
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

GMSA: ENHANCING CONTEXT COMPRESSION VIA
GROUP MERGING AND LAYER SEMANTIC ALIGN-
MENT

Anonymous authors
Paper under double-blind review

ABSTRACT

Large Language Models (LLMs) have achieved impressive performance in a wide
range of Natural Language Processing (NLP) tasks. However, when applied to
long-context scenarios, they face two challenges, i.e., computational inefficiency
and redundant information. This paper introduces GMSA, a context compres-
sion method based on the encoder-decoder architecture, addressing these chal-
lenges by reducing input sequence length and redundant information. Structurally,
GMSA has two key components: Group Merging and Layer Semantic Align-
ment (LSA). Group merging is used to extract summary vectors evenly and effi-
ciently from the original context. Layer semantic alignment, on the other hand,
aligns the high-level abstract summary vectors with the low-level primary input
semantics, thus bridging the semantic gap between different layers. In the training
process, GMSA first learns soft tokens that contain nearly complete semantics via
autoencoder training. To further adapt GMSA to downstream tasks, we propose
Knowledge Extraction Fine-tuning (KEFT) to extract task-relevant knowledge
from these soft tokens. GMSA not only significantly outperforms the traditional
compression paradigm in context restoration but also achieves stable and signif-
icantly faster convergence with only a few encoder layers. We further evaluate
GMSA on question-answering, summarization, and general knowledge retention
capabilities across two backbones (i.e., LLaMA-2-7B and Qwen2-7B), demon-
strating its effectiveness and superiority, e.g., on the NaturalQuestions dataset,
GMSA can achieve approximately a 2x speedup in end-to-end inference while
outperforming various methods by a large margin.1

1 INTRODUCTION

Thanks to powerful reasoning and generalization capabilities, Large Language Models (LLMs) have
achieved remarkable performance across various Natural Language Processing (NLP) tasks (Tou-
vron et al., 2023; Team et al., 2025; DeepSeek-AI et al., 2025; Qwen et al., 2025). However, directly
applying LLMs to long-context scenarios presents two challenges: (1) Computational inefficiency.
When processing long prompts, the quadratic complexity of the Transformer’s attention mecha-
nism (Vaswani et al., 2017) results in long inference latency. (2) Redundant information. Much
redundant information in long-context scenarios can degrade model performance (Jiang et al., 2024).

Prompt compression methods address these two challenges by significantly reducing input length
and removing redundant information. Prompt compression can be categorized into hard prompt
compression (Li et al., 2023; Jiang et al., 2023; Pan et al., 2024; Jiang et al., 2024; Tang et al.,
2025; Zhou et al., 2025; Cao et al., 2025; Chen et al., 2025; Zhao et al., 2025) and soft prompt
compression (Mu et al., 2023; Chevalier et al., 2023; Ge et al., 2024; Zhang et al., 2024; ?). Hard
prompt compression involves deleting certain tokens from the original context to achieve compres-
sion. However, this explicit compression approach inevitably compromises semantic integrity. In
contrast, leveraging the inherent redundancy in high-dimensional vector data, soft prompt com-
pression learns a set of soft tokens with a length much shorter than the original context, enabling
compression while preserving nearly complete semantics.

1Core code implementing GMSA and the baselines is provided in the supplementary material.

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

Original Original Original Original

Summary VectorsSummary Vectors

LSA

Soft Tokens

LSALSALSA

Soft Tokens

✖️

Appending Tokens

✖️

Group Merging

Lif
e an

d
lov
e .

<C
T1>

<C
T2>

Lif
e an

d
lov
e .

(b) Traditional Compression Paradigm (c) Compression by GMSA

(a) Visualization of the attention matrix

MLP

Figure 1: Traditional Compression Paradigm vs. Compression by GMSA. (a) visualizes the atten-
tion matrix when processing “Life and love. <CT1> <CT2>”, where “<CT1>” and “<CT2>” are
randomly initialized tokens. “Original” shows the attention changes during processing of “life and
love.” across different layers. (b) refers to the traditional compression paradigm. It first learns sum-
mary vectors in an autoregressive manner layer by layer, and then employs coarse-grained semantic
alignment via a Multi-Layer Perceptron (MLP), where NEnc is the number of encoder layers. (c) de-
notes the compression paradigm of GMSA, which first learns summary vectors via group merging
and achieves semantic alignment between different layers via the Layer Semantic Alignment (LSA)
module.

Although existing soft prompt compression methods can effectively reduce the number of input to-
kens, they have two limitations: (1) Ueven semantic learning in autoencoder training. Soft prompt
compression typically relies on autoencoder-based training to ensure that the compressed represen-
tations retain as complete semantic information as possible (Ge et al., 2024; Cheng et al., 2024; Li
et al., 2025; Liao et al., 2025; Dai et al., 2025; Rau et al., 2025; Choi et al., 2025). As shown in
Figure 1, the compression process in traditional paradigm learns summary vectors layer by layer
via appending learnable tokens. During this process, LLM tends to aggregate information on a few
anchor tokens (Zhang et al., 2023; Xiao et al., 2023; Wang et al., 2023; Huang et al., 2024). Conse-
quently, the semantics of anchor tokens (i.e., “Life” and “.”) are emphasized layer by layer, resulting
in the semantics of the summary vectors being dominated by them while the semantics of other to-
kens are relatively diluted (i.e., uneven semantic learning). Because the compressed representation
overly depends on only a few tokens, fine-grained semantic details from the original context struggle
to be fully preserved, thereby increasing the difficulty for the autoencoder training (i.e., struggling to
reconstruct the original context) (see Appendices B, J, and K for detailed empirical validation); (2)
Ignoring the large semantic gap between different layers in the LLMs (Liu et al., 2024b; Jin et al.,
2025). The summary vectors, which represent high-level abstract semantics, are directly treated as
ordinary tokens (i.e., as low-level semantic information) and fed into the decoder during training
and testing, resulting in a large semantic gap. Therefore, two research questions naturally arise: (1)
How can we learn semantics more evenly and efficiently? (2) How can we bridge the large semantic
gap between different layers?

To this end, we propose GMSA (Context Compression via Group Merging and Layer Semantic
Alignment), a context compression framework based on the encoder-decoder architecture, which
addresses these limitations from a structural perspective. Specifically, we tackle the first limitation
through Group Merging. Group merging performs grouping and merging operations on the last
hidden state of the encoder (see Figure 1). In particular, Group merging treats each group equally
and merges all tokens within each group via averaging pooling, thereby avoiding information dilu-
tion and enabling more evenly semantic learning. This step not only helps preserve more complete
semantic information and is highly efficient, achieving more evenly and efficient semantic learning.

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

Subsequently, to address the second limitation, we bridge the gap between high-level abstract se-
mantic information and low-level primary input semantics by passing the summary vectors through
the Layer Semantic Alignment (LSA) module, which is composed of a few Transformer blocks
initialized with the weights of lower-layer decoder blocks (see Figure 2). This step allows the sum-
mary vectors containing high-level abstract semantic information to be mapped into a low-level
semantic space, thereby bridging the large semantic gap between different layers.

During the training process, GMSA first employs the autoencoder training to ensure that the gen-
erated soft tokens contain nearly complete semantic information. Building on this foundation, we
further propose Knowledge Extraction Fine-tuning (KEFT) to adapt GMSA to downstream tasks.
Specifically, we freeze the encoder and LSA (which, after autoencoder training, can already produce
soft tokens containing nearly complete semantics) and fine-tune the decoder to enhance its ability to
extract task-relevant knowledge from the soft tokens.

Our contributions are threefold: (1) Structurally, we introduce the GMSA, which evenly and effi-
ciently learns summary vectors through group merging and bridges the semantic gap between differ-
ent layers via a Layer Semantic Alignment (LSA) module; (2) In the training process, we propose
Knowledge Extraction Fine-tuning (KEFT) to guide the decoder to extract the knowledge required
by downstream tasks from soft tokens; (3) Experimental results on diverse tasks (e.g., QA, summa-
rization, general knowledge retention) demonstrate the effectiveness and superiority of our method,
e.g., on NaturalQuestions with an 8x compression constraint, GMSA achieves approximately 36%
higher Exact Match (EM) compared to the original input prompt, while also realizing a 2x end-to-
end speedup.

2 PROBLEM FORMULATION

Given a retrieval-augmented prompt X = (X ins, Xd1 , ..., Xdk , ..., XdK , Xq), where Xins,
{Xdk}Kk=1, and Xq represent the instruction, context, and input question respectively. The prompt
has a total token length L. The key aspect of the context compression system lies in generating a
compressed prompt X̃ with length L̃, where the compression rate is defined as τ = L

L̃
. Let y denote

the ground truth answer given the original input X , and ỹ denote the answer generated by the large
language model (LLM) when input with the compressed prompt x̃. We aim for the distributions of
y and ỹ to be similar under high compression rates τ . This can be formulated as:

min
x̃,τ

KL
(
P
(
ỹ | X̃

)
, P (y | X)

)
. (1)

Due to space limitations, we introduce related work in Appendix A.

3 GMSA

In this section, we elaborate on our proposed context compression framework, GMSA, which in-
cludes two key components: group merging and layer semantic alignment (LSA). GMSA undergoes
a two-stage training process: autoencoder training (see Figure 2) and Knowledge Extraction Fine-
tuning (KEFT) (see Figure 3). First, GMSA ensures that the generated soft tokens contain the com-
plete semantic representation of the original text through the autoencoder training process. Then, it
applies the knowledge contained in the soft tokens to downstream tasks via KEFT.

3.1 GROUP MERGING

Extraction of Semantic Features. First, we extract the semantic features of the original text
through a k-layer language modeling model as the encoder. The encoder is trained using LoRA.

H = Encoderk(X), (2)

where X is the original text and H is the obtained last hidden state.

Merging. We divide the obtained H into several groups according to the size of the compression
limit, as the group length LG (e.g., when the compression rate is 4, the group length is also 4). To

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

Teacher-forcing

 Restate the aforementioned Text.

Decoder

Encoder Tokenizer

Encoder LoRA

Decoder Tokenizer

Restatement InstructionLSA

Original Context

Layer k+1

Layer 1

Input

Layer N

Layer k
(k << N)

Decoder

Teacher-forcing

 Restate the aforementioned Text.

Decoder

Encoder Tokenizer

Encoder LoRA

Decoder Tokenizer

Restatement InstructionLSA

Original Context

Layer k+1

Layer 1

Input

Layer N

Decoder

Layer k
(k << N)

Teacher-forcing

 Restate the aforementioned Text.

Decoder

Encoder Tokenizer

Encoder LoRA

Decoder Tokenizer

Restatement InstructionLSA

Original Context

Layer k+1

Layer 1

Input

Layer N

Layer k
(k << N)

Decoder

Teacher-forcing

 Restate the aforementioned Text.

Decoder

Encoder Tokenizer

Encoder LoRA

Decoder Tokenizer

Restatement InstructionLSA

Original Context

Layer +1

Layer 1

Input

Layer

Decoder

Layer

Figure 2: The Autoencoder Training Process of GMSA. GMSA consists of an encoder and a decoder,
trained in an autoencoder manner using cross-entropy loss. GMSA first generates a set of summary
vectors that meet the compression rate by performing group merging on the last hidden state of the
encoder, and then achieves cross-layer semantic alignment through the Layer Semantic Alignment
(LSA) module, which is composed of several Transformer blocks initialized with the weights of
lower-layer decoder blocks. Remarkably, we find that using just a single layer of LSA can achieve
excellent semantic preservation (see Appendix C), hence kLSA << NDec.

this end, original text representations are organized as follows:

H =
[
H1 , . . . ,HGj , . . . ,HGNg

]
=

[
H1:LG

, . . . ,H(j−1)×LG:j×LG
, . . . ,HNd−LG+1:Nd

]
.

We take the average of each dimension of each group token to obtain the initial compressed repre-
sentation.

H̃ =
[
H̄G1 , ..., H̄Gi , ..., H̄GN

]
=

[
1

LG

∑
HG1 , ...,

1

LG

∑
HGi , ...,

1

LG

∑
HGN

]
,

where H̃ is the obtained initial compressed representation.

3.2 LAYER SEMANTIC ALIGNMENT

The Layer Semantic Alignment (LSA) module is used to complete the alignment from the soft
tokens generated by the encoder (high-level semantics) to the primary semantics of the decoder.
Given the significant differences in semantic representation between different layers of LLMs, the
LSA is trained via full fine-tuning.

m̃ = FkLSA(H̃), (3)
where H is the final compressed representation, FkLSA denotes Transformer blocks initialized with
the weights from the first k layers of the decoder, and m̃ denotes the generated soft tokens. Just one
layer of LSA is sufficient to achieve excellent semantic preservation (for space limitations, please
refer to Appendix C), so in this work, we can just set kLSA = 1.

3.3 AUTOENCODER TRAINING

The Autoencoder Training process, which aims to encode the complete information of the original
text into memory embeddings, is achieved through autoencoder-based training. We hope to mini-

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

mize the loss of the reconstructed text, which can be expressed as:

LAE = −
∑
i=1

log pϕ
(
xi | m̃,X ins, x<i

)
, (4)

where pϕ(·) is the Decoder probability distribution obtained after the softmax function, and xi is
the i-th token in the original text.

3.4 KNOWLEDGE EXTRACTION

3.4.1 KNOWLEDGE EXTRACTION PROCESS

Through autoencoder training, we can ensure that the soft tokens obtained via the encoder and LSA
contain complete semantic information. Therefore, the next challenge to address is: how to extract
knowledge from the existing soft tokens?

To guarantee that the generated soft tokens always retain adequate information, we freeze the en-
coder and LSA during the knowledge extraction process, allowing the decoder to complete Knowl-
edge Extraction (KE). Due to space limitations, we elaborate on the differences between KEFT and
the recent work LLoCO (Tan et al., 2024) in Appendix I.

We only train the decoder’s self-attention module. As shown in Figure 3, the i-th token decoding
progress can be formulated as:

Decoder(m̃1, m̃2, m̃3, m̃4, ..., m̃k−1, m̃k︸ ︷︷ ︸
soft tokens from the encoder

, q1, q2, ..., qn︸ ︷︷ ︸
question tokens

, a1, a2, ..., ai−1︸ ︷︷ ︸
answer tokens

). (5)

Let d denote the decoder’s hidden size, H ∈ R(k+n+i−1)×d denote input hidden states to the self-
attention module of the decoder in an arbitrary layer. The above hidden states will be projected into
queries, keys, and values as follows:

Q = WQH, K = WKH, V = WV H, (6)

where WQ, WK , and WV are the projection heads for knowledge extraction. Thus, we now for-
mally present our self-attention computation:

V ′ = softmax

(
mask

(
QKT

√
d

))
V , (7)

where V ′ denotes the output of the self-attention mechanism, which is a refined, context-aware
representation of the input values V after applying attention weights.

3.4.2 KNOWLEDGE EXTRACTION FINE-TUNING

After completing autoencoder training, we need to teach the decoder how to utilize the soft tokens.
We achieve this by performing full fine-tuning of the WQ, WK , and WV projection matrices in
each layer of the decoder, which can be specifically expressed as:

LKE = −
n∑

i=1

log pϕ (ai | m̃, q1, q2, ..., qn, a<i) , (8)

where pϕ(·) is the decoder probability distribution obtained after the softmax function, and ai de-
notes the i-th token in the predicted answer.

4 EXPERIMENTS

In this section, we attempt to answer the following research questions (RQs): (1) How effective is
GMSA in context restoration? (RQ1) (2) How does GMSA utilize knowledge compared with other
baselines? (RQ2) (3) How effective are the individual components of GMSA? (RQ3)

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

Teacher-forcing

Decoder

Encoder Tokenizer

Encoder

Decoder Tokenizer

QuestionLSA

Self-Attn

Layer Norm

Layer Norm

FNN

+

+

Original Context

Decoder Layer

Teacher-forcing

Decoder

Encoder Tokenizer

Encoder

Decoder Tokenizer

QuestionLSA

Self-Attn

Layer Norm

Layer Norm

FNN

+

+

Original Context

Decoder Layer

InputInput

Output

Teacher-forcing

Decoder

Encoder Tokenizer

Encoder

Decoder Tokenizer

QuestionLSA

Self-Attn

Layer Norm

Layer Norm

FNN

+

+

Original Context

Decoder Layer

Teacher-forcing

Decoder

Encoder Tokenizer

Encoder

Decoder Tokenizer

QuestionLSA

Self-Attn

Layer Norm

Layer Norm

FNN

+

+

Original Context

Decoder Layer

InputInput

Output

Figure 3: The process of Knowledge Extraction Fine-tuning (KEFT). By fine-tuning only the WQ,
WK , and WV in the attention module of the decoder while keeping other modules frozen, the
decoder performs teacher-forcing training using soft tokens m̃, question tokens, and the ground
truth answer.

4.1 SETTINGS

Training. GMSA involves a two-stage training process: autoencoder training and knowl-
edge extraction fine-tuning (KEFT). We utilize seven datasets: PwC (Ge et al., 2024), Natu-
ralQuestions (Liu et al., 2024a), 2WikiMQA (Ho et al., 2020), HotpotQA (Yang et al., 2018),
MMLU (Hendrycks et al., 2021a;b), NarrativeQA (Kočiský et al., 2018), GSM8K (Cobbe et al.,
2021), and CNN/DailyMail (See et al., 2017) (for more details about the datasets, please refer to
Appendix E). Among these, we use PwC to evaluate the performance of context restoration, while
the other datasets are used to measure knowledge application. The experimental results in Table 1
are obtained by training GMSA on a mixed dataset composed of NaturalQuestions, 2WikiMQA,
and HotpotQA, whereas results on other datasets are obtained by training GMSA on their respective
training datasets. During training, we randomly sample compression rates (i.e., 4x compression and
8x compression) for each training sample. Due to space constraints, detailed training settings can be
found in Appendix D.

Implementation. Built on LLaMA-2-7B (Chat) and Qwen2-7B (Instruct). The maximum lengths
for various trainings can be found in Appendix D. All baselines re-implemented from official code
for fair comparison.

Evaluation Metrics. For the context restoration task on the PwC dataset, we employ BLEU (Pa-
pineni et al., 2002), Prefix Exact Match, BERT Score (Zhang* et al., 2020), and ROUGE (Lin,
2004). For the QA tasks across NaturalQuestions, HotpotQA, and 2WikiMQA, we utilize Accu-
racy (Acc) (Liu et al., 2024a), Exact Match (EM) (Lewis et al., 2020), and F1 score (Yang et al.,
2018). We adopt the repository-provided metrics for MMLU (Hendrycks et al., 2021a;b). For other
datasets, we use BERT Score for CNN/DailyMail, Accuracy (Acc) for GSM8K, and F1 score for
NarrativeQA.

Baselines. For the task of context restoration, we train a Traditional Compression Paradigm
AutoEncoder (i.e., TCP-AE, see Appendix F for details) as a baseline, employing autoencoder
training and the same training hyperparameters as GMSA. We conduct comprehensive comparisons
with various methods in text compression and KV-cache compression fields on NaturalQuestions,
2WikiMQA, and HotpotQA, including: hard prompt compression (e.g., LongLLMLingua (Jiang
et al., 2024), LLMLingua-2-large (Pan et al., 2024)), soft prompt compression (e.g., AutoCompres-
sor (Chevalier et al., 2023), ICAE (Ge et al., 2024)), and KV-cache compression approaches (e.g.,
StreamLLM (Xiao et al., 2023), SnapKV (Li et al., 2024), Activation Beacon (Zhang et al., 2024)).

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

We also further compare with the strong baseline Activation Beacon on CNN/DailyMail, MMLU,
GSM8K, and NarrativeQA.

Table 1: Experimental results on three QA benchmark datasets. We bold the optimal and underline
the suboptimal of baselines. Acc refers to accuracy, EM refers to exact match, and F1 denotes the
F1 score. Closed-book indicates using only the input question as the input, while Original Prompt
indicates using all retrieved documents as the input. All backbones in this experiment are LLaMA-2-
7B, as some important baselines (e.g., Autocompressor, ICAE, and StreamLLM) are only available
in LLaMA-2-7B implementations.

Methods
NaturalQuestions 2WikiMQA HotpotQA

Acc EM F1 Acc EM F1 Acc EM F1

Closed-book 24.14 20.23 21.88 25.37 24.96 27.82 18.34 17.22 24.02
Original Prompt 55.40 15.07 26.81 37.54 30.84 37.79 44.21 34.35 47.49

4x compression constraint

KV-cache Compression Methods
StreamLLM 29.53 7.87 15.38 28.47 26.49 30.78 28.90 23.87 34.32
SnapKV 58.64 12.58 23.07 29.86 27.61 32.62 37.35 30.51 42.08
Activation Baecon 56.20 25.65 34.17 34.45 24.42 32.05 44.45 25.80 39.82

Prompt Compression Methods
AutoCompressor 13.79 0.00 1.34 41.56 0.00 8.07 20.98 0.01 6.80
ICAE 17.33 1.24 7.05 35.17 10.25 22.04 34.16 13.02 26.69
LongLLMLingua 53.41 39.62 43.03 33.88 31.71 37.05 40.31 35.55 48.68
LLMLingua-2-large 41.77 29.49 34.79 31.07 28.88 33.37 33.15 28.80 40.89

GMSA 69.98 58.12 57.59 55.95 49.55 57.17 53.52 44.60 59.31

8x compression constraint

KV-cache Compression Methods
StreamLLM 31.22 7.72 14.93 27.43 25.82 29.76 26.58 21.78 32.21
SnapKV 57.21 11.86 22.49 28.19 26.56 30.97 34.54 28.10 40.16
Activation Baecon 51.22 23.01 31.45 33.20 25.12 32.20 40.30 24.40 37.63

Prompt Compression Methods
AutoCompressor 17.51 0.00 1.63 41.76 0.00 8.09 22.04 0.00 6.93
ICAE 17.74 0.72 3.23 33.56 5.74 17.19 30.40 4.42 15.80
LongLLMLingua 46.55 36.65 40.72 31.53 29.93 34.08 34.73 31.60 43.85
LLMLingua-2-large 30.73 21.92 27.61 27.45 26.57 29.64 24.14 22.11 31.69

GMSA 62.34 51.00 53.09 51.33 46.67 54.22 46.52 38.39 53.77

4.2 MAIN RESULT

We highlight the findings of GMSA in two aspects: context restoration and downstream knowledge
application.

For RQ1, GMSA-AE significantly outperforms the Traditional Compression Paradigm AutoEn-
coder (TCP-AE) in context restoration. (Due to space constraints, we defer the detailed analysis
to Appendix B). In terms of quality (Figure 4), GMSA-AE surpasses TCP-AE by over 20% on
token-matching metrics (BLEU, ROUGE, Prefix EM2) and by 5% on semantic similarity (BERT
Score F1), indicating superior memory for both precise tokens and overall semantics. Furthermore,
GMSA-AE demonstrates substantially faster convergence and greater robustness (Figure 5). It con-

2Prefix Exact Match represents the ratio of the correctly matched prefix length to the total length. For
example, in a 512-token sequence, if the first 128 tokens are an exact match but the 129th token is not, the
Prefix Exact Match score is calculated as 128/512 = 0.25.

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

Table 2: Performance comparison between GMSA and Activation Beacon on CNN / DailyMail.
Dataset Backbone Comp. Constraint Activation Beacon GMSA

CNN / DailyMail LLaMA-2-7B 4x 87.0 89.1
8x 86.5 88.8

verges in 1000 steps, while TCP-AE fails to converge even after 5000 steps. Crucially, GMSA-AE’s
performance is robust to reducing encoder layers—a setting where TCP-AE’s performance severely
degrades. Appendix K and J provide further evidence, including perplexity scores and case studies.

Table 3: Performance on MMLU and GSM8K.

Dataset Methods Backbone

LLaMA-2-7B Qwen2-7B

MMLU
Original Prompt 46.3 65.6
Activation Beacon 45.1 64.3

GMSA 47.6 67.3

GSM8K
Original Prompt 27.6 81.3
Activation Beacon 27.8 81.9

GMSA 26.4 80.5

For RQ2, GMSA’s knowledge
utilization typically shows
significantly better performance
than other baselines across
various compression rate con-
straints (see Table 1, Table 2
and Table 3). In the KV-cache
compression methods, the
compressed representation
and the target model must be
consistent. Although this avoids
the problem of cross-layer
semantic alignment, it severely
limits the flexibility of applying
the compressed representation.
Compared with the KV-cache compression methods (i.e., streamLLM, SnapKV, and Activation
Beacon), GMSA achieves the best performance while maintaining flexibility. In contrast to prompt-
based compression algorithms, whether they are query-independent prompt compression algorithms
(i.e., ICAE, AutoCompressor, and LLMLingua-2-large) or query-dependent LongLLMLingua, their
performance is far below that of GMSA. It is worth noting that GMSA adopts a query-independent
compression mechanism and still significantly outperforms the query-dependent LongLLMLingua,
which sufficiently illustrates the effectiveness and superiority of GMSA. We further evaluate GMSA
on a diverse set of tasks, including summarization (CNN / DailyMail), general knowledge (MMLU)
and mathematical reasoning (GSM8K), with the strong baseline Activation Beacon.

As results in Table 2 and Table 3, GMSA demonstrates robust performance across tasks. On
generation-centric task such as summarization, GMSA consistently outperforms Activation Beacon
under both 4x and 8x compression contraint. We directly evaluate the decoder of GMSA (after two-
stage training) on multidisciplinary benchmark (MMLU) and mathematical reasoning (GSM8K) to
assess its ability to retain general knowledge in short texts. On MMLU, GMSA not only surpasses
the baseline but even outperforms the original uncompressed input, suggesting that compression
may help focus on core semantics. A slight performance drop is observed on GSM8K, which we
attribute to the lack of mathematical-domain data in GMSA’s training corpus.

Even in ultra-long scenarios (NarrativeQA, see Appendix H.2), GMSA not only achieves a 2x
speedup over the original prompt input, but also attains substantially higher F1 scores.

4.3 EFFICIENCY ANALYSIS

In this section, we discuss the efficiency of our proposed method. By using soft tokens instead of the
long original context to enhance the inference process, our method reduces the inference cost of the
original context during the generation process by a factor of r. The overall floating-point operations
(FLOPs) are calculated through two processes: compression and generation.

The compression process can be expressed as:

FLOPscomp = FEncoder(L) + FLSA

(⌈
L

r

⌉)

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

Here, L denotes the original context length, Lq denotes the question length, and F ∗(·) rep-
resents the FLOPs complexity measure for module ∗, with the specific calculation process
detailed in Appendix G. The symbol ∗ indicates the architectural components, where ∗ ∈
{Decoder,Encoder,LSA}. For the generation process, assuming the answer length is La, the
generation process requires La forward passes. The FLOPs for the i-th forward pass are given by:

FLOPsforward
i = FDecoder

(⌈
L

r

⌉
, Lq, i

)
Combining the costs of all components, the total FLOPs complexity is:

FLOPs =

La∑
i=1

FLOPsforward
i + FLOPscomp

Thanks to the ability to retain complete semantics with only a few encoder layers (e.g., 8 layers),
GMSA achieves the lowest end-to-end inference latency, which is approximately 2x faster than other
methods on NaturalQuestions and NarrativeQA (see Appendix H).

4.4 ABLATION STUDY

Table 4: The impact of different components in GMSA
on the PwC test set under 4x compression constraint,
measured by BERT Score F1.

Method BERT Score F1

Default 0.91

w/o Autoencoder Training 0.87
w/o Knowledge Extraction Fine-tuning 0.83
w/o Group Merging 0.82
w/o Layer Secmantic Alignment 0.84

w Qwen2-7B-Instruct 0.90

For RQ3, to investigate the impact of each
component in GMSA, we conduct the fol-
lowing four ablation experiments (see Ta-
ble 4): (1) Ours w/o Autoencoder Training
refers to performing knowledge extraction
fine-tuning on GMSA directly without
knowledge memory training. (2) Ours w/o
Knowledge Extraction Fine-tuning means
only performing Autoencoder-Training on
GMSA. (3) Ours w/o Group Merging in-
dicates that we replace group merging
with appending meaningless learnable to-
kens when generating summary vectors.
(4) Ours w/o Layer Semantic Alignment
means we do not use the Layer Semantic
Alignment module and directly employ summary vectors as soft tokens. (5) Ours w/ Qwen2-7B-
Instruct refers to replacing the decoder with Qwen2-7B-Instruct.

In summary, the removal of any single component leads to a significant drop in performance, which
fully demonstrates the necessity and effectiveness of each component. Removing Autoencoder
Training makes it difficult for GMSA to generate summary vectors that encompass complete se-
mantics, while eliminating Knowledge Extraction Fine-tuning causes GMSA to lose its ability to
extract knowledge in downstream tasks, both of which would deteriorate performance. Replacing
Group Merging with appending learnable tokens would increase the difficulty of learning, and dis-
carding the LSA module would result in misalignment between the high-level semantic information
represented by summary vectors and the low-level semantic space of the decoder’s input. When the
encoder and decoder are different, GMSA can still maintain high performance, which fully demon-
strates its robustness and generalization ability.

5 CONCLUSION

This paper introduces GMSA, a context compression framework based on an encoder-decoder struc-
ture. It evenly and efficiently learns summary vectors and bridges the significant gap between the
semantics representation of different layers via group merging, and a LSA module. GMSA first
undergoes autoencoder training to ensure that the generated soft tokens contain nearly complete se-
mantics, and then adapts to downstream tasks via KEFT. Experiments demonstrate that GMSA con-
verges quickly, can stably converge even with random sampling compression rates for each sample
and using only a few encoder layers, and has excellent context restoration capabilities. It outper-
forms existing baselines by a large margin in downstream tasks, paving the way for the efficient
application of LLMs.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

ETHICS STATEMENT

This paper introduces GMSA, a context compression framework based on the encoder-decoder ar-
chitecture. It effectively and efficiently learns summary vectors and bridges the significant gap
between different layers via group merging, and a LSA module. The data and models used in our
research are released under open-source licenses and sourced from open platforms. Although our
work may have various societal impacts, it does not introduce any additional ethical concerns com-
pared to existing text compression methods. Therefore, we believe it is unnecessary to specifically
highlight any particular ethical issues here.

REPRODUCIBILITY STATEMENT

Core code implementing GMSA and the baselines is provided in the supplementary material.

REFERENCES

Joshua Ainslie, James Lee-Thorp, Michiel de Jong, Yury Zemlyanskiy, Federico Lebron, and Sumit
Sanghai. GQA: Training generalized multi-query transformer models from multi-head check-
points. In The 2023 Conference on Empirical Methods in Natural Language Processing, 2023.
URL https://openreview.net/forum?id=hmOwOZWzYE.

William Brandon, Mayank Mishra, Aniruddha Nrusimha, Rameswar Panda, and Jonathan Ragan-
Kelley. Reducing transformer key-value cache size with cross-layer attention. In The Thirty-
eighth Annual Conference on Neural Information Processing Systems, 2024. URL https://
openreview.net/forum?id=M2UzLRoqic.

Yun-Hao Cao, Yangsong Wang, Shuzheng Hao, Zhenxing Li, Chengjun Zhan, Sichao Liu, and Yi-Qi
Hu. Efpc: Towards efficient and flexible prompt compression, 2025. URL https://arxiv.
org/abs/2503.07956.

Lizhe Chen, Binjia Zhou, Yuyao Ge, Jiayi Chen, and Shiguang Ni. Pis: Linking impor-
tance sampling and attention mechanisms for efficient prompt compression. arXiv preprint
arXiv:2504.16574, 2025.

Xin Cheng, Xun Wang, Xingxing Zhang, Tao Ge, Si-Qing Chen, Furu Wei, Huishuai Zhang, and
Dongyan Zhao. xRAG: Extreme context compression for retrieval-augmented generation with
one token. In The Thirty-eighth Annual Conference on Neural Information Processing Systems,
2024. URL https://openreview.net/forum?id=6pTlXqrO0p.

Alexis Chevalier, Alexander Wettig, Anirudh Ajith, and Danqi Chen. Adapting language models
to compress contexts. In Houda Bouamor, Juan Pino, and Kalika Bali (eds.), Proceedings of
the 2023 Conference on Empirical Methods in Natural Language Processing, pp. 3829–3846,
Singapore, December 2023. Association for Computational Linguistics. doi: 10.18653/v1/2023.
emnlp-main.232. URL https://aclanthology.org/2023.emnlp-main.232.

Eunseong Choi, June Park, Hyeri Lee, and Jongwuk Lee. Conflict-aware soft prompting for
retrieval-augmented generation. CoRR, abs/2508.15253, 2025.

Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian, Mark Chen, Heewoo Jun, Lukasz Kaiser,
Matthias Plappert, Jerry Tworek, Jacob Hilton, Reiichiro Nakano, Christopher Hesse, and John
Schulman. Training verifiers to solve math word problems. arXiv preprint arXiv:2110.14168,
2021.

Yuhong Dai, Jianxun Lian, Yitian Huang, Wei Zhang, Mingyang Zhou, Mingqi Wu, Xing Xie,
and Hao Liao. Pretraining context compressor for large language models with embedding-based
memory. In Wanxiang Che, Joyce Nabende, Ekaterina Shutova, and Mohammad Taher Pilehvar
(eds.), Proceedings of the 63rd Annual Meeting of the Association for Computational Linguistics
(Volume 1: Long Papers), pp. 28715–28732, Vienna, Austria, July 2025. Association for Com-
putational Linguistics. ISBN 979-8-89176-251-0. doi: 10.18653/v1/2025.acl-long.1394. URL
https://aclanthology.org/2025.acl-long.1394/.

10

https://openreview.net/forum?id=hmOwOZWzYE
https://openreview.net/forum?id=M2UzLRoqic
https://openreview.net/forum?id=M2UzLRoqic
https://arxiv.org/abs/2503.07956
https://arxiv.org/abs/2503.07956
https://openreview.net/forum?id=6pTlXqrO0p
https://aclanthology.org/2023.emnlp-main.232
https://aclanthology.org/2025.acl-long.1394/

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

DeepSeek-AI, Daya Guo, Dejian Yang, Haowei Zhang, Junxiao Song, Ruoyu Zhang, Runxin Xu,
Qihao Zhu, et al. Deepseek-r1: Incentivizing reasoning capability in llms via reinforcement
learning. CoRR, abs/2501.12948, 2025.

Tao Ge, Hu Jing, Lei Wang, Xun Wang, Si-Qing Chen, and Furu Wei. In-context autoencoder
for context compression in a large language model. In The Twelfth International Confer-
ence on Learning Representations, 2024. URL https://openreview.net/forum?id=
uREj4ZuGJE.

Mor Geva, Roei Schuster, Jonathan Berant, and Omer Levy. Transformer feed-forward layers
are key-value memories. In Marie-Francine Moens, Xuanjing Huang, Lucia Specia, and Scott
Wen-tau Yih (eds.), Proceedings of the 2021 Conference on Empirical Methods in Natural Lan-
guage Processing, pp. 5484–5495, Online and Punta Cana, Dominican Republic, November
2021. Association for Computational Linguistics. doi: 10.18653/v1/2021.emnlp-main.446. URL
https://aclanthology.org/2021.emnlp-main.446/.

Dan Hendrycks, Collin Burns, Steven Basart, Andrew Critch, Jerry Li, Dawn Song, and Jacob
Steinhardt. Aligning ai with shared human values. Proceedings of the International Conference
on Learning Representations (ICLR), 2021a.

Dan Hendrycks, Collin Burns, Steven Basart, Andy Zou, Mantas Mazeika, Dawn Song, and Jacob
Steinhardt. Measuring massive multitask language understanding. Proceedings of the Interna-
tional Conference on Learning Representations (ICLR), 2021b.

Xanh Ho, Anh-Khoa Duong Nguyen, Saku Sugawara, and Akiko Aizawa. Constructing a multi-
hop QA dataset for comprehensive evaluation of reasoning steps. In Donia Scott, Nuria Bel,
and Chengqing Zong (eds.), Proceedings of the 28th International Conference on Computational
Linguistics, pp. 6609–6625, Barcelona, Spain (Online), December 2020. International Com-
mittee on Computational Linguistics. doi: 10.18653/v1/2020.coling-main.580. URL https:
//aclanthology.org/2020.coling-main.580/.

Qidong Huang, Xiaoyi Dong, Pan Zhang, Bin Wang, Conghui He, Jiaqi Wang, Dahua Lin, Weiming
Zhang, and Nenghai Yu. Opera: Alleviating hallucination in multi-modal large language models
via over-trust penalty and retrospection-allocation. In Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition, pp. 13418–13427, 2024.

Huiqiang Jiang, Qianhui Wu, Chin-Yew Lin, Yuqing Yang, and Lili Qiu. LLMLingua: Com-
pressing prompts for accelerated inference of large language models. In Houda Bouamor,
Juan Pino, and Kalika Bali (eds.), Proceedings of the 2023 Conference on Empirical Meth-
ods in Natural Language Processing, pp. 13358–13376, Singapore, December 2023. Associa-
tion for Computational Linguistics. doi: 10.18653/v1/2023.emnlp-main.825. URL https:
//aclanthology.org/2023.emnlp-main.825.

Huiqiang Jiang, Qianhui Wu, , Xufang Luo, Dongsheng Li, Chin-Yew Lin, Yuqing Yang, and Lili
Qiu. LongLLMLingua: Accelerating and enhancing LLMs in long context scenarios via prompt
compression. In Lun-Wei Ku, Andre Martins, and Vivek Srikumar (eds.), Proceedings of the 62nd
Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp.
1658–1677, Bangkok, Thailand, August 2024. Association for Computational Linguistics. URL
https://aclanthology.org/2024.acl-long.91.

Mingyu Jin, Qinkai Yu, Jingyuan Huang, Qingcheng Zeng, Zhenting Wang, Wenyue Hua, Haiyan
Zhao, Kai Mei, Yanda Meng, Kaize Ding, Fan Yang, Mengnan Du, and Yongfeng Zhang. Explor-
ing concept depth: How large language models acquire knowledge and concept at different layers?
In Owen Rambow, Leo Wanner, Marianna Apidianaki, Hend Al-Khalifa, Barbara Di Eugenio,
and Steven Schockaert (eds.), Proceedings of the 31st International Conference on Computa-
tional Linguistics, pp. 558–573, Abu Dhabi, UAE, January 2025. Association for Computational
Linguistics. URL https://aclanthology.org/2025.coling-main.37/.

Tomáš Kočiský, Jonathan Schwarz, Phil Blunsom, Chris Dyer, Karl Moritz Hermann, Gábor Melis,
and Edward Grefenstette. The NarrativeQA reading comprehension challenge. Transactions of
the Association for Computational Linguistics, 6:317–328, 2018. doi: 10.1162/tacl_a_00023.
URL https://aclanthology.org/Q18-1023.

11

https://openreview.net/forum?id=uREj4ZuGJE
https://openreview.net/forum?id=uREj4ZuGJE
https://aclanthology.org/2021.emnlp-main.446/
https://aclanthology.org/2020.coling-main.580/
https://aclanthology.org/2020.coling-main.580/
https://aclanthology.org/2023.emnlp-main.825
https://aclanthology.org/2023.emnlp-main.825
https://aclanthology.org/2024.acl-long.91
https://aclanthology.org/2025.coling-main.37/
https://aclanthology.org/Q18-1023

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Patrick Lewis, Ethan Perez, Aleksandra Piktus, Fabio Petroni, Vladimir Karpukhin, Naman Goyal,
Heinrich Küttler, Mike Lewis, Wen-tau Yih, Tim Rocktäschel, et al. Retrieval-augmented gener-
ation for knowledge-intensive nlp tasks. Advances in neural information processing systems, 33:
9459–9474, 2020.

Yucheng Li, Bo Dong, Frank Guerin, and Chenghua Lin. Compressing context to enhance in-
ference efficiency of large language models. In Houda Bouamor, Juan Pino, and Kalika Bali
(eds.), Proceedings of the 2023 Conference on Empirical Methods in Natural Language Pro-
cessing, pp. 6342–6353, Singapore, December 2023. Association for Computational Linguis-
tics. doi: 10.18653/v1/2023.emnlp-main.391. URL https://aclanthology.org/2023.
emnlp-main.391/.

Yuhong Li, Yingbing Huang, Bowen Yang, Bharat Venkitesh, Acyr Locatelli, Hanchen Ye, Tianle
Cai, Patrick Lewis, and Deming Chen. Snapkv: Llm knows what you are looking for before
generation. arXiv preprint arXiv:2404.14469, 2024.

Zongqian Li, Yixuan Su, and Nigel Collier. 500xCompressor: Generalized prompt compression
for large language models. In Wanxiang Che, Joyce Nabende, Ekaterina Shutova, and Moham-
mad Taher Pilehvar (eds.), Proceedings of the 63rd Annual Meeting of the Association for Com-
putational Linguistics (Volume 1: Long Papers), pp. 25081–25091, Vienna, Austria, July 2025.
Association for Computational Linguistics. ISBN 979-8-89176-251-0. doi: 10.18653/v1/2025.
acl-long.1219. URL https://aclanthology.org/2025.acl-long.1219/.

Huanxuan Liao, Wen Hu, Yao Xu, Shizhu He, Jun Zhao, and Kang Liu. Beyond hard and soft:
Hybrid context compression for balancing local and global information retention, 2025. URL
https://arxiv.org/abs/2505.15774.

Chin-Yew Lin. Rouge: A package for automatic evaluation of summaries. In Text summarization
branches out, pp. 74–81, 2004.

Nelson F. Liu, Kevin Lin, John Hewitt, Ashwin Paranjape, Michele Bevilacqua, Fabio Petroni, and
Percy Liang. Lost in the middle: How language models use long contexts. Transactions of the
Association for Computational Linguistics, 12:157–173, 2024a. doi: 10.1162/tacl_a_00638. URL
https://aclanthology.org/2024.tacl-1.9/.

Zhu Liu, Cunliang Kong, Ying Liu, and Maosong Sun. Fantastic semantics and where to find them:
Investigating which layers of generative LLMs reflect lexical semantics. In Lun-Wei Ku, Andre
Martins, and Vivek Srikumar (eds.), Findings of the Association for Computational Linguistics:
ACL 2024, pp. 14551–14558, Bangkok, Thailand, August 2024b. Association for Computational
Linguistics. doi: 10.18653/v1/2024.findings-acl.866. URL https://aclanthology.org/
2024.findings-acl.866/.

Jesse Mu, Xiang Lisa Li, and Noah Goodman. Learning to compress prompts with gist tokens.
In Thirty-seventh Conference on Neural Information Processing Systems, 2023. URL https:
//openreview.net/forum?id=2DtxPCL3T5.

Zhuoshi Pan, Qianhui Wu, Huiqiang Jiang, Menglin Xia, Xufang Luo, Jue Zhang, Qingwei Lin,
Victor Ruhle, Yuqing Yang, Chin-Yew Lin, H. Vicky Zhao, Lili Qiu, and Dongmei Zhang.
LLMLingua-2: Data distillation for efficient and faithful task-agnostic prompt compression. In
Lun-Wei Ku, Andre Martins, and Vivek Srikumar (eds.), Findings of the Association for Computa-
tional Linguistics ACL 2024, pp. 963–981, Bangkok, Thailand and virtual meeting, August 2024.
Association for Computational Linguistics. URL https://aclanthology.org/2024.
findings-acl.57.

Kishore Papineni, Salim Roukos, Todd Ward, and Wei-Jing Zhu. Bleu: a method for automatic
evaluation of machine translation. In Proceedings of the 40th annual meeting of the Association
for Computational Linguistics, pp. 311–318, 2002.

Qwen, :, An Yang, Baosong Yang, Beichen Zhang, Binyuan Hui, Bo Zheng, Bowen Yu, Chengyuan
Li, Dayiheng Liu, Fei Huang, Haoran Wei, Huan Lin, Jian Yang, Jianhong Tu, Jianwei Zhang,
Jianxin Yang, Jiaxi Yang, Jingren Zhou, Junyang Lin, Kai Dang, Keming Lu, Keqin Bao, Kexin
Yang, Le Yu, Mei Li, Mingfeng Xue, Pei Zhang, Qin Zhu, Rui Men, Runji Lin, Tianhao Li,

12

https://aclanthology.org/2023.emnlp-main.391/
https://aclanthology.org/2023.emnlp-main.391/
https://aclanthology.org/2025.acl-long.1219/
https://arxiv.org/abs/2505.15774
https://aclanthology.org/2024.tacl-1.9/
https://aclanthology.org/2024.findings-acl.866/
https://aclanthology.org/2024.findings-acl.866/
https://openreview.net/forum?id=2DtxPCL3T5
https://openreview.net/forum?id=2DtxPCL3T5
https://aclanthology.org/2024.findings-acl.57
https://aclanthology.org/2024.findings-acl.57

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

Tianyi Tang, Tingyu Xia, Xingzhang Ren, Xuancheng Ren, Yang Fan, Yang Su, Yichang Zhang,
Yu Wan, Yuqiong Liu, Zeyu Cui, Zhenru Zhang, and Zihan Qiu. Qwen2.5 technical report, 2025.
URL https://arxiv.org/abs/2412.15115.

David Rau, Shuai Wang, Hervé Déjean, Stéphane Clinchant, and Jaap Kamps. Context embeddings
for efficient answer generation in retrieval-augmented generation. In Proceedings of the Eigh-
teenth ACM International Conference on Web Search and Data Mining, WSDM ’25, pp. 493–502,
New York, NY, USA, 2025. Association for Computing Machinery. ISBN 9798400713293. doi:
10.1145/3701551.3703527. URL https://doi.org/10.1145/3701551.3703527.

Abigail See, Peter J. Liu, and Christopher D. Manning. Get to the point: Summarization with
pointer-generator networks. In Proceedings of the 55th Annual Meeting of the Association for
Computational Linguistics (Volume 1: Long Papers), pp. 1073–1083, Vancouver, Canada, July
2017. Association for Computational Linguistics. doi: 10.18653/v1/P17-1099. URL https:
//www.aclweb.org/anthology/P17-1099.

Noam Shazeer. Fast transformer decoding: One write-head is all you need. arXiv preprint
arXiv:1911.02150, 2019.

Sijun Tan, Xiuyu Li, Shishir G Patil, Ziyang Wu, Tianjun Zhang, Kurt Keutzer, Joseph E. Gon-
zalez, and Raluca Ada Popa. LLoCO: Learning long contexts offline. In Yaser Al-Onaizan,
Mohit Bansal, and Yun-Nung Chen (eds.), Proceedings of the 2024 Conference on Empirical
Methods in Natural Language Processing, pp. 17605–17621, Miami, Florida, USA, November
2024. Association for Computational Linguistics. doi: 10.18653/v1/2024.emnlp-main.975. URL
https://aclanthology.org/2024.emnlp-main.975/.

Jiwei Tang, Jin Xu, Tingwei Lu, Zhicheng Zhang, YimingZhao YimingZhao, LinHai LinHai, and
Hai-Tao Zheng. Perception compressor: A training-free prompt compression framework in long
context scenarios. In Luis Chiruzzo, Alan Ritter, and Lu Wang (eds.), Findings of the Association
for Computational Linguistics: NAACL 2025, pp. 4093–4108, Albuquerque, New Mexico, April
2025. Association for Computational Linguistics. ISBN 979-8-89176-195-7. URL https:
//aclanthology.org/2025.findings-naacl.229/.

Kimi Team, Yifan Bai, Yiping Bao, Guanduo Chen, Jiahao Chen, Ningxin Chen, et al. Kimi k2:
Open agentic intelligence, 2025. URL https://arxiv.org/abs/2507.20534.

Hugo Touvron, Louis Martin, Kevin Stone, Peter Albert, Amjad Almahairi, Yasmine Babaei, Niko-
lay Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti Bhosale, Dan Bikel, Lukas Blecher,
Cristian Canton Ferrer, Moya Chen, Guillem Cucurull, David Esiobu, Jude Fernandes, Jeremy
Fu, Wenyin Fu, Brian Fuller, Cynthia Gao, Vedanuj Goswami, Naman Goyal, Anthony Hartshorn,
Saghar Hosseini, Rui Hou, Hakan Inan, Marcin Kardas, Viktor Kerkez, Madian Khabsa, Isabel
Kloumann, Artem Korenev, Punit Singh Koura, Marie-Anne Lachaux, Thibaut Lavril, Jenya Lee,
Diana Liskovich, Yinghai Lu, Yuning Mao, Xavier Martinet, Todor Mihaylov, Pushkar Mishra,
Igor Molybog, Yixin Nie, Andrew Poulton, Jeremy Reizenstein, Rashi Rungta, Kalyan Saladi,
Alan Schelten, Ruan Silva, Eric Michael Smith, Ranjan Subramanian, Xiaoqing Ellen Tan, Binh
Tang, Ross Taylor, Adina Williams, Jian Xiang Kuan, Puxin Xu, Zheng Yan, Iliyan Zarov, Yuchen
Zhang, Angela Fan, Melanie Kambadur, Sharan Narang, Aurelien Rodriguez, Robert Stojnic,
Sergey Edunov, and Thomas Scialom. Llama 2: Open foundation and fine-tuned chat models,
2023. URL https://arxiv.org/abs/2307.09288.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez,
Łukasz Kaiser, and Illia Polosukhin. Attention is all you need. Advances in neural informa-
tion processing systems, 30, 2017.

Lean Wang, Lei Li, Damai Dai, Deli Chen, Hao Zhou, Fandong Meng, Jie Zhou, and Xu Sun.
Label words are anchors: An information flow perspective for understanding in-context learn-
ing. In Houda Bouamor, Juan Pino, and Kalika Bali (eds.), Proceedings of the 2023 Conference
on Empirical Methods in Natural Language Processing, pp. 9840–9855, Singapore, December
2023. Association for Computational Linguistics. doi: 10.18653/v1/2023.emnlp-main.609. URL
https://aclanthology.org/2023.emnlp-main.609/.

13

https://arxiv.org/abs/2412.15115
https://doi.org/10.1145/3701551.3703527
https://www.aclweb.org/anthology/P17-1099
https://www.aclweb.org/anthology/P17-1099
https://aclanthology.org/2024.emnlp-main.975/
https://aclanthology.org/2025.findings-naacl.229/
https://aclanthology.org/2025.findings-naacl.229/
https://arxiv.org/abs/2507.20534
https://arxiv.org/abs/2307.09288
https://aclanthology.org/2023.emnlp-main.609/

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

Guangxuan Xiao, Yuandong Tian, Beidi Chen, Song Han, and Mike Lewis. Efficient streaming
language models with attention sinks. arXiv, 2023.

Fangyuan Xu, Weijia Shi, and Eunsol Choi. Recomp: Improving retrieval-augmented lms with
context compression and selective augmentation. In The Twelfth International Conference on
Learning Representations, 2024.

Zhilin Yang, Peng Qi, Saizheng Zhang, Yoshua Bengio, William Cohen, Ruslan Salakhutdinov,
and Christopher D. Manning. HotpotQA: A dataset for diverse, explainable multi-hop question
answering. In Ellen Riloff, David Chiang, Julia Hockenmaier, and Jun’ichi Tsujii (eds.), Proceed-
ings of the 2018 Conference on Empirical Methods in Natural Language Processing, pp. 2369–
2380, Brussels, Belgium, October-November 2018. Association for Computational Linguistics.
doi: 10.18653/v1/D18-1259. URL https://aclanthology.org/D18-1259/.

Xubing Ye, Yukang Gan, Xiaoke Huang, Yixiao Ge, and Yansong Tang. Voco-llama: Towards
vision compression with large language models. arXiv preprint arXiv:2406.12275, 2024.

Chanwoong Yoon, Taewhoo Lee, Hyeon Hwang, Minbyul Jeong, and Jaewoo Kang. CompAct:
Compressing retrieved documents actively for question answering. In Yaser Al-Onaizan, Mohit
Bansal, and Yun-Nung Chen (eds.), Proceedings of the 2024 Conference on Empirical Meth-
ods in Natural Language Processing, pp. 21424–21439, Miami, Florida, USA, November 2024.
Association for Computational Linguistics. doi: 10.18653/v1/2024.emnlp-main.1194. URL
https://aclanthology.org/2024.emnlp-main.1194/.

Peitian Zhang, Zheng Liu, Shitao Xiao, Ninglu Shao, Qiwei Ye, and Zhicheng Dou. Long context
compression with activation beacon. arXiv preprint arXiv:2401.03462, 2024.

Tianyi Zhang*, Varsha Kishore*, Felix Wu*, Kilian Q. Weinberger, and Yoav Artzi. Bertscore:
Evaluating text generation with bert. In International Conference on Learning Representations,
2020. URL https://openreview.net/forum?id=SkeHuCVFDr.

Zhenyu Zhang, Ying Sheng, Tianyi Zhou, Tianlong Chen, Lianmin Zheng, Ruisi Cai, Zhao Song,
Yuandong Tian, Christopher Ré, Clark Barrett, Zhangyang "Atlas" Wang, and Beidi Chen. H2o:
Heavy-hitter oracle for efficient generative inference of large language models. In A. Oh,
T. Naumann, A. Globerson, K. Saenko, M. Hardt, and S. Levine (eds.), Advances in Neu-
ral Information Processing Systems, volume 36, pp. 34661–34710. Curran Associates, Inc.,
2023. URL https://proceedings.neurips.cc/paper_files/paper/2023/
file/6ceefa7b15572587b78ecfcebb2827f8-Paper-Conference.pdf.

Yunlong Zhao, Haoran Wu, and Bo Xu. Leveraging attention to effectively compress prompts
for long-context llms. Proceedings of the AAAI Conference on Artificial Intelligence, 39(24):
26048–26056, Apr. 2025. doi: 10.1609/aaai.v39i24.34800. URL https://ojs.aaai.org/
index.php/AAAI/article/view/34800.

Fengwei Zhou, Jiafei Song, Wenjin Jason Li, Gengjian Xue, Zhikang Zhao, Yichao Lu, and Bailin
Na. Mooscomp: Improving lightweight long-context compressor via mitigating over-smoothing
and incorporating outlier scores. arXiv preprint arXiv:2504.16786, 2025.

14

https://aclanthology.org/D18-1259/
https://aclanthology.org/2024.emnlp-main.1194/
https://openreview.net/forum?id=SkeHuCVFDr
https://proceedings.neurips.cc/paper_files/paper/2023/file/6ceefa7b15572587b78ecfcebb2827f8-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2023/file/6ceefa7b15572587b78ecfcebb2827f8-Paper-Conference.pdf
https://ojs.aaai.org/index.php/AAAI/article/view/34800
https://ojs.aaai.org/index.php/AAAI/article/view/34800

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

A RELATED WORK

Hard Prompt Compression. Hard prompt compression refers to the removal of some less impor-
tant tokens from the original prompt or the generation of summaries to achieve compression. The
compressed prompt is explicit text. It can mainly be divided into the following four categories: (1)
Perplexity-based methods. Selective-Context (Li et al., 2023) removes certain lexical units based
on perplexity, while methods such as LLMLingua (Jiang et al., 2023), LongLLMLingua (Jiang
et al., 2024), and Perception Compressor (Tang et al., 2025) adopt a coarse-to-fine framework to
gradually eliminate less important parts. (2) Bidirectional semantic-based methods. Considering
the unidirectional nature of perplexity, some approaches employ bidirectional semantic information
for compression, such as LLMLingua-2 (Pan et al., 2024), MOOSComp (Zhou et al., 2025), and
EFPC (Cao et al., 2025). (3) Methods based on intrinsic attention mechanisms. Compression is
achieved through the intrinsic attention mechanisms of LLMs, such as PIS (Chen et al., 2025) and
AttnComp (Zhao et al., 2025). (4) Summary generation. This involves generating linguistic sum-
maries that contain useful information for long text content, such as CompACT (Yoon et al., 2024)
and RECOMP (Xu et al., 2024). Although these methods improve the computational efficiency of in-
ference through prompt compression, they compromise the semantic integrity of the original prompt.

Soft Prompt Compression. Soft prompt compression has become a research hotspot in the field
of Natural Language Processing (NLP). The goal of soft prompt compression is to learn a set of soft
tokens (with a sequence length much shorter than the original text) to achieve compression, where
the compressed soft prompts cannot be explicitly converted into text. Among them, xRAG (Cheng
et al., 2024) focuses on processing short texts and extreme compression. More recent methods learn
soft tokens by appending randomly initialized learnable tokens, including GIST (Mu et al., 2023),
AutoCompressor (Chevalier et al., 2023), 500xCompressor (Li et al., 2025), ICAE (Ge et al., 2024),
LLoCO (Tan et al., 2024), and others (Ye et al., 2024; Liao et al., 2025; Dai et al., 2025; Rau et al.,
2025; Choi et al., 2025). This leads to the semantics of anchor tokens in the input sequence being
increasingly emphasized layer by layer, while the semantics of other tokens are diluted and cannot
be fully preserved in the summary vectors. Moreover, these methods only use Multi-Layer Percep-
trons (MLPs) for coarse-grained semantic alignment when semantic alignment is required, ignoring
the significant differences in representations across different layers of large models. Our proposed
method evenly and effectively extracts summary vectors through group merging. By employing a
group average pooling merging strategy, it addresses the issue of uneven semantic learning. Addi-
tionally, it bridges the large semantic gap between different layers of LLMs through a Layer Seman-
tic Alignment (LSA) module.

KV-cache Compression. Research in this direction focuses on directly compressing the KV-cache
in each transformer layer, considering factors such as layer-wise compression, attention heads, the
importance of different KVs, or token-level approaches. Examples include CLA (Brandon et al.,
2024), which shares KV-cache across layers; GQA (Ainslie et al., 2023) and MQA (Shazeer,
2019), which reduce the number of heads for keys and values; StreamLLM (Xiao et al., 2023)
and SnapKV (Li et al., 2024), which discard unimportant KVs for efficient compression; and Acti-
vation Beacon, which appends some meaningless tokens (shorter than the original length) and learns
compressed representations in the KV-cache of these tokens for each layer. While KV-cache-based
compression methods can accelerate inference, they require the compression and response models
to be identical. This limitation restricts practical applications and increases resource consumption,
e.g., in prompt compression for large models (e.g., 70B), a smaller model (e.g., 7B) cannot be used
as the compression model; instead, the same oversized model must be employed.

B CONTEXT RESTORATION CAPABILITY

In the context restoration task, GMSA-AE significantly outperforms the Traditional Compression
Paradigm AutoEncoder (TCP-AE) in multiple aspects, including restoration quality (see Figure 4),
convergence speed, and robustness (see Figure 5). As shown in Figure 4, GMSA-AE outperforms
TCP-AE in all evaluation metrics. BLEU Score (Papineni et al., 2002), Prefix Exact Match, and
ROUGE (Lin, 2004) are token-matching-based metrics, and GMSA-AE’s performance in these met-
rics is at least 20% higher than TCP-AE under all compression constraints, indicating that GMSA-
AE has a stronger ability to precisely remember each token. The BERT Score F1 (Zhang* et al.,

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

128 256 512
Sequence Length

0.5

0.6

0.7

0.8

0.9

Sc
or

e

BLEU Score

128 256 512
Sequence Length

0.2

0.4

0.6

0.8

Sc
or

e

Prefix Exact Match

128 256 512
Sequence Length

0.93

0.94

0.95

0.96

0.97

0.98

0.99

1.00

Sc
or

e

BERT Score F1

128 256 512
Sequence Length

0.70

0.75

0.80

0.85

0.90

0.95

1.00

Sc
or

e

ROUGE-1

128 256 512
Sequence Length

0.6

0.7

0.8

0.9

1.0

Sc
or

e

ROUGE-2

128 256 512
Sequence Length

0.65

0.70

0.75

0.80

0.85

0.90

0.95

1.00

Sc
or

e

ROUGE-L

Performance Metrics Across Different Sequence Lengths and Compression Rates

GMSA-AE 4x GMSA-AE 8x TCP-AE 4x TCP-AE 8x

Figure 4: GMSA-AE v.s. TCP-AE on the context restoration task. Sequence Length represents
different context restoration lengths (i.e., 128, 256, 512), and the models are trained with a maximum
length of 512.

0 2500 5000 7500 10000 12500 15000 17500 20000
Steps

0

2

4

6

8

Lo
ss

(a) Training Loss Across Different Encoder Layers

TCP-AE (32 layers)
TCP-AE (16 layers)
TCP-AE (8 layers)
GMSA-AE (32 layers)
GMSA-AE (16 layers)
GMSA-AE (8 layers)

4x Compression Rate 8x Compression Rate
Compression Rate

0.95

0.96

0.97

0.98

0.99

1.00

Sc
or

e

0.9970

0.9854

0.9957

0.9866

0.9970

0.9854

(b) Average BERT Score F1 of GMSA-AE Across Different Encoder Layers

8 Layers 16 Layers 32 Layers

Analysis of the Effectiveness of Different Encoder Layers

Figure 5: Analysis of the Effectiveness of Different Encoder Layers. (a) represents the comparison
of convergence speed between GMSA-AE with different encoder layers and TCP-AE. (b) denotes
the impact of different encoder layers on the semantic retention of GMSA-AE. The average BERT
Score F1 refers to the average F1 score across different context restoration lengths (i.e., 128, 256,
and 512).

2020), which measures semantic similarity and reflects the model’s ability to remember overall
semantics, is also about 5% higher for GMSA-AE than TCP-AE. As shown in Figure 5, GMSA-
AE converges much faster than TCP-AE. GMSA-AE convergence around 1000 training steps, while
TCP-AE has not fully converged even after 5000 steps. Moreover, significantly reducing the number
of encoder layers (e.g., to 8 encoder layers) makes TCP-AE converge much more slowly. In contrast,
GMSA-AE demonstrates robustness under different settings. In terms of convergence speed, reduc-
ing the number of encoder layers even further accelerates the convergence of GMSA-AE: versions
with 8 or 16 encoder layers converge faster than those with 32 layers, possibly because the cross-
layer semantic alignment challenge is alleviated with fewer encoder layers. From the perspective
of semantic retention, the Average BERT Score F1 of different encoder layers remains consistent
under various compression rates, indicating that even with a small number of encoder layers (e.g.,
8 layers), GMSA-AE can still effectively retain semantic information and complete high-quality
memory tasks. We also evaluate the quality of the reconstructed text using perplexity, and the results
show that GMSA-AE significantly outperforms TCP-AE (see Appendix K). Moreover, we conduct

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

128 256 512
Sequence Length

0.0

0.2

0.4

0.6

0.8

1.0
Sc

or
e

BLEU Score

128 256 512
Sequence Length

0.0

0.2

0.4

0.6

0.8

Sc
or

e

Prefix Exact Match

128 256 512
Sequence Length

0.5

0.6

0.7

0.8

0.9

1.0

Sc
or

e

BERT Score F1

128 256 512
Sequence Length

0.2

0.4

0.6

0.8

1.0

Sc
or

e

ROUGE-1

128 256 512
Sequence Length

0.0

0.2

0.4

0.6

0.8

1.0

Sc
or

e

ROUGE-2

128 256 512
Sequence Length

0.2

0.4

0.6

0.8

1.0

Sc
or

e

ROUGE-L

Performance Metrics Across Different LSA Layers and Compression Rates

1 LSA Layer 4x
1 LSA Layer 8x

3 LSA Layers 4x
3 LSA Layers 8x

5 LSA Layers 4x
5 LSA Layers 8x

Figure 6: The impact of different layers of LSA on semantic retention in GMSA-AE. Sequence
Length represents different context restoration lengths (i.e., 128, 256, 512), and the model is trained
with a maximum length of 512.

specific case studies to further verify the performance gap between GMSA-AE and TCP-AE (see
Appendix J).

C IMPACT OF DIFFERENT LAYER SEMANTIC ALIGNMENT LAYERS

We conduct experiments to investigate the impact of layer semantic alignment (LSA) module with
varying numbers of layers on the retention of complete semantics, and the results are shown in
Figure 6. We can draw the following conclusions: (1) Only one layer of LSA is sufficient to achieve
good retention of complete semantics (with a BERT Score F1 close to 1, and it already performs
the best among different numbers of LSA layers). (2) When the number of LSA layers becomes too
high, e.g., using five layers of LSA, it may actually lead to a decrease in the GMSA’s ability to retain
semantics. This is likely because as the LSA module becomes deeper, it contains more high-layer
semantics and fewer low-layer semantics, thereby increasing the difficulty of semantic alignment.

D IMPLEMENTATION DETAILS

We train GMSA on two NVIDIA A100 GPUs (80GB) using bf16 precision. For the PwC dataset,
we train on the full dataset with 10,000 steps for Autoencoder Training and 5,000 steps for Knowl-
edge Extraction Fine-tuning (KEFT). For the QA datasets (i.e., NaturalQuestions, 2WikiMQA, and
HotpotQA), we sample 15,000 examples from each to form the training set, using 20,000 steps for
Autoencoder Training and 1,000 steps for KEFT, respectively. Other parameters are listed in Table 5.

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

Table 5: Training Hyperparameters.
Hyperparameter Value

Optimizer AdamW

Learning Rate 1× 10−4 (Autoencoder Training)
1× 10−5 (KEFT)

Batch Size 4 (Autoencoder Training)
16 (KEFT)

Scheduler Linear
Gradient Clip Norm 2.0

The relationship between the maximum training token length and the dataset is shown in Table 6.

Table 6: The relationship between the maximum token length and the dataset.
Dataset Maximum Training Token Length

PwC 512
CNN / Daily 1024

NaturalQuestions, 2WikiMQA, HotpotQA 3072
NarrativeQA 32768

E DATASETS DETAILS

PwC dataset. In the PwC dataset (Ge et al., 2024), each sample is a triplet (context, prompt,
answer), where the context is sampled from the Pile and the prompt and answer are generated by
GPT-4. The training set contains 241,564 samples, the test set contains 18,146 samples, and the
average token length of the dataset is 6093.

NaturalQuestions. NaturalQuestions (Liu et al., 2024a), in which each question corresponds to
20 relevant documents, 19 of which are distractors and only one contains the ground truth answer.
The training set contains 75,322 samples, the test set contains 2,655 samples, and the average token
length of the dataset is 3,253.

HotpotQA. HotpotQA (Yang et al., 2018) is a two-hop reasoning dataset, where the answers are
scattered across two documents. Specifically, each question corresponds to 10 relevant documents,
two of which are the ground truth documents. The training set contains 89,609 samples, the test set
contains 7,345 samples, and the average token length of the dataset is 1,567.

2WikiMQA. Compared with HotpotQA, 2WikiMQA (Ho et al., 2020) includes more complex
reasoning paths, and the combination of structured and unstructured data, usually involving two
or more hops and having higher difficulty. The training set contains 167,454 samples, the test set
contains 12,576 samples, and the average token length of the dataset is 1098.

MMLU. MMLU (Hendrycks et al., 2021a;b) is a benchmark designed to measure a language
model’s knowledge and problem-solving abilities across a wide range of subjects, including human-
ities, social sciences, STEM, and more. It consists of multiple-choice questions that cover 57 diverse
tasks, aiming to evaluate a model’s general competence in understanding and responding to complex
prompts that require factual recall, reasoning, and common sense.

GSM8K. GSM8K (Cobbe et al., 2021) is a dataset of elementary mathematics word problems,
specifically curated to test the reasoning capabilities of language models. Each problem requires
multi-step arithmetic operations and logical deduction to arrive at the correct answer. The dataset is

3We uniformly use the tokenizer of LLaMA-2-7B (chat) to calculate the token length of the text.

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

Teacher-forcing

 Restate the aforementioned Text.

Decoder

Encoder LoRA

Decoder Tokenizer

Restatement Instruction

MLP

Original Context Appending Tokens

Teacher-forcing

 Restate the aforementioned Text.

Decoder

Encoder LoRA

Decoder Tokenizer

MLP

Original Context Appending Tokens

Teacher-forcing

 Restate the aforementioned Text.

Decoder

Encoder LoRA

Decoder Tokenizer

MLP

Original Context Appending Tokens

Teacher-forcing

 Restate the aforementioned Text.

Decoder

Encoder LoRA

Decoder Tokenizer

MLP

Original Context Appending Tokens

Figure 7: The training process of Traditional Compression Paradigm Autoencoder (TCP-AE). The
traditional compression paradigm first adds appending tokens after the Original Context, then em-
ploys an encoder (e.g., LLaMA) to autoregressively learn summary vectors. These summary vectors
are then processed through a Multilayer Perceptron (MLP) layer to achieve coarse-grained semantic
alignment, resulting in soft tokens. On the decoder side, context restoration training is conditioned
on soft tokens, with cross-entropy used as the final loss.

designed to be challenging enough to distinguish between models with strong quantitative reasoning
skills and those that struggle with sustained logical deduction.

NarrativeQA. NarrativeQA (Kočiský et al., 2018) is a question-answering dataset focused on
understanding long-form narratives. It comprises pairs of books and questions about their content,
where the answers often require synthesizing information from multiple parts of the text. The dataset
aims to assess a model’s ability to comprehend complex storylines, identify key characters and
events, and answer questions that go beyond simple fact retrieval.

CNN / DailyMail. CNN / DailyMail (See et al., 2017) is a popular dataset for abstractive sum-
marization, consisting of news articles from CNN and the Daily Mail. Each article is paired with
a human-written summary, acting as the ground truth. The task involves generating a concise and
coherent summary of the input news article, requiring models to identify the most important infor-
mation and rephrase it effectively.

F TRADITIONAL COMPRESSION PARADIGM AUTOENCODER TRAINING

As shown in Figure 7, to fully measure the context restoration capability of GMSA after Autoen-
coder Training, we conduct Autoencoder Training following the traditional compression paradigm,
using the same training method as GMSA (i.e., randomly sampling compression rates for training
examples and other hyperparameters in the training process are also the same) to obtain Traditional
Compression Paradigm Autoencoder (TCP-AE)4.

G FLOPS CALCULATION

Let Lin denote the input sequence length. We calculate the floating-point operations (FLOPs) for a
single layer can be decomposed into Attention and Feed Forward Network (FFN) operations. The
calculation process for the Attention operation is:

4The entire structure is similar to the pretraining structure of ICAE, but the training paradigm is different.
For example, we randomly sample the compression rate for training, which increases the difficulty of training.

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2026

FAttention(Lin) = F qkv(Lin) + F qk(Lin) + F softmax(Lin) + F av(Lin) + F out(Lin) ,

F qkv(Lin) = 2× Lin ×D × d× hq + 2× 2× Lin ×D × d× hk ,

F qk(Lin) = 2× hq × Lin × Lin × d ,

F softmax(Lin) = hq × Lin × Lin ,

F av(Lin) = 2× hq × Lin × Lin × d ,

F out(Lin) = 2× Lin × d× hq ×D .

(9)

The calculation process for the FFN can be formulated as:

FFFN (Lin) = Fup(Lin) + F down(Lin) ,

Fup(Lin) = 2× Lin ×D × 2× I ,

F down(Lin) = 2× Lin ×D × I .

(10)

Denote the original context length as L, the compression rate as r, question length as Lq , answer
length as La, the number of layers in the LSA as NLSA, the number of decoder layers as NDec, the
number of encoder layers as NEnc, query head number as hq , key/value head number as hk, the
hidden size as D, head dimension as d, intermediate size as I , and vocabulary size as V . Therefore,
the FLOPs of the encoder, LSA, and decoder can be expressed as:

FEncoder(L) =
(
FAttention(L) + FFFN

E (L)
)
×NEnc ,

FLSA(⌈L/r⌉) =
(
FAttention
L (⌈L/r⌉) + FFFN

L (⌈L/r⌉)
)
×NLSA ,

FDecoder (⌈L/r⌉, Lq, La) =

La∑
i=1

(
FAttention
D (⌈L/r⌉, Lq, i) + FFFN

D (⌈L/r⌉, Lq, i)
)
×NDec .

(11)

where NEnc ≪ Ntotal uses only shallow layers (e.g., 8/32 in LLaMA), NLSA is generally set to
1 follows from LSA’s layer-agnostic property (see Appendix C), and r > 1 represents standard
compression rates.

H LATENCY EVALUATION

H.1 EFFICIENCY ANALYSIS ON GENERAL SCENARIOS

Table 8: Performance and Latency on
NarrativeQA (32K max length, Qwen2-
7B as backbone).

Method F1 Latency (s)
Original Prompt 9.7 5.2

4x compression constraint

GMSA 15.5 2.7
8x compression constraint

GMSA 14.1 2.3

We conduct an empirical test on the NaturalQuestions
to evaluate the impact of GMSA on inference efficiency
under 4x and 8x compression constraints.5 In this effi-
ciency test, we fix the generation length to 100. Table 7
shows that the context compression by GMSA helps im-
prove the inference efficiency of LLMs. Compared with
all settings, including the original prompt, Kv-cache com-
pression algorithms (i.e., StreamLLM, SnapKV, and Ac-
tivation Beacon), and the encoder-decoder-based ICAE,
GMSA achieves more than a 2x end-to-end inference
speedup.

H.2 EFFICIENCY
ANALYSIS ON ULTRA-LONG SCENARIOS

To evaluate GMSA on ultra-long scenarios, we conduct
experiments on NarrativeQA (Kočiský et al., 2018) with

5We test the latency on two NVIDIA A800 GPUs (80G).

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2026

Table 7: Latency Evaluation. Latency evaluation of different methods under varying compression
constraints on the Natural Questions dataset. The symbol ✗ indicates that the specific processing
time is unavailable.

Methods Compression Time Decoding Time End-to-End Inference Time

Original Context - 1.14 1.14

4x compression constraint

StreamLLM ✗ ✗ 1.47
SnapKV ✗ ✗ 0.99
Activation Beacon ✗ ✗ 3.06
ICAE 0.73 1.06 1.79

GMSA 0.27 0.18 0.45

8x compression constraint

StreamLLM ✗ ✗ 1.41
SnapKV ✗ ✗ 0.99
Activation Beacon ✗ ✗ 1.92
ICAE 0.56 2.60 3.16

GMSA 0.27 0.15 0.42

a maximum context length of 32K tokens, using Qwen2-7B as the backbone6. We report end-to-end
inference latency (in seconds).

As shown in Table 8, GMSA achieves significant acceleration. Under both 4× and 8× compression
rates, GMSA is 2x faster than processing the original prompt while attaining substantially higher F1
scores.

This demonstrates that, despite the quadratic complexity retained in a few layers of the encoder, the
overall end-to-end efficiency gain from compressing the context into a small set of soft tokens is
substantial—even for ultra-long sequences.

I COMPARISON WITH LLOCO

We provide a detailed comparison with the recent work LLoCO (Tan et al., 2024), which also em-
ploys an encoder-decoder architecture and a decoder-only fine-tuning strategy for downstream tasks,
conceptually similar to our Knowledge Extraction Fine-tuning (KEFT).

Table 9: Performance comparison
with LLoCO on the NaturalQuestions
(LLaMA-2-7B as backbone).

Method Acc EM F1
LLoCO 41.7 38.1 39.1

4x compression constraint

GMSA 70.0 58.1 57.6
8x compression constraint

GMSA 62.3 51.0 53.1

Despite this high-level similarity, GMSA introduces sev-
eral key structural and methodological innovations that
lead to significant performance improvements:

Group Merging. GMSA proposes a novel Group
Merging strategy to evenly retain semantics from the orig-
inal context. By dividing the encoder’s last hidden state
into groups and applying average pooling, this method ef-
fectively mitigates the problem of uneven semantic learn-
ing, where the semantics of anchor tokens are dispropor-
tionately emphasized at the expense of others. This is
a common limitation in autoregressive summary vector
learning approaches, including LLoCO.

6To avoid out-of-memory issues on ultra-long scenarios, we evaluate latency on two NVIDIA H20 GPUs
(94GB).

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2026

Layer Semantic Alignment (LSA). A core innovation
of GMSA is the explicit Layer Semantic Alignment mod-
ule. This component is designed to bridge the large se-
mantic gap between the high-level, abstract summary vectors generated by the encoder and the
low-level semantic space expected by the decoder’s input layers. LLoCO does not incorporate such
a dedicated mechanism for cross-layer semantic alignment.

Knowledge Extraction Fine-tuning (KEFT). The KEFT process in GMSA is specifically de-
signed to fine-tune only the weight matrices WQ, WK , and WV in the self-attention modules of
each decoder layer. This design is motivated by the understanding that the attention mechanism
primarily governs information flow and context integration, while the feed-forward network (FFN)
acts more as a static knowledge storage module (Geva et al., 2021). By selectively tuning only
the attention projections, KEFT efficiently adapts the decoder to extract task-specific knowledge
from the compressed soft tokens without altering the core knowledge representations. In contrast,
LLoCO applies Low-Rank Adaptation (LoRA) to the entire decoder, including both attention and
FFN components.

Table 10: Comparison of the average to-
ken perplexity under different condition
types on the PwC test set.

Condition Type
Sequence Length

128 256 512

Original Context 1.12 1.06 1.03

4x compression constraint

TCP-AE 1.36 1.34 1.35

GMSA-AE 1.01 1.01 1.00

8x compression constraint

TCP-AE 1.36 1.34 1.35

GMSA-AE 1.08 1.06 1.05

To provide a quantitative comparison, we trained and
evaluated LLoCO on the NaturalQuestions (NQ) dataset
using its official open-source code and default settings,
with LLaMA-2-7B as the backbone model. The results,
presented in Table 9, demonstrate the superior perfor-
mance of GMSA.

This comparison clearly highlights the effectiveness of
GMSA’s architectural components in achieving state-of-
the-art results for context compression and knowledge ex-
traction.

J PERPLEXITY EVALUATION

For the task of context restoration, we evaluate model per-
formance from the perspective of perplexity. The exper-
imental results are shown in Table 10. “Condition Type"
represents the basic conditions under which the LLMs re-
covers the text, which are divided into three types: recov-
ering from the Original Context, recovering from the soft
tokens generated by TCP-AE, and recovering from the
soft tokens generated by GMSA-AE. Different Sequence
Lengths represent different lengths of the context restora-
tion task. We can draw two key findings: (1) Under differ-
ent compression constraints and restoration lengths, the perplexity of the recovered text conditioned
on TCP-AE-generated soft tokens is significantly higher than that of the recovered text conditioned
on the Original Context. (2) Except for the case where the compression constraint is 8x and the
restoration length is 512, where GMSA-AE’s recovered text perplexity is slightly lower than that
of the Original Context (by only 0.02), in all other cases, GMSA-AE’s recovered text perplexity is
lower than that of the Original Context. Furthermore, in all scenarios, GMSA-AE’s recovered text
perplexity is significantly lower than that of the recovered text conditioned on TCP-AE-generated
soft tokens.

K CASE STUDY

As shown in Table 11, we use the restoration of a specific text to study the performance of GMSA-
AE in context restoration. In the restored text, GMSA-AE only has the last word inconsistent with
the original text, i.e., restoring "it" to its plural form "they". In contrast, TCP-AE not only exhibits
inconsistencies in some word expressions (such as "medication" and "drugs") but also displays large
segments of discrepancies with the original text.

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2026

Table 11: An example showing GMSA-AE and TCP-AE’s context restoration performance. Text
highlighted in yellow indicates discrepancies from the Original Context.

Original Context GMSA-AE TCP-AE

Craig F. Walker | Boston Globe |
Getty Images
The Trump administration is making
good on its latest effort to lower out-
of-pocket drug costs for Medicare
recipients, but its approach could
also limit drug options or even risk
eliminating coverage of some pre-
scriptions. The Centers for Medi-
care and Medicaid Services pro-
posed late Monday changes to Medi-
care Advantage and Medicare Part
D. Among the changes, it would al-
low insurers to stop covering certain
"protected" classes of drugs used
to treat common ailments like de-
pression, cancer and HIV. When
Congress added a prescription drug
benefit to Medicare in 2003, it re-
quired insurers to cover at least two
different drugs to treat any particu-
lar ailment. It also set aside six pro-
tected classes of medication where
insurers were required to cover "all
or substantially all" of the drugs of-
fered to ensure seniors got what-
ever treatment they needed, like for
cancer. The Trump administration
thinks that gives drug manufacturers
greater negotiating power on prices.
The proposal is meant to give insur-
ers more leverage and drive prices
down by allowing them to drop cov-
erage of certain drugs in a protected
class if it

Craig F. Walker | Boston Globe |
Getty Images
The Trump administration is making
good on its latest effort to lower out-
of-pocket drug costs for Medicare
recipients, but its approach could
also limit drug options or even risk
eliminating coverage of some pre-
scriptions. The Centers for Medi-
care and Medicaid Services pro-
posed late Monday changes to Medi-
care Advantage and Medicare Part
D. Among the changes, it would al-
low insurers to stop covering certain
"protected" classes of drugs used
to treat common ailments like de-
pression, cancer and HIV. When
Congress added a prescription drug
benefit to Medicare in 2003, it re-
quired insurers to cover at least two
different drugs to treat any particu-
lar ailment. It also set aside six pro-
tected classes of medication where
insurers were required to cover "all
or substantially all" of the drugs of-
fered to ensure seniors got what-
ever treatment they needed, like for
cancer. The Trump administration
thinks that gives drug manufacturers
greater negotiating power on prices.
The proposal is meant to give insur-
ers more leverage and drive prices
down by allowing them to drop cov-
erage of certain drugs in a protected
class if they

Craig Walker | Boston Globe | Getty
Images
The Trump administration is mak-
ing good on its latest effort to lower
out-of-pocket medication costs for
Medicare recipients, but its approach
could also limit drug options or even
risk eliminating coverage of some
prescriptions. The Centers for Medi-
care and Medicaid Services pro-
posed late Monday changes to Medi-
care Advantage and Medicare Part
D. Among the changes, it would al-
low insurers to stop covering certain
"protected" drugs used to treat com-
mon ailments like depression, can-
cer and HIV. The Centers for Medi-
care and Medicaid Services pro-
posed changes to Medicare Advan-
tage and Medicare Part D. Among
the changes, it would allow insurers
to stop covering certain drugs that
are used to treat common ailments
like depression, cancer and HIV. The
proposal would have added a pre-
scription drug benefit to Medicare
Part B, which currently covers only
doctor visits and lab tests. Congress
added the prescription drug benefit
in 2003 to require insurers to cover
at least two different drugs to treat
any of the "essential drugs" offered
to seniors, regardless of whether
they were covered by Medicare

L LANGUAGE MODEL USAGE STATEMENT

During the preparation of this manuscript, we utilize a large language model as a writing assistant.
Its primary role is to refine and polish our paper, including the descriptions of our methodology and
the presentation of mathematical derivations. This is done to improve the overall clarity, precision,
and readability of the paper. All core ideas, experimental designs, and results are original work of
the authors.

23

	Introduction
	Problem Formulation
	GMSA
	Group Merging
	Layer Semantic Alignment
	Autoencoder Training
	Knowledge Extraction
	Knowledge Extraction Process
	Knowledge Extraction Fine-tuning

	Experiments
	Settings
	Main Result
	Efficiency Analysis
	Ablation Study

	Conclusion
	Related Work
	Context Restoration Capability
	Impact of different Layer Semantic Alignment layers
	Implementation Details
	Datasets Details
	Traditional Compression Paradigm Autoencoder Training
	FLOPs Calculation
	Latency Evaluation
	Efficiency Analysis on General Scenarios
	Efficiency Analysis on Ultra-Long Scenarios

	Comparison with LLoCO
	Perplexity Evaluation
	Case Study
	Language Model Usage Statement

