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Abstract

With the growing demand for antibody therapeutics, there is a great need for com-
putational methods to accelerate antibody discovery and optimization. Advances in
machine learning on graphs have been leveraged to develop generative models of
antibody sequence and structure that condition on specific antigen epitopes. How-
ever, the data availability for training models on structure (~5k antibody binding
complexes Schneider et al.|[2022]) is dwarfed by the amount of antibody sequence
data available (> 550M sequences Olsen et al. [2022]) which have been used to
train protein language models useful for antibody generation and optimization
Here we motivate the combination of well-trained antibody sequence models and
graph generative models on target structures to enhance their performance for
target-conditioned antibody design. First, we present the results of an investiga-
tion into the sitewise design performance of popular target-conditioned design
models. We show that target-conditioned models may not be incorporating target
information into the generation of middle loop residues of the complementarity
determining region of the antibody sequence. Next, we propose an energy-based
model framework designed to encourage a model to learn target-specific infor-
mation by supplementing it with pre-trained marginal-sequence information. We
present preliminary results on the development of this model and outline future
steps to improve the model framework.

1 Introduction

Antibodies are the fastest-growing class of biologics, creating a great need for technologies to
accelerate antibody discovery and optimization. The heavy and light variable chains of an antibody
bind to its target (or antigen), and the complementarity-determining regions (CDRs) comprise most of
the paratope (the antigen-binding region) [Kunik et al.,[2012]. Many antibody engineering approaches
focus on diversifying these regions to find novel binders or to increase the affinity of a candidate
binding sequence. Machine learning has been deployed to improve various aspects of the antibody
development pipeline, including library design [Shin et al., |[2021]], binder selection from affinity
maturation campaigns [Saka et al.| 2021} Liu et al.,[2020] and antibody optimization [Shan et al.|
2022| [Hie et al.| [2023]].

Recently, there has been a growing interest in methods to computationally design de novo antibodies
that bind to a specified epitope on a target. Many groups have proposed deep graph generative models
that take a target structure as input and sample the structure and corresponding sequence of the CDR
loops that would bind to the target [Jin et al.| 2022} |[Kong et al.| [2022] [Luo et al., 2022, [Kong et al.,
2023]]. We term this model class target-conditioned models as they aim to learn a distribution of
antibody sequences (and structures) conditioned on a binding target. We contrast this with models
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trained on only antibody sequences, which we term marginal-sequence models, as they learn a
marginal sequence distribution, unconditional of a target.

Most target-conditioned models suffer from a limited amount of training data as they are trained on the
small number of binding complex structures in the PDB (~ 5k structures in the Structural Antibody
Database |Schneider et al.|[2022]). Datasets of antibody sequence repertoires are significantly larger
than structural repertoires (the Observed Antibody Space contains >500M sequences [Olsen et al.|
2022])). Groups have developed large protein language models (PLMs) trained on these datasets.
For example, Shuai et al.|[2022b] developed the Immunoglobulin Language Model (IgLM), a PLM
trained on all of OAS that takes in an antibody framework sequence, information about the antibody
species origin and heavy or light chain identity, and generates likely CDR sequences. This model
was shown to be able to generate expressible and natural-appearing antibody sequences.

Evaluation of target-conditioned models’ sequence design performance has been largely limited to
benchmarking their Amino Acid Recovery (AAR) and test set perplexity (PP). AAR is the frequency
with which sampled sequences match the native amino acid at a particular site in a test sequence. PP
is the exponentiated, average negative log-likelihood of a test sequence under the model’s learned
distribution. Both of these metrics describe how highly a model is prioritizing the known test sequence
in its designs when conditioned on the corresponding target.

The CDR3 region of an antibody is considered to contribute most to its binding specificity [Kunik
et al.,2012] and models are often compared based on their CDR3 design performance. Evaluation
metrics are often reported as the mean across all residue positions in the CDR3. However, middle
loop residues are more frequently in contact with the antigen than the flanking residues, and they are
much more diverse as they determine the antibody binding specificity. Thus, to evaluate whether a
model’s designs would bind a target, it is important to compare models based on their performance
on these sites.

Here we begin by investigating the sitewise design performance of target-conditioned models and
comparing them to marginal-sequence baselines. We find that on middle loop residues of the CDR3,
the models have convergent performance, suggesting that the target-conditioned models may not be
leveraging target information in their design. This motivated us to develop a model framework that
encourages a target-conditioned model to learn target information by supplementing the model with
sequence information from a pre-trained marginal-sequence model. We present preliminary findings
from benchmarking our initial approach and outline further development goals.

2 Converging performance of target-conditioned models and sequence models

Average AAR
Model All CDR3 sites Middle loop sites
PSSM 25.66% 10.71%
HERN 32.73% 13.39%
MEAN 29.17% 10.47%

Table 1: Summary AAR statistics The average AAR for the 60 sequences in the RAbD test set.
Bolded values are the top scoring model at each sampling temperature and region of the CDR3 being
considered. "All CDR3 sites" means the AAR is calculated on the full CDR3 sequence. "Middle
loop sites" means the AAR is calculated on only the middle loop sites (excluding the first two and
last three sites in CDR3 sequence).

We compared the sitewise CDR3 AAR of two target-conditioned models (HERN [Jin et al., 2022]]
and MEAN [Kong et al.| 2022]]) (See Appendix for more details on these models). We used the 60
antibody-complexes in the Rosetta Antibody Design (RAbD) benchmark set [Adolf-Bryfogle et al.
2018| as this is widely used test set for this task. We generated 500 sequences for each target from
each model with the sampling temperature set to 1.0 and selected the top 100 sequences by perplexity.
We calculated the generated sequences’ AAR for each site of the native PDB sequence. We also
compared these to Position Specific Scoring Matrices (PSSMs) of the training data for HERN (which
is a subset of the training data for MEAN) grouped by CDR3 length. A PSSM is a L x D matrix,
where L is the length of a sequence set and D = 20 for the number of amino acid choices. Each
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Figure 1: Sitewise AAR The mean AAR of each site in the CDR3. Sequences were aligned using
ANARCT such that sites from sequences of all lengths could be aggregated. Each site is labelled
using IMGT numbering. Error bars are SEM.

entry, p; o in the PSSM is the frequency of each amino acid a at site 4 in the sequence. The sitewise
AAR of a PSSM is essentially the frequency of the test amino acid at that CDR3 site in the training
data. This constitutes a simple sequence model baseline that doesn’t use any target information.

We found that, while HERN and MEAN have higher AAR than the PSSM on the flanking residues,
they have similar AAR on the middle residues of the CDR3 (Fig[I). When calculating the average
AAR without including the flanking residues (IMGT no. 105, 106, 115, 116 and 117 [Lefranc,
1997])), the AAR of all models drops significantly, and MEAN’s performance falls under the PSSM
baseline (Table[T).

As the middle loop residues more frequently comprise the actual binding interface of the antibody,
we would expect that a model that properly leverages target information to design binding sequences
would have higher recovery on these residues. The fact that target-conditioned models have convergent
recovery compared to a PSSM on antigen-contacting residues suggests that they may only be learning
a marginal sequence distribution for the middle loop sites. It would be beneficial to be able to
diagnose when a target-specific model is able to leverage target information, and when it is only
learning marginal sequence information. Identifying this can motivate the development of the target-
conditioned model architecture and training regime such that the model properly learns a conditional
sequence distribution.

3 An EBM for combining sequence priors with target conditioned energies

We propose an energy-based model (EBM) [LeCun et al.,[2006]] framework for target-conditioned
antibody sequence design that explicitly models the contribution of marginal sequence information
separately from target-specific information.

We define an antibody sequence as X, consisting of residues (X7, Xo, -+, X), and the struc-
ture of the target epitope as Y. We seek to learn a conditional generative model P(X]Y) =

]_[Z.L:1 P(X;|Y, X ;). We model the distribution of each residue as an EBM, where the total en-
ergy of a residue is the sum of energy contributions from a marginal-sequence term Fx (X;) and
target-conditioned energy term Ey (Y, X;):

P(X|Y, Xoy) = Zi exp[—an By (Y, Xi) — (1 — ag) Ex (X,)]

Ey (Y, X;) =Fp(Y)
Ex(X;) = log(m(X;))

Where Zj is the sum of exponentiated negative energies for the different amino acid choices (i.e the
denominator of a softmax operation), oy is a learned parameter that controls how much each energy
term contributes to the final probability, Fj is a model operating on the target structure with trained
parameters 6, and 7(X;) is a pre-trained marginal sequence model with amortized parameters.



We hypothesize that by explicitly providing the model with pre-trained sequence information, Fy(Y")
is encouraged to leverage target information in its energy prediction. Furthermore, the combination
parameter oy allows us to diagnose how much target information the model is using. If ay is low,
this suggests the model is just defaulting to a marginal sequence distribution.

Our framework is flexible to using any marginal sequence model and target model architecture. For
our initial experiments, we used length-matched PSSMs fit on the same sequences used to train Fj as
the marginal-sequence model. However, the true value of our model comes from leveraging sequence
models trained on larger sequences corpuses. This will be explored in future work.

We used the architecture of HERN to model Fj and we set ag to be a single learned variable that tells
us globally how much the model is using either marginal-sequence or target-conditioned information.
To begin with, we trained models to generate only the CDR3 sequence, however, our framework can
be extended to sample all 3 CDR regions.

4 Experiments

Median Perplexity
Model All CDR3 sites Middle loop sites
HERN 8.05 114.04
PSSM 10.81 118.24
IgLM 17.74 $15.80
HERN (amortized) + PSSM 8.88 115.04
HERN (amortized) + IgLM 8.88 112.94
EBM (PSSM) 9.67 116.07

Table 2: Perplexity We report the median perplexity of each model across all test set sequences
(lower is better). Perplexity is calculated across all of the CDR3 residues or just the middle loop
residues. Here we show the median of the results from 10 cross-validation folds.

Data We benchmarked our model on binding complex structures in the Structural Antibody
Database (SAbDab) [[Schneider et al.l 2022]. After filtering by CDR sequence redundancy, we
had 3150 binding complexes. We clustered the sequences according to CDR sequence similarity
using mmseqs2, and divided the clusters into training (80%), validation (10%) and test sets (10%).
We employed 10-fold cross-validation.

Baselines In addition to our model, we evaluated HERN re-trained on the training splits and the
pre-fit PSSMs by themselves. We also benchmarked IgL.M to test how well a marginal sequence
distribution learned from a larger sequence repertoire can approximate the target-conditional dis-
tribution. We also explored using an amortized version of HERN within our EBM framework (i.e
we trained HERN on the training split without including any marginal-sequence information, and
then combined the target-conditioned and marginal-sequence contributions without any further train-
ing). This baseline tests whether providing the target-conditioned model with marginal sequence
information during training encourages it to learn more target information.

Metrics We used test perplexity (PP) on the test set sequences as our evaluation metric. Both AAR
and PP test whether a model can identify the ground truth sequence from a test binding complex,
however, a model’s AAR can be augmented depending on how sequences are sampled (See Appendix
for further discussion). As a preliminary result, we only present PP here. Future work will investigate
our model’s AAR as well.

Results We calculated each model’s PP on the entire CDR3 and only the CDR3 middle loop
residues of the test data (Table[2). We found that our EBM approach had lower perplexity than the
marginal-sequence model baselines (PSSM and Igl.M), suggesting that the model was able to some
learn target-conditioned information. However, HERN by itself had better perplexity on both the
full CDR3 and just the middle sites. This suggests that, under our framework and on this task, the
marginal-sequence models were confounding the target-conditioned module of the EBM. Looking
at the per-site perplexities of all the residues in one fold of the test data, we found that there were



many sites for which the EBM had lower test perplexity than HERN, and these are enriched for sites
in which the pre-fit PSSM had high probability (Fig[A2)). This suggests that there are gains to be
made from incorporating information from a marginal-sequence distribution if the EBM can correctly
distinguish when the sequence model is reliable.

Remarkably, simply combining the contributions from an amortized HERN model with a marginal-
sequence model outperformed our EBM. This suggests that training a target-conditioned model with
external pre-trained sequence energies confounds the trained target model. It may be beneficial to start
with a pre-trained target-conditioned model, and then fine-tune the model with energy contributions
from a marginal-sequence model.

Interestingly, out of all the models tested, IgLM was the only model that had lower perplexity on the
middle loop sites with respect to the full CDR3. Notably, the best-performing model on the middle
loop sites (which are highly important for target binding) was HERN (amortized) + IgLM. This
suggests that, on these sites, including information from IgLM improves the model’s designs. This
is encouraging and adds some corroboration to our hypothesis that combining marginal-sequence
information from larger sequence repertoires could be beneficial for designing binders.

5 Discussion and future work

These preliminary results show that there is great room for improvement with our approach. As
it seems that a linear combination of the energy contributions only serves to confound the model,
we may have greater success combining the target-conditioned and marginal-sequence information
earlier in the model’s architecture (eg. with hidden layers that take in both representations of the
target structure and representations from a marginal-sequence model). Recently, Wu and Li [[2023]]
developed a hierarchical paradigm for training a model on protein universe datasets, large antibody
sequence datasets and structural binding complexes, demonstrating great gains for target-conditioned
CDR generation. The ideas motivating their approach are similar to ours, however, this model is
fine-tuned end-to-end and information from different data sources is incorporated as features directly
in the model’s graph representation. In future work, we will benchmark their model and explore
incorporating ideas from their approach into ours.

The fact that our EBM underperforms with respect to HERN suggests that the model cannot self-
correct when the marginal-sequence contribution is unreliable. It would be favorable for the model to
be able to calculate aig(Ex, Ey ) as a function of the energy contributions, so that it can upweight a
particular energy on the fly. For example, if the energy from a marginal-sequence model is too high
owing to distribution mismatches in the training set of the pre-trained model, the EBM can prioritize
the target-conditioned model. We will explore this more in future work.

Lastly, while our approach has low performance under the PP metric, incorporating sequence
information may have gains under other evaluation metrics that assay other antibody design goals
(eg. designability, expressibility). Metrics such as AlphaFold2 pIDDT [Jumper et al., 2021]] and
ProteinMPNN log probabilities [Dauparas et al., 2022] have been used to rank the designability of
computationally generated sequences [[Alamdari et al.,2023| Johnson et al.l|2023]], and scores from
large protein language models have been found to correlate well with protein expression [Notin et al.|
2022]. We will explore the performance of our model under these metrics in future work.

In conclusion, this work motivates combining sequence and target structure information by investi-
gating the convergent performance of popular target-conditioned generative models with marginal-
sequence models. We propose an energy-based model formulation of a model to combine these data
sources and present preliminary results on benchmarking our model. While our initial model does
not outperform the baselines, these results give us many directions for future work.
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A Appendix

A.1 Further model explication

Here we provide further detail on the models used in this paper.

Target-conditioned models De novo antibody design models focus on designing the antibody given the
target antigen. Hierarchical Equivariant Refinement Network (HERN) generates CDR3 (paratope) sequence
autoregressively given the antigen residues that closely interact with antibody (epitope) Jin et al.|[2022]. At each
autoregressive step, HERN uses a message-passing network to predict the docking complex of the generated
CDR3 sequence and epitope. The docking complex is then used to predict the next CDR3 residues in the
sequence.

Multi-channel Equivariant Attention Network (MEAN) employs an attention mechanism that generates the
whole sequence and structure together |[Kong et al.|[2022]]. The full-shot scheme to generate the full CDR
sequence at each step is less prone to error accumulation compared to autoregressive models. Generating 1D
sequence and 3D structure of CDR together also maintains the full geometric relationship within residues.

However, the above models only focus on designing CDR sequences, they both ignore the framework region
and side-chains outside CDR3 sequences. The dynamic Multi-channel Equivariant grAph Network (dyMEAN)
incorporates framework sequence into the model to better capture the distribution of the whole antibody Kong
et al.| [2023]].

Sequence models  The position-specific scoring matrix (PSSM) represents the frequency of amino acids at
each CDR3 site. We fit PSSM of different CDR3 lengths on the training data. We use it here as a baseline CDR3
sequence model.

The Immunoglobulin Language Model (IgLM) is a deep generative language model for designing antibody
sequences |Shuai et al.|[2022a]. It formulates antibody sequence designing tasks as text infilling and generates
amino acids autoregressively. IgLM can generate both full-length antibody sequences and infilled CDR loops,
conditioned on chain-type (light or heavy) and species (human, mouse, rat, rabbit, rhesus, and camel).

A.2 Limitations of the AAR metric

Both authors of MEAN and HERN use AAR as the model evaluation metric. They evaluate their models by
generating a large sample of sequences and selecting the top 100 by perplexity; this is equivalent to sampling
from a model with lower temperature as you are selecting for sequences around the mode of the model’s
distribution. We looked at the AAR across the full CDR3 and for just the middle loop sites for model generations
sampled at different temperatures (Table [AT] Fig[AT). We find that AAR increases for all the models at lower
temperatures. Notably, at T=0.0, the PSSM outperforms both target-specific models. This demonstrates how the
AAR metric is influenced by any differences in the sampling procedure between models which could confound
any comparisons. Given the confounding that sampling schemes can have on model evaluation, we opted to use
test perplexity (PP) to evaluate the design methods for our intial experiments.

Average AAR
All CDR3 sites Middle loop sites
Model T=1.0 T=0.0 T=1.0 T=0.0

PSSM  25.66% 39.06% 10.71% 19.56%
HERN  32.73% 35.67% 13.39% 16.97%
MEAN  29.17% 36.77% 1047% 16.66%

Table Al: Summary AAR statistics The average AAR for the 60 sequences in the RAbD test set.
Bolded values are the top scoring model on each region of the CDR3 being considered. "All CDR3
sites" means the AAR is calculated on the full CDR3 sequence. "Middle loop sites" means the AAR
is calculated on only the middle loop sites (excluding the first two and last three sites in CDR3
sequence).
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Figure A1: MEAN AAR by sampling temperature The average AAR across the whole CDR3 for
MEAN [2022]) sampled using varying temperature settings.
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Figure A2: Here we show the HERN sitewise perplexity against EBM sitewise perplexity. Each
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