
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

FASTER SINKHORN’S ALGORITHM WITH SMALL
TREEWIDTH

Anonymous authors
Paper under double-blind review

ABSTRACT

While approximating optimal transport (OT) distances such as the earth mover’s
distance is a fundamental problem in statistics and machine learning, it is com-
putationally expensive. Given the cost matrix C = AA⊤ where A ∈ Rn×d, the
state-of-the-art results [Dvurechensky, Gasnikov, and Kroshnin ICML 2018] cost
Õ(ϵ−2n2) time to approximate OT distance, where n is the size of given two dis-
crete distributions and ϵ is the error. In this paper, we proposed a faster Sinkhorn’s
Algorithm to approximate the OT distance when matrix A has treewidth τ , which
is usually very small. Our algorithm achieves a running time of Õ(ϵ−2nτ), im-
proving upon the previous Õ(ϵ−2n2) time complexity. To the best of our knowl-
edge, our paper is the first work to improve the OT distance approximating prob-
lem running time to Õ(ϵ−2nτ).

1 INTRODUCTION

Optimal transport is a mathematical theory that deals with the problem of finding the most effi-
cient way to transport goods or materials from one place to another. The goal is to minimize the
cost of transportation, which is usually measured in terms of the distance traveled or the amount of
resources used. Many problems in computational sciences require to use optimal transport to com-
pare probability measures or histograms, including Wasserstein or earth mover’s distance (Werman
et al., 1985; Rubner et al., 2000; Villani, 2009). Optimal transport has a wide range of applications,
such as bag-of-words for natural language processing (Kusner et al., 2015), multi-label classifica-
tion (Frogner et al., 2015), unsupervised learning (Arjovsky et al., 2017; Bigot et al., 2017), semi-
supervised learning (Solomon et al., 2014), statistics (Ebert et al., 2017; Panaretos & Zemel, 2016),
and other application (Kolouri et al., 2017). In particular, due to its applications in image processing,
it has recently become crucial to have efficient ways of computing, or approximating, the optimal
transport or the Wasserstein distances between two measures.

Optimal Transport (OT) problems have been the focus of extensive research. One significant ad-
vancement in this field came with the application of Sinkhorn’s algorithm to entropy-regularized
OT optimization, as highlighted in (Cuturi, 2013). This application proved beneficial in tackling the
OT challenge. As it was recently shown in (Altschuler et al., 2017), this approach allows to find
an ϵ-approximation for an OT distance in Õ(ϵ−3n2) time. In terms of the dependence on n, this
result improves on the complexity Õ(n3) achieved by the network simplex method or interior point
methods (Pele & Werman, 2009), applied directly to the OT optimization problem, which is a linear
program (Kantorovich, 1942). The cubic dependence on ϵ prevents approximating OT distances
with good accuracy. Then, in (Dvurechensky et al., 2018), they proposed an algorithm with the
complexity bound Õ(ϵ−2n2) based on the Sinkhorn’s algorithm.

The treewidth of a matrix is a measure of the complexity of its structure and plays a crucial role
in the design and analysis of algorithms for manipulating and processing matrices. In particular,
the treewidth of a matrix can be used to determine the efficiency of algorithms that rely on tree
decompositions, such as dynamic programming and divide-and-conquer techniques. In the small
treewidth setting, algorithms for matrix manipulation and processing can often achieve near-linear
running time, making them highly efficient and scalable. This has important implications for a wide
range of applications, including interior point methods (Gu & Song, 2022), computing John ellipsoid
(Song et al., 2022), streaming algorithm (Liu et al., 2022). Treewidth is also important in graph

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

structure theory, particularly in the study of graph minors by Robertson and Seymour (Robertson &
Seymour, 2010). Many results (Bodlaender, 1994) have shown that NP-hard problems can be solved
in polynomial time on classes of graphs with bounded treewidth.

The best previous work to solve this problem requires n2. It is natural to ask a question

Is that possible to solve in o(n2) under some mild assumption, e.g. treewidth?

In this paper, we provide a positive answer for this question. The comparison between our results
and previous works is shown in Table 1.

Table 1: Given the cost matrix C = AA⊤ ∈ Rn×n, let τ denote the treewdith of matrix A. Let ϵ
denote the accuracy parameter. Since τ ≤ n, our algorithm (Theorem B.3, Algorithm 1) is always
better than (Dvurechensky et al., 2018).

References Method Time Complexity
(Pele & Werman, 2009) Network Simplex Method n3

(Altschuler et al., 2017) Sinkhorn’s algorithm ϵ−3n2

(Dvurechensky et al., 2018) Sinkhorn’s algorithm ϵ−2n2

Theorem B.3 Sinkhorn’s algorithm ϵ−2nτ

1.1 OUR RESULT

We formally state our main theorem

Theorem 1.1. Given the cost matrix C = AA⊤ where A has treewidth τ , we can find the transport
plan for the ϵ-approximation of the optimal transport distance in O(ϵ−2nτ∥C∥2∞ lnn) time.

Comparing with (Dvurechensky et al., 2018), which solves the problem inO(ϵ−2n2∥C∥2∞ lnn), we
proposed an algorithm that constructs a matrix using its implicit form. By leveraging the property
of low treewidth, our running time has no dependence on n2.

1.2 RELATED WORK

OT Problems OT distances, which is also called Earth Mover’s Distances (Rubner et al., 2000),
are progressively being adopted as an effective tool in a wide range of situations, from computer
graphics (Bonneel et al., 2016) to supervised learning (Frogner et al., 2015), unsupervised den-
sity fitting (Bassetti et al., 2006) and generative model learning ((Montavon et al., 2016; Arjovsky
et al., 2017; Salimans et al., 2018; Genevay et al., 2018; Sanjabi et al., 2018)). There is a long line
of work on reducing the time complexity for solving OT. In (Arjovsky et al., 2017), they proved
that, for regularized OT, the near-linear time complexity can be achieved by both Sinkhorn and
Greenkhorn algorithm. They demonstrated that both algorithms have a complexity of Õ(ϵ−3n2),
where n represents the number of atoms (or the dimension) of the probability measure being con-
sidered and ϵ is the desired level of tolerance. In (Dvurechensky et al., 2018), the complexity of
the Sinkhorn algorithm was improved to Õ(ϵ−2n2). Additionally, an adaptive primal-dual acceler-
ated gradient descent (APDAGD) algorithm was introduced, which was shown to have a complex-
ity of Õ(min{ϵ−1n9/4, ϵ−2n2}). With a carefully designed Newton-type algorithm, (Allen-Zhu
et al., 2017; Cohen et al., 2017) solve the OT problem by making use of a connection to matrix-
scaling problems. (Blanchet et al., 2018; Quanrud, 2018) gave a complexity bound of Õ(ϵ−1n2) for
Newton-type algorithms.

Treewidth Problems Treewidth is a concept from structural graph theory that has been studied in
relation to fixed-parameter tractable algorithms in various fields, including combinatorics, integer-
linear programming, and numerical analysis. In practical settings, treewidth tends to be small. A
study by (Zhang & Lavaei, 2021) on the MATPOWER data set for power system analysis revealed
that the largest problem size was (n = 12659,m = 20467), with a maximum treewidth of τ =
35. As a result, it is reasonable to conclude that treewidth-efficient algorithms surpass general-
purpose matrix algorithms in practical applications. (Fomin et al., 2018) shows several problems

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

can be reduced to matrix factorizations efficiently, including computing determinant, computing
rank, and finding maximum matching, and this leads to O(τO(1) · n) time algorithms where τ is
the width of the given tree decomposition of the graph. (Bodlaender, 1994) shows a number of
NP-hard problems such as INDEPENDENT SET, HAMILTONIAN CIRCUIT, STEINER TREE, AND
TRAVELLING SALESMAN can be solved with run-times that depend only linearly on the problem
size and exponentially on treewidth as the result of dynamic programming. By leveraging the small
treewidth setting, (Gu & Song, 2022) proposed an algorithm that solves the linear program problem
with run-time nearly matching the fastest run-time for solving the sub-problem Ax = b. (Liu et al.,
2022) proposed a space-efficient interior point method (IPM) in the streaming model. For the linear
programs with treewidth τ , they solve them in Õ(nτ) space, where n is the number of dimensions
for the feature space. (Song et al., 2022) shows that, when the constraints matrix has treewidth τ , the
John Ellipsoid problem can be solved in O(nτ2) time. The small treewidth setting is also applied
to solve the semidefinite program. In (Gu & Song, 2022), they give the first SDP solver that runs in
time in linear in a number of variables under this setting. In (Gu et al., 2023), they study the linear
support vector machine problem and kernel support vector machine problem. They provide the first
nearly linear time algorithm for solving the SVM via interior point method.

1.3 TECHNIQUE OVERVIEW

Analysis We first provide preliminaries, which include necessary notations, problem formulation
and treewidth basics, as well as some definitions used in Sinkhorn algorithm. After that, we in-
troduce the convex function of (û, v̂) as the following: ⟨1n, B(û, v̂)1n⟩ − ⟨û, B(uk, vk)1n⟩ −
⟨v̂, B(uk, vk)

⊤1n⟩. The gradient for the above function vanishes when (u∗, v∗) = (uk, vk), so
the point (uk, vk) is the minimizer of this function. Therefore, we can show that ψ̃(uk, vk) ≤
⟨uk − u∗, Bk1n − r⟩ + ⟨vk − v∗, B⊤

k 1n − c⟩ Then, for each iteration of the algorithm, we upper
bound the r.h.s. and get ψ̃(uk, vk) ≤ R · (∥Bk1n − r∥1 + ∥B⊤

k 1n − c∥1). where the inequality
follows from the bounds for the iterates uk, vk and an optimal solution (u∗, v∗). Next, by using this
upper bound for ψ̃ and Pinsker inequality (Lemma B.2) we have:

ψ̃(uk, vk)− ψ̃(uk+1, vk+1) ≥ max{ ψ̃(uk, vk)
2

2R2
,
ϵ20
2
},

By using induction, we prove the potential function ψ̃ is also upper bounded by 2R2

k+ℓ−1 , where

ℓ = 2R2

ψ̃(u1,v1)
. Finally, by using the switching strategy, we provide the upper bound of the total

number of iterations k for the Sinkhorn’s algorithm as the following k ≤ 2 + 4R
ϵ0
.

Running time Given the cost matrix C =MM⊤ where M ∈ Rn×d has treewidth τ , we leverage
the fact that it admits a succinct Cholesky factorization and nnz(C) = O(nτ), where nnz refers to
the number of non-zeros of a matrix.

For each iteration in Sinkhorn’s algorithm (Algorithm 3), we have to compute B(u, v) =
diag(eu)K diag(ev) where Ki,j := exp(−Ci,j/γ). In fact, writing down K explicitly requires
O(n2). To bypass this issue, we first write K in implicit form Ki,j := Ai,j − Di,j . where
Ai,j = e−Ci,j/γ − 1 and Di,j = 1, so that matrix A is as sparse as matrix C. Also, we repre-
sent matrix D by ww⊤, where w = 1n. Leveraging the fact that nnz(A) = O(nτ) and matrix D
is a rank-1 matrix, we improve the per iteration running time for Sinkhorn algorithm from O(n2) to
O(nτ).

For the rounding algorithm (Algorithm 2) of the transport plan B, we also write down the transport
plan in an implicit fashion and do the computation in O(nτ) time. Note that we never write down
B,B0, B1 and output G explicitly. When computing B1n, we leverage the implicit form of B and
do the computation as following:

diag(euk)A1n diag(e
vk) + diag(euk)(ww⊤)1n diag(e

vk).

As nnz(A) = O(nτ), computing A1n takes O(nτ) time. Similarly, when computing XB, where
X is a diagonal matrix, we leverage the implicit form of B and do the computation as following:

diag(euk)AX diag(evk) + diag(euk)(ww⊤)X diag(evk).

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

As nnz(A) = O(nτ) computing AX takes O(nτ) time and the AX is also O(nτ) sparse.

Finally, we note that the transport plan for the OT distance problem can be approximated in
Õ(ϵ−2nτ) time.

Roadmap. We first introduce all required preliminary in Section 2. Then, we provide the analysis
for the Sinkhorn’s algorithm in Section 3. In Section 4, we provide a faster Sinkhorn’s algorithm
with small treewidth setting and apply our faster Sinkhorn’s Algorithm to solve the OT distance. In
Section 5, we conclude our contribution for this paper.

2 PRELIMINARY

2.1 NOTATIONS

For a positive integer n, we denote [n] = {1, 2, · · · , n} We use 1n to denote the length-n vector
where all the entries that are ones. For a vector a, we denote ea, ln a as their entry-wise exponents
and natural logarithms respectively. We define ak,i as the i-th coordinate of k-th iteration of a.
For a matrix A ∈ Rn×n, we define ∥A∥∞ := maxi,j∈[n] |Ai,j |. We define Ai,j as the entry at
i-th row and j-th column of matrix A. We use eA, lnA to denote their entry-wise exponents and
natural logarithms respectively. We denote by vec(A) the vector in Rn2

, which is obtained from A
by writing its columns one below another. For two matrices A,B, we denote their inner product by
⟨A,B⟩. We define the n-dimensional simplex as △n := {x ∈ Rn+ :

∑n
i=1 xi = 1}. For a vector

x ∈ Rn, we define its ℓp norm to be ∥x∥p := (
∑n
i=1 |xi|p)1/p. For two vectors x, y, we define the

inner product ⟨x, y⟩ =
∑n
i=1 xiyi. We use nnz(·) to denote the number of non-zeros of a matrix.

2.2 PROBLEM FORMULATION

The definition of entropy is given as the following:

Definition 2.1 (Entropy). We define the entropy H(p) of vector p by H(p) :=
∑n
i=1 pi log(

1
pi
).

Similarly, for a matrix P ∈ Rn×n+ , we define the entropy H(P) entrywise as

n∑
i=1

n∑
j=1

Pi,j log
1

Pi,j
.

We first introduce the definition of OT problem.

Definition 2.2. Given a matrix C with small treewidth (e.g. C = AA⊤ where A ∈ Rn×d), the
optimal transport problem is defined as:

min
X
⟨C,X⟩ s.t. X ∈ Rn×n+ , X1n = r, X⊤1n = c,

where 1n ∈ Rn denotes a vector where every entry is 1.

Next, we give the definition of the regularized OT problem.

Definition 2.3. Given a strongly convex regularizer R(X), e.g. negative entropy or squared Eu-
clidean norm, the regularized optimal transport problem is defined as:

min
X
⟨C,X⟩+ γR(X), s.t. X ∈ Rn×n+ , X1n = r, X⊤1n = c, (1)

where γ > 0 denotes the regularization parameter.

The goal for this paper is to find the approximation for the transportation plan X̂ defined as follows:

Definition 2.4 (ϵ-approximation). The ϵ-approximation for the OT distance is defined as

⟨C, X̂⟩ ≤ min
X
⟨C,X⟩+ ϵ, s.t. X ∈ Rn×n+ , X1n = r, X⊤1n = c, (2)

where X̂ denotes the approximation for the transportation plan.

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

For simplicity we introduce the definition of Ur,c ⊂ Rn×n+

Definition 2.5. Given the OT problem argminX∈Ur,c
⟨X,C⟩, we define Ur,c := {X ∈ Rn×n+ :

X1n = r,X⊤1n = c}, where 1n is the all-ones vector in Rn , C ∈ Rn×n+ is a given cost matrix,
and r ∈ Rn, c ∈ Rn are given vectors with positive entries that sum to one.

Next, we provide a lemma about the transport plan X .
Lemma 2.6 ((Cuturi, 2013)). For any cost matrix C ∈ Rn×n, Ur,c ⊂ Rn×n+ and r, c ∈ △n, the
minimization program Xγ := argminX∈Ur,c

⟨X,C⟩+ γ · R(X), where γ > 0 is the regularization
parameter and R(X) is a strongly convex regularizer, has a unique minimum at Xγ ∈ Ur,c of the
form Xγ = MAN, where A := exp(− 1

γC) and M,N ∈ Rn×n+ are both diagonal matrices. The
matrices (M,N) are unique up to a constant factor.

2.3 TREEWIDTH PRELIMINARIES

We begin by introducing the definition of treewidth for a given matrix.
Definition 2.7 (Treewidth τ). Given a matrix A ∈ Rn×d, we construct its graph G = (V,E) as
follows: The vertex set are columns [d]; An edge (i, j) ∈ E if and only if there exists k ∈ [n] such
that Ak,i ̸= 0, Ak,j ̸= 0. Then, the treewidth of the matrix A is the treewidth of the constructed
graph. In particular, every column of A is τ -sparse.

Next, we present the definition for Cholesky factorization.
Definition 2.8 (Cholesky Factorization). Given a positive-definite matrix P , there exists a unique
Cholesky factorization P = LL⊤ ∈ Rd×d, where L ∈ Rd×d is a lower-triangular matrix with real
and positive diagonal entries.

We also provide the running time of computing the Cholesky factorization.
Lemma 2.9 ((George et al., 1994)). Given a positive definite matrix M ∈ Rd×d, we can decompose
it by using Cholesky decomposition M = LL⊤ in time Θ(

∑d
j=1 |Lj |2), where |Lj | is the number of

nonzero entries in the j-th column of L.

Then, we introduce some results based on the Cholesky factorization of a given matrix with treewidth
τ :
Lemma 2.10 ((Bodlaender et al., 1995; Davis, 2006)). For any matrix A ∈ Rn×n with treewidth τ ,
we can compute the Cholesky factorization A = LL⊤ ∈ Rn×n in O(nτ2) time, where L ∈ Rn×n is
a lower-triangular matrix with real and positive entries. L satisfies the property that every column
is τ -sparse.

Next, we show a standard property of treewidth.
Claim 2.11 ((Gu & Song, 2022; Song et al., 2022; Liu et al., 2022)). Given L = MM⊤, where M
has treewidth τ and M ∈ Rm×n, we have nnz(L) = O(nτ).

Proof. We first show that nnz(L) = O(m). Let M ∈ Rm×n denote the adjacency matrix of graph
G = (V,E), where |E(G)| = m, |V (G)| = n. The Laplacian matrix of graph G is L =MM⊤ and
it is also defined as D−A, where D is the degree matrix and A is the adjacency matrix of graph G.
As nnz(A) = O(m),nnz(D) = O(n) and m ≥ n, we have

nnz(L) = O(m) +O(n) = O(m). (3)
Next, we show that the number of edge m for graph G is bounded by O(nτ). The maximal graphs
with treewidth τ are the τ -trees which are constructed by starting with a (τ+1)-clique and iteratively
adding vertices of degree τ such that its neighbors form a τ -clique. By counting the edges in the
(τ + 1)-clique and the edges incident to the n − τ − 1 vertices iteratively added to the τ -tree, the
total number of edges in a τ -tree with n vertices is(

τ + 1

2

)
+ τ(n− τ − 1) = O(nτ). (4)

Since any graph G with treewidth τ is a subgraph of a τ -tree, we have O(nτ) is an upper bound on
|E(G)| = m. By combining Eq. (3) and Eq. (4), we have nnz(L) = O(nτ).

Hence, we complete the proof.

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

3 SINKHORN’S ALGORITHM ANALYSIS

In Section 3.1, we provide some definitions used in Sinkhorn algorithm. In Section 3.2, we define
the potential function ψ̃. In Section 3.3, we provide the upper bound of ψ̃. In Section 3.4, we provide
the induction proof for the upper bound of the potential function.

3.1 DEFINITIONS

We first introduce some definitions to simplify the derivations.
Definition 3.1. We define matrix function B : Rn × Rn → Rn×n as follows: for any given vec-
tors u, v ∈ Rn B(u, v) := diag(eu)K diag(ev), where diag(a) ∈ Rn×n is the diagonal ma-
trix with the vector a ∈ Rn on the diagonal and K ∈ Rn×n is a matrix which is defined as
Ki,j := exp(−Ci,j/γ).
Definition 3.2. We define function ψ : Rn × Rn → R as follows: for any given vectors u, v ∈ Rn
ψ(u, v) := 1⊤

nB(u, v)1n − ⟨u, r⟩ − ⟨v, c⟩, where B is defined in Definition 3.1.

We consider the Sinkhorn algorithm (Algorithm 3), which solves the following minimization prob-
lem introduced in Lemma 2 of (Cuturi, 2013):

min
u,v∈Rn

ψ(u, v), (5)

where ψ is defined in Definition 3.2.

Problem Eq. (5) is the dual formulation to Eq. (1) as we chooseR(X) = −H(X).

Here, we show the high-level idea of proving the complexity of Sinkhorn’s algorithm. We first show
how to get the bounds for uk, vk and an optimal solution (u∗, v∗) for Eq. (5). Next, we show that,
for each iteration, ψ(uk, vk) is upper bounded by ∥B(uk, vk)1n − r∥1 + ∥B(uk, vk)

⊤1n − c∥1.
Eventually, by using the bound of ψ(uk, vk), we show our result of the complexity result for
Sinkhorn’s algorithm.
Definition 3.3. We define R as R := − ln(Kmin mini,j∈[n]{ri, cj}), where Kmin :=

mini,j∈[n]Ki,j = e−∥C∥∞/γ .

3.2 POTENTIAL FUNCTION ψ̃

To simplify derivations, we define ψ̃ as follows:

Definition 3.4. We define ψ̃ as ψ̃(u, v) := ψ(u, v)− ψ(u∗, v∗).
Claim 3.5. We have ψ̃(u, v) = ⟨1n, B(u, v)1n⟩ − ⟨1n, B(u∗, v∗)1n⟩+ ⟨u∗ − u, r⟩+ ⟨v∗ − v, c⟩.

Proof. Since ψ̃(u, v) = ψ(u, v)−ψ(u∗, v∗) by definition of ψ̃, the proof follows from the definition
of ψ.

3.3 UPPER BOUNDING FOR POTENTIAL FUNCTION

Here, we provide a lemma which will be used later to bound the iteration complexity.
Lemma 3.6 (Informal version of Lemma A.2). Let k ≥ 1 and uk, vk ∈ Rn be output of Algorithm
3. We denote Bk := B(uk, vk). Then, we have

ψ̃(uk, vk) ≤ R · (∥Bk1n − r∥1 + ∥B⊤
k 1n − c∥1).

3.4 INDUCTION PROOF FOR THE UPPER BOUND OF THE POTENTIAL FUNCTION

Here, we provide the induction proof for the upper bound of the potential function.

Lemma 3.7. For all k ≥ 1, ψ̃(uk,vk)
2R2 ≤ 1

k+ℓ−1 , where ℓ := 2R2

ψ̃(u1,v1)
and ψ̃ is defined in Definition

3.2.

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

Proof. Our proof can be divided into two parts. At first, we consider the correctness of the inequal-
ities above with k = 1. Then, inducing over k > 1, the proof will be completed.

Base Case. For k = 1, it holds that

ψ̃(u1, v1)

2R2
=

1

ℓ
=

1

k + ℓ− 1
,

where, the first step follows from the definition of ℓ and the last step follows from k−1 = 0. Hence,
we have ψ̃(uk,vk)

2R2 ≤ 1
k+ℓ−1 for k = 1.

General case Suppose

ψ̃(uk, vk)

2R2
≤ 1

k + ℓ− 1
. (6)

Then we can show

ψ̃(uk+1, vk+1)

2R2
≤ ψ̃(uk, vk)

2R2
− (

ψ̃(uk, vk)

2R2
)2

≤ 1

k + ℓ− 1
− (

1

k + ℓ− 1
)2

≤ 1

k + ℓ
, (7)

where the first step follows from Lemma A.3, and the second step follows from Eq. (6) and the
property of function f(x) = x − x2 (which is f(y) ≤ f(z) if y ≤ z ≤ 1/2), the last step follows
from 1

A −
1
A2 ≤ 1

A+1 for any integer A ≥ 2. By induction, the proof is completed.

4 RUNNING TIME WITH SMALL TREEWIDTH SETTING

In Section 4.1, we introduce the implicit form K. In Section 4.2, we provide the faster Sinkhorn’
Algorithm with small treewidth. In Section 4.3, we show the correctness of our rounding algo-
rithm. In Section 4.4, we show the running time needed for our rounding algorithm. In Section
4.5, we provide the running time for approximating the OT distance by using the faster Sinkhorn’s
Algorithm.

4.1 IMPLICIT FORM OF K

Algorithm 1 Approximate OT by Sinkhorn

1: procedure APPROXOT(ϵ) ▷ Theorem B.3
2: ▷ Accuracy ϵ
3: γ ← ϵ

4 lnn
4: ϵ0 ← ϵ

8∥C∥∞

5: ▷ Find r̃, c̃ ∈ ∆n s.t. ∥r̃ − r∥1 ≤ ϵ0/4, ∥c̃− c∥1 ≤ ϵ0/4 and
mini∈[n] r̃i ≥ ϵ0/(8n),minj∈[n] c̃j ≥ ϵ0/(8n).

6: (r̃, c̃)← (1− ϵ0
8)((r, c) +

ϵ0
n(8−ϵ0) (1n,1n))

7: (u, v, L,w)← SINKHORNALGORITHM(r̃, c̃,ϵ0/2) ▷ Algorithm 4
8: ▷ Note that u, v, L,w is an implicit representation of B, i.e.,

diag(euk)(LAL
⊤
A) diag(e

vk) + diag(euk)(ww⊤) diag(evk)
9: (p, q, X,Y,w, u, v)← ROUND(u, v, L,w, r, c) ▷ Algorithm 2

10: return (p, q, X,Y, L,w, u, v) ▷ We return X̂ in an implicit way, i.e.,
X̂ := XBY + pq⊤/∥p∥1

11: end procedure

Here we introduce the implicit form of K to make use of the small treewidth setting.
Lemma 4.1. We assume C = MM⊤ ∈ Rn×n, where M ∈ Rn×d has treewidth τ . Given A :=
K −D, where Di,j := 1 for i, j ∈ [n] and K is defined in Definition 3.1, the Cholesky factor LA
for A = LAL

⊤
A is τ -sparse in columns.

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

Proof. Given C = MM⊤ and M has treewidth τ , the Cholesky factor LC for C = MM⊤ =
LML

⊤
M is τ sparse in column by using Lemma 2.10. As Ai,j = e−Ci,j/γ − 1, we have Ai,j = 0

when Ci,j = 0. Hence, matrix A is as sparse as matrix C. We have that the Cholesky factor LA for
A = LAL

⊤
A is as sparse as LM . As LM is τ -sparse, we complete the proof.

4.2 RUNNING TIME OF SINKHORN WITH SMALL TREEWIDTH

This section is to prove the running time of Algorithm 4.
Theorem 4.2 (Running time of Algorithm 4, informal version of Theorem C.1). Given the cost
matrix C ∈ Rn×n with small treewidth τ and two simplex r, c ∈ Rn+, there is an algorithm (Al-
gorithm 4) that takes O(nτ) for each iteration and O(nτ2) for initialization to output such that
B(uk, vk) ∈ Rn×n can be constructed (implicitly) by

B(uk, vk) = diag(euk)(LAL
⊤
A) diag(e

vk) + diag(euk)(ww⊤) diag(evk),

satisfying ∥B(uk, vk)1n − r∥1 + ∥B(uk, vk)
⊤1n − c∥1 ≤ ϵ0.

4.3 CORRECTNESS OF ROUNDING ALGORITHM

We first show the correctness of our rounding algorithm (Algorithm 2).
Lemma 4.3 (Informal version of Lemma A.5). Given r, c ∈ △n, B ∈ Rn×n+ , u, v ∈ Rn and
r, c ∈ Rn, there is an algorithm (Algorithm 2) that outputs a diagonal matrixX ∈ Rn×n, a diagonal
matrix Y ∈ Rn×n, a lower triangular matrix LA, vectors u, v, w ∈ Rn, vectors p ∈ Rn, q ∈ Rn.
Such that G ∈ Ur,c can be constructed (implicitly) by

X̂ = 7 X(diag(eu)LAL
⊤
A diag(ev) + diag(eu)(ww⊤) diag(ev))Y + pq⊤/∥p∥1,

satisfying ∥G−B∥1 ≤ 2(∥B1n − r∥1 + ∥B⊤1n − c∥1).

Algorithm 2 Rounding of the projection of B on U
1: procedure ROUND(u ∈ Rn, v ∈ Rn, L ∈ Rn×n, w ∈ Rn, r ∈ Rn, c ∈ Rn) ▷ Lemma 4.4
2: ▷ L is a lower triangular matrix that only has O(nτ) nonzeros
3: ▷ We never explicit write B. B can implicitly represented by

diag(eu)(LAL
⊤
A) diag(e

v) + diag(eu)(ww⊤) diag(ev)
4: X ← diag(x) with xi = min{ ri

ri(B) , 1} ▷ r(B) := B1n, X ∈ Rn×n
5: B0 ← XB ▷ We only implicitly construct B0

6: Y ← diag(y) with yj = min{ cj
cj(B0)

, 1} ▷ c(B0) := B⊤
0 1n

7: B1 ← B0Y ▷ We only implicitly construct B1

8: p← r −B11n
9: q ← c−B⊤

1 1n
10: return p, q, X,Y,w, u, v ▷ We return G in an implicit way, i.e., G := XBY + pq⊤/∥p∥1
11: end procedure

4.4 RUNNING TIME OF ROUNDING ALGORITHM

Next, we show the running time needed for the rounding algorithm (Algorithm 2).
Lemma 4.4 (An improved version of of Lemma 7 in (Altschuler et al., 2017)). Given r, c ∈ △n,
B ∈ Rn×n+ , u, v ∈ Rn and r, c ∈ Rn, there is an algorithm (Algorithm 2) that outputs a diagonal
matrix X ∈ Rn×n, a diagonal matrix Y ∈ Rn×n, a lower triangular matrix LA, vectors u, v, w ∈
Rn, vectors p ∈ Rn, q ∈ Rn, such that G ∈ Ur,c can be constructed (implicitly) by

X̂ = X(diag(eu)LAL
⊤
A diag(ev) + diag(eu)(ww⊤) diag(ev))Y + pq⊤/∥p∥1,

satisfying ∥G−B∥1 ≤ 2(∥B1n − r∥1 + ∥B⊤1n − c∥1) in O(nτ) time.

Proof. The running time for each step is shown as follows:

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

• Calculating r(B) takes O(nτ) time. Given

r(B) = B1n = diag(euk)(LAL
⊤
A)1n diag(e

vk) + diag(euk)(ww⊤)1n diag(e
vk),

calculatingLA(L⊤
A1n) takesO(nτ), as nnz(LA) = nτ . Asw = 1n, calculating (ww⊤)1n

takes O(n).

• Calculating X = diag(x) with xi = min{ ri
ri(B) , 1} takes O(n) time.

• ForB0 = XB, we remark thatB0 is not explicitly written down. It is implicitly represented
by LA, w, u, v,X .

• Similarly, we can calculate Y in O(n) time and implicitly write down B1.

• We have

B11n = XBY

= diag(euk)X(LAL
⊤
A)Y 1n diag(e

vk) + diag(euk)X(ww⊤)Y 1n diag(e
vk).

For any diagonal matrix M , M · LA is as sparse as LA and it takes O(nτ) to compute
it. Therefore, computing P = diag(euk)X(LAL

⊤
A)Y diag(evk) takes O(nτ) time and P

is nτ -sparse. Then, we compute P1n, which takes O(nτ) time. Hence, updating p takes
O(nτ) time.

• Similarly, updating q takes O(nτ) time.

• For matrix G, it is returned in an implicit way. We use p, q, X,Y,w, u, v to represent it.

Therefore, the total running time is O(nτ).

4.5 RUNNING TIME OF OT DISTANCE BY SINKHORN

Putting them all together, we have the following theorem:

Theorem 4.5 (Informal version of Theorem B.3). There is an algorithm (Algorithm 1) that takes
cost matrix C ∈ Rn×n, two n-dimensional simplex r, c as inputs and outputs, a diagonal matrix
X ∈ Rn×n, a diagonal matrix Y ∈ Rn×n, a lower triangular matrix LA, vectors u, v, w ∈ Rn,
vectors p ∈ Rn, q ∈ Rn. Such that X̂ ∈ U(r, c) can be constructed (implicitly) by

X̂ = X(diag(eu)LAL
⊤
A diag(ev) + diag(eu)(ww⊤) diag(ev))Y + pq⊤/∥p∥1

that satisfying Eq. (2) in

O(nτ2 + ϵ−2nτ∥C∥2∞ lnn)

time.

5 CONCLUSION

Optimal transport (OT) such as the earth mover’s distance is a specialized domain within mathemat-
ics that delves into the intricate problem of determining the most economical way to transport goods
or materials between two distinct points. These costs are typically quantified based on parameters
such as the total distance traversed or the amount of resources utilized during the transportation pro-
cess. In this paper, we study the problem of approximating the general OT distance between two
discrete distributions of size n. Consider the cost matrix denoted by C = AA⊤ where A ∈ Rn×d
with treewidth τ . By making use of the treewidth setting, we proposed a faster Sinkhorn algo-
rithm and a faster rounding algorithm to approximate the OT distance. The existing state-of-the-art
algorithms have running time of Õ(ϵ−2n2). In contrast, our approach has improve this time to
Õ(ϵ−2nτ).

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

ETHIC STATEMENT

This paper does not involve human subjects, personally identifiable data, or sensitive applications.
We do not foresee direct ethical risks. We follow the ICLR Code of Ethics and affirm that all aspects
of this research comply with the principles of fairness, transparency, and integrity.

REPRODUCIBILITY STATEMENT

We ensure reproducibility of our theoretical results by including all formal assumptions, definitions,
and complete proofs in the appendix. The main text states each theorem clearly and refers to the
detailed proofs. No external data or software is required.

REFERENCES

Zeyuan Allen-Zhu, Yuanzhi Li, Rafael Oliveira, and Avi Wigderson. Much faster algorithms for
matrix scaling. In 2017 IEEE 58th Annual Symposium on Foundations of Computer Science
(FOCS), pp. 890–901. IEEE, 2017.

Jason Altschuler, Jonathan Niles-Weed, and Philippe Rigollet. Near-linear time approximation al-
gorithms for optimal transport via sinkhorn iteration. Advances in neural information processing
systems, 30, 2017.

Martin Arjovsky, Soumith Chintala, and Léon Bottou. Wasserstein generative adversarial networks.
In International conference on machine learning, pp. 214–223. PMLR, 2017.

Federico Bassetti, Antonella Bodini, and Eugenio Regazzini. On minimum kantorovich distance
estimators. Statistics & probability letters, 76(12):1298–1302, 2006.

Jérémie Bigot, Raúl Gouet, Thierry Klein, and Alfredo López. Geodesic pca in the wasserstein space
by convex pca. In Annales de l’Institut Henri Poincaré, Probabilités et Statistiques, volume 53,
pp. 1–26. Institut Henri Poincaré, 2017.

Jose Blanchet, Arun Jambulapati, Carson Kent, and Aaron Sidford. Towards optimal running times
for optimal transport. arXiv preprint arXiv:1810.07717, 2018.

Hans L Bodlaender. A tourist guide through treewidth. Acta cybernetica, 11(1-2):1, 1994.

Hans L Bodlaender, John R Gilbert, Hjálmtyr Hafsteinsson, and Ton Kloks. Approximating
treewidth, pathwidth, frontsize, and shortest elimination tree. Journal of Algorithms, 18(2):238–
255, 1995.

Nicolas Bonneel, Gabriel Peyré, and Marco Cuturi. Wasserstein barycentric coordinates: histogram
regression using optimal transport. ACM Trans. Graph., 35(4):71–1, 2016.

Michael B Cohen, Aleksander Madry, Dimitris Tsipras, and Adrian Vladu. Matrix scaling and
balancing via box constrained newton’s method and interior point methods. In 2017 IEEE 58th
Annual Symposium on Foundations of Computer Science (FOCS), pp. 902–913. IEEE, 2017.

Marco Cuturi. Sinkhorn distances: Lightspeed computation of optimal transport. Advances in neural
information processing systems, 26, 2013.

Timothy A Davis. Direct methods for sparse linear systems. SIAM, 2006.

Pavel Dvurechensky, Alexander Gasnikov, and Alexey Kroshnin. Computational optimal transport:
Complexity by accelerated gradient descent is better than by sinkhorn’s algorithm. In Interna-
tional conference on machine learning (ICML), pp. 1367–1376. PMLR, 2018.

Johannes Ebert, Vladimir Spokoiny, and Alexandra Suvorikova. Construction of non-asymptotic
confidence sets in 2-wasserstein space. arXiv preprint arXiv:1703.03658, 2017.

Fedor V Fomin, Daniel Lokshtanov, Saket Saurabh, Michał Pilipczuk, and Marcin Wrochna. Fully
polynomial-time parameterized computations for graphs and matrices of low treewidth. ACM
Transactions on Algorithms (TALG), 14(3):1–45, 2018.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

Charlie Frogner, Chiyuan Zhang, Hossein Mobahi, Mauricio Araya, and Tomaso A Poggio. Learn-
ing with a wasserstein loss. Advances in neural information processing systems, 28, 2015.

Aude Genevay, Gabriel Peyré, and Marco Cuturi. Learning generative models with sinkhorn di-
vergences. In International Conference on Artificial Intelligence and Statistics, pp. 1608–1617.
PMLR, 2018.

Alan George, Joseph Liu, and Esmond Ng. Computer solution of sparse linear systems. Oak Ridge
National Laboratory, 1994.

Yuzhou Gu and Zhao Song. A faster small treewidth sdp solver. arXiv preprint arXiv:2211.06033,
2022.

Yuzhou Gu, Zhao Song, and Lichen Zhang. A nearly-linear time algorithm for structured support
vector machines. arXiv preprint arXiv:2307.07735, 2023.

Leonid V Kantorovich. On the translocation of masses. In Dokl. Akad. Nauk. USSR (NS), volume 37,
pp. 199–201, 1942.

Soheil Kolouri, Se Rim Park, Matthew Thorpe, Dejan Slepcev, and Gustavo K Rohde. Optimal
mass transport: Signal processing and machine-learning applications. IEEE signal processing
magazine, 34(4):43–59, 2017.

Matt Kusner, Yu Sun, Nicholas Kolkin, and Kilian Weinberger. From word embeddings to document
distances. In International conference on machine learning, pp. 957–966. PMLR, 2015.

S Cliff Liu, Zhao Song, Hengjie Zhang, Lichen Zhang, and Tianyi Zhou. Space-efficient interior
point method, with applications to linear programming and maximum weight bipartite matching.
arXiv preprint arXiv:2009.06106, 2022.

Grégoire Montavon, Klaus-Robert Müller, and Marco Cuturi. Wasserstein training of restricted
boltzmann machines. Advances in Neural Information Processing Systems, 29, 2016.

Victor M Panaretos and Yoav Zemel. Amplitude and phase variation of point processes. The Annals
of Statistics, 44(2):771–812, 2016.

Ofir Pele and Michael Werman. Fast and robust earth mover’s distances. In 2009 IEEE 12th inter-
national conference on computer vision, pp. 460–467. IEEE, 2009.

Kent Quanrud. Approximating optimal transport with linear programs. arXiv preprint
arXiv:1810.05957, 2018.

Neil Robertson and Paul Seymour. Graph minors xxiii. nash-williams’ immersion conjecture. Jour-
nal of Combinatorial Theory, Series B, 100(2):181–205, 2010.

Yossi Rubner, Carlo Tomasi, and Leonidas J Guibas. The earth mover’s distance as a metric for
image retrieval. International journal of computer vision, 40(2):99–121, 2000.

Tim Salimans, Han Zhang, Alec Radford, and Dimitris Metaxas. Improving gans using optimal
transport. arXiv preprint arXiv:1803.05573, 2018.

Maziar Sanjabi, Jimmy Ba, Meisam Razaviyayn, and Jason D Lee. On the convergence and ro-
bustness of training gans with regularized optimal transport. Advances in Neural Information
Processing Systems, 31, 2018.

Justin Solomon, Raif Rustamov, Leonidas Guibas, and Adrian Butscher. Wasserstein propagation
for semi-supervised learning. In International Conference on Machine Learning, pp. 306–314.
PMLR, 2014.

Zhao Song, Xin Yang, Yuanyuan Yang, and Tianyi Zhou. Faster algorithm for structured john
ellipsoid computation. arXiv preprint arXiv:2211.14407, 2022.

Cédric Villani. Optimal transport: old and new, volume 338. Springer, 2009.

11

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Michael Werman, Shmuel Peleg, and Azriel Rosenfeld. A distance metric for multidimensional
histograms. Computer Vision, Graphics, and Image Processing, 32(3):328–336, 1985.

Richard Y Zhang and Javad Lavaei. Sparse semidefinite programs with guaranteed near-linear time
complexity via dualized clique tree conversion. Mathematical programming, 188:351–393, 2021.

12

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

Appendix
Roadmap We first provide the formal analysis of the Sinkhorn’s algorithm in Section A. Then,
we show the detailed running time proof in Section B. In Section C, we provide the missing proof
and algorithm. In addition, in Section D, we provide the analysis of the Sinkhorn’s algorithm in
symmetric case.

A MORE ANALYSIS FOR SINKHORN’S ALGORITHM

In Section A.1, we introduce the Sinkhorn’s algorithm. In Section A.2, we provide a lemma that
guarantee the bounds related to u ∈ Rn, v ∈ Rn. In Section A.3, we show the iteration complexity
bound of Sinkhorn’s algorithm. In Section A.4, we show the correctness of our rounding algorithm
(Algorithm 2) under the treewidth setting.

A.1 SINKHORN ALGORITHM

We first provide the Sinkhorn algorithm (Algorithm 3) as follows:

Algorithm 3 Sinkhorn’s Algorithm

1: procedure SINKHORNALGORITHM(c, r, ϵ0) ▷ Lemma A.4
2: ▷ Accuracy ϵ0
3: k ← 0
4: u0 ← 0
5: v0 ← 0
6: while ∥B(uk, vk)1n − r∥1 + ∥B(uk, vk)

⊤1n − c∥1 ≥ ϵ0 do
7: if k mod 2 = 0 then
8: uk+1 ← uk + ln r − ln(B(uk, vk)1n)
9: vk+1 ← vk

10: else
11: vk+1 ← vk + ln c− ln(B(uk, vk)

⊤1n)
12: uk+1 ← uk
13: end if
14: k ← k + 1
15: end while
16: return B(uk, vk).
17: end procedure

A.2 BOUNDED max−min

Next, we provide a tool related to the bound for uk and vk.
Lemma A.1. Let k ≥ 0 and uk ∈ Rn, vk ∈ Rn be generated by Algorithm 3 and (u∗, v∗) ∈
Rn × Rn be a solution of Eq. (5). Then

max
i∈[n]

uk,i − min
i∈[n]

uk,i ≤ R, max
j∈[n]

vk,j − min
j∈[n]

vk,j ≤ R, (8)

max
i∈[n]

u∗,i − min
i∈[n]

u∗,i ≤ R, max
j∈[n]

v∗,j − min
j∈[n]

v∗,j ≤ R,

where R is defined in Definition 3.3.

Proof. First, we prove the bound for uk ∈ Rn. As u, v are initialized as 0n, the inequality holds for
k = 0. Given k − 1 is even, the variable u is updated on the iteration k − 1 and B(uk, vk)1n = r
by the algorithm construction.

Hence, for each i ∈ [n] , we have

euk,iKmin⟨1n, evk⟩ ≤
n∑
j=1

eek,iKi,je
vk,j

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

= [B(uk, vk)(1n)i]

= ri

≤ 1, (9)

where the first step follows from the definition of Kmin, the second step follows from the definition
of B, the third step follows from B(uk, vk)1n = r and the last step follows from the definition of
probability simplex r.

Hence, by reorganizing Eq. (9) we have

max
i∈[n]

uk,i ≤ − ln(Kmin⟨1n, evk⟩). (10)

On the other hand, since 0 ≤ Ki,j ≤ 1 for each i ∈ [n],

euk,i⟨1n, evk⟩

≥
n∑
j=1

euk,iKi,je
vk,j

= [B(uk, vk)1n]i

= ri,

where the first step follows from Ki,j ≤ 1, the second step follows from the definition of B and the
last step follows from B(uk, vk)1n = r.

We also have

min
i∈[n]

uk,i ≥ min
i∈[n]

ln(
ri

⟨1n, evk⟩
) = ln(

mini∈[n] ri

⟨1n, evk⟩
).

The latter equality and Eq. (10) give

max
i∈[n]

uk,i − min
i∈[n]

uk,i ≤ − ln(Kmin min
i∈[n]

ri) ≤ R.

A.3 ITERATION COMPLEXITY BOUND

Then, we show that the upper bound of the potential function ψ̃.
Lemma A.2 (Formal version of Lemma 3.6). Let k ≥ 1 and uk, vk ∈ Rn be output of Algorithm 3.
We denote Bk := B(uk, vk). Then, we have

ψ̃(uk, vk) ≤ R · (∥Bk1n − r∥1 + ∥B⊤
k 1n − c∥1).

Proof. Given a fixed k ≥ 1, for the following convex function of (û, v̂)

⟨1n, B(û, v̂)1n⟩ − ⟨û, B(uk, vk)1n⟩ − ⟨v̂, B(uk, vk)
⊤1n⟩.

The gradient of the convex function vanishes at (û, v̂) = (uk, vk), so the point (uk, vk) is its mini-
mizer.

Hence,

ψ̃(uk, vk) = [⟨1n, Bk1n⟩ − ⟨uk, Bk1n⟩ − ⟨vk, B⊤
k 1n⟩]

− [⟨1n, B(u∗, v∗)1n⟩
− ⟨u∗, Bk1n⟩ − ⟨v∗, B⊤

k 1n⟩]
+ ⟨uk − u∗, Bk1n − r⟩
+ ⟨vk − v∗, B⊤

k 1n − c⟩
≤ ⟨uk − u∗, Bk1n − r⟩

+ ⟨vk − v∗, B⊤
k 1n − c⟩. (11)

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

where the first step follows from the definition of ψ̃. Next, we bound the r.h.s of the inequality. For
each iteration, we know that either Bk1n = r or B⊤

k 1n = c, so we have that ⟨1n, Bk1n⟩ = 1 and
⟨1n, Bk1n − r⟩ = 0.

Taking a = 0.5 · (maxi∈[n] uk,i +mini∈[n] uk,i). Then, we have

⟨uk, Bk1n − r⟩ = ⟨uk − a1n, Bk1n − r⟩
≤ ∥uk − a1n∥∞∥Bk1n − r∥1
= 0.5 · (max

i∈[n]
uk,i

− min
i∈[n]

uk,i)∥Bk1n − r∥1

≤ R

2
∥Bk1n − r∥1.

where the first step follows from ⟨1n, Bk1n − r⟩ = 0 , the second step follows from Hölder’s
inequality, the third step follows from the definition of a, and the last step follows from Lemma A.1.

Similarly, we bound ⟨−u∗, Bk1n−r⟩, ⟨vk, B⊤
k 1n−c⟩ and ⟨−v∗, B⊤

k 1n−c⟩ in Eq. (11) and complete
the proof.

The following lemma gives the lower bound of ψ̃(uk, vk)− ψ̃(uk+1, vk+1).
Lemma A.3. Let uk, vk be as in Algorithm 3. Then,

ψ̃(uk, vk)− ψ̃(uk+1, vk+1) ≥ max{ ψ̃(uk, vk)
2

2R2
,
ϵ20
2
}.

Proof. We first consider case when k ≥ 1 is even and define Bk := B(uk, vk), where B is as in
Definition 3.1. We have

ψ(uk, vk)− ψ(uk+1, vk+1) = ⟨1n, Bk1n⟩ − ⟨1n, Bk+11n⟩+ ⟨uk+1 − uk, r⟩+ ⟨vk+1 − vk, c⟩
= ⟨r, uk+1 − uk⟩
= ⟨r, ln r − ln(Bk1n)⟩
= KL(r∥Bk1n). (12)

Then, we obtain

ψ̃(uk, vk)− ψ̃(uk+1, vk+1) = ψ(uk, vk)− ψ(uk+1, vk+1)

= KL(r∥Bk1n)

≥ 1

2
∥Bk1n − r∥21

≥ max{ ψ̃(uk, vk)
2

2R2
,
ϵ20
2
},

where the first step follows by the definition of ψ̃, the second step follows by Eq. (12), the third
step follows by Pinsker’s inequality and the last step follows by Lemma 3.6 and B⊤

k 1n = c. For
the last step, we also used that, as soon as the stopping criterion is not yet fulfilled and B⊤

k 1n = c,
∥Bk1n − r∥21 ≥ ϵ20. Similarly, when k is odd, we can prove the same inequality.

Here, we show the upper bound of the number of iterations required for Algorithm 3.
Lemma A.4. Given the cost matrix C ∈ Rn×n and two simplex r, c ∈ Rn+, there is an algorithm
(Algorithm 3) outputs B(uk, vk) (Definition 3.1) that satisfying

∥B(uk, vk)1n − r∥1 + ∥B(uk, vk)
⊤1n − c∥1 ≤ ϵ0

in the number of iterations k satisfying

k ≤ 2 +
4R

ϵ0

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

Proof. Given ℓ = 2R2

ψ̃(u1,v1)
in accordance with Lemma 3.7, we have for any k ≥ 1

ψ̃(uk, vk)

2R2
≤ 1

k + ℓ− 1
.

Thus,

k ≤ 1 +
2R2

ψ̃(uk, vk)
− 2R2

ψ̃(u1, v1)
. (13)

On the other hand,

ψ̃(uk+m, vk+m) ≤ ψ̃(uk, vk)−
ϵ20m

2
, k,m ≥ 0. (14)

Next, we use a switching strategy, parameterized by number s ∈ (0, ψ̃(u1, v1)], to combine Eq. (7)
and Eq. (14).

First, by using Eq. (7), we calculate the number of iterations needed to decrease ψ̃(u, v) from its
initial value ψ̃(u1, v1) to a certain value s. Then, by applying Eq. (14) and given ψ̃(u, v) ≥ 0 by its
definition, we calculate the number of iterations required to further decrease ψ̃(u, v) from s to zero.
By minimizing the sum of these two estimates in s ∈ (0, ψ̃(u1, v1)], the total number of iterations k
satisfies the following

k ≤ min
0<s≤ψ̃(u1,v1)

(2 +
2R2

s
− 2R2

ψ̃(u1, v1)
+

2s

ϵ20
)

=

2 + 4R
ϵ0
− 2R2

ψ̃(u1,v1)
, ψ̃(u1, v1) ≥ Rϵ0,

2 + 2ψ̃(u1,v1)
ϵ20

, ψ̃(u1, v1) < Rϵ0.

where the first step comes from Eq. (13), the first half of the last step comes from a + b ≥ 2
√
ab

for a ≥ 0, b ≥ 0 and the second half of the last step follows from s = ψ̃(u1, v1). In both cases, we
have k ≤ 2 + 4R

ϵ0
.

A.4 CORRECTNESS OF ROUNDING ALGORITHM

We show the correctness of our rounding algorithm (Algorithm 2).
Lemma A.5 (Formal version of Lemma 4.3. An improved version of of Lemma 7 in (Altschuler
et al., 2017)). Given r, c ∈ △n, B ∈ Rn×n+ , u, v ∈ Rn and r, c ∈ Rn, there is an algorithm
(Algorithm 2) that outputs

• a diagonal matrix X ∈ Rn×n

• a diagonal matrix Y ∈ Rn×n

• a lower triangular matrix LA

• vectors u, v, w ∈ Rn

• vectors p ∈ Rn, q ∈ Rn

such that G ∈ Ur,c can be constructed (implicitly) by

X̂ = X(diag(eu)LAL
⊤
A diag(ev) + diag(eu)(ww⊤) diag(ev))Y

+ pq⊤/∥p∥1,

satisfying

∥G−B∥1 ≤ 2(∥B1n − r∥1 + ∥B⊤1n − c∥1).

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

Proof. Let G be the output of Algorithm 2. As matrix B1 are nonnegative, and the output q and p
are both negative, with ∥p∥1 = ∥q∥1 = 1− ∥B1∥1, matrix G are nonnegative and

r(G) = r(B1) + r(pq⊤/∥p∥1)
= r(B1) + p

= r, (15)

where we denote r(A) := A1n, c(A) := A⊤1n and the first two step comes from the definition of
r and the last step comes from p = r − B11n. Similarly, we have c(G) = c. Therefore, we have
G ∈ Ur,c.
Next, we denote ∆ := ∥B∥1 − ∥B1∥1 and prove the ℓ1 bound between the matrix B and matrix G.
We first remove mass from a row of B when ri(B) ≥ ri, and then, we remove mass from a column
when cj(B0) ≥ cj . Now, we have

∆ =

n∑
i=1

(ri(B)− ri)+ +

n∑
j=1

(cj(B0)− cj)+. (16)

Then, we show the analysis of Eq. (16). First, for the left sum of Eq. (16), we have
n∑
i=1

(ri(B)− ri)+ =
1

2
(∥r(B)− r∥1 + ∥B∥ − 1).

For the second sum in Eq. (16).
n∑
j=1

(cj(B0)− cj)+ ≤
n∑
j=1

(cj(B)− cj)+ ≤ ∥c(B)− c∥1,

where the first step comes from the fact that the vector c(B) is entrywise larger than c(B0) and the
last step comes from the definition of c.

Therefore we conclude

∥G−B∥1 ≤ ∆+ ∥pq⊤∥1/∥p∥1
= ∆+ 1− ∥B1∥1
= 2∆+ 1− ∥B∥1
≤ ∥r(B)− r∥1 + 2∥c(B)− c∥1 (17)
≤ 2(∥r(B)− r∥1 + ∥c(B)− c∥1),

where the first step comes from the definition of ∆, the second step comes from the fact that ∥p∥1 =
∥q∥1 = 1 − ∥B1∥1, the third step comes from the definition of ∆, the fourth step comes from
Eq. (16) and the last step comes from reorganization. Now we complete the proof.

B RUNNING TIME

In Section B.1, we present two inequalities. In Section B.2, we show the running time needed for our
rounding algorithm (Algorithm 2) under the treewidth setting. In Section B.3, we show the running
time needed for approximating the OT by Sinkhorn (Algorithm 1).

B.1 INEQUALITIES

We introduce the Hölder’s inequality as following:
Lemma B.1 (Hölder’s inequality). If p > 1 and q > 1 are such that

1

p
+

1

q
= 1,

then

∥ab∥1 ≤ ∥a∥p∥b∥q.

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

We also provide the Pinsker inequality.
Lemma B.2 (Pinsker inequality). Let P andQ be two distributions defined on the universe U . Then,

KL(P∥Q) ≥ 1

2 ln 2
· ∥P −Q∥21.

where KL(P∥Q) is the KL-divergence between P and Q.

B.2 RUNNING TIME OF ROUNDING ALGORITHM

We show the running time needed for the rounding algorithm (Algorithm 2).

B.3 RUNNING TIME OF OT DISTANCE BY SINKHORN

The core of our OT algorithm is the entropic penalty

Xγ := arg min
X∈Ur,c

⟨X,C⟩+ γ · R(X). (18)

The solution to Eq. (18) can be characterized explicitly by analyzing its first-order conditions for
optimality.

Now we apply the result of the previous subsection to derive a complexity estimate for finding
X̂ ∈ U(r, c) satisfying Eq. (2). The procedure for approximating the OT distance by the Sinkhorn’s
algorithm is listed as Algorithm 1.
Theorem B.3 (Formal version of Theorem 4.5). There is an algorithm (Algorithm 1) that takes cost
matrix C ∈ Rn×n, two n-dimensional simplex r, c as inputs and outputs

• a diagonal matrix X ∈ Rn×n

• a diagonal matrix Y ∈ Rn×n

• a lower triangular matrix LA

• vectors u, v, w ∈ Rn

• vectors p ∈ Rn, q ∈ Rn

such that X̂ ∈ U(r, c) can be constructed (implicitly) by

X̂ = X(diag(eu)LAL
⊤
A diag(ev) + diag(eu)(ww⊤) diag(ev))Y + pq⊤/∥p∥1,

which satisfies Eq. (2) in

O(nτ2 + ϵ−2nτ∥C∥2∞ lnn)

time.
Remark B.4. If we don’t care about the output format to be lower-triangular matrix, then the
additive term nτ2 can be removed.

Proof. Let X∗ ∈ argminX∈Ur,c⟨P,C⟩ be an optimal solution to the original OT program.

We first show that ⟨B,C⟩ is not much larger than ⟨X∗, C⟩.

Since B = MAN ∈ Rn×n for positive diagonal matrices M,N ∈ Rn×n+ , Lemma 2.6 implies B is
the optimal solution to

arg min
X∈Ur,c

⟨X,C⟩+ γR(X). (19)

By Lemma 4.4, there exists a matrix X0 ∈ UB1n,B⊤1n
(Definition 2.5) such that

∥X0 −X∗∥1 ≤ 2(∥B1n − r∥1 + ∥B⊤1n − c∥1). (20)

Moreover, since B ∈ Rn×n is an optimal solution of Eq. (19), we have

⟨B,C⟩+ γR(B) ≤ ⟨X0, C⟩+ γR(X0). (21)

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

Thus, we have

⟨B,C⟩ − ⟨X∗, C⟩
= ⟨B,C⟩ − ⟨X0, C⟩+ ⟨X0, C⟩ − ⟨X∗, C⟩
= ⟨B,C⟩ − ⟨X0, C⟩+ ∥X0 −X∗∥1∥C∥∞
≤ γ(H(B)−H(X0)) + ∥X0 −X∗∥1∥C∥∞
≤ γ(H(B)−H(X0)) + 2(∥B1n − r∥1 + ∥B⊤1n − c∥1)∥C∥∞
≤ 2γ lnn+ 2(∥B1n − r∥1 + ∥B⊤1n − c∥1)∥C∥∞, (22)

where the first step follows from reorganization, the second step follows from Hölder’s inequality
(Lemma B.1), the third step follows from Eq. (21) and R(X) = −H(X), the fourth step follows
from Eq. (20) and the last step follows from the fact that 0 < H(B), H(X0) ≤ 2 lnn.

Lemma 4.4 implies that the output X̂ of Algorithm 2 satisfies the inequality

∥B − X̂∥1 ≤ 2(∥B1n − r∥1 + ∥B⊤1n − c∥1). (23)

Recall that X̂ is the output of Algorithm 1, X∗ is a solution to the OT problem Eq. (2) and B is the
matrix obtained in line 7 of Algorithm 1. We have

⟨X̂, C⟩ = ⟨X̂ −B,C⟩+ ⟨B,C⟩
≤ ∥X̂ −B∥1∥C∥∞ + ⟨B,C⟩
≤ 2(∥B1n − r∥1 + ∥B⊤1n − c∥1)∥C∥∞ + ⟨B,C⟩
≤ ⟨X∗, C⟩+ 2γ lnn+ 4(∥B1n − r∥1 + ∥B⊤1n − c∥1)∥C∥∞. (24)

where the first step follows from reorganization, the second step follows from Hölder’s inequality,
the third step follows from Eq. (23) and the last step follows from Eq. (22).

At the same time, we have

∥B1n − r∥1 + ∥B⊤1n − c∥1
≤ ∥B1n − r̃∥1 + ∥r̃ − r∥1 + ∥B⊤1n − c̃∥1 + ∥c̃− c∥1
≤ ϵ0,

where the first step follows from the definition of ℓ1-norm and the last step follows from ∥B1n −
r∥1 + ∥B⊤1n − c∥1 ≤ ϵ0 (output of Algorithm 4) and the definitions of r̃ and c̃.

Setting γ = ϵ
4 lnn and ϵ0 = ϵ

8∥C∥∞
, we obtain from the above inequality and Eq. (24) that X̂

satisfies inequality Eq. (2).

Next, we show complexity of Algorithm 1. When ϵ0 is sufficiently small, the number of iterations
of the Sinkhorn’s algorithm in line 7 of Algorithm 1 is O(R/ϵ0), by using Theorem A.4. According
to Definition 3.3, we have

R = − ln(Kmin min
i,j∈[n]

{r̃i, c̃j})

=− ln(e−∥C∥∞/γ min
i,j∈[n]

{r̃i, c̃j})

≤ ∥C∥∞
γ
− ln(

ϵ0
8n

),

where the first step follows from the definition of R,the second step follows from the definition of
Kmin, the last step follows from the condition of r̃i, c̃j in line 6 of Algorithm 1.

Since γ = ϵ
4 lnn and ϵ0 = ϵ

8∥C∥∞
, we have that

R = O(ϵ−1∥C∥∞ lnn).

As the number of iteration for Algorithm 1 is O(R/ϵ0), we conclude that the total number of
Sinkhorn’s algorithm iterations is bounded by O(ϵ−2∥C∥2∞ lnn).

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2026

Obviously, r̃ ∈ Rn+ and c̃ ∈ Rn+ in line 6 of Algorithm 1 can be found in O(n) time.

Since each iteration of the Sinkhorn’s algorithm requires O(nτ) time and the initialization takes
O(nτ2) time as shown in Theorem 4.2, the total complexity of Algorithm 1 is

O(nτ2 + ϵ−2nτ∥C∥2∞ lnn).

C SINKHORM ALGORITHM WITH SMALL TREEWIDTH

Algorithm 4 Sinkhorn’s Algorithm with small treewidth

1: procedure SINKHORNALGORITHM(r ∈ Rn, c ∈ Rn, ϵ0 ∈ (0, 1)) ▷ Theorem 4.2
2: ▷ Accuracy ϵ0
3: k ← 0,
4: u0 ← 0
5: v0 ← 0
6: w ← 1n
7: x0 ← e−Ci,j/γ1n
8: y0 ← (e−Ci,j/γ)⊤1n
9: Implicitly form D = ww⊤

10: Implicitly form A ∈ Rn×n, where Ai,j = e−Ci,j/γ − 1
11: ▷ Explicitly writing down A requires n2, however, we never need to explicitly write down

A. Knowing the exact formulation of A is enough to do the Cholesky decomposition
12: L← Cholesky decomposition matrix for A i.e., A = LAL

⊤
A ▷ O(nτ2), Lemma 2.9

13: while ∥xk − r∥1 + ∥yk − c∥1 ≥ ϵ0 do
14: if k mod 2 = 0 then
15: uk+1 ← uk + ln r − ln(xk)
16: vk+1 ← vk
17: else
18: vk+1 ← vk + ln c− ln(yk)
19: uk+1 ← uk
20: end if
21: xk ← (diag(euk)(LAL

⊤
A) diag(e

vk) + diag(euk)D diag(evk))1n
22: yk ← (diag(euk)(LAL

⊤
A) diag(e

vk) + diag(euk)D diag(evk))⊤1n
23: k ← k + 1
24: end while
25: return uk, vk, LA, w ▷ We return B(uk, vk) in a implicit way, i.e.,

B(uk, vk) = diag(euk)(LAL
⊤
A) diag(e

vk) + diag(euk)(ww⊤) diag(evk).
26: end procedure

Theorem C.1 (Running time of Algorithm 4, Formal version of Theorem 4.2). Given the cost matrix
C ∈ Rn×n with small treewidth τ and two simplex r, c ∈ Rn+, there is an algorithm (Algorithm 4)
that takes O(nτ) for each iteration and O(nτ2) for initialization to output

• a lower triangular matrix LA

• vectors u, v, w ∈ Rn

such that B(uk, vk) ∈ Rn×n can be constructed (implicitly) by

B(uk, vk) = diag(euk)(LAL
⊤
A) diag(e

vk)

+ diag(euk)(ww⊤) diag(evk),

satisfying

∥B(uk, vk)1n − r∥1 + ∥B(uk, vk)
⊤1n − c∥1 ≤ ϵ0.

Proof. The running time for each step is shown as follows:

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2026

• Writing down cost matrix C ∈ Rn×n takes O(nτ) time as nnz(C) = nτ by using Claim
2.11.

• Implicitly write down matrix D ∈ Rn×n, this takes O(n) time since D ∈ Rn×n is a rank-1
matrix.

• Initializing x0 and y0 takes O(nτ) as nnz(C) = nτ .

• Using Lemma 4.1, we know LA is τ -sparse in column. Then, calculating the Cholesky
decomposition for A takes O(nτ2) time using Lemma 2.9.

• Calculating diag(euk)(LAL
⊤
A) diag(e

vk) takes O(nτ) time as LA is τ -sparse in column.

• Calculating diag(euk)D diag(evk) takes O(n) time as matrix D is a rank-1 matrix.

• Updating u ∈ Rn, v ∈ Rn takes O(n) time.

Hence, the initialization time for Algorithm 4 isO(nτ2) and the per iteration running time isO(nτ).

D SYMMETRIC

Algorithm 5 Sinkhorn’s Algorithm for symmetric distribution with small treewidth

1: procedure SINKHORNALGORITHMSYM(r, ϵ0 ∈ (0, 1)) ▷ Theorem D.2
2: ▷ Accuracy ϵ0
3: k ← 0,
4: u0 ← 0
5: v0 ← 0
6: w ← 1n
7: x0 ← e−Ci,j/γ1n
8: y0 ← (e−Ci,j/γ)⊤1n
9: Implicitly form D = ww⊤

10: Implicitly form A ∈ Rn×n, where Ai,j = e−Ci,j/γ − 1
11: ▷ Explicitly writing down A requires n2, however, we never need to explicitly write down

A. Knowing the exact formulation of A is enough to do the Cholesky decomposition
12: L← Cholesky decomposition matrix for A i.e., A = LAL

⊤
A ▷ O(nτ2), Lemma 2.9

13: while ∥xk − r∥1 ≥ ϵ0 do
14: uk+1 ← uk + ln r − ln(xk)
15: xk ← (diag(euk)(LAL

⊤
A) diag(e

uk) + diag(euk)D diag(euk))1n
16: k ← k + 1
17: end while
18: return uk, LA, w ▷ We return B(uk) in a implicit way, i.e.,

B(uk) = diag(euk)(LAL
⊤
A) diag(e

uk) + diag(euk)(ww⊤) diag(euk).
19: end procedure

In this section, we provide an algorithm (Algorithm 6) to solve the OT problem in
O(ϵ−2nτ∥C∥2∞ lnn) time, given the two distribution are identical, i.e., c = r.
Definition D.1. Given the symmetric OT problem argminX∈Ur

⟨X⟩, we define

Ur = {X ∈ Rn×n+ : X1n = r,X⊤1n = r},

where 1n is the all-ones vector in Rn , C ∈ Rn×n+ is a given cost matrix, and r ∈ Rn are given
vectors with positive entries that sum to one.

We first provide the running time of the Sinkhorn’s algorithm (Algorithm 5) for symmetric case.
Theorem D.2 (Running time of Algorithm 5). Given the cost matrixC ∈ Rn×n with small treewidth
τ and a simplex r ∈ Rn+, there is an algorithm (Algorithm 5) that takes O(nτ) for each iteration
and O(nτ2) for initialization to output

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2026

• a lower triangular matrix LA

• vectors u,w ∈ Rn

such that B(uk) ∈ Rn×n can be constructed (implicitly) by

B(uk) = diag(euk)(LAL
⊤
A) diag(e

uk) + diag(euk)(ww⊤) diag(euk),

satisfying

∥B(uk)1n − r∥1 ≤ ϵ0.

Proof. Similar to the proof of Theorem 4.2, here the two distribution are identical, i.e., c = r.

Algorithm 6 Approximate OT by Sinkhorn for symmetric distribution

1: procedure APPROXOTSYM(ϵ) ▷ Theorem D.4
2: ▷ Accuracy ϵ
3: γ ← ϵ

4 lnn
4: ϵ0 ← ϵ

8∥C∥∞

5: ▷ Find r̃ ∈ ∆n s.t. ∥r̃ − r∥1 ≤ ϵ0/4 and mini∈[n] r̃i ≥ ϵ0/(8n).
6: r̃ ← (1− ϵ0

8)(r +
ϵ0

n(8−ϵ0)1n)

7: (u, L,w)← SINKHORNALGORITHM(r̃,ϵ0/2) ▷ Algorithm 5
8: ▷ Note that u, v, L,w is an implicit representation of B, i.e.,

diag(eu)(LAL
⊤
A) diag(e

u) + diag(eu)(ww⊤) diag(eu)
9: (p, X,Y,w, u)← ROUND(u, L,w, r) ▷ Algorithm 7

10: return (p, X,Y, L,w, u) ▷ We return X̂ in an implicit way, i.e., X̂ := XBY + pp⊤/∥p∥1
11: end procedure

Algorithm 7 Rounding of the projection of B on U for symmetric distribution

1: procedure ROUNDSYM(u ∈ Rn, L ∈ Rn×n, w ∈ Rn, r ∈ Rn) ▷ Lemma D.3
2: ▷ L is a lower triangular matrix that only has O(nτ) nonzeros
3: ▷ We never explicit write B. B can implicitly represented by

diag(eu)(LAL
⊤
A) diag(e

u) + diag(eu)(ww⊤) diag(eu)
4: X ← diag(x) with xi = min{ ri

(B1n)i
, 1}

5: B0 ← XB ▷ We only implicitly construct B0

6: Y ← diag(y) with yj = min{ rj
(B⊤

0 1n)j
, 1}

7: B1 ← B0Y ▷ We only implicitly construct B1

8: p← r −B11n
9: return p,X, Y,w, u ▷ We return G in an implicit way, i.e., G := B1 + pp⊤/∥p∥1

10: end procedure

Next, we show the running time of the rounding algorithm (Algorithm 7) for symmetric case.

Lemma D.3 (An improved version of of Lemma 7 in (Altschuler et al., 2017)). Given r ∈ △n,
B ∈ Rn×n+ , u ∈ Rn, there is an algorithm (Algorithm 7) that outputs

• a diagonal matrix X ∈ Rn×n

• a diagonal matrix Y ∈ Rn×n

• a lower triangular matrix LA

• vectors u,w, p ∈ Rn

such that G ∈ Ur can be constructed (implicitly) by

X̂ = X(diag(eu)LAL
⊤
A diag(eu) + diag(eu)(ww⊤) diag(eu))Y + pp⊤/∥p∥1,

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2026

satisfying

∥G−B∥1 ≤ 2(∥B1n − r∥1),

in O(nτ) time.

Proof. Similar to the proof of Lemma A.5 and Lemma 4.4, here the two distribution are identical,
i.e., c = r.

Overall, we provide the running time of the algorithm (Algorithm 6) that approximate the OT for
symmetric case.
Theorem D.4. There is an algorithm (Algorithm 6) takes cost matrix C = MM⊤ =∈ Rn×n, an
n-dimensional simplex r as inputs and outputs

• a diagonal matrix X ∈ Rn×n

• a diagonal matrix Y ∈ Rn×n

• a lower triangular matrix LA

• vectors u,w, p ∈ Rn

such that X̂ ∈ U(r) can be constructed (implicitly) by

X̂ = X(diag(eu)LAL
⊤
A diag(eu) + diag(eu)(ww⊤) diag(eu))Y + pp⊤/∥p∥1,

which satisfies Eq. (2) in

O(nτ2 + ϵ−2nτ∥C∥2∞ lnn)

time.

Remark D.5. If we don’t care about the output format to be lower-triangular matrix, then the
additive term nτ2 can be removed.

Proof. By using Theorem D.2, we have the running time of Line 7 is O(nτ · T), where T is the
total number of Sinkhorn’s algorithm iterations. By using Lemma D.3, the running time of Line 9 is
O(nτ). The rest of the proof is similar to the proof of Similar to the proof Theorem B.3.

LLM USAGE DISCLOSURE

LLMs were used only to polish language, such as grammar and wording. These models did not
contribute to idea creation or writing, and the authors take full responsibility for this paper’s content.

23

	Introduction
	Our Result
	Related Work
	Technique Overview

	Preliminary
	Notations
	Problem Formulation
	Treewidth preliminaries

	Sinkhorn's Algorithm Analysis
	Definitions
	Potential function
	Upper bounding for potential function
	Induction proof for the upper bound of the potential function

	Running Time with small treewidth setting
	Implicit form of
	Running time of Sinkhorn with small treewidth
	 Correctness of rounding algorithm
	 Running time of rounding algorithm
	Running time of OT Distance by Sinkhorn

	Conclusion
	More Analysis for Sinkhorn's Algorithm
	Sinkhorn Algorithm
	Bounded
	Iteration complexity bound
	 Correctness of rounding algorithm

	Running Time
	Inequalities
	 Running Time of Rounding Algorithm
	Running Time of OT Distance by Sinkhorn

	Sinkhorm Algorithm with Small Treewidth
	Symmetric

