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ABSTRACT

Traditional XAI techniques in computer vision, such as heatmaps and saliency
maps, highlight input regions that influence model predictions. However, they often
lack precision and may introduce bias. Concept-based XAI approaches, such as
concept bottleneck models or textual explanations of latent neurons, aim to provide
more interpretable representations but typically rely on human-annotated concept
sets, which are scarce in specialized domains. Moreover, Large Language Models
(LLMs) used for automatic concept generation can hallucinate, reducing reliability
and trust. To address these challenges, we propose the Concept Extraction and
Learning Framework (CELF), a self-supervised multimodal method for extracting
and retrieving human-interpretable concepts from vision-language data without
manual annotations. CELF integrates attention-guided keyphrase extraction with
contrastive learning, and applies a graph-guided refinement stage to promote seman-
tic consistency. For controlled evaluation, we introduce C-MNIST, a configurable
dataset generator with ground truth concepts. Experiments on C-MNIST, Visual
Genome, and CUB demonstrate that CELF outperforms prior baselines in concept
extraction and improves multi-label classification performance on C-MNIST.

1 INTRODUCTION

Deep learning models are increasingly deployed in high-stakes domains such as healthcare, au-
tonomous systems, and scientific discovery, where decisions must be reliable and interpretable.
Yet, these models often operate as black boxes, lacking transparency into their decision-making
processes (Akhai, 2023; Das & Rad, 2020). While eXplainable Artificial Intelligence (XAI) seeks
to mitigate this issue, many traditional methods suffer from trade-offs between interpretability and
performance, imprecise saliency, and a risk of introducing bias-induced misinterpretation (Akhai,
2023; Yuksekgonul et al., 2023).

In contrast, concept-based XAI offers a promising alternative by associating decisions with human-
interpretable concepts, such as “red,” “striped,” or “wings.” These methods include Concept Bot-
tleneck Models (CBMs) and techniques that align neurons or features with textual concepts (Lee
et al., 2024; Poeta et al., 2023). While effective, these approaches typically require manually labeled
concept datasets, which are scarce and expensive to produce (Alzubaidi et al., 2023; Lee et al., 2024;
Poeta et al., 2023). Recent work has proposed using Large Language Models (LLMs) to generate
concepts automatically (Gao et al., 2024; Yan et al., 2023). However, LLMs frequently produce
incomplete, biased, or hallucinated outputs (Patil et al., 2024; Wang et al., 2025), raising concerns
about their reliability and consistency for concept extraction. In addition, recent approaches leverage
Vision Language Models (VLMs) and cross-modal alignment to extract concepts. However, they
often rely on large-scale pretraining and assume prior knowledge of the dataset’s concept space or
domain structure.

In response, this work makes three main contributions:

1. Concept Extraction and Learning Framework (CELF): a self-supervised multimodal frame-
work that extracts and aligns interpretable visual concepts from image–text pairs without
manual concept labels. It uses concept-guided attention and contrastive supervision to group
semantically coherent textual fragments and align them with relevant image regions. CELF
improves robustness, scalability, and interpretability, and outperforms baselines in both
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concept extraction and a downstream task on synthetic and real-world datasets with ground
truth concepts.

2. Conceptual-MNIST (C-MNIST): A flexible data generator providing ground truth concepts
in visual and textual forms. C-MNIST enables scalable, reproducible evaluation of concept-
based XAI methods.

3. Semantic Cosine Similarity (SCS): A conservative evaluation metric for concept extraction
that captures semantic matches beyond exact phrase overlap, addressing the limitations of
rigid lexical metrics and the overly permissive nature of contextual ones like BERTScore.

2 RELATED WORK

Concept Extraction (CE) & Concept Retrieval (CR). A concept is an abstraction represented by
human-interpretable features, expressed through modalities like text or visual regions (Lee et al., 2024;
Poeta et al., 2023; Schwalbe, 2022). In this work, we focus on two core tasks of concept-based XAI:
CE and CR. CE identifies relevant concepts within a dataset without predefined annotations, whereas
CR matches these concepts with the corresponding image features in new image-only samples.

Table 1 compares representative methods across CE and CR tasks, highlighting their strengths and
limitations. We focus our discussion on LF-CBM (Oikarinen et al., 2023), XCB (Alukaev et al.,
2023), FALCON (Kalibhat et al., 2023), and Grad-ECLIP (Zhao et al., 2024).

• FALCON (Kalibhat et al., 2023) identifies highly activating regions in an encoder, uses
Contrastive Language-Image Pre-training (CLIP) to retrieve captions for the cropped regions,
and extracts candidate concepts (e.g., nouns or noun phrases) based on similarity scores. It
then applies contrastive filtering to retain only the most relevant concepts. While it requires
no training and provides a simple pipeline, it heavily depends on the quality of CLIP’s
captions and noun phrase extraction, which can result in shallow concept sets and poor
generalization across domains.

• XCB (Alukaev et al., 2023) learns concept queries directly from image-text pairs without
predefined concept labels. However, it uses a fixed concept set and requires supervision from
a downstream classification task, limiting its flexibility, especially in zero-label settings.

• LF-CBM (Oikarinen et al., 2023) leverages LLMs to generate concepts per class, followed
by filtering strategies to remove irrelevant or noisy concepts. While this removes the need for
curated datasets, it remains susceptible to LLM hallucinations and multimodal misalignment
when retrieving sample-specific concepts.

• Grad-ECLIP (Zhao et al., 2024) computes gradients of the CLIP similarity score with
respect to both image patches and text tokens, generating saliency maps for both modali-
ties. This provides fine-grained visual and textual attributions but lacks structured concept
representation. It is also sensitive to gradient noise and tokenization artifacts (e.g., sub-
words), which hinder reliable word-level interpretation and, by extension, concept-level
understanding.

CLIP Modifications for Fine-Grained Alignment. Modifications to CLIP (Radford et al., 2021)
have explored enhancing fine-grained visual-text alignment (Huang et al., 2021; Wang et al., 2022),
adjusting training objectives, adding layers (Fu et al., 2022; Mu et al., 2022; Yao et al., 2022; Zhao
et al., 2023), and integrating textual and visual concepts (Liu et al., 2021; Zhang et al., 2024). Yet,
these methods often lack mechanisms for structured CE. CELF addresses this gap by integrating
LLM-generated pseudo-labels with CLIP’s multimodal learning, enabling scalable CE and CR.

Synthetic datasets for concept-based XAI. Synthetic datasets can overcome the lack of annotated
concepts. However, existing ones focus on visual concepts with fixed configurations, limiting
flexibility for multimodal evaluation, particularly in self-supervised scenarios (Posada-Moreno
et al., 2024; Yeh et al., 2020). While some works explore textual concepts, they often suffer
from a limited number of concepts and unnatural-sounding captions (Alukaev et al., 2023). This
motivated the development of C-MNIST, a configurable multimodal data generator designed to
produce adaptable images, descriptions, and concept annotations for controlled evaluations of visual
and textual concepts.
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Table 1: Comparison of CELF with other CE and CR methods, highlighting key differences and
limitations. ∼ indicates partial CE, as Grad-ECLIP focuses on token-level interpretability.

Method CE CR Strengths Limitations

CELF ✓ ✓
Mitigates LLM hallucinations,

learns structured concepts
May group semantically

similar concepts

FALCON
(Kalibhat et al., 2023) ✓ × No training required,

efficient subspace probing
Relies on CLIP similarity;

requires rich captions

XCB
(Alukaev et al., 2023) ✓ × No pretrained models

needed, task-adaptive
Fixed concept set; requires

downstream supervision

LF-CBM
(Oikarinen et al., 2023) × ✓

Refines class-wise noisy
concepts using filtering

Susceptible to VLM
noise propagation

Grad-ECLIP
(Zhao et al., 2024) ∼ × Provides visual and

textual explanations for CLIP
Focuses on token-level

scores

3 CONCEPTUAL-MNIST (C-MNIST)

Figure 1: Example outputs at each stage of the C-MNIST generator. The process begins with image pre-
processing, followed by transformations that yield modified images and CSV files. Continuous transformation
values are converted into discrete textual concepts, which are used to prompt an LLM for generating descriptive
image characterizations. See Appendix A for rotation detection and prompt.

To address the lack of annotated concept datasets for evaluating concept-based approaches, we
introduce C-MNIST, a configurable data generator built on the MNIST dataset (Deng, 2012) and
geometric shapes to produce datasets with controlled image-description pairs and corresponding
concepts.

Unlike previous static datasets (Posada-Moreno et al., 2024; Rosasco et al., 2024; Yeh et al., 2020),
C-MNIST allows for dynamic configuration of concepts, offering greater flexibility and control in
generating images and corresponding descriptions, with concept annotations.

Figure 1 illustrates the C-MNIST generation process:

• Preprocessing: Each MNIST image is resized to 256×256 pixels, converted to RGB, and
normalized. This ensures consistency and supports color-based transformations. The digit’s
orientation is aligned as detailed in Appendix A.

• Transformations: Images undergo a set of customizable transformations, including continu-
ous attributes (e.g., color, saturation, scale, translation, rotation) and discrete attributes (e.g.,
flip, texture). Users can specify the sequence of parameterized transformations or allow the
system to apply them randomly.

• High-level Concept Definition: Transformed images are annotated with structured concepts.
Continuous attributes are discretized for interpretability (configurable bins, e.g., “small
scale”).

3
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• Description Generation: Textual descriptions are generated using the Zephyr 7B β LLM 1

(Tunstall et al., 2024), guided by a prompt (Appendix C) that incorporates an example to
ensure consistency.

The output comprises the transformed images, their descriptions, and a tabular dataset where columns
represent the transformations, their values (e.g., 30º rotation), their sequence, and the original data
indices to ensure reproducibility.

4 DATASETS

We evaluated CELF across both synthetic and real-world datasets. The former served as a controlled
environment for validating CELF’s performance in concept extraction and retrieval, and for supporting
the selection of the specific approach to apply to real-world data. For consistency with HuggingFace’s
CLIP implementation, all images were converted to RGB, resized to 224×224 pixels, and normalized
using the dataset’s mean and unit standard deviation for all channels.

Complex C-MNIST. This dataset consists of approximately 65,000 training instances, 15,000 for
validation, and 10,000 for testing. This size provides a balance between computational feasibility and
training time, although larger datasets could further improve model robustness and generalization.
The dataset includes images with 4–6 concepts per image, applied to both objects and backgrounds.
Descriptions are occasionally incomplete and use synonyms instead of exact matches, reflecting
real-world variation. With 37 concepts in total (see Appendix B.1), it tests CELF’s ability to handle
conceptual complexity and ambiguity.

Visual Genome. A widely used general-domain dataset with bounding box and attribute annotations,
Visual Genome (Krishna et al., 2016) enables evaluation of concept extraction from real-world
images with diverse, natural language descriptions (see more details in Appendix B.2). We treat
object attributes as ground truth concepts. To generate caption–concept pairs, we group dissimilar
region-level descriptions associated with annotated regions. These descriptions are embedded using
a SentenceTransformer model (Reimers & Gurevych, 2019), and a subset of dissimilar phrases is
selected and merged into a single caption, along with their corresponding concepts. This process is
repeated to create multiple caption–concept pairs per image.

CUB-200. The CUB-200-2011 dataset (Wah et al., 2023) is a fine-grained visual classification
benchmark containing images of 200 bird species (see more details in Appendix B.3). Each image
is annotated with attributes describing physical features such as beak shape, wing color, and body
pattern, making it ideal for concept extraction evaluation. For concept extraction from image–caption
pairs, we adapted the approach in (Alukaev et al., 2023), treating attributes and their associated
uncertainty terms as concepts. To ensure a fair comparison with image-focused methods, we excluded
uncertainty terms like “not visible” and “maybe,” retaining only “definitely” and “probably” for
evaluation.

5 CONCEPT EXTRACTION AND LEARNING FRAMEWORK (CELF)

CELF is a self-supervised, multimodal framework designed to extract human-interpretable concepts
from vision-language datasets without manual annotations and retrieve such concepts from new
image samples. The framework, illustrated in Figure 2, operates in two core stages: CE and CR,
leveraging LLMs and CLIP to refine concepts and accurately align them with visual features.

5.1 CONCEPT EXTRACTION

The CE stage integrates the strengths of LLMs and CLIP to refine and extract reliable concepts.
Individually, they have shown potential for CE (Gao et al., 2024; Kalibhat et al., 2023; Oikarinen
et al., 2023; Yan et al., 2023; Yang et al., 2023) but their combination remains underexplored. Our
approach addresses the hallucination tendencies of LLMs and the noise susceptibility of CLIP.

1See Appendix D for details on model selection, rationale, and implementation.
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Figure 2: Example inputs and outputs at each stage of CELF: (a) CE – Pseudo-label generation for
initial concept annotation, followed by CLIP-based extraction. A fine-tuned CLIP identifies relevant
words, which are then refined and grouped into structured concepts (e.g., represented as colored
circles). (b) CR – A modified CLIP is used to retrieve concepts and its application in downstream
tasks. ICC and IGC stands for image-concept and image-graph contrastive learning, respectively.

5.1.1 PSEUDO-LABEL GENERATION

We generate pseudo-labels using the Phi-3 Mini LLM (Abdin et al., 2024), which has a 4,000-
token context length, enabling rapid and contextually informed outputs. The model is prompted to
extract structured triplets in the format (object, has, concept) from textual descriptions, inspired by
the approach of Shi et al. (2023). Prompt engineering aimed to maximize domain alignment (see
Appendix C).

5.1.2 CLIP’S FINE-TUNING

We use CLIP with a Vision Transformer (ViT) backbone, employing image-text contrastive learning
to align image-description pairs by optimizing the symmetric cross-entropy loss over similarity scores
(Radford et al., 2021). Importantly, image-text alignment allows CLIP to scale, even if the LLM fails
to generate concepts correctly or encounters an unseen textual description during inference.

In addition to CLIP’s contrastive loss, we introduce a novel keyphrase extraction task, framed as a
multi-label classification problem. We train CLIP’s text encoder to predict which words in the caption
represent concepts, using a Binary Cross-Entropy (BCE) loss with pseudo-labels as supervision. To
guide concept identification, we leverage CLIP’s internal attention weights, where higher values
denote stronger token relevance. The total attention weight of a token is defined as the sum across
all layers, attention heads, and tokens, i.e. wtoken attention =

∑Ntokens
i=1

∑Nheads
j=1

∑Nlayers

k=1 wijk
token attention. For

multi-token words, we average scores across their subword tokens to avoid bias toward longer words.
During training, we apply min-max normalization to rescale scores into the [0, 1] range. This
allows us to identify high-attention tokens without introducing additional learnable parameters. We
chose not to use a learned linear head with sigmoid, as our goal was to maintain interpretability and
simplicity. By relying directly on CLIP’s internal representations, we avoid overfitting risks and
retain transparent, easily interpretable attention-based concept scores. Future work could explore a
learned module if performance outweighs interpretability needs.

The total loss function combines the contrastive loss and BCE loss as follows: L = αLCLIP +
βLKeyphrase Extraction BCE, where LCLIP is the standard contrastive loss for aligning images and text,
LKeyphrase Extraction BCE is the BCE loss for predicting concept-relevant words, and α and β are hyper-
parameters controlling the trade-off between losses. Additional details about experiment setup can be
found in Appendix E.1.

5.1.3 CONCEPT REFINEMENT AND STRUCTURING

Following the keyphrase extraction approach, we obtain scored words after normalization and a
sigmoid function. At inference time, we use z-score normalization followed by a sigmoid to improve
score consistency across inputs and datasets without requiring threshold tuning. We then select
words surpassing an empirically determined threshold of 0.4. To reduce noise, region-related terms
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(e.g., “digit,” “shape,” “background,” “bird”) and most stop words (Bird & Loper, 2004) (excluding
negations due to their contextual significance) are filtered out.

A graph-based representation is constructed where nodes represent extracted words, and edges are
determined in two steps: first, consecutive words in the pseudo-labels get higher edge weights;
then, remaining weights are estimated using word pairs co-occurrence frequencies and mutual
attention scores from CLIP’s first four and last three layers. The attention scores from these layers
provide insight into the contextual relevance between words, strengthening the connections between
conceptually related terms.

Finally, the grouping of words into concepts begins with those identified in the pseudo-labels.
Remaining words are grouped using Louvain community detection (Blondel et al., 2008), which
identifies coherent concept structures based on graph connectivity.

5.1.4 CONCEPT CLUSTERING

Synonyms can hinder CR, leading to false negatives, while a large number of distinct concepts
significantly increases computational cost. To address this, semantically similar concepts are clustered
to reduce redundancy and improve both performance and resource efficiency.

Concepts with occurrence frequency below 0.01% are discarded as noise, as they provide insufficient
signal for effective learning. The remaining concepts are embedded using the paraphrase-MiniLM-
L6-v2 model from Sentence-Transformers (Reimers & Gurevych, 2019), which performs well at
capturing semantic similarity, including variations in word order.

We apply Uniform Manifold Approximation and Projection (UMAP) for dimensionality reduction
to 10 dimensions, as in (Allaoui et al., 2020), to retain coarse-grained semantic structure while
reducing noise. Clustering is then performed using Hierarchical Density-Based Spatial Clustering of
Applications with Noise (HDBSCAN) (McInnes et al., 2017). To address low-confidence clusters
(confidence < 50%), we perform a second clustering stage in the original 384-dimensional space.
This allows finer-grained distinctions to be captured. Additional details about hyperparameters can
be found in Appendix E.2.

However, semantically equivalent concepts sometimes remained split across clusters. We therefore
merged clusters whose centroid cosine similarity exceeded 90%. This threshold was empirically
selected based on concept distribution in the C-MNIST train set clusters. Clusters with lower
similarity were retained separately but associated with broader parent clusters to preserve contextual
relevance.

5.2 CONCEPT RETRIEVAL

To address the localized nature of concepts in real-world vision-language datasets, we integrate a
cross-attention module into CLIP. This module is inserted after the projection layers. In this setup,
concepts are used as queries, and the image features act as both keys and values. The resulting
attention outputs are token-averaged, normalized via a LayerNorm, and passed through a final linear
layer. This design encourages each concept to attend to relevant spatial regions in the image.

5.2.1 FIRST STAGE: GRAPH-GUIDED REFINEMENT

We fine-tune CLIP using a graph-aware attention mechanism. Inspired by (Liu et al., 2020), we
introduce a “seeing” layer that masks attention based on a concept graph, allowing only semantically
connected concepts to interact. This promotes coherence and suppresses noise from unrelated
concepts. The training optimizes a multi-objective loss composed of:

• Image-Graph Contrastive Loss: aligns image embeddings with their corresponding con-
cept graphs, promoting structured concept understanding.

• Image-Concept Contrastive Loss: enforces fine-grained alignment between image regions
and individual concept embeddings.

The final loss is a weighted combination of the two components: L = αLimage−graph +
βLimage−concepts, where α and β are hyperparameters that control the relative importance of each
loss. Details about experiment setup can be found in Appendix E.3.
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5.2.2 SECOND STAGE: SUPERVISED CONCEPT PREDICTION

After the first stage, CLIP’s weights are frozen. We then train the newly added layers using BCE loss
to predict the presence of concepts in each image. The model outputs one score per concept, based
on the token-averaged attended features, allowing for robust multi-label concept retrieval.

5.3 SEMANTIC COSINE SIMILARITY

In CE tasks, traditional metrics (e.g., precision, recall) are limited due to their rigid phrase-matching
need, which does not account for synonyms or variations of ground truth concepts. As highlighted in
(Papagiannopoulou & Tsoumakas, 2020), these metrics can yield overly pessimistic results, flagging
predictions as incorrect even when they represent a subset, superset, or synonym of the ground truth
concept. BERTScore (Zhang* et al., 2020), commonly used for text generation evaluation, can be
used as an alternative, but its reliance on contextual embeddings may assign high similarity scores to
concepts with similar contexts but different meanings.

To address these limitations, we propose a more conservative evaluation metric, SCS, which relies on
embedding both the extracted and ground truth concepts. We adopt MiniLM-L6-v2 from Sentence-
Transformers (Reimers & Gurevych, 2019) for the embedding task. This model was chosen for
its strong performance on semantic similarity tasks, providing a robust distinction between true
synonyms and semantically unrelated terms. Cosine similarity is computed between the embeddings,
and a threshold of 80% is used to determine semantic matches. The threshold was empirically
optimized to balance sensitivity and specificity, ensuring accurate evaluations without overestimating
semantic proximity. The validation of SCS on controlled perturbations is provided in Appendix F.1.

5.4 CONCEPT-BASED CLASSIFICATION SETUP

To evaluate the contribution of extracted concepts to downstream tasks, we designed a classification
setup using the complex C-MNIST dataset, which includes ground truth concept annotations. The goal
was to determine whether extracted concepts provide useful semantic information for classification
beyond what is captured by raw image features.

We used a pretrained ResNet50 to extract image features and concatenated them with concept features
before the classification layer. The model predicts multi-label outputs corresponding to concept
combinations, e.g. different position → concepts related to rotation and flip (see Appendix B.1 for
label mapping details).

To evaluate the role of concept quality and retrieval, we compared two concept representations:

1. Retrieved concept embeddings: concepts selected based on the cross-attention CLIP re-
trieval mechanism.

2. Extracted concept embeddings: extracted concepts, bypassing the retrieval step. This
provides an upper-bound for classification performance based on perfect concept retrieval.

6 RESULTS

In this section, we evaluate the performance of our method across three experimental settings: concept
extraction, concept retrieval, and a downstream classification task. For concept extraction, the SCS
metrics (precision, recall, and F1) are computed concept-wise, with F1 being the harmonic mean
of the final recall and precision scores. BERTScore is applied by selecting the best match for
each reference concept among the predictions and averaging these scores across all references in a
sample. For both retrieval and downstream classification, we use macro-averaged metrics to evaluate
concept/label prediction, providing a robust measure of performance under class imbalance.

6.1 CONCEPT EXTRACTION

Since no method is specifically tailored for concept extraction from image-caption pairs, we adapt
FALCON* (Kalibhat et al., 2023) and GRAD-ECLIP (Zhao et al., 2024) for comparison. FALCON*
originally uses a ResNet encoder and contrastive interpretability, which we modify by replacing the
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encoder with CLIP and disabling contrastive interpretability to suit our setting (details in Appendix
F.3). GRAD-ECLIP is adjusted by applying spaCy for noun phrase extraction and empirically setting
a 35th percentile threshold for filtering relevant terms. We also include two additional baselines for
ablation and comparison: (1) CLIP-attn, our method without CE fine-tuning; and (2) the LLM used
in our pipeline for pseudo-labeling and guiding CELF’s concept refinement, as LLMs have also been
used in prior works such as LF-CBM (Oikarinen et al., 2023) to generate per-class concepts.

As shown in Table 2, CELF consistently performs well across datasets in terms of SCS-Recall.
Its performance is also validated against the human study (see Appendix F.5). In C-MNIST, it
achieves strong performance across all metrics. While the LLM generates fewer concepts, they yield
high precision; CELF achieves better recall with slightly lower precision due to occasional noise.
FALCON* underperforms due to reliance on simple noun phrase extraction and sensitivity to caption
variability. GRAD-ECLIP struggles in C-MNIST, possibly due to domain shift and lack of filtering
for irrelevant terms.

In Visual Genome, CELF and the LLM lead in SCS metrics, while GRAD-ECLIP performs better
than before due to dataset alignment with CLIP’s pretraining. FALCON* performs poorly, likely due
to its sensitivity to concept variability in the retrieved captions, which tend to focus narrowly on the
same concept. Furthermore, the presence of multiple concepts per image complicates the retrieval of
a caption that accurately reflects the concepts in the sample.

In the CUB dataset, CELF dominates all SCS metrics. FALCON* and GRAD-ECLIP struggle
with multiple concepts per image and fail to detect uncertainty-related terms, even though this does
not directly impact SCS metrics. Some captions lack full ground truth concept coverage, which
penalizes methods like FALCON* that rely heavily on caption content for image cropping and concept
extraction. For a detailed breakdown of the ablation studies conducted to evaluate the contribution of
different components of the CELF framework for CE, please refer to Appendix F.2.

Table 2: Evaluation of CELF and baselines on CE across datasets across five seeds. Best results in
bold, second-best underlined. Metrics: BERTScore recall (BS R.), SCS with Precision (P), Recall
(R), and F1.

Dataset Metric (%) CLIP attn CELF FALCON GRAD-ECLIP LLM

CCM

SCS-R 83.6 ± 0.7 82.5 ± 0.7 63.0 ± 0.7 45.2 ± 0.0 80.3 ± 0.0
SCS-P 58.6 ± 0.0 72.0 ± 0.6 35.7 ± 0.3 29.9 ± 0.0 76.1 ± 0.0
SCS-F1 68.9 ± 0.2 76.9 ± 0.6 45.6 ± 0.4 40.0 ± 0.0 78.1 ± 0.0
BS-R 95.9 ± 0.0 95.8 ± 0.1 96.5 ± 0.0 94.8 ± 0.0 95.5 ± 0.0

VG

SCS-R 65.6 ± 0.1 66.0 ± 0.2 24.8 ± 0.2 58.1 ± 0.0 64.7 ± 0.0
SCS-P 51.2 ± 0.1 59.2 ± 0.3 17.1 ± 0.1 46.7 ± 0.0 61.6 ± 0.0
SCS-F1 57.5 ± 0.1 62.4 ± 0.2 20.2 ± 0.1 51.8 ± 0.0 63.1 ± 0.0
BS-R 95.4 ± 0.0 95.4 ± 0.1 92.7 ± 0.0 93.0 ± 0.0 94.6 ± 0.0

CUB200

SCS-R 77.1 ± 0.3 82.4 ± 3.0 27.2 ± 0.2 60.9 ± 0.0 76.8 ± 0.0
SCS-P 81.0 ± 0.1 87.0 ± 1.0 8.0 ± 0.1 53.0 ± 0.0 84.6 ± 0.0
SCS-F1 79.0 ± 0.2 84.6 ± 2.0 12.4 ± 0.1 56.7 ± 0.0 80.5 ± 0.0
BS-R 96.0 ± 0.1 96.2 ± 0.3 92.6 ± 0.0 94.0 ± 0.0 95.5 ± 0.0

6.2 CONCEPT RETRIEVAL

In our ablation studies, we evaluate the impact of various components within the CELF framework
(Table 3). Both HDBSCAN and hierarchical clustering contribute notably to the performance, with
HDBSCAN helping to remove noise and hierarchical clustering further improving concept quality.
Additionally, ICC aligns fine-grained concepts and suffices when using well-separated ground truth
concepts, while IGC primarily addresses ambiguities introduced by clustering, helping resolve minor
confusions. The full CELF model effectively balances these effects, achieving a performance closer
to the upper bound observed when using ground truth concepts, which serves as an ideal benchmark.
Overall, the framework is robust, but the clustering step is seed-dependent, which can introduce
variability, as reflected in the standard deviations reported for CELF across seeds. Additional ablation
studies exploring the effect of hierarchical clustering thresholds are provided in Appendix F.4.
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Table 3: CR results on the complex C-MNIST dataset using seed 0 for all ablation studies and five
seeds for CELF. Performance metrics include macro recall, precision, F1-score, and AUC. Optimal
thresholds were applied for the multi-label setting. The ablation studies highlight the impact of
various components within the CELF framework, such as HDBSCAN and hierarchical clustering
(HC), the roles of image-concept (ICC) and image-graph contrastive (IGC) losses.

Model Variant Recall (%) Precision (%) F1-score (%) AUC (%)
CLIP + Linear Head (Baseline) 55.5 19.1 25.8 66.7

CELF w/o HDBSCAN 58.5 18.4 21.8 87.4
CELF w/o HC 52.9 19.7 22.6 84.2

CELF w/ ICC Loss Only 61.1 41.9 46.5 86.1
CELF w/ IGC Loss Only 63.1 42.4 47.4 86.3

CELF (seed 0) 62.2 42.0 47.0 86.0
CELF 62.0 ± 3.7 39.1 ± 2.4 44.1 ± 2.4 85.0 ± 1.7

CELF w/ Ground Truth Concepts 81.3 82.3 80.5 95.5

6.3 DOWNSTREAM TASK

The results of the downstream task (Table 4) show that while the performance of the ResNet model
with retrieved concepts is comparable to the baseline across all metrics, the model with extracted
concepts consistently outperforms both the baseline and retrieved concepts in all evaluated metrics.
This demonstrates the enhanced utility of extracted concepts in downstream tasks, with the extracted
concepts serving as an upper bound for ideal CR. XCB’s evaluation has primarily focused on multi-
class settings, whereas our experiments involve multi-label classification, potentially limiting XCB’s
applicability. Finally, XCB relies on a large number of hyperparameters, complicating optimal tuning;
our experiments only tested a single configuration. We report additional experiments without image
features in Appendix F.6.

Table 4: Performance of ResNet on the CCM dataset (macro-averaged Recall, Precision, F1-Score,
and AUC) baseline, adding retrieved (RC) and extracted concepts (EC) compared to XCB.

Dataset Metric (%) ResNet
(Baseline)

ResNet
w/ RC

ResNet
w/ EC XCB

CCM

Recall 94.9 ± 0.2 94.9 ± 0.2 95.2 ± 0.4 49.2 ± 2.6
Precision 91.1 ± 0.6 91.5 ± 0.3 92.5 ± 1.4 57.4 ± 7.0
F1-Score 92.6 ± 0.3 92.9 ± 0.2 93.6 ± 0.9 45.9 ± 2.6

AUC 96.3 ± 0.1 96.3 ± 0.1 97.2 ± 1.3 85.4 ± 1.2

7 CONCLUSION, POTENTIAL LIMITATIONS AND FUTURE WORK

We introduced CELF, a self-supervised, multimodal framework for extracting and retrieving human-
interpretable concepts without manual annotations. CELF mitigates key issues in concept-based
XAI, including CLIP noise sensitivity, and outperforms gradient-based methods across multiple
datasets, demonstrating strong generalization. We also proposed C-MNIST, a configurable dataset for
controlled benchmarking, and introduced SCS, a conservative semantic metric for evaluating concept
extraction. CELF’s consistent gains in both synthetic and real-world settings, including downstream
tasks, highlight its scalability and practical utility in low annotation settings.

However, CELF requires image-caption pairs for CE, which limits its applicability in domains lacking
aligned text. Although it improves over CLIP, some extracted words remain noisy. Additionally,
while SCS is effective, it could benefit from synonym-aware tuning. In future work, we aim to: (1)
extend CELF to domain-specialized settings (e.g. clinical); (2) investigate hierarchical architectures
for better concept grouping; (3) explore pretraining objectives that improve focus on semantically
relevant image regions; and (4) evaluate CELF on other SOTA VLMs.
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8 REPRODUCIBILITY STATEMENT

To support reproducibility, we plan to publicly release the code for both CELF and C-MNIST. C-
MNIST has already been approved for open-source release, while CELF is currently under evaluation
for approval. The released version of C-MNIST will include improvements compared to the version
used in this paper. Nevertheless, the Appendix (Sections A, B, and E) provides detailed descriptions
of the training procedures, model configurations, and loss functions, ensuring that all experiments
can be replicated under equivalent conditions.
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A CONCEPTUAL-MNIST: ADDITIONAL DETAILS

A.1 DIGIT ROTATION DETECTION

For digit orientation alignment, three specific rotation methods were implemented:

1. For digits with distinct vertical or horizontal lines, this method corrects the orientation by
aligning those lines to the intended axis.

2. For digits “1” (with only a vertical line) and “0,” a simple rectangle fitting is sufficient for
alignment.

3. Used for all digits except “5,” this method aligns each digit with a reference image of
correctly oriented digits. Images are binarized and skeletonized to reduce noise, and a
feature detection and description algorithm identifies keypoints for alignment. To ensure
accuracy, Lowe’s ratio test filters matches, and the affine transformation matrix allows for
the rotation calculation.

The optimal method is selected based on a confidence level, defined as the similarity between the
rotated and reference images. If the confidence level is less or equal to an empirically determined
threshold of 94%, the sample is excluded from the dataset. This threshold was selected based on
observed confidence levels in both successful and failed attempts at detecting rotation.

A.2 PROMPT FOR DESCRIPTION GENERATION

system: Generate a very simple description about an image of a digit (also called object) with
the given characteristics by the user. For example, the user gives green, high saturation, low
decrease in size and high translation to left so you must generate something like: The image has
a digit of blue color, high saturation, translated to the left and small.

user: Generate a simple description of an image featuring an {type_obj} that has the following
list of characteristics on the {type_obj} itself: {digit_transf} and the following on the background
{background_transf}.

B DATASETS ADDITIONAL INFORMATION

B.1 SYNTHETIC DATASETS

In this section, examples of the components in the complex C-MNIST are shown in Table 5. Table 7
displays the distribution of concepts.

Concept Label Mapping. To reduce label sparsity and improve generalization, fine-grained concept
annotations in C-MNIST were grouped into coarser, semantically meaningful labels. For example,
specific rotation operations like ‘second quadrant rotation’ and ‘vertical flip’ were merged under the
broader concept ‘rotated’. This mapping enables more robust evaluation of concept extraction while
reducing the number of output classes. The full mapping includes:

• translation left → minor translation to left

• different position → both horizontal and vertical flip, horizontal flip, quadrant rotations,
vertical flip

• rotated → first to fourth quadrant rotations

• lower scale → small size

• texture → wood, tile, stone textures

• rgb → red, green, blue

• bright → moderate and significant brightness

• low saturation → minor saturation
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Table 5: Examples of complex C-MNIST, including images, descriptions, and concepts.

Image Description Concepts

The image shows an digit that has undergone both
horizontal and vertical flips, has a medium size,

and moderate thickness. The background is
featureless.

both horizontal and
vertical flip,
medium size,

moderate thickness

The image shows an digit that has undergone a
horizontal flip, is of minor thickness, and has a
small size. The background has a spring-like

appearance, is significantly saturated, and has a
moderate level of brightness.

horizontal flip,
minor thickness,

small size, spring,
significant
saturation,

moderate brightness

The image shows an square with a red color,
significant saturation, moderate thickness, and a

medium size. The square has a significant
brightness and a stone texture. The background is

empty.

moderate thickness,
medium size, red,

significant
saturation,
significant

brightness, stone
texture

• thick → moderate and significant thickness
• off-center → various translations to left or right

This abstraction helps balance the dataset and emphasizes semantically meaningful groupings of
visual transformations and styles.

B.2 VISUAL GENOME

The Visual Genome dataset comprises over 108,000 images with detailed annotations (Table 8)
(Krishna et al., 2016). Each image is labeled with multiple objects, attributes, and relationships,
providing a rich foundation for concept extraction. The dataset includes:

• Object annotations: Bounding boxes with corresponding object labels.
• Attribute annotations: Descriptions of object properties (e.g., “red car,” “wooden table”).
• Relationship annotations: Pairwise relationships between objects (e.g.,“man sitting on

chair”).

To construct caption–concept pairs for training and evaluation, we leverage the region-level descrip-
tions associated with annotated bounding boxes. While Visual Genome often provides multiple
descriptions for the same region, many of which refer to the same object or concept, we aim to
increase the semantic diversity of the resulting captions. To achieve this, we encode the region
descriptions using a Sentence-Transformers model (Reimers & Gurevych, 2019) and compute pair-
wise similarities. From these, we select a subset of dissimilar descriptions to ensure coverage of
varied linguistic expressions and conceptual aspects. These are then merged into a single caption that
contains rich and diverse language, and paired with the corresponding object attributes as ground
truth concepts. This process is repeated to create multiple diverse caption–concept pairs per image.

B.3 CUB

The CUB-200-2011 dataset contains 11,788 images across 200 bird species with fine-grained anno-
tations (Alukaev et al., 2023). It is widely used for fine-grained classification and visual attribute
prediction. Each image is annotated with:
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Table 6: Frequency of concepts in train, validation, and test data of complex Conceptual-MNIST.

Concepts Train Validation Test

moderate thickness 50,450 (75.3%) 10,268 (76.2%) 8,766 (77.9%)
minor translation to left 41,576 (62.1%) 7,887 (58.5%) 5,803 (51.6%)
small size 27,728 (41.4%) 5,577 (41.4%) 4,549 (40.4%)
medium size 19,034 (28.4%) 3,924 (29.1%) 3,241 28.8%)
minor thickness 16,508 (24.6%) 3,203 (23.8%) 2,479 (22.0%)
tiles texture 9,328 (13.9%) 1,941 (14.4%) 1,565 (13.9%)
minor staturation 9,327 (13.9%) 2,541 (18.8%) 1,529 (13.6%)
significant brightness 9,309 (13.9%) 1,845 (13.7%) 1,572 (14.0%)
moderate brightness 9,318 (13.9%) 1,820 (13.5%) 1,568 (13.9%)
wood texture 9,249 (13.8%) 1,817 (13.5%) 1,609 (14.3%)
significant saturation 9,231 (13.8%) 1,877 (13.9%) 1,542 (13.7%)
moderate saturation 9,259 (13.8%) 1,859 (13.8%) 1,591 (14.1%)
minor brightness 9,190 (13.7%) 1,871 (13.9%) 1,522 (13.5%)
stone texture 9,187 (13.7%) 1,900 (14.1%) 1,572 (14.0%)
horizontal flip 5,610 (8.4%) 1,168 (8.7%) 914 (8.1%)
fourth quadrant rotation 7,001 (105%) 1,405 (10.4%) 1,177 (10.5%)
second quadrant rotation 7,023 (10.5%) 1,452 (10.8%) 1,179 (10.5%)
third quadrant rotation 6,935 (10.4%) 1,411 (10.5%) 1,191 (10.6%)
first quadrant rotation 6,904 (10.3%) 1,391 (10.3%) 1,149 (10.2%)
vertical flip 4,347 (6.5%) 858 (6.4%) 742 (6.6%)
blue 2,429 (3.6%) 467 (3.5%) 412 (3.7%)
rose 2,405 (3.6%) 450 (3.3%) 404 (3.6%)
azure 2,402 (3.6%) 464 (3.4%) 379 (3.4%)
violet 2,328 (3.5%) 490 (3.6%) 396 (3.5%)
green 2,326 (3.5%) 431 (3.2%) 370 (3.3%)
orange 2,270 (3.4%) 445 (3.3%) 402 (3.6%)
red 2,295 (3.4%) 499 (3.7%) 381 (3.4%)
yellow 2,240 (3.3%) 464 (3.4%) 388 (3.4%)
spring 2,274 (3.4%) 468 (3.5%) 418 (3.7%)
magenta 2,286 (3.4%) 480 (3.6%) 354 (3.1%)
chartreuse 2,283 (3.4%) 467 (3.5%) 377 (3.3%)
cyan 2,279 (3.4%) 411 (3.0%) 381 (3.4%)
both horizontal and vertical flip 920 (1.4%) 172 (1.3%) 126 (1.1%)
minor translation to right 241 (0.4%) 534 (4.0%) 1,294 (11.5%)
moderate translation to right 14 (0.02%) 10 (0.1%) 21 (0.2%)
significant translation to right 2 (0.00%) - 1 (0.01%)
significant thickness 37 (0.06%) 11 (0.1%) 10 (0.1%)

Table 7: Frequency of labels in train, validation, and test data of complex Conceptual-MNIST.

Labels Train Validation Test

thick 50,453 (75.4%) 10,270 (76.2%) 8,763 (78.0%)
different position 34,818 (52.0%) 7,025 (52.1%) 5,858 (52.1%)
off-center 41,814 (62.5%) 8,428 (62.6%) 7,109 (63.3%)
lower scale 27,711 (41.4%) 5,573 (41.4%) 4,539 (40.4%)
texture 18,427 (27.5%) 3,713 (27.6%) 3,173 (28.2%)
rgb 7,045 (10.5%) 1,395 (10.4%) 1,163 (10.3%)
translation left 41,557 (62.1%) 7,884 (58.5%) 5,795 (51.6%)
rotated 27,851 (41.6%) 5,655 (42.0%) 4,693 (41.8%)
bright 18,612 (27.8%) 3,663 (27.2%) 3,135 (27.9%)
low saturation 9,320 (13.9%) 1,798 (13.3%) 1,525 (13.6%)
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Table 8: Overview of the information in the Visual Genome dataset, including object, attribute, and
relationship classes. The information was retrieved from (Krishna et al., 2016).

Number of Images 108,000

Descriptions per Image 50

Total Objects 4,102,818

Number of Objects Categories 76,340

Objects per Image 16

Number of Attributes Categories 15,626

Attributes per Image 16

Number of Relationships Categories 47

Relationships per Image 18

Questions Answers 1,773,258

• Class labels: One of 200 bird species, providing fine-grained categorical supervision.
• Part annotations: Locations of 15 predefined body parts (e.g.,“beak,” “left wing”) with (x, y)

coordinates.
• Attribute annotations: 312 binary attributes describing color, shape, size, and patterns

(e.g.,“has blue wings,” “has striped belly”).
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C PROMPT FOR PSEUDO-LABEL GENERATION

The prompt for pseudo-label generation was inspired in the following prompt from (Shi et al., 2023):

You are a knowledge graph extractor, and your task is to extract and return a knowledge graph
from a given text.Let’s extract it step by step: (1). Identify the entities in the text. An entity
can be a noun or a noun phrase that refers to a real-world object or an abstract concept. You
can use a named entity recognition (NER) tool or a part-of -speech (POS) tagger to identify the
entities. (2). Identify the relationships between the entities. A relationship can be a verb or a
prepositional phrase that connects two entities. You can use dependency parsing to identify the
relationships. (3). Summarize each entity and relation as short as possible and remove any stop
words. (4). Only return the knowledge graph in the triplet format: (’head entity’, ’relation ’, ’tail
entity’). (5). Most importantly, if you cannot find any knowledge, please just output:“None”.
Here is the content: [x]

The prompt was fine-tuned according to the observed generated text, with the final chat history given
to the LLM for complex C-MNIST:

user: You are a knowledge graph extractor, and your task is to extract and return a knowledge
graph from a given text.Let’s extract it step by step: (1). Identify the entities in the text. An
entity can be a noun or a noun phrase that refers to a real-world object or an abstract concept.
You can use a named entity recognition (NER) tool or a part-of -speech (POS) tagger to identify
the entities. (2). Identify the relationships between the entities. A relationship can be a verb that
connects two entities that should be present in the content. You can use dependency parsing
to identify the relationships. (3). Summarize each entity and relation as short as possible and
remove any stop words. (4). Only return the knowledge graph in the triplet format: (head
entity, relation , tail entity). (5). Most importantly, if you cannot find any knowledge, please
just output:“None”. Here is the content: The image shows an object with green color against a
background with a very high saturation.

assistant:(object, has, green color);(background, has, very high saturation)

user: You are a knowledge graph extractor, and your task is to extract and return a knowledge
graph from a given text.Let’s extract it step by step: (1). Identify the entities in the text. An
entity can be a noun or a noun phrase that refers to a real-world object or an abstract concept.
You can use a named entity recognition (NER) tool or a part-of -speech (POS) tagger to identify
the entities. (2). Identify the relationships between the entities. A relationship can be a verb that
connects two entities that should be present in the content. You can use dependency parsing
to identify the relationships. (3). Summarize each entity and relation as short as possible and
remove any stop words. (4). Only return the knowledge graph in the triplet format: (head entity,
relation , tail entity). (5). Most importantly, if you cannot find any knowledge, please just
output:“None”. Here is the content:{descr}

D LANGUAGE MODEL CHOICES AND JUSTIFICATIONS

For reproducibility and transparency, we detail the reasoning behind our language model selections
across different stages of the pipeline:

• Caption generation: We used an open-source model with strong performance. The choice
was pragmatic rather than driven by specific requirements.

• Pseudo-label generation: Zephyr was initially used due to its strong reasoning capabilities,
but it proved computationally expensive. We opted for Phi-3 for these experiments due to its
significantly faster generation speed while maintaining reasonable performance.

• Clustering (encoding): Various sentence encoders were tested. Since this step requires only
text embeddings and not generation, using a full LLM was unnecessary. We selected
paraphrase-MiniLM-L6-v2 from Sentence-Transformers (Reimers & Gurevych,
2019) due to its efficiency and robustness to word order, an important feature given CELF’s
sensitivity to this.
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• SCS: To avoid evaluation bias, we used a model different from the one used during clustering.
This ensures that semantic similarity is assessed independently of the encoding model used
earlier in the pipeline.

E METHODS: TRAINING SETUP

E.1 CONCEPT EXTRACTION

The experiment was conducted with a batch size of 64, we employed the Adam optimizer (Kingma &
Ba, 2014) with an initial learning rate of 1× 10−5, in conjunction with a cosine annealing scheduler
(Loshchilov & Hutter, 2017) that had a maximum of 50 iterations and a minimum learning rate of
1×10−7. Early stopping was implemented based on the evolution of the validation loss and F1-Score.
The parameter β was set to 3 for the first 9 epochs and reduced to 1.5 for the remaining epoch, while
α was fixed at 1, as the loss associated with attention weights directly aligned with the objective.

Furthermore, registers were incorporated in accordance with the findings presented in (Darcet et al.,
2024), with the objective of reducing noise within the ViT.

E.2 CONCEPT CLUSTERING

The clustering was configured with the following HDBSCAN hyperparameters: min_cluster_size=2,
cluster_selection_method=’leaf’, allow_single_cluster=True, and approx_min_span_tree=False using
the HDBSCAN implementation from scikit-learn (Pedregosa et al., 2011). A minimum cluster size
of 2 concepts and the leaf-type cluster selection method were used to obtain the finest and most
homogeneous clusters.

E.3 CONCEPT RETRIEVAL

The image–concept loss generalizes the contrastive principle to a multi-label setting using binary
cross-entropy, enabling fine-grained supervision at the concept level. Specifically:

• Image–Graph Contrastive Loss: This objective aligns image embeddings with their
corresponding concept graph embeddings. Following CLIP setup, we apply a symmetric
cross-entropy loss over cosine similarity scores, scaled by a learnable temperature parameter:

Limg-graph =
1

2
(CE(sim(vi, gj), i) + CE(sim(gi, vj), i)) ,

where vi and gi denote the image and concept graph embeddings, respectively. This
formulation closely resembles the original InfoNCE loss used in CLIP, applied at the batch
level.

• Image–Concept Contrastive Loss: To promote fine-grained alignment between image
embeddings and individual concept representations, we introduce a multi-label contrastive
loss. Given a binary relevance matrix Mij between image vi and concept cj , we compute:

Limg-concepts = BCEWithLogits(sim(vi, cj),Mij),

where the binary cross-entropy loss reflects the multi-label nature of the concept prediction
task.

Both components share a common logit scaling factor (learned during training), and the final loss is
given by:

L = αLimg-graph + βLimg-concepts.

with α = 0.25 and β = 1.0.

We fine-tune the CLIP backbone using the Adam optimizer, applying a learning rate of 1 × 10−5

for the pretrained CLIP parameters and a weight decay of 1× 10−4. We use a batch size of 32. The
learning rate is scheduled with cosine annealing and a linear warm-up over the first 5% of training
steps, based on the recommendations in (Gupta et al., 2023). Early stopping with a patience of 5
epochs is employed if the validation mean Average Precision does not improve to prevent overfitting.
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In the second stage, we freeze the parameters of the fine-tuned CLIP model and train the new layers.
The remaining model parameters are optimized using the Adam optimizer with the following settings:
a learning rate of 1 × 10−4 and a weight decay of 1 × 10−4. The learning rate follows a cosine
annealing schedule with a minimum learning rate of 1× 10−6 over all epochs. The batch size for
training is set to 32. Early stopping with a patience of 10 epochs is employed if the validation AUC
does not improve.

E.4 MULTI-LABEL CLASSIFICATION TASK

We set the batch size to 64 for training. The model parameters are optimized using the Adam optimizer
with a learning rate of 1× 10−4. The learning rate is adjusted using the ReduceLROnPlateau
scheduler, which reduces the learning rate by a factor of 0.5 when the validation AUC has not
improved for 2 consecutive epochs. The training loop is designed to run for a maximum of 50 epochs.
We use early stopping with a patience value of 10 epochs if the validation AUC does not improve
during this period.

XCB Training Setup. For the XCB baseline, we follow a concept bottleneck architecture with a
pretrained ResNet-50 backbone as the feature extractor, followed by a concept extractor based on
an attention mechanism with positional encodings and slot normalization. The concept extractor
maps inputs to a vocabulary of 770 concepts using a Gumbel-Sigmoid activation, chosen to match
the vocabulary size of the complex C-MNIST dataset. The predictor module is a two-layer MLP that
maps the 40-dimensional concept representation to 10 output labels. We use binary cross-entropy as
the main task loss and Jensen-Shannon divergence as the tie loss, weighted by a factor of 10. The
model is optimized using Adam (learning rate 1× 10−4) for the predictor and AdamW (learning rate
4× 10−3, weight decay 0.03) for the concept extractor, each with its own learning rate scheduler:
ReduceLROnPlateau for the predictor and MultiStepLR for the concept extractor. Since our
models and the ResNet-50 baseline tended to stop early (before 20 epochs), we set the maximum
number of training epochs to 40, with early stopping based on the validation AUC.

F ADDITIONAL RESULTS

F.1 SCS VALIDATION

To further validate SCS, we conducted a perturbation study (from approximately 70 to 100 samples)
using C-MNIST concepts. We generated perturbed concept pairs for each of the following categories
until all feasible substitutions were covered:

• Synonym substitution: Replacing one word in a concept with its synonym (e.g., replacing
“minor” with “low” or “small”).

• Antonym substitution: Replacing a word with its opposite (e.g., “left”, “right”).
• Unrelated concepts: Comparing concepts from CUB200 with those from C-MNIST to

simulate dissimilar or out-of-domain contexts.

SCS was compared with BLEU and BERTScore in Table 9. BLEU focuses on exact word overlap and
is unable to capture semantic similarity, which results in low scores even for synonymous concepts. In
contrast, BERTScore tends to overestimate similarity, assigning high scores even to clearly unrelated
concepts (e.g., “significant saturation” vs. “probably buff nape”).

Table 9: Evaluation of semantic similarity metrics (BLEU, BERTScore, and SCS) on manually
labelled synonym, antonym, and unrelated concept pairs.

Synonym Antonym Unrelated

BERTScore 97.9% 98.5% 81.6%
BLEU 23.3% 21.0% 0.4%
SCS 74.3% 53.8% 0.0%
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SCS strikes a better balance: it is sensitive to semantic differences while still recognising meaningful
similarities. It scored 74.3% on synonym pairs (highlighting its ability to capture semantic equiva-
lence), 53.8% on antonyms (showing some sensitivity to semantic opposition), and 0.0% on unrelated
pairs (demonstrating strong discrimination). The BLEU score is non-zero for unrelated pairs because
both CUB200 and C-MNIST mention colors; C-MNIST mentions only the color, while CUB200 also
provides context/localization (e.g., “probably red beak”), which leads to partial word overlap.

To guide threshold selection, we manually inspected similarity scores in C-MNIST. For example:
“horizontal vertical flips” vs. “both horizontal and vertical flip”: 92.3%, “minor translation” vs. “minor
translation left”: 76.5%, and “moderate minor saturation brightness” vs. “moderate brightness”:
79.0%. These observations suggest that SCS can effectively rank semantic similarity. However, we
acknowledge that SCS still misses certain synonymous expressions due to its conservative similarity
threshold. This could be improved by fine-tuning the underlying language model using synonym
databases (e.g., WordNet or ConceptNet), which we plan to explore in future work.

F.2 CONCEPT EXTRACTION

F.2.1 STATISTICAL ANALYSIS

In addition to per-seed variability, we performed statistical tests to evaluate significance across
tasks. CELF consistently outperforms baselines like FALCON and GRAD-ECLIP with higher mean
scores across tasks (mean = 0.7484, std = 0.1121), while the pairwise Wilcoxon tests confirm
CELF’s advantage over other methods. While the p-values are not below 0.05, likely due to the
small number of tasks, the confidence intervals for CELF–FALCON and CELF–GRAD-ECLIP
comparisons (∆ = +0.4, CI = [0.26, 0.64] and ∆ = +0.27, CI = [0.11, 0.41]) suggest consistent
improvements.

F.2.2 ABLATION STUDIES

To evaluate the contribution of each component in our framework, we compare four configurations: (1)
pretrained CLIP with similarity-based concept extractionn, where each candidate word is individually
passed through CLIP and its similarity to the image embedding is used as the selection criterion; (2)
pretrained CLIP with attention-based extraction; (2) pretrained CLIP with attention-based extraction;
(3) CLIP fine-tuned with contrastive loss; and (4) our full CELF model.

As shown in Table 10, CELF achieves the highest performance across all SCS metrics on the CCM
dataset, with notable improvements in precision and F1 over both standard and fine-tuned CLIP
variants. These results indicate that CELF is more effective at extracting semantically relevant
concepts. While fine-tuning improves SCS, it still underperforms compared to CELF, highlighting
the importance of the keyphrase extraction task.

Additionally, attention-based extraction outperforms similarity-based retrieval by a large margin.
This suggests that focusing on contextual word-to-word relationships, rather than isolated similarity
to the image, improves generalization across datasets.

Table 10: Ablation results across five seeds on the CCM dataset. We report SCS Recall (SCS-R),
Precision (SCS-P), and F1-score (SCS-F1), along with BERTScore Recall (BS-R). CELF consistently
outperforms other variants across SCS metrics. CLIP-sim and CLIP-attn refer to concept extraction
using similarity and attention weights, respectively.

CCM
Metrics (%)

CLIP
sim

CLIP
attn

fine-tuned
CLIP CELF

SCS-R 18.5 ± 0.0 83.6 ± 0.7 81.0 ± 1.6 82.5 ± 0.7
SCS-P 30.3 ± 0.1 58.6 ± 0.0 62.3 ± 0.6 72.0 ± 0.6

SCS-F1 23.0 ± 0.1 68.9 ± 0.2 70.4 ± 0.9 76.9 ± 0.6
BS R 89.0 ± 0.1 95.9 ± 0.0 95.9 ± 0.1 95.8 ± 0.1

Heatmap analysis (Figure 3) further confirms that the fine-tuned CLIP model tends to miss on relevant
words, whereas CELF presents high confidence in all of them.
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Figure 3: Heatmap of the attention scores for extracted words (scores above 0.4). Intense red indicates higher
attention, while lighter red denotes lower attention. The top phrase shows results using the fine-tuned CLIP,
while the bottom phrase shows results from CELF. Here, the LLM failed to generate pseudo-labels.

Nonetheless, some limitations persist, particularly when pseudo-labels are incomplete or when
multiple concepts share overlapping words. These challenges make accurate concept grouping more
difficult (see Figure 4).

Figure 4: Visual representation of the concept graph generated from CELF’s extracted words without filtering
localization terms. Different colors indicate word groupings. For clarity, not all links are displayed. In this case,
some concepts are mixed together, such as“green” and “significant brightness.”

F.2.3 THRESHOLD SELECTION AND SENSITIVITY ANALYSIS IN WORD FILTERING

We experimented with three thresholds as shown in Table 12. We observe that threshold 0.4 yields
the best overall F1 scores for CCM and VG, while CUB performs best with threshold 0.3. This is
likely because CUB contains clean, synthetic captions built from templates such as “The bird has
{concepts}”, making it less noisy and more sensitive to a lower threshold. In contrast, VG and CCM
involve greater variability and noise in textual descriptions. In these settings, threshold 0.4 improves
precision substantially while only modestly reducing recall. Thus, it serves as a conservative yet
effective choice for balancing noise reduction and concept coverage.

F.3 FALCON*: FALCON ADAPTATION

FALCON was not originally designed for image-based concept extraction, so we made several
modifications to adapt it. First, we filtered captions to retain only those that contained all the sample
concepts. If no such captions were found, we included captions containing at least one sample
concept. FALCON* consists of two models: a ResNet-based encoder and CLIP. For consistency
with our framework, we replaced the ResNet encoder with a pretrained CLIP model. The concept
extraction then proceeded as outlined in the original FALCON* paper. However, as contrastive
interpretability was difficult to adapt for image-based tasks, we chose not to apply it here, knowing
that this would likely affect the precision score.

For the Visual Genome dataset, some image-text pairs contained no phrases corresponding to any of
the target concepts, so we removed them from evaluation, as including them would unfairly penalize
the method.

23



1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2026

Table 12: Sensitivity study of different word selection thresholds for CELF on CE across five seeds.
Best results are shown in bold, and second-best results are underlined. Metrics include BERTScore
Recall (BS R.) and SCS with Precision (P), Recall (R), and F1.

Dataset Metric (%) Word selection threshold
0.3 0.4 0.5

CCM

SCS-R 85.4 ± 0.1 82.5 ± 0.7 82.0 ± 1.2
SCS-P 61.9 ± 0.2 72.0 ± 0.6 71.9 ± 0.8
SCS-F1 71.7 ± 0.2 76.9 ± 0.6 76.7 ± 0.9
BS-R 96.0 ± 0.1 95.8 ± 0.1 95.8 ± 0.1

CUB200

SCS-R 94.4 ± 0.8 82.6 ± 2.7 80.3 ± 2.2
SCS-P 88.8 ± 0.1 87.1 ± 0.8 86.4 ± 0.7
SCS-F1 91.5 ± 0.4 84.8 ± 1.8 83.2 ± 1.5
BS-R 97.9 ± 0.1 96.2 ± 0.3 95.9 ± 0.3

VG

SCS-R 71.2 ± 0.2 66.0 ± 0.2 54.2 ± 0.5
SCS-P 50.9 ± 0.1 59.2 ± 0.3 62.5 ± 0.3
SCS-F1 59.4 ± 0.2 62.4 ± 0.2 58.1 ± 0.4
BS-R 95.9 ± 0.1 95.4 ± 0.1 93.9 ± 0.1

F.4 CONCEPT RETRIEVAL: CLUSTERING THRESHOLD SENSITIVITY

We conducted a sensitivity analysis on the hierarchical clustering threshold. Results (Table 13) show
that increasing the threshold from 0.9 to 0.95 yields minor improvements in F1 and AUC. This is
likely due to tighter cluster boundaries that reduce intra-cluster semantic noise, even though the total
number of clusters remained constant. However, these differences are small and do not alter our core
findings.

However, as expected, lowering the threshold to 0.85 produces the worst results in terms of precision
and F1. A more permissive threshold leads to larger, broader clusters, which increases semantic
overlap and reduces the discriminative power of the extracted concepts.

Table 13: Sensitivity study of different thresholds for hierarchical clustering on the complex C-
MNIST dataset. Performance metrics include macro Recall, Precision, F1-score, and AUC. Optimal
classification thresholds were used for the multi-label setting.

Metric (%) Hierarchical Clustering threshold
0.9 0.95 (seed 0) 0.85 (seed 0)

Recall 62.0 ± 3.7 63.9 62.7
Precision 39.1 ± 2.4 41.7 36.2

F1 44.1 ± 2.4 47.2 40.4
AUC 85.0 ± 1.7 86.4 86.6

24



1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2026

F.5 HUMAN STUDY

To validate our framework, and given that the C-MNIST dataset captions contained slight variations
and occasional hallucinations from the language model (e.g., mentioning a rotation of 180º), we
conducted a small human study. In this study, participants were asked to annotate the first 50 captions
from the test set.

Annotation protocol. Participants were instructed to identify two categories of concepts within each
caption:

• High-confidence concepts: expressions that they were certain represented a concept.
• Low-confidence concepts: expressions they were unsure represented a concept.

The study was restricted to captions only, without access to the corresponding images. Participants
could choose one of two annotation methods:

• Direct annotation in Excel/CSV: Participants added two new columns (High confidence
concepts and Low confidence concepts) to the provided file and returned the completed
version.

• Streamlit annotation tool: Alternatively, participants could use a lightweight tool we pro-
vided. After setting up the environment and running the script, captions were presented
one by one. Concepts were extracted into High and Low fields, and progress was saved
automatically. Upon completing the 50 captions, a submission file was generated.

The instructions emphasized that “digit” and “background” were not to be considered concepts. Each
concept was defined as a word or phrase that could describe an aspect of the image. An example was
also provided:

Caption: The image shows a small digit with moderate thickness, which has undergone a
minor translation to the right.

Concepts: small, moderate thickness, minor translation right

Participants could also add optional notes to justify their choices.

Results & Discussion. The inter-annotator agreement analysis revealed important differences
between high (Figure 5) and low confidence concepts (Figure 6), where SCS-Recall was computed
using one annotator as reference and another as query. As expected, agreement was consistently
higher for high confidence annotations, reflecting that participants identified transformations (e.g.,
flips), textures, and colors as objectively measurable and thus reliable. In contrast, agreement was
lower for low confidence concepts, which participants frequently justified as subjective or ambiguous.
These included relative quantifiers (e.g., “small,” “moderate,” “minor”), which cannot be precisely
measured; absence descriptors (e.g., “featureless,” “unremarkable”), which describe the lack of
a characteristic rather than a feature itself; and abstract concepts (e.g., “spring-like appearance”),
which require external knowledge or encapsulate multiple attributes. Notably, when both high and
low confidence concepts (Figure 7) were considered together, agreement scores surpassed those of
high-confidence concepts alone. This suggests that participants often recognized the same underlying
concepts but diverged in the degree of confidence with which they categorized them.

Two participants (2 and 9) were familiar with the work; however, this did not significantly impact the
annotation process, as participants without prior knowledge still achieved high agreement and recall
with these annotations.

The results in Table 14 further confirm the inter-annotator findings: participants generally agreed
on high-confidence concepts, while low-confidence concepts were more difficult to assess due to
their subjective or abstract nature and variability in participant interpretation. Additionally, when
comparing against the dataset’s ground truth concepts, participants 2 and 9 achieved recalls of 88.2%
and 85.3%, and precisions of 87.4% and 89.3%, respectively, showing that CELF performs on par
with expert annotators (see Table 2).
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Figure 5: Heatmap of SCS-Recall when considering high confidence concepts. Rows correspond to references
(y-axis) and columns correspond to queries (x-axis).

Figure 6: Heatmap of SCS-Recall when considering low confidence concepts. Rows correspond to references
(y-axis) and columns correspond to queries (x-axis).

Table 14: Evaluation of concept annotation on the CCM dataset. We report SCS Recall (SCS-R),
Precision (SCS-P), and BERTScore Recall (BS-R) for high-confidence, low-confidence, and both
concepts.

CCM
Metrics (%) Both Low

Confidence
High

Confidence
SCS-R 82.8 ± 4.6 21.0 ± 16.6 62.0 ± 18.3
SCS-P 68.6 ± 8.7 35.7 ± 26.8 72.6 ± 12.2
BS R 95.7 ± 0.4 69.6 ± 22.1 93.2 ± 2.6
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Figure 7: Heatmap of SCS-Recall when considering both high and low confidence concepts. Rows correspond
to references (y-axis) and columns correspond to queries (x-axis).
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F.6 DOWNSTREAM TASK

We additionally evaluate a cross-attention CLIP with a linear layer to facilitate a direct comparison
with XCB (Alukaev et al., 2023). XCB shows substantially lower performance, likely reflecting its
design trade-offs that prioritize interpretability over predictive accuracy. Furthermore, our clustering
mechanism effectively groups synonymous concepts, enhancing semantic coherence, which XCB
lacks. The results also suggest that the weaker performance of the cross-attention CLIP classifier
with retrieved concepts adversely affects downstream task outcomes.

Table 15: Performance of using only concept information on the CCM dataset (macro-averaged
Recall, Precision, F1-Score, and AUC), we compare a classifier using RC and EC, and XCB, an
existing CBM.

Dataset Metric (%) Classifier
w/ RC

Classifier
w/ EC XCB

CCM

Recall 97.6 ± 3.2 81.3 ± 2.4 49.2 ± 2.6
Precision 51.0 ± 22.9 73.0 ± 7.7 57.4 ± 7.0
F1-Score 62.5 ± 17.2 74.4 ± 5.5 45.9 ± 2.6

AUC 62.9 ± 18.6 89.2 ± 3.1 85.4 ± 1.2

We provide four heatmaps to analyze the concept extraction behavior across labels, their relevance to
the downstream task, and alignment with ground truth annotations.

Figure 8 reveals that several control-based labels, such as “off-center,” “bright,” and “translation
left,” show high-frequency associations with specific concepts (frequency > 0.5). These patterns
suggest that the extracted concepts for these labels are well-aligned and discriminative. In contrast,
other labels do not show consistently high-frequency concept associations. This is likely due to their
relative scarcity in the dataset, resulting in reduced statistical reliability in concept co-occurrence,
and the presence of several variances in the extracted concepts. Additionally, the concept “moderate
thickness,” being the most frequent across the dataset, shows high co-occurrence across nearly all
labels, indicating limited discriminative power and potential redundancy.

Figure 8: Heatmap of Concept Frequency per Label.

Figures 9 and 10 show that the model often attributes high relevance to semantically aligned concepts
(e.g., “left” being dominant for the “translation left” label). However, some unrelated concepts receive
high relevance due to their frequency or semantic overlap in clustering. These observations also
highlight the occasional challenges in separating semantically close but distinct concepts, especially
when quantifiers are involved. Our findings underscore the benefits of LLM-guided refinement in
improving clustering granularity and mitigating such issues.
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Figure 9: Heatmap displaying model-assigned importance of concepts per label for model trained with image
features and extracted concepts.

Figure 10: Heatmap displaying model-assigned importance of concepts per label for model trained with only
extracted concepts.

Figure 11 further supports these trends. It shows strong hierarchical alignment between extracted
and annotated concepts (e.g., “size” frequently co-occurs with “medium size”), alongside occasional
overlap between contradicting concepts, revealing the nuanced nature of quantifier handling in
automatic concept extraction.

Overall, these visualizations validate the relevance and interpretability of the extracted concepts
across labels, while also offering diagnostic insight into clustering granularity and frequency-driven
biases. These are aspects where further refinement, particularly in the clustering process, remains
a promising direction. They demonstrate the robustness of our method and highlight the value of
concept-level analysis for both qualitative and quantitative evaluation.
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Figure 11: Heatmap of Extracted vs. Ground Truth Concepts.
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G COMPUTATIONAL RESOURCES

Experiments were run using a GPU partition with NVIDIA L40S and a maximum of 12 CPUs. Due
to the modular nature of our pipeline and dataset-dependent variability, runtimes varied across stages:

• LLM-Based Concept Generation (CUB dataset): ~8 hours to generate concepts for 15,000
samples, with runtime dependent on sample complexity and LLM token limits.

• CLIP Fine-Tuning for Concept Extraction (CUB dataset): ~4 hours and 30 minutes.
• Concept Retrieval (C-MNIST dataset):

– Stage 1 (contrastive alignment): ~5 hours and 30 minutes.
– Stage 2 (concept prediction): ~6 hours.

We report the peak GPU memory consumption and runtime for all evaluated methods and datasets.
For all experiments except those involving only LLMs, we used NVIDIA L40S GPUs. LLM-based
methods were run on a V100 GPU. The CE step required between 14-16 GB across all datasets during
training and around 4 GB during inference. Among all components, the most memory-intensive
stage is the first phase of concept retrieval, where we fine-tune CLIP. Notably, this phase accounts for
the highest peak GPU memory usage (36 GB on C-MNIST). This presents a scalability bottleneck,
particularly for datasets with a large number of concepts or diverse visual-textual pairs. A promising
avenue to mitigate this issue is to restrict fine-tuning to the top CLIP layers only. In contrast, the
second stage of CELF is significantly lighter. For instance, this stage requires less than 4 GB of
memory and runs in under 16 minutes per epoch. CELF’s concept extraction module also has
relatively low inference memory requirements ( 3.5 GB) and fast runtimes (7 minutes in CUB and 34
seconds in CMNIST).

Compared to baselines, CELF is competitive:

• LLM-based methods consume low memory ( 4.5 GB) but are slower, taking approximately
12 minutes per batch of 128 samples.

• GRAD-ECLIP requires 1.6-10 GB of memory, with runtimes between 4 and 10 minutes.
• FALCON exhibits high memory and time requirements on CUB (24.3 GB and over 14

hours).

Overall, CELF balances training cost and inference efficiency. While the initial step of the CR stage
is computationally demanding, the remainder of the pipeline is lightweight.

H LLM USAGE

LLMs were used as part of the framework, contributing to concept generation for CELF and caption
generation for C-MNIST. They were also used to polish text and correct grammatical errors.
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