using one of these two

FB15-237 | WNI8RR
w/o Entire L 0.364 0.484
+ Relation-Level 0.369 0.488
+ Entity-Level 0.366 0.486
+Entire L, | 0371 0.490

Table 3: MRR when using one of the relation-level
and entity-level negative samples on FB15-237 and
WNI8RR.

kinds of negative samples are shown in Table 3.
Note that no matter which negative samples we use,
the positive samples are unchanged and always be
considered when calculating the contrastive loss.

We can see that the performances brought by
CL with solely relation-level negative samples are
more excellent than the ones brought by CL with
solely entity-level negative samples on both FB15k-
237 and WN18RR. In this paper, given an entity,
CL with relation-level negative samples aims to
increase the distances between different relation-
dependent entity representations of it among differ-
ent relations, which is consistent with our motiva-
tion of learning an entity representation of which se-
mantics will vary depending on its relation. There-
fore, it may explain why CL with relation-level neg-
ative samples achieves a greater result. Also, the
model performs best if two levels of negative sam-
ples are considered together at the same time, indi-
cating the credibility of the proposed CL method
to enhance the entity’s semantics.

4.5 Impacts of Parameter )\

In ReadE, we introduce the hyper-parameter A ,
which controls the trade-off between the cross-
entropy loss and the contrastive loss. In this section,
we investigate the sensitivity of A\. We manually
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Figure 4: MRR and Hits@1 of ReadE under different
values of A on FB15k-237 and WN18RR.

select the values of A\ from {0.01, 0.05, 0.1, 0.2,
0.5}. MRR and Hits@1 w.r.t A on FB15k-237 and
WNI18RR datasets are illustrated in Fig 4.

It is shown that as A grows up, the performance
of ReadE first increases and reaches the peak when
A = 0.05 and 0.1 on FB15k-237 and WN18RR re-
spectively. Afterwards, if A is larger, the improve-
ment is neutralized and lost. This phenomenon
shows that the performance is sensitive to the hyper-
parameter \. And in practice, we suggest that the
loss weight for the contrastive loss can be set to
[0.01,0.1] for exploiting the potentialities of the
model.

5 Related Work

Nowadays, knowledge graph embedding (KGE)
methods play an important role in KGC. Given a
triplet < ey, r, ez >, TransE (Bordes et al., 2013)
learns the representation of the entity and relation
according to the translation-based constraint of
e1 + r = eo. Later, TransH (Wang et al., 2014),
TransR (Lin et al., 2015), and TransD (Ji et al.,
2015) extend the translation-based constraint to
model more complex features. To further learn
more expressive representation, ConvE (Dettmers
et al., 2018) adopts multi-layer CNN architecture
to capture the deeper correlation between e; and
r. Then, ConvKB (Nguyen et al., 2018) further
extends ConvE to consider correlation between
the entire triplet (e1, r, e3). InteractE (Vashishth
et al., 2020) introduces more types of interactions
between entity and relation in ConvE. For more
details, we refer interested readers to some sur-
veys (Wang et al., 2017; Nguyen, 2020).
Although good performance can be observed
in the above method, these methods process each
triplet independently and ignore the latent informa-
tion in the neighborhood of a given entity in the
KG. To address this, Nathani et al. (2019) adopt
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mation from neighbors to obtain a meaningful en-
tity representation. Similarly, SACN (Shang et al.,
2019) adopts the weighted graph convolutional net-
work to learn better entity representation. Further,
HRAN (Li et al., 2021) divides the KG into sub-
graph levels, where each sub-graph contains all the
entities but only 1 relation, to capture the hetero-
geneous features. Although these methods prove
the effectiveness of the introduction of encoders,
they only assign a unique representation to each
entity. In this paper, we aim at learning a relation-
dependent entity representation of which semantics
information will vary depending on the relation in
a given triplet.

Another approach to KGE is to adopt the Trans-
former architecture (Vaswani et al., 2017), e.g., KG-
BERT (Yao et al., 2019) and StAR (Wang et al.,
2021). These models adopt the deep Transformer
architecture to learn a more meaningful representa-
tion and then advance the KGC, but they are usually
urgent for huge computing resources.

The intuition of our work seems somewhat sim-
ilar to TransR (Lin et al., 2015), but in fact quite
different from it. The TransR (Lin et al., 2015)
first assigns each entity a unique representation and
then projects the entity representation into the rela-
tion space. But in our work, instead of learning an
identical entity representation, we let the relation
deeply take part in the whole GCN-based encoding
stage to control the neighborhood aggregation, and
consequently produce the relation-dependent entity
representation.

6 Conclusion

In this paper, we proposed a novel knowledge graph
embedding method, namely ReadE. In ReadE, we
managed to introduce the relation-controlled gate
mechanism to control the information flow in the
aggregation step of the graph neural network, and
thus obtained relation-dependent entity representa-
tions. Further, we proposed a contrastive learning
method with both relation-level and entity-level
negative samples for the particular purpose of en-
hancing the meaningful semantic information of
entities’ representations. Extensive experiments
have shown that ReadE significantly outperformed
existing baselines.
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A Training Details

According to the performance observed on the vali-
dation set, We determine the batch size from {4, 32,
128, 256, 1024}, the embedding size from {100,
200, 300}, the learning rate from {1e-3, Se-4, Se-5,
le-5, 5e-6}, the dropout rate from {0.1, 0.3, 0.5},
the temperature 7 from {0.1, 0.5, 1, 2, 10}, and
the A from {0.01, 0.05, 0.1, 0.2, 0.5}, with the best
used for evaluation on the test set. All experiments
are conducted on a single 11G NVIDIA 2080Ti
GPU. Each experiment is repeated 10 times, and
the average results are reported.
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B KG Data Augmentations for Creating
Positive Pairs

In CL, a popular way to construct the positive pair
on graph-structure data is to corrupt the graph struc-
ture to change the adjacency information of each
entity, therefore defining the different views of
the same node as the positive pair. Inspired by
GraphCL (You et al., 2020), we design two types
of knowledge-graph-level data augmentations to
realize the corruption.

Entity Dropping. Given the knowledge graph G,
edge dropping will randomly discard certain por-
tion of entities (i.e., nodes) and all the edges asso-
ciated with them. Specifically, the probability of
an entity to be chosen is defined as:

1

pe(ei) o , (16)

where d(7) is the degree of the entity e;. The reason
for using the reciprocal is that removing nodes
with higher degree will impact more on the graph
structure.

Relation Dropping. Relation dropping will first
randomly choose a certain ratio of non-repetitive
relations and remove all the edges that are included
in these chosen relations. The definition of prob-
ability that a relation r to be chosen is similar to
(16) with replacing the degree with the number of
the edges that associated with 7.

For each iteration, the random augmentations are
operated twice and two different views of an entity
e; will be generated. Also,we repeatedly random
sample entities and relations without replacement
to make sure that a certain ratio (named ad ) of
entities and relations are dropped.



