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ABSTRACT

While approximating optimal transport (OT) distances such as the earth mover’s
distance is a fundamental problem in statistics and machine learning, it is com-
putationally expensive. Given the cost matrix C' = AAT where A € R"*9, the
state-of-the-art results [Dvurechensky, Gasnikov, and Kroshnin ICML 2018] cost
O(e~2n?) time to approximate OT distance, where 7 is the size of given two dis-
crete distributions and e is the error. In this paper, we proposed a faster Sinkhorn’s
Algorithm to approximate the OT distance when matrix A has treewidth 7, which
is usually very small. Our algorithm achieves a running time of O(e~2n7), im-

proving upon the previous 6(672712) time complexity. To the best of our knowl-
edge, our paper is the first work to improve the OT distance approximating prob-

lem running time to O (e~ 2n7).

1 INTRODUCTION

Optimal transport is a mathematical theory that deals with the problem of finding the most effi-
cient way to transport goods or materials from one place to another. The goal is to minimize the
cost of transportation, which is usually measured in terms of the distance traveled or the amount of
resources used. Many problems in computational sciences require to use optimal transport to com-
pare probability measures or histograms, including Wasserstein or earth mover’s distance (Werman
et al.,[1985; [Rubner et al., 2000; Villani, [2009). Optimal transport has a wide range of applications,
such as bag-of-words for natural language processing (Kusner et al 2015), multi-label classifica-
tion (Frogner et al., |2015)), unsupervised learning (Arjovsky et al., 2017} Bigot et al.l [2017), semi-
supervised learning (Solomon et al., 2014), statistics (Ebert et al., [2017} [Panaretos & Zemel, |2016)),
and other application (Kolouri et al., 2017). In particular, due to its applications in image processing,
it has recently become crucial to have efficient ways of computing, or approximating, the optimal
transport or the Wasserstein distances between two measures.

Optimal Transport (OT) problems have been the focus of extensive research. One significant ad-
vancement in this field came with the application of Sinkhorn’s algorithm to entropy-regularized
OT optimization, as highlighted in (Cuturi, 2013). This application proved beneficial in tackling the
OT challenge. As it was recently shown in (Altschuler et al., 2017), this approach allows to find
an e-approximation for an OT distance in O(e~3n?) time. In terms of the dependence on n, this

result improves on the complexity O(n?) achieved by the network simplex method or interior point
methods (Pele & Werman, 2009), applied directly to the OT optimization problem, which is a linear
program (Kantorovich, [1942). The cubic dependence on e prevents approximating OT distances
with good accuracy. Then, in (Dvurechensky et al.l 2018), they proposed an algorithm with the

complexity bound 5(6’2712) based on the Sinkhorn’s algorithm.

The treewidth of a matrix is a measure of the complexity of its structure and plays a crucial role
in the design and analysis of algorithms for manipulating and processing matrices. In particular,
the treewidth of a matrix can be used to determine the efficiency of algorithms that rely on tree
decompositions, such as dynamic programming and divide-and-conquer techniques. In the small
treewidth setting, algorithms for matrix manipulation and processing can often achieve near-linear
running time, making them highly efficient and scalable. This has important implications for a wide
range of applications, including interior point methods (Gu & Song} 2022}, computing John ellipsoid
(Song et al., [2022)), streaming algorithm (Liu et al.| [2022). Treewidth is also important in graph
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structure theory, particularly in the study of graph minors by Robertson and Seymour (Robertson &
Seymour;, 2010). Many results (Bodlaender, 1994) have shown that NP-hard problems can be solved
in polynomial time on classes of graphs with bounded treewidth.

The best previous work to solve this problem requires n2. It is natural to ask a question
Is that possible to solve in o(n?) under some mild assumption, e.g. treewidth?

In this paper, we provide a positive answer for this question. The comparison between our results
and previous works is shown in Table I]

Table 1: Given the cost matrix C = AAT € R™*"_let 7 denote the treewdith of matrix A. Let ¢
denote the accuracy parameter. Since 7 < n, our algorithm (Theorem [B.3] Algorithm [I)) is always
better than (Dvurechensky et al.,[2018).

References Method Time Complexity
| (Pele & Wermanl,2009)) Network Simplex Method n>
| (Altschuler et al.;[2017) Sinkhorn’s algorithm € 3n?
| (Dvurechensky et al.;[2018) | Sinkhorn’s algorithm € 2n2
| Theorem|[B.3 R Sinkhorn’s algorithm e nt

1.1 OUR RESULT

We formally state our main theorem

Theorem 1.1. Given the cost matrix C = AA" where A has treewidth T, we can find the transport
plan for the e-approximation of the optimal transport distance in O(e~n7||C||%, Inn) time.

Comparing with (Dvurechensky et al., 2018), which solves the problem in O(e~2n?||C||%, Inn), we
proposed an algorithm that constructs a matrix using its implicit form. By leveraging the property
of low treewidth, our running time has no dependence on n?.

1.2 RELATED WORK

OT Problems OT distances, which is also called Earth Mover’s Distances (Rubner et al., 2000),
are progressively being adopted as an effective tool in a wide range of situations, from computer
graphics (Bonneel et al.l 2016) to supervised learning (Frogner et al., |2015), unsupervised den-
sity fitting (Bassetti et al., 2006) and generative model learning ((Montavon et al., |2016; |/Arjovsky
et all |2017; Salimans et al.,[2018; |Genevay et al., 2018} |[Sanjabi et al., |2018))). There is a long line
of work on reducing the time complexity for solving OT. In (Arjovsky et al. 2017), they proved
that, for regularized OT, the near-linear time complexity can be achieved by both Sinkhorn and
Greenkhorn algorithm. They demonstrated that both algorithms have a complexity of O(e~3n?),
where n represents the number of atoms (or the dimension) of the probability measure being con-
sidered and e is the desired level of tolerance. In (Dvurechensky et al.l |2018), the complexity of
the Sinkhorn algorithm was improved to O(¢~2n?). Additionally, an adaptive primal-dual acceler-
ated gradient descent (APDAGD) algorithm was introduced, which was shown to have a complex-
ity of O(min{e~'n%*,¢2n2}). With a carefully designed Newton-type algorithm, (Allen-Zhu
et al.| [2017; |Cohen et al 2017) solve the OT problem by making use of a connection to matrix-
scaling problems. (Blanchet et al.,[2018;|Quanrud, 2018)) gave a complexity bound of O(e_1n2) for
Newton-type algorithms.

Treewidth Problems Treewidth is a concept from structural graph theory that has been studied in
relation to fixed-parameter tractable algorithms in various fields, including combinatorics, integer-
linear programming, and numerical analysis. In practical settings, treewidth tends to be small. A
study by (Zhang & Lavaei, [2021) on the MATPOWER data set for power system analysis revealed
that the largest problem size was (n = 12659, m = 20467), with a maximum treewidth of 7 =
35. As a result, it is reasonable to conclude that treewidth-efficient algorithms surpass general-
purpose matrix algorithms in practical applications. (Fomin et al., |2018) shows several problems
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can be reduced to matrix factorizations efficiently, including computing determinant, computing
rank, and finding maximum matching, and this leads to O(7°() . ) time algorithms where 7 is
the width of the given tree decomposition of the graph. (Bodlaender, [1994) shows a number of
NP-hard problems such as INDEPENDENT SET, HAMILTONIAN CIRCUIT, STEINER TREE, AND
TRAVELLING SALESMAN can be solved with run-times that depend only linearly on the problem
size and exponentially on treewidth as the result of dynamic programming. By leveraging the small
treewidth setting, (Gu & Song|, 2022)) proposed an algorithm that solves the linear program problem
with run-time nearly matching the fastest run-time for solving the sub-problem Ax = b. (Liu et al.,
2022)) proposed a space-efficient interior point method (IPM) in the streaming model. For the linear

programs with treewidth 7, they solve them in O(n7) space, where n is the number of dimensions
for the feature space. (Song et al.,|2022) shows that, when the constraints matrix has treewidth 7, the
John Ellipsoid problem can be solved in O(n7?) time. The small treewidth setting is also applied
to solve the semidefinite program. In (Gu & Song} |[2022), they give the first SDP solver that runs in
time in linear in a number of variables under this setting. In (Gu et al.l 2023), they study the linear
support vector machine problem and kernel support vector machine problem. They provide the first
nearly linear time algorithm for solving the SVM via interior point method.

1.3 TECHNIQUE OVERVIEW

Analysis We first provide preliminaries, which include necessary notations, problem formulation
and treewidth basics, as well as some definitions used in Sinkhorn algorithm. After that, we in-
troduce the convex function of (@,?) as the following: (1,, B(@,0)1,) — (U, B(ug, vx)1,) —
(v, B(ug,vg) " 1,,). The gradient for the above function vanishes when (u*,v*) = (uy,vg), so

the point (ug, vy) is the minimizer of this function. Therefore, we can show that ¥ (ug, vy) <
(ug — us, Bply, — ) + (v — s, B,;r 1,, — ¢) Then, for each iteration of the algorithm, we upper
bound the r.h.s. and get ¢(ug,vy) < R (||Bxln, — 7|1 + | B{ 1, — c||1). where the inequality
follows from the bounds for the iterates ug, v and an optimal solution (u*, v*). Next, by using this
upper bound for ¢ and Pinsker inequality (Lemma D we have:

2 2
w(u/ka) - ¢(Uk+1,vk+1) 2 max{%7 650}5

By using induction, we prove the potential function 1; is also upper bounded by %, where
2R?
J(u 1,V1)
number of iterations k for the Sinkhorn’s algorithm as the following & < 2 + %.

. Finally, by using the switching strategy, we provide the upper bound of the total

Running time  Given the cost matrix C' = MM " where M € R™*% has treewidth 7, we leverage
the fact that it admits a succinct Cholesky factorization and nnz(C') = O(n7), where nnz refers to
the number of non-zeros of a matrix.

For each iteration in Sinkhorn’s algorithm (Algorithm , we have to compute B(u,v) =
diag(e")K diag(e”) where K; ; := exp(—C; /7). In fact, writing down K explicitly requires
O(n?). To bypass this issue, we first write K in implicit form K;; = A; ; — D; ;. where
A;; = e %i/7 — 1 and D;; = 1, so that matrix A is as sparse as matrix C. Also, we repre-
sent matrix D by ww ', where w = 1,,. Leveraging the fact that nnz(A) = O(n7) and matrix D

is a rank-1 matrix, we improve the per iteration running time for Sinkhorn algorithm from O(n?) to
O(nT).

For the rounding algorithm (Algorithm [2) of the transport plan B, we also write down the transport
plan in an implicit fashion and do the computation in O(n7) time. Note that we never write down
B, By, By and output G explicitly. When computing B1,,, we leverage the implicit form of B and
do the computation as following:

diag(e"*) A1,, diag(e?) + diag(e™)(ww )1, diag(e’™).

As nnz(A) = O(nr), computing A1,, takes O(n7) time. Similarly, when computing X B, where
X is a diagonal matrix, we leverage the implicit form of B and do the computation as following:

diag(e"*)AX diag(e) + diag(e™ ) (ww )X diag(e’™).
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As nnz(A) = O(nt) computing AX takes O(n7) time and the AX is also O(n7) sparse.
Finally, we note that the transport plan for the OT distance problem can be approximated in
O(e 2nT) time.

Roadmap. We first introduce all required preliminary in Section 2] Then, we provide the analysis
for the Sinkhorn’s algorithm in Section [3] In Section 4} we provide a faster Sinkhorn’s algorithm
with small treewidth setting and apply our faster Sinkhorn’s Algorithm to solve the OT distance. In
Section[5] we conclude our contribution for this paper.

2 PRELIMINARY

2.1 NOTATIONS

For a positive integer n, we denote [n] = {1,2,--- ,n} We use 1,, to denote the length-n vector
where all the entries that are ones. For a vector a, we denote e®, In a as their entry-wise exponents
and natural logarithms respectively. We define ay ; as the i-th coordinate of k-th iteration of a.
For a matrix A € R"*", we define ||Al|c := max; jepn) |Ai;|. We define A, ; as the entry at

i-th row and j-th column of matrix A. We use e”,In A to denote their entry-wise exponents and

natural logarithms respectively. We denote by vec(A) the vector in R™", which is obtained from A
by writing its columns one below another. For two matrices A, B, we denote their inner product by
(A, B). We define the n-dimensional simplex as A, := {z € R} : > | x; = 1}. For a vector
x € R™, we define its £, norm to be ||z||, := (3;, |#4]?)*/P. For two vectors , y, we define the
inner product (z,y) = >, ;y;. We use nnz(-) to denote the number of non-zeros of a matrix.

2.2 PROBLEM FORMULATION

The definition of entropy is given as the following:

Definition 2.1 (Entropy). We define the entropy H(p) of vector p by H(p) = Y. | p; log(z%).
Similarly, for a matrix P € R*", we define the entropy H (P) entrywise as

i En: Pi,j IOg L
i=1 j=1 Fij

We first introduce the definition of OT problem.

Definition 2.2. Given a matrix C with small treewidth (e.g. C = AAT where A € R"¥9), the
optimal transport problem is defined as:

min (C,X) st X eRP", X1,=r X'l,=c
X
where 1,, € R" denotes a vector where every entry is 1.

Next, we give the definition of the regularized OT problem.

Definition 2.3. Given a strongly convex regularizer R(X), e.g. negative entropy or squared Eu-
clidean norm, the regularized optimal transport problem is defined as:

min (C,X)+R(X), st. X eRY", X1l,=r, X'1,=c, (1)
where v > 0 denotes the regularization parameter.

The goal for this paper is to find the approximation for the transportation plan X defined as follows:

Definition 2.4 (e-approximation). The e-approximation for the OT distance is defined as

(€, X) < min(C, X) +¢, st X eRPT, X1, =, X"1, =c, 2)

where X denotes the approximation for the transportation plan.
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For simplicity we introduce the definition of U, . C R}™"

Definition 2.5. Given the OT problem argminxcy, (X, C), we define U, . = {X € R}*" :

X1, =r,X"1, = c}, where 1,, is the all-ones vector in R" , C € R ™™ is a given cost matrix,
andr € R™, c € R™ are given vectors with positive entries that sum to one.

Next, we provide a lemma about the transport plan X.

Lemma 2.6 ((Cuturi, 2013)). For any cost matrix C € R"*", U, . C RY*™ and r,c € 1\, the
minimization program X, := arg miny ey, . (X, C) + - R(X), where vy > 0 is the regularization
parameter and R(X) is a strongly convex regularizer, has a unique minimum at X., € U, . of the
form X, = M AN, where A := exp(—%C’) and M, N € R}*" are both diagonal matrices. The

matrices (M, N) are unique up to a constant factor.

2.3 TREEWIDTH PRELIMINARIES

We begin by introducing the definition of treewidth for a given matrix.

Definition 2.7 (Treewidth 7). Given a matrix A € R"*9, we construct its graph G = (V, E) as
follows: The vertex set are columns [d]; An edge (i,7) € E if and only if there exists k € [n] such
that Ay ; # 0, Ay ; # 0. Then, the treewidth of the matrix A is the treewidth of the constructed
graph. In particular, every column of A is T-sparse.

Next, we present the definition for Cholesky factorization.

Definition 2.8 (Cholesky Factorization). Given a positive-definite matrix P, there exists a unique
Cholesky factorization P = LLT € R¥*? where L € R**? is a lower-triangular matrix with real
and positive diagonal entries.

We also provide the running time of computing the Cholesky factorization.

Lemma 2.9 ((George et al.,|1994)). Given a positive definite matrix M & R%4 we can decompose
it by using Cholesky decomposition M = LLT in time @(Z?Zl |L£;|2), where |L;| is the number of
nonzero entries in the j-th column of L.

Then, we introduce some results based on the Cholesky factorization of a given matrix with treewidth
T:

Lemma 2.10 ((Bodlaender et al.,|1995; Davis, [2006)). For any matrix A € R™*™ with treewidth T,
we can compute the Cholesky factorization A = LL"T € R™*" in O(nt?) time, where L € R"*™ is
a lower-triangular matrix with real and positive entries. L satisfies the property that every column
is T-sparse.

Next, we show a standard property of treewidth.

Claim 2.11 ((Gu & Song] 2022} [Song et al., 2022} [Liu et al.,|2022)). Given L = MMT, where M
has treewidth T and M € R™*", we have nnz(L) = O(nt).

Proof. We first show that nnz(L) = O(m). Let M € R™*™ denote the adjacency matrix of graph
G = (V, E), where | E(G)| = m, |V(G)| = n. The Laplacian matrix of graph G'is L = MM " and
it is also defined as D — A, where D is the degree matrix and A is the adjacency matrix of graph G.
Asnnz(A) = O(m),nnz(D) = O(n) and m > n, we have

nnz(L) = O(m) + O(n) = O(m). 3)
Next, we show that the number of edge m for graph G is bounded by O(n7). The maximal graphs
with treewidth 7 are the 7-trees which are constructed by starting with a (7+1)-clique and iteratively
adding vertices of degree 7 such that its neighbors form a 7-clique. By counting the edges in the
(7 + 1)-clique and the edges incident to the n — 7 — 1 vertices iteratively added to the 7-tree, the
total number of edges in a 7-tree with n vertices is

1
<T;F > +7(n—7—1)=0(n1). (4)
Since any graph G with treewidth 7 is a subgraph of a 7-tree, we have O(n7) is an upper bound on
|E(G)| = m. By combining Eq. (3) and Eq. (@), we have nnz(L) = O(n7).

Hence, we complete the proof. [
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3 SINKHORN’S ALGORITHM ANALYSIS

In Section [3.T] we provide some definitions used in Sinkhorn algorithm. In Section we define

the potential function 1; .In Section we provide the upper bound of QZ . In Section|3.4] we provide
the induction proof for the upper bound of the potential function.

3.1 DEFINITIONS

We first introduce some definitions to simplify the derivations.

Definition 3.1. We define matrix function B : R™ x R™ — R™*"™ as follows: for any given vec-
tors u,v € R™ B(u,v) := diag(e")K diag(e’), where diag(a) € R"*™ is the diagonal ma-
trix with the vector a € R"™ on the diagonal and K € R™ ™ is a matrix which is defined as
K}J:::exp(—CEJ/y)

Definition 3.2. We define function 1) : R™ x R™ — R as follows: for any given vectors u,v € R"
P(u,v) := 1) B(u,v)1, — (u,r) — (v, c), where B is defined in Deﬁnition

We consider the Sinkhorn algorithm (Algorithm [3), which solves the following minimization prob-
lem introduced in Lemma 2 of (Cuturi, [2013):

min ¥ (u,v), (5)

u,vER™
where 9 is defined in Definition 3.2}
Problem Eq. (3) is the dual formulation to Eq. (T)) as we choose R(X) = —H(X).

Here, we show the high-level idea of proving the complexity of Sinkhorn’s algorithm. We first show
how to get the bounds for uy, v and an optimal solution (u., v,) for Eq. @]) Next, we show that,
for each iteration, v(uy,, vy ) is upper bounded by || B (uy, vi)1, — 7|1 + || B(ur,vr) "1, — cl|1.

Eventually, by using the bound of ) (ug,vy), we show our result of the complexity result for
Sinkhorn’s algorithm.

Definition 3.3. We define R as R := —In(Kpyjnming jem{ri,cj}), where Ky =
min; jepn) Kij = e I1Clos/~

3.2 POTENTIAL FUNCTION 1;

To simplify derivations, we define zZ as follows:

Definition 3.4. We define ¥ as 1(u, v) := 1h(u, v) — ¥ (s, vs).

Claim 3.5. We have ¥(u,v) = (1, B(u,v)1,) — (1, B(ty, v4)10) + (uy — u,7) + (0, — v, ¢).

Proof. Since J(u, v) = ¥ (u,v) — ¥ (uy, v,) by definition of 7:/;, the proof follows from the definition
of 1. O

3.3 UPPER BOUNDING FOR POTENTIAL FUNCTION

Here, we provide a lemma which will be used later to bound the iteration complexity.

Lemma 3.6 (Informal version of LemmalA.2). Let k > 1 and uy,vi, € R™ be output of Algorithm
We denote By, := B(ug, vy ). Then, we have

G(u,vi) < R+ (|Brly — vl + |BY 1 — cllh).

3.4 INDUCTION PROOF FOR THE UPPER BOUND OF THE POTENTIAL FUNCTION

Here, we provide the induction proof for the upper bound of the potential function.

Lemma 3.7. Forall k > 1, w(g%,:k) < k+},_1, where { = J(i?il) and 1) is defined in Definition
0.2
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Proof. Our proof can be divided into two parts. At first, we consider the correctness of the inequal-
ities above with & = 1. Then, inducing over k£ > 1, the proof will be completed.

Base Case. For k£ = 1, it holds that
1;(’[1,1, ’Ul) 1 o 1

2R 0 k(-1
where, the first step follows from the definition of ¢ and the last step follows from £ — 1 = 0. Hence,

P (uk,vk) < fork = 1.

we have ¥ —k+£ I

General case Suppose

w(ulka) < 1

2R? T k+(¢-1 ©
Then we can show
Y(Upt1,Vh+1) _ Y(ur,vr) Y (uk, vk) o
2 < 2 — ( 2 )
2R 2R 2R
1 1
< —( )?
k+t0—1 k+¢—-1
1
< -
Siye (7N

where the first step follows from Lemma @ and the second step follows from Eq. (6) and the
property of function f(x) = x — 22 (whichis f(y) < f(z) if y < z < 1/2), the last step follows
from 5 — ﬁ < A%H for any integer A > 2. By induction, the proof is completed. O

4 RUNNING TIME WITH SMALL TREEWIDTH SETTING

In Section .1} we introduce the implicit form K. In Section 4.2} we provide the faster Sinkhorn’
Algorithm with small treewidth. In Section we show the correctness of our rounding algo-
rithm. In Section 4.4 we show the running time needed for our rounding algorithm. In Section
[4.3] we provide the running time for approximating the OT distance by using the faster Sinkhorn’s
Algorithm.

4.1 IMPLICIT FORM OF K

Algorithm 1 Approximate OT by Sinkhorn

1: procedure APPROXOT(¢) > Theorem
2: > Accuracy €
3: V= 4Inn ln n

S e P

5

: >Find7,ce A" s.t. |7 — 7|1 < e€o/4,]|c— |1 < e€p/4 and
minge () 7 > eo/(Sn) minjep,) ¢; > €o/(8n).

6 (13 (1— 2)((r,e) + me2(1n, 1))

7: (u,v, L,w) « SINKHORNALGORITHM(T C,60/2) > Algorithml

8: > Note that u, v, L, w is an implicit representation of B, i.e.,
diag(e“*)(LaL})) diag(e¥) + diag(e"*)(ww " )dlag( Uk )

9: (p, ¢, X, Y, w,u,v) + ROUND(u,v, L, w, T, c) > Algorithm 2]

10: return (p, ¢, X, Y, L,w, u,v) > We return X in an implicit way, i.e.,

X = XBY +pq"/|plh
11: end procedure

Here we introduce the implicit form of K to make use of the small treewidth setting.

Lemma 4.1. We assume C = MM T € R™ " where M € R™*% has treewidth 7. Given A =
K — D, where D; ; := 1 fori,j € [n] and K is defined in Deﬁnition the Cholesky factor L 4

for A=1L ALX is T-sparse in columns.
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Proof. Given C = MM " and M has treewidth 7, the Cholesky factor Lo for C = MM T =
LarL}, is 7 sparse in column by using Lemma As A;j = e %i/7 — 1, we have A; ; = 0
when C; ; = 0. Hence, matrix A is as sparse as matrix C. We have that the Cholesky factor L 4 for
A= LaL) is as sparse as L. As Ly is T-sparse, we complete the proof. O

4.2 RUNNING TIME OF SINKHORN WITH SMALL TREEWIDTH

This section is to prove the running time of Algorithm 4]

Theorem 4.2 (Running time of Algorithm [ informal version of Theorem [C.1I). Given the cost
matrix C € R™*"™ with small treewidth T and two simplex r,c € R", there is an algorithm (Al-
gorithm%]/ that takes O(nt) for each iteration and O(nt?) for initialization to output such that
B(ug,vi) € R™ ™ can be constructed (implicitly) by

Blug,vy) = diag(e"*)(LaL }) diag(e™) + diag(e™)(ww ) diag(e™),

satisfying || B(ug, vg)Ln — rlly + | Blug, vi) "1 — ¢y < eo.

4.3 CORRECTNESS OF ROUNDING ALGORITHM

We first show the correctness of our rounding algorithm (Algorithm 2).

Lemma 4.3 (Informal version of Lemma . Given r,c € A,, B € R}Y*", u,v € R" and

r,c € R", there is an algorithm (Algorithm|2) that outputs a diagonal matrix X € R™*", a diagonal
matrix Y € R"*", a lower triangular matrix L 5, vectors u,v,w € R™, vectors p € R", g € R™.
Such that G € U, . can be constructed (implicitly) by

% = 7 X(diag(e") LaL} diag(e”) + diag(e") (ww ) diag(e”))Y +pg™ /1,
satisfying |G — Blly < 2(||B1, — |1 + ||BT 1, — ¢|}1).

Algorithm 2 Rounding of the projection of B on U

1: procedure ROUND(u € R, v € R”, L € R"*™ w € R",r € R",c € R") > Lemma 4.4]
2: > L'is a lower trlangular ‘matrix that only has O(n7) nonzeros
3: > We never explicit write B. B can implicitly represented by
diag(e")(LaL ) diag(e”) + diag(e") (ww ) diag(e”)

4: X + diag(x) with z; = mm{ 5 1} >r(B) = Bl,, X € R"*"
5: By <+~ XB > We only implicitly construct By
6: Y « diag(y) with y; = min{ﬁ7 1} > c(Bp) := By 1,
7: By <+ ByY > We only implicitly construct By
8: p+r—DBil,

9: g c— Bfln
10: return p, ¢, X, Y, w,u,v > We return G in an implicit way, i.e., G := XBY +pq' /||pl1
11: end procedure

4.4 RUNNING TIME OF ROUNDING ALGORITHM

Next, we show the running time needed for the rounding algorithm (Algorithm [2)).

Lemma 4.4 (An improved version of of Lemma 7 in (Altschuler et al.l 2017)). Given r,c € A\,
B e Rf_xn, u,v € R" and r,c € R", there is an algorithm (Algorithm@) that outputs a diagonal
matrix X € R™"*" a diagonal matrix Y € R"*", a lower triangular matrix L 4, vectors u,v,w €
R™, vectors p € R", ¢ € R", such that G € U, . can be constructed (implicitly) by

X = X(diag(e“)LALX diag(e”) + diag(e“)(wa) diag(e”))Y + qu/Hle,
satisfying |G — B|l1 < 2(||[B1l, — 7|1 + ||BT1,, — ¢|[1) in O(nT) time.

Proof. The running time for each step is shown as follows:
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* Calculating r(B) takes O(nr) time. Given
r(B) = B1,, = diag(e"*)(LaL})1, diag(e’) + diag(e"*)(ww )1, diag(e’),

calculating L 4 (L }1,,) takes O(n7),asnnz(L ) = nt. Asw = 1,, calculating (ww )1,
takes O(n).

* Calculating X = diag(z) with z; = min{ 1} takes O(n) time.

Tz‘?iB) ’

» For By = X B, we remark that By is not explicitly written down. It is implicitly represented
by L4, w,u,v,X.

* Similarly, we can calculate Y in O(n) time and implicitly write down B .

¢ We have

B11, = XBY
= diag(e"*) X (Lo L})Y1, diag(e’ ) + diag(e*) X (ww " )Y 1, diag(e'*).

For any diagonal matrix M, M - L, is as sparse as L4 and it takes O(n7) to compute
it. Therefore, computing P = diag(e**)X (LaL})Y diag(e’*) takes O(n) time and P
is n7-sparse. Then, we compute P1,,, which takes O(n7) time. Hence, updating p takes
O(nT) time.

* Similarly, updating ¢ takes O(n7) time.

* For matrix G, it is returned in an implicit way. We use p, ¢, X, Y, w, u, v to represent it.
Therefore, the total running time is O(n7). O

4.5 RUNNING TIME OF OT DISTANCE BY SINKHORN

Putting them all together, we have the following theorem:

Theorem 4.5 (Informal version of Theorem [B.3). There is an algorithm (Algorithm [I) that takes
cost matrix C € R"™ ", two n-dimensional simplex r,c as inputs and outputs, a diagonal matrix
X € R"™ " a diagonal matrix Y € R™ ", a lower triangular matrix L 4, vectors u,v,w € R",

vectors p € R, ¢ € R". Such that Xeu (r, ¢) can be constructed (implicitly) by
X = X (diag(e*)LaL ) diag(e?) + diag(e™)(ww ") diag(e”))Y + pq' /|Ipl
that satisfying Eq. @) in
O(nt? + € *n1||C||%, Inn)

time.

5 CONCLUSION

Optimal transport (OT) such as the earth mover’s distance is a specialized domain within mathemat-
ics that delves into the intricate problem of determining the most economical way to transport goods
or materials between two distinct points. These costs are typically quantified based on parameters
such as the total distance traversed or the amount of resources utilized during the transportation pro-
cess. In this paper, we study the problem of approximating the general OT distance between two
discrete distributions of size n. Consider the cost matrix denoted by C = AAT where A € R"*¢
with treewidth 7. By making use of the treewidth setting, we proposed a faster Sinkhorn algo-

rithm and a faster rounding algorithm to approximate the OT distance. The existing state-of-the-art
algorithms have running time of O(¢~2n?). In contrast, our approach has improve this time to

O(e 2nr).
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Appendix

Roadmap We first provide the formal analysis of the Sinkhorn’s algorithm in Section [A] Then,
we show the detailed running time proof in Section [B] In Section [C| we provide the missing proof
and algorithm. In addition, in Section [D] we provide the analysis of the Sinkhorn’s algorithm in
symmetric case.

A MORE ANALYSIS FOR SINKHORN’S ALGORITHM

In Section we introduce the Sinkhorn’s algorithm. In Section we provide a lemma that
guarantee the bounds related to v € R™, v € R". In Section[A.3] we show the iteration complexity
bound of Sinkhorn’s algorithm. In Section[A.4] we show the correctness of our rounding algorithm
(Algorithm [2) under the treewidth setting.

A.1 SINKHORN ALGORITHM

We first provide the Sinkhorn algorithm (Algorithm[3)) as follows:

Algorithm 3 Sinkhorn’s Algorithm

1: procedure SINKHORNALGORITHM(c, T, €g) > Lemmal[A4]
2: > Accuracy €g
3 k<0

4: ug 0

5: vg <+ 0
6.
7
8

while || B(uy, vi)1, — 7|1 + | B(ug, v) "1, — c|l1 > € do
if £ mod 2 = 0 then

: U1 < ug + Inr — In(B(ug, vi)1y)

9: Vg1 < Vg

10: else

11: Vg1 < vk +Inc — In(B(ug, v) ' 1,,)
12: Uk41 < Uk

13: end if

14: k+—k+1

15: end while

16: return B(uy, vg).

17: end procedure

A.2 BOUNDED max — min

Next, we provide a tool related to the bound for uy and vy.

Lemma A.l. Let k > 0 and up, € R™, v, € R"™ be generated by AlgOrithm and (uy,vy) €
R™ x R™ be a solution of Eq. (3). Then

max up; — minug; < R, maxvg ; — min v, ; < R, (8)
i€[n) i€[n) J€[n] J€[n]

max Uy ; — min u, ; < R, maxv, ; — min v, ; < R,
i€[n] T i€[n] J€[n] J€[n]

where R is defined in Definition[3.3]
Proof. First, we prove the bound for u;, € R™. As u, v are initialized as 0,,, the inequality holds for

k = 0. Given k — 1 is even, the variable u is updated on the iteration k — 1 and B(ug,vg)1, = r
by the algorithm construction.

Hence, for each i € [n] , we have

n
Uk 4 Vi €k i Vi 4
€ k’lein<1n7e k> < g € k’lKi,je ko
Jj=1

13
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<1, €))

where the first step follows from the definition of K,;;,, the second step follows from the definition
of B, the third step follows from B(uy,v;)1, = r and the last step follows from the definition of
probability simplex r.

Hence, by reorganizing Eq. (9) we have

X U, < — In(Kmin(1n, €% )). (10)
1€n

On the other hand, since 0 < K ; < 1 foreachi € [n],

e i(1,,,e"*)

n
§ Uk i Vi i

> e k’lKZ-,je kg
Jj=1

= [B(ulﬁ Uk)]-n]i
=Ti,

where the first step follows from K; ; < 1, the second step follows from the definition of B and the
last step follows from B(uy, vg)1, = r.

We also have

T min;e ) ri

min ug ; > min In( T eo)
n»y

i€ln] 7 i€[n] <1n,€vk>

) = In( ).

The latter equality and Eq. (T0) give

max uy ; — min uy ; < —In(Kyi minr;) < R.
i€[n] i€ln] i€[n]

A.3 ITERATION COMPLEXITY BOUND

Then, we show that the upper bound of the potential function 1; .

Lemma A.2 (Formal version of Lemma[3.6). Let k > 1 and uy,, v, € R™ be output of Algorithm|[3]
We denote By, := B(uy,vi). Then, we have

Ylur,vr) < R (|Bely = vl + | B{ 1 — clh)-

Proof. Given a fixed k > 1, for the following convex function of (u, v)
(1, B(W,0)1,,) — (@, B(ug, vi)1n) — (0, Bug,vp) " 1,,).

The gradient of the convex function vanishes at (4, v) = (ug, vk ), so the point (ug, vy ) is its mini-
mizer.

Hence,
(g, ve) = [(1n, Bely) — (ug, Bply) — (vg, Bl 1,,)]
- [<1naB(U*,U*)1n>
— (s, Bely) — (vs, By 1,,)]

+ {up — us, Bply, — 1)
+ (vp — vy, B 1, — ¢)

< (up — ux, Bgl, — 1)
+ (v — vs, By 1,, — ). (11)

14
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where the first step follows from the definition of {E . Next, we bound the r.h.s of the inequality. For
each iteration, we know that either By1,, = r or B/ 1,, = ¢, so we have that (1,,, B;1,) = 1 and
<1n7 Bkln — ’/‘> = 0
Taking a = 0.5 - (max;¢[p) Up,; + Min;ep,) uk,;). Then, we have
(ug, Bpl, —7) = (ur, — aly, Bpl, — )
< lluk — alplloo || Brln — 71
=0.5" (maxuy,

i€[n]

1€(n

— m[ln] ukﬂ‘)HBkln et

R
< S8, =l

where the first step follows from (1,,, Bx1l, — r) = 0, the second step follows from Hélder’s
inequality, the third step follows from the definition of a, and the last step follows from Lemma[A.T]

Similarly, we bound (—u., Bx1,—7), (vg, B) 1,,—c) and (—v,, B} 1,,—c) in Eq. and complete
the proof. O

The following lemma gives the lower bound of J(uk, vE) — ’IZ(Uk_ll_l, Vkt1)-
Lemma A.3. Let uy, vy be as in Algorilhm Then,

0 2 2
Y(uk, vk) — Y (U1, Vk41) > max{%7 %0}

Proof. We first consider case when k& > 1 is even and define By, := B(ug,vy), where B is as in
Definition[3.1] We have

Y(ug, vr) — P(Upt1, V1) = (In, Brln) — (Ln, Bry11ln) + (urg1 — ug, 7) + (Vpr1 — vk, )
= (1, upy1 — ug)
= (r,Inr — In(By1,))

= KL(r|| By1y). (12)

Then, we obtain

(g, vi) — V(Uks1, Vet1) = Y (uk, V) — Y(Ukt1, Vit1)
= KL(r||Bx1,)

\

1
S Bt =13

> max{iw(uk’ o) }s

2RZ2 72

where the first step follows by the definition of 1, the second step follows by Eq. (12), the third
step follows by Pinsker’s inequality and the last step follows by Lemma and B, 1,, = c. For
the last step, we also used that, as soon as the stopping criterion is not yet fulfilled and B} 1,, = ¢,
||Bx1,, — |3 > €3. Similarly, when k is odd, we can prove the same inequality.

O

Here, we show the upper bound of the number of iterations required for Algorithm 3]
Lemma A.4. Given the cost matrix C € R™*™ and two simplex r,c € R"!, there is an algorithm
(Algorithm[3) outputs B(uy, vi.) (Definition[3.1) that satisfying
1B (urs o) 1 = 7|y + [ Blug, o) 1 = ¢l < o
in the number of iterations k satisfying
4R

k<24 —
€0

15
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Proof. Given { = J(ZRZ;J ) in accordance with Lemma we have for any £ > 1
1,01

Y (ug, vg) < 1

2R2 T k+L-17
Thus,
2R? 2R?
E<1l+ = R - = R . (13)
P(ug,vr)  Y(ur,vr)
On the other hand,

~ ~ €%m
’(/J(uk:+mavkt+m) S w(ulﬁvk) - Ta k7m Z O (14)

Next, we use a switching strategy, parameterized by number s € (0, 1 (u1,v1)], to combine Eq.

and Eq. (14).

First, by using Eq. (7), we calculate the number of iterations needed to decrease J(u, v) from its
initial value J(ul, v1) to a certain value s. Then, by applying Eq. (I4) and given {/;(u, v) > 0 by its
definition, we calculate the number of iterations required to further decrease QZ (u,v) from s to zero.
By minimizing the sum of these two estimates in s € (0, (uy,v1)], the total number of iterations k
satisfies the following
2 2
k< min  (2+ 2 NL 2

a 0<s<9(u,v1) S 1/J(U1a Ul) 6(2)
4R 2R? 0
= 2+?‘li D(ur,v1)’ 16(“171)1) > Reo,
2+W, ¥(ug,v1) < Reo.
0

where the first step comes from Eq. (T3), the first half of the last step comes from a + b > 2v/ab

for a > 0, b > 0 and the second half of the last step follows from s = ¥ (u1,v1). In both cases, we
have k < 2 + 2, O

A.4 CORRECTNESS OF ROUNDING ALGORITHM

We show the correctness of our rounding algorithm (Algorithm [2)).

Lemma A.5 (Formal version of Lemma An improved version of of Lemma 7 in (Altschuler
et al., 2017)). Given r,c € A,, B € RY™", u,v € R™ and r,c € R", there is an algorithm
(Algorithm|2) that outputs

* a diagonal matrix X € R"*"

* adiagonal matrix Y € R"*"

* a lower triangular matrix L 4

e vectors u,v,w € R"

* vectorsp € R", g € R"
such that G € U, . can be constructed (implicitly) by

X = X (diag(e*)L AL diag(e?) + diag(e")(ww ") diag(e”))Y
+pq"/|plh,
satisfying
IG = By <2(B1, —rlli + BT 1, —cfln).
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Proof. Let G be the output of Algorithm[2] As matrix B; are nonnegative, and the output ¢ and p
are both negative, with ||p|ly = ||¢||1 = 1 — || B1]|1, matrix G are nonnegative and

r(G) =r(By) +r(pg" /lpl)
=r(B1)+p
=r, (15)
where we denote r(A) := Al,,c(A) :== AT1,, and the first two step comes from the definition of

r and the last step comes from p = r — B;1,,. Similarly, we have ¢(G) = c¢. Therefore, we have
G € Uyc.

Next, we denote A := || B||; — || B1]|1 and prove the ¢; bound between the matrix B and matrix G.
We first remove mass from a row of B when r;(B) > r;, and then, we remove mass from a column
when ¢;(By) > ¢;. Now, we have

A= "(ri(B) —ri)4 + > _(cj(Bo) — ¢j)+ (16)
i=1

j=1
Then, we show the analysis of Eq. (I6). First, for the left sum of Eq. (I6), we have

n

Y (ri(B) —ri)s = %(HT(B) —rli + Bl =1).

i=1

For the second sum in Eq. (T6).

D (ej(Bo) —¢j)+ <

Jj=1 J

(¢j(B) = ¢j)+ <|[|e(B) = cll1,

n

where the first step comes from the fact that the vector ¢(B) is entrywise larger than ¢(By) and the
last step comes from the definition of c.

Therefore we conclude

IG = Blly <A+ lpa"[1/llplh

=A+1—|Bi:
=2A+1—|B|x
< |7(B) = rll +2[e(B) —clx (17)

<2([|r(B) =l + lle(B) = ¢llh),

where the first step comes from the definition of A, the second step comes from the fact that ||p||; =
llglli = 1 — ||B1]|1, the third step comes from the definition of A, the fourth step comes from
Eq. (I6) and the last step comes from reorganization. Now we complete the proof. O

B RUNNING TIME

In Section[B.T] we present two inequalities. In Section[B.2] we show the running time needed for our
rounding algorithm (Algorithm [2)) under the treewidth setting. In Section [B.3] we show the running
time needed for approximating the OT by Sinkhorn (Algorithm ).

B.1 INEQUALITIES

We introduce the Holder’s inequality as following:

Lemma B.1 (Holder’s inequality). If p > 1 and q > 1 are such that
1 1
4+ =1
P q

)

then
l[abllx < [lall,]lq-

17



Under review as a conference paper at ICLR 2026

We also provide the Pinsker inequality.
Lemma B.2 (Pinsker inequality). Let P and Q) be two distributions defined on the universe U. Then,

1 2
>_— . |P-Q|%
KL(P|Q) = 51— 1P~ QI3

where KL(P||Q) is the KL-divergence between P and Q.

B.2 RUNNING TIME OF ROUNDING ALGORITHM

We show the running time needed for the rounding algorithm (Algorithm [2).

B.3 RUNNING TIME OF OT DISTANCE BY SINKHORN

T'he core of our OT algorithm is the entropic penalty
X, = min (X,C +7-RX. 18
v arg X&_é{ < ’ > ( ) ( )

r,c

The solution to Eq. can be characterized explicitly by analyzing its first-order conditions for
optimality.

Now we apply the result of the previous subsection to derive a complexity estimate for finding

X € U(r, c) satisfying Eq. (2). The procedure for approximating the OT distance by the Sinkhorn’s
algorithm is listed as Algorithm [I]

Theorem B.3 (Formal version of Theorem[.5). There is an algorithm (Algorithm[l) that takes cost
matrix C € R" ", two n-dimensional simplex r, ¢ as inputs and outputs

* a diagonal matrix X € R"*"
* a diagonal matrix Y € R"*"
* a lower triangular matrix L 4
e vectors u,v,w € R"

* vectorsp € R", g € R"

such that X € U (r, ¢) can be constructed (implicitly) by
X = X(ding(e")LaL} diag(e”) + ding(c") (ww ) diag(e”)Y + pg” /llpl,
which satisfies Eq. @) in
O(n7? + € ?n1||C||% Inn)
time.

Remark B.4. If we don’t care about the output format to be lower-triangular matrix, then the
additive term nt? can be removed.

Proof. Let X, € argminx¢y, (P, C) be an optimal solution to the original OT program.

We first show that (B, C') is not much larger than (X, C).

Since B = M AN € R"*™ for positive diagonal matrices M, N € R}*", Lemmaimplies Bis
the optimal solution to

in (X X). 1
arg qoin (X, C) +R(X) (19)
By Lemma[4.4] there exists a matrix Xo € Up,, pr1, (Definition[2.5) such that
X0 = X,y < 2(1BLy — rlly + BT 1, — cll). 0)
Moreover, since B € R™*™ is an optimal solution of Eq. (I9), we have
(B,C) +vR(B) < (Xo,C) +7R(Xo). @21

18
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Thus, we have
(B,C) —{( C
=(B,C) — (Xo,C) + (X0, C) — (X,,C)
(B,C) = (X0, C) + || Xo = Xu[[1[|Clloo
<( (B)*H( 0)) + [ Xo = Xul[1[|Cloo
<~(H(B) = H(Xo)) +2(| BL, = | + BT 1, = ¢[1)[|Clloc
< 2yInn+2(|BL, — 71 + BT 1, = ¢l[1)[|Cloo, (22)

where the first step follows from reorganization, the second step follows from Hélder’s inequality
(Lemma [B.1)), the third step follows from Eq. ZI) and R(X) = —H(X), the fourth step follows
from Eq. (20) and the last step follows from the fact that 0 < H(B), H(X() < 21lnn.

LemmaW.4|implies that the output X of Algorithm |2|satisfies the inequality
1B — X1 < 2(|B1,, —r|y + |BT 1, — ¢|1). (23)

Recall that X is the output of Algorithm X is a solution to the OT problem Eq. (Z) and B is the
matrix obtained in line[7]of Algorithm[I] We have

<X = Bl1llClloe + (B, C)

<2(|BLy —rlli + | B 1 — cll)Clles + (B, C)

< (X.,C) + 2y lnn + 4(|BL, — vl + BT, — ¢} ) [Clloc- 24)

where the first step follows from reorganization, the second step follows from Holder’s inequality,
the third step follows from Eq. (23)) and the last step follows from Eq. (22).

At the same time, we have
IBL, =7l +[B"1, — ¢l

<|IBLy =7l + [IF =7l + [|1B" 1 =l + €= ¢l
S €0,

where the first step follows from the definition of ¢;-norm and the last step follows from || B1,, —
rll1 + |BT1, — c||; < € (output of Algorithm and the definitions of 7 and ¢.

Setting v = g7 and ¢ = ﬁ, we obtain from the above inequality and Eq. (24) that X
satisfies inequality Eq. ()

Next, we show complexity of Algorithm[I] When ¢ is sufficiently small, the number of iterations
of the Sinkhorn’s algorithm in 11nel0f Algor1thml1s O(R/¢p), by using Theorem- A4 According
to Definition [3.3] we have

R= —In(Kmin mln {r“cj})
€ln

4,

= —1In(e~¢l=/7 HllIl {7“1, ¢t
z]G
< % — ln(i)

5 o)

where the first step follows from the definition of R,the second step follows from the definition of
K,pin, the last step follows from the condition of 7;, ¢; in line |§| of Algorithm

Since v = gy and ¢g = we have that

8[[Clls
R =0(eCl|oo Inn).

As the number of iteration for Algorithm I is O(R/¢€p), we conclude that the total number of

Sinkhorn’s algorithm iterations is bounded by O(e~2||C||%, Inn).
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Obviously, 7 € R} and ¢ € R, in line[6|of Algorithm [I|can be found in O(n) time.

Since each iteration of the Sinkhorn’s algorithm requires O(n7) time and the initialization takes
O(n7?) time as shown in Theorem the total complexity of Algorithmis

O(nt? + € 2n7||C||A, Inn).

C SINKHORM ALGORITHM WITH SMALL TREEWIDTH

Algorithm 4 Sinkhorn’s Algorithm with small treewidth

1
2
3
4:
5:
6.
7
8
9

10:
11:

12:
13:
14:
15:
16:
17:
18:
19:
20:
21:
22:
23:

24
25:

: procedure SINKHORNALGORITHM(r € R™, c € R™, ¢y € (0,1)) > Theorem 4.2]

> Accuracy €g
k<0,
ug <0
v9 0
w1,
T e~ Ciilny,
yo < (c=Cual) 11,
Implicitly form D = ww
Implicitly form A € R™"*", where A; ; = e~ i /-1
> Explicitly writing down A requires n?, however, we never need to explicitly write down
A. Knowing the exact formulation of A is enough to do the Cholesky decomposition
L < Cholesky decomposition matrix for Ai.e., A= LsL} > O(nt?), Lemma
while ||:Z?k — T’H1 + ||yk — C||1 > € do
if £ mod 2 = 0 then
Uk41 ¢ Uk + Inr — In(zy)
V41 < Uk
else
Vg1 < U + Ine — In(yx)
Uk41 < Uk
end if
zp, + (diag(e*)(LaL ) diag(e’) + diag(e**)D diag(e’*))1,

T

yr < (diag(e®*)(LaL})diag(e’ ) + diag(e*)D diag(e’*)) "1,
k+—k+1
end while
return ug, vy, L Ao, w > We return B(uy, vx) in a implicit way, i.e.,

B(ug,vy) = diag(e® ) (L4 L)) diag(e¥*) + diag(e"*)(ww ") diag(eV*).

26: end procedure

Theorem C.1 (Running time of Algorithm[{] Formal version of Theorem[d.2). Given the cost matrix
C € R™ ™ with small treewidth T and two simplex r,c € R, there is an algorithm (Alg()rithmE])
that takes O(n) for each iteration and O(nt?) for initialization to output

* a lower triangular matrix L 4

e vectors u,v,w € R™

such that B(uy,vy) € R"*"™ can be constructed (implicitly) by

Blug, vy) = diag(e™)(LaL}) diag(e™)
+ diag(e™ ) (ww ") diag(e®™),

satisfying

1B (i, vi) 1y = |y + | B(ur, vie) "1 — 1 < €.

Proof. The running time for each step is shown as follows:
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* Writing down cost matrix C' € R"*™ takes O(nr) time as nnz(C) = n7 by using Claim

211l

* Implicitly write down matrix D € R™*™, this takes O(n) time since D € R™*™ is a rank-1
matrix.

* Initializing z( and yo takes O(n7) as nnz(C) = nr.

* Using Lemma [4.1) we know L 4 is 7-sparse in column. Then, calculating the Cholesky
decomposition for A takes O(n7?) time using Lemma

* Calculating diag(e“)(L 4L }) diag(e"*) takes O(nT) time as L 4 is T-sparse in column.
¢ Calculating diag(e**) D diag(e*) takes O(n) time as matrix D is a rank-1 matrix.

» Updating u € R™, v € R" takes O(n) time.

Hence, the initialization time for Algorithmis O(n7?) and the per iteration running time is O(nT).

O
D SYMMETRIC
Algorithm 5 Sinkhorn’s Algorithm for symmetric distribution with small treewidth
: procedure SINKHORNALGORITHMSYM(r, €9 € (0,1)) > Theorem D.2]

1

2: > Accuracy €
3 k <0,

4 ug < 0

5: Vo < 0

6: w<+ 1,

7: zo e G,

8 Yo « (e~ Cui/7)T1,

9 Implicitly form D = ww

0 Implicitly form A € R™*", where 4; ; = e=Ciilr —1

1 > Explicitly writing down A requires n2, however, we never need to explicitly write down
A. Knowing the exact formulation of A is enough to do the Cholesky decomposition

10:
11:

12: L + Cholesky decomposition matrix for Ai.e., A= L AL; > O(nt?), Lemma
13: while ||z, — 7|1 > ¢ do

14: Ugt1 < ug + Inr — In(xy)

15: xy, < (diag(e“*)(LaL ,) diag(e“r) + diag(e™*)D diag(e“*))1,,

16: k+—k+1

17: end while

18: return uy, L4, w > We return B(uy) in a implicit way, i.e.,

B(uy) = diag(e"*)(LaL})) diag(e®*) + diag(e"*)(ww ") diag(e“*).
19: end procedure

In this section, we provide an algorithm (Algorithm [6) to solve the OT problem in
O(e~2n1||C||%, Inn) time, given the two distribution are identical, i.e., ¢ = r.

Definition D.1. Given the symmetric OT problem arg minx ¢y, (X), we define
U ={X e R : X1, = rn X1, =r},

where 1,, is the all-ones vector in R" , C € Rixn is a given cost matrix, and r € R™ are given
vectors with positive entries that sum to one.

We first provide the running time of the Sinkhorn’s algorithm (Algorithm 5) for symmetric case.

Theorem D.2 (Running time of Algorithm. Given the cost matrix C' € R™*™ with small treewidth
T and a simplex r € R, there is an algorithm (Algorithm |5) that takes O(nt) for each iteration

and O(nt?) for initialization to output
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* a lower triangular matrix L 4
* vectors u,w € R"
such that B(uy) € R™*™ can be constructed (implicitly) by
B(ug) = diag(e®*)(LaL}) diag(e*) + diag(e™ )(ww ) diag(e*),
satisfying

HB(uk)ln — T‘Hl S €0-

Proof. Similar to the proof of Theorem[d.2] here the two distribution are identical, i.e., c =r. [

Algorithm 6 Approximate OT by Sinkhorn for symmetric distribution

1: procedure APPROXOTSYM(e) > Theorem [D.4]
2: > Accuracy €
3 V= 41nn

SR

5: >Find 7 € A" s.t. |7 — 7|1 < eo/4 and mingep, 75 > €0/ (8n).
6: 7 (1- %O)(T + n(ggﬂe())ln)

7 (u, L,w) < SINKHORNALGORITHM(7,€0/2) > Algorithm 3]
8: > Note that u, v, L, w is an implicit representation of B, i.e.,

diag(e*)(LaL})) diag(e®) + diag(e®)(ww ") diag(e®)
9: (p7 X7 }/’ w, U) — ROUND(”) La w, T) > Algorlthm
10: return (p, X, Y, L,w,u) > We return X in an implicit way, i.e., X := XBY +pp' /||pl1
11: end procedure

Algorithm 7 Rounding of the projection of B on ¢/ for symmetric distribution

I: procedure ROUNDSYM(u € R™, L € R™*" w € R",r € R") > Lemma[D.3|
2‘ >Lisa lower trlangular matrix that only has O(n7) nonzeros

> We never explicit write B. B can implicitly represented by
dlag( W) (LaL})diag(e*) + diag(e*)(ww ") diag(e®)

4: X « diag(x) with z; = min{ﬁ,

5: By <~ XB > We only implicitly construct By
6: Y « diag(y) withy; = min{ﬁ, 1}

7: By, «+ ByY > We only implicitly construct B
8: p<+r—Bil,

9: return p, X, Y, w,u > We return G in an implicit way, i.e., G := By +pp' /||p|l1
10:

end procedure

Next, we show the running time of the rounding algorithm (Algorithm[7) for symmetric case.

Lemma D.3 (An improved version of of Lemma 7 in (Altschuler et al.| 2017)). Given r € A,
B € R*"™, uw € R™, there is an algorithm (Algorithml?]) that outputs

* a diagonal matrix X € R"*"
* a diagonal matrix Y € R"*"
* a lower triangular matrix L 4

e vectors u,w,p € R™

such that G € U,. can be constructed (implicitly) by

X = X(diag(e“)LALg diag(e") + diag(e“)(wa) diag(e"))Y + ppT/||pH1,
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satisfying
IG' = Bllx < 2(| Bl — r{l1),
in O(nt) time.

Proof. Similar to the proof of Lemma[A.5|and Lemma [.4] here the two distribution are identical,
ie,c=r. O

Overall, we provide the running time of the algorithm (Algorithm [6) that approximate the OT for
symmetric case.

Theorem D.4. There is an algorithm (Algorithm @) takes cost matrix C = MM T =€ R™" an
n-dimensional simplex r as inputs and outputs

* a diagonal matrix X € R"*"
* adiagonal matrix Y € R"*"
* a lower triangular matrix L 4

e vectors u,w,p € R™

such that X € U (r) can be constructed (implicitly) by
X = X(diag(e")LaL} diag(e") + diag(e")(ww ) diag(e"))Y + pp” /|Ip]1,
which satisfies Eq. [2) in
O(n? + € *n1||C||%, Inn)
time.

Remark D.5. If we don’t care about the output format to be lower-triangular matrix, then the
additive term nt? can be removed.

Proof. By using Theorem we have the running time of Line [7)is O(n7 - T'), where T is the
total number of Sinkhorn’s algorithm iterations. By using Lemma|[D.3] the running time of Line[9]is
O(nT). The rest of the proof is similar to the proof of Similar to the proof Theorem B.3 O

LLM USAGE DISCLOSURE

LLMs were used only to polish language, such as grammar and wording. These models did not
contribute to idea creation or writing, and the authors take full responsibility for this paper’s content.
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