
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

A NOVEL LISTWISE ALIGNMENT APPROACH FOR
LANGUAGE MODELS WITH EXPLICIT REWARDS

Anonymous authors
Paper under double-blind review

ABSTRACT

Existing alignment techniques, including Direct Preference Optimization (DPO),
are primarily designed for pairwise preference data where rewards are inferred
rather than explicitly provided. In this paper, we propose a comprehensive frame-
work for aligning large language models (LLMs) by introducing a new optimiza-
tion objective that facilitates the processing of reward datasets, which consist of a
list of responses explicitly marked with scalar preference scores. Our contribution
includes the development of a novel algorithm, termed Soft Preference Optimiza-
tion (LPO), which allows for the direct derivation of an LLM policy from both
reward and preference datasets. At the heart of LPO is a unique listwise prefer-
ence optimization objective formulated using an exponential-logarithmic function
and an adaptive loss coefficient, which effectively integrates listwise preference
signals into the LLM. We assess the efficacy of our approach under both reward
and preference scenarios using different sizes of Mistral models. Experimental re-
sults indicate that our method outperforms several preference-based benchmarks,
particularly when reward datasets are utilized. Additionally, our method demon-
strates a significant advantage over DPO in intricate reasoning tasks, such as math-
ematical problem-solving and coding.

1 INTRODUCTION

Aligning pretrained Language Models (LMs) with scalar rewards that encapsulate human intentions
is essential for improving their compliance with given instructions (Ouyang et al., 2022; OpenAI,
2023). Such rewards can be imparted either explicitly or implicitly. Explicit rewards include scalar
evaluations from human assessors or sophisticated models such as GPT-4 (OpenAI, 2023), whereas
implicit rewards come in the form of preference judgments made between pairs of responses. An
effective method for aligning LMs using preference data is Direct Preference Optimization (DPO)
(Rafailov et al., 2024b). DPO introduces a reward-training loss by parameterizing the reward model
as the likelihood ratio of responses generated by two LMs, thereby enabling simultaneous training
of the reward model and extraction of the LM’s policy. This methodology is more efficient than
conventional Reinforcement Learning (RL) techniques (Ouyang et al., 2022), which generally ne-
cessitate a two-step procedure: initial training of the reward model followed by the derivation of the
LM’s policy.

Despite its simplicity and effectiveness, DPO is designed specifically for preference data (x →
{yw > yl}) with K = 2 responses per instruction x. When faced with multiple responses, di-
rectly assigning a scalar reward to each response is generally more convenient and efficient than
conducting pairwise comparisons. However, the resultant reward datasets (x → {(yi, ri)}1:K) can-
not be directly utilized for DPO training. Prior studies (Tunstall et al., 2023) typically address this
by pruning the reward dataset, selecting the top response and then pairing it randomly with another
response. This approach is suboptimal since it discards both the reward values and additional non-
preferred responses during the data preprocessing phase. Furthermore, a commonly observed issue
with DPO is the tendency for the likelihood of the preferred response to diminish over the course
of training (Pal et al., 2024; Rafailov et al., 2024a). Our analysis indicates that this phenomenon
primarily stems from DPO’s emphasis on adjusting the relative likelihood among various responses
for each given instruction.
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To tackle these challenges, we introduce Listwise Preference Optimization (LPO), an alignment
technique that facilitates the direct extraction of language model (LM) policies from both reward
and preference datasets, accommodating any number of responses. Notably, LPO encompasses
the Direct Preference Optimization (DPO) loss as a special instance within the context of pairwise
preferences, thereby positioning itself as a natural progression of DPO. While DPO operates as a
single-pair ranking loss, LPO extends this concept to a listwise framework. Unlike DPO, which
relies on the assumptions of the Bradley-Terry model, LPO is grounded in the principles outlined by
Burges et al. (2006). Additionally, we introduce LPO-abs, an alternative approach to LPO, which
incorporates a regularization term aimed at addressing the diminishing reward problem. LPO-abs
diverges from LPO solely in its loss formulation but remains applicable to both preference and
reward datasets.

We assess our methodology using the Mistral-7B models from two perspectives. When reward
datasets (Cui et al.) are accessible, we demonstrate that directly employing our reward-based align-
ment yields a significant enhancement over preference-based algorithms, achieving superior evalua-
tion scores when judged by the GPT-4 model. This improvement can be attributed to LPO/LPO-abs’s
capability to effectively utilize additional sub-optimal responses. In scenarios where only preference
data is available (Yuan et al., 2024b), we benchmark the LPO-abs method against the DPO loss. Our
comprehensive experimental results across multiple benchmarks indicate that LPO-abs surpasses
DPO in handling intricate reasoning tasks, including mathematical problems and coding challenges.

Our main contributions are summarized as follows:

• We introduce LPO, a preference optimization method grounded in reward datasets. Addi-
tionally, LPO-abs addresses the data likelihood decline issue inherent in DPO. These two
proposed methods are particularly well-suited for both reward and preference data, provid-
ing a comprehensive framework that integrates preference-based algorithms.

• We perform extensive experiments using both reward and preference datasets, illustrating
that our methods significantly outperform various preference-based approaches by fully
leveraging the information contained in reward datasets.

2 RELATED WORKS

Development of language models. Recently, the development of language models has under-
gone significant changes (Zhao et al., 2023), evolving from initial rule-based approaches to to-
day’s data-driven deep learning models. A milestone advancement began in 2018 when Google
introduced the BERT model (Devlin et al., 2019) with a Transformer architecture (Vaswani et al.,
2017), which achieved remarkable results in various natural language processing tasks through un-
supervised training. Following this, even larger models like GPT-3 (Brown et al., 2020), ChatGPT
(Ouyang et al., 2022) and GPT-4 (OpenAI, 2023) further propelled this trend, not only reaching
unprecedented scales with hundreds of billions of parameters but also demonstrating versatility and
flexibility across a diverse range of NLP tasks. These advancements have spurred researchers to
explore applications of LLMs in areas such as machine translation, text summarization, dialogue
systems, and even multimodal understanding.

While it is important to develop large language models in the size of 100 billions, the even wider
applications rely on the relatively smaller sized models. These compact models, while perhaps not
matching the sheer breadth of knowledge or depth of understanding afforded by their gargantuan
counterparts (Zeng, 2023), offer significant advantages in terms of deployment flexibility, com-
putational efficiency, and accessibility across diverse platforms and devices, including those with
limited resources. Consequently, efforts aimed at refining smaller models to optimize both efficacy
and practicality are critical for broadening the reach and utility of NLP solutions in everyday con-
texts. Recently, the community has witnessed the releases of open-sourced models like LlaMA-2
7B (Touvron et al., 2023), Mistral-7B (Jiang et al., 2023). These models can run an edge device like
laptop or cellphone, after being deployed under frameworks like Ollama1.

Alignment of large language model. The alignment of large language models (LLMs) is critical
for ensuring they operate ethically, accurately, and responsibly Shen et al. (2023). Proper alignment

1https://github.com/ollama/ollama
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helps prevent the generation of harmful or biased content, promotes factual correctness and reliabil-
ity, and supports legal compliance and user trust Wang et al. (2023b). Additionally, it ensures that
LLMs contribute positively to society by respecting social values, enhancing educational integrity,
and maintaining accessibility and inclusivity for all users. As these models become more integrated
into daily life, their alignment with societal norms and expectations becomes increasingly important
to foster beneficial interactions and outcomes.

Current approaches typically cater to either explicit reward data or preference data, often lacking
the versatility to handle both simultaneously. Reinforcement Learning (RL) (Schulman et al., 2017)
is well-suited for scenarios with explicit rewards. However, its on-policy nature requires the initial
step of learning a reward model from data, resulting in an indirect two-stage optimization process
(Christiano et al., 2017; Ouyang et al., 2022; Shen et al., 2024). Recent advancements in preference-
based alignment techniques (Rafailov et al., 2024b; Azar et al., 2024; Ethayarajh et al., 2024; Wang
et al., 2023a; Hong et al., 2024) have simplified this process, enabling direct alignment of language
models (LMs) through a single loss function. Nevertheless, these methods are limited to pairwise
preference data. Other alignment strategies (Yuan et al., 2024a; Song et al., 2024) are similarly not
designed for use with reward datasets. Recent work like Cai et al. (2023) has attempted to extend
DPO’s parameterization technique to explicit reward contexts, but it is restricted to binary rewards.
In contrast, our methods are capable of handling both continuous rewards and preference data.

3 PRELIMINARIES: DIRECT PREFERENCE OPTIMIZATION

LM alignment is essentially a constrained policy optimization problem:

max
πθ

Ep(x)

[
Eπθ(y|x)r(x, y)− αDKL (πθ(·|x)||µ(·|x))

]
, (1)

where µ represents the pretrained LM. x and y are respectively instructions and responses. r is a
reward function that reflects human intentions. α is the temperature coefficient. Peng et al. (2019)
has proved that the optimal solution for the optimization problem in Equation 1 is:

π∗(y|x) = µ(y|x)e
r(x,y)/α

Z(x)
∝ µ(y|x)er(x,y)/α. (2)

Direct Preference Optimization (DPO) (Rafailov et al., 2024b) assumes we only have access to
some pairwise preference data x → {yw > yl} for each instruction x. The preference probability of
human annotators is modeled by a learnable implicit reward model rθ under Bradley-Terry theories
(Bradley & Terry, 1952):

πθ(yw > yl|x) := σ(rθ(yw, x)− rθ(yl, x)), (3)

where σ is the sigmoid function. To learn rθ, DPO simply adopts a binary classification loss:

LDPO = −E{x,yw>yl} log σ (rθ (yw, x)− rθ (yl, x)) . (4)

In practice, the latent function rθ is parameterized by the log-likelihood ratio between πθ and µ:

rθ(x, y) := β log
πθ(y|x)
µ(y|x)

, (5)

where β a linear coefficient for scaling rθ. This parameterization is crucial because it ensures
πθ(y|x) ∝ µ(y|x)erθ(x,y)/β constantly hold. It transforms generative policy optimization into a
simple discriminative classification task: When rθ = r and β = α are satisfied, we naturally have
πθ = π∗.

4 METHOD

4.1 PREFERENCE DATA VERSUS REWARD DATA

Compared to constructing preference datasets, annotating each response with scalar rewards can
be more flexible and convenient. Preference methods are limited to pairwise comparisons (x →

3
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{yw > yl}) and would require C2
K evaluations to compare K responses. In contrast, reward datasets

(x → {yi, ri}1:K) allow for an arbitrary number of responses per prompt with just K evaluations.

Despite its simplicity in handling preference data, DPO is not tailored for reward datasets. We
introduce a new alignment method termed LPO to mitigate this gap. We show that reward alignment
can be solved by constructing a classification problem to identify the optimal response from multiple
candidates. We then demonstrate that LPO subsumes DPO as a special case and thus is a natural
extension of DPO.

4.2 OBJECTIVE

In essence, DPO represents response rewards as LM likelihoods and constructs a pairwise ranking
task for learning the reward model. Given that there are more than two (K > 2) responses per
prompt in reward datasets, we seek to construct a listwise ranking task for learning reward models
from explicit rewards instead of preference labels. Note that we want to construct a loss objective
that can rank the responses in a pairwise fashion, and injects the reward signals into the ranking
process.

Assume that the responses {yi}1:K’s annotated rewards {ri}1:K are ranked in a descending order,
that is, ri > rj if i < j. Inspired by the LambdaRank method Burges et al. (2006), we now propose
our listwise preference optimization (LPO) method. Formally, the LPO loss is given by:

LLPO
θ = −

∑
1≤i<j≤K

m(i, j) ∗ log σ (rθ (yi, x)− rθ (yj , x)) , (6)

where m(i, j) is given by
m(i, j) = |r2i − r2j |, (7)

where | · | returns the absolute value. Through the coefficient m(i, j), Equation 6 injects the com-
parisons among all the responses to the the LLM.

4.3 ABSOLUTE VALUE REGULARIZATION

A notable issue with DPO is that the likelihood of all responses consistently decreases throughout
the training process (Pal et al., 2024; Rafailov et al., 2024a). We observe that LPO exhibits this same
trend due to their inherent equivalence. This reduction in data likelihood is undesirable because it
directly contradicts the maximum likelihood objective of supervised training and may ultimately
impair performance (Yuan et al., 2024b).

We hypothesize the main cause of this decreasing likelihood is that LPO methods only adjust relative
rewards among responses, rather than optimizing their absolute value. To address this problem,
we propose LPO-abs, a variant to LPO. LPO-abs can also guarantee convergence to the optimal
LM policy by directly learning the absolute reward for each response, thereby counteracting the
decreasing likelihood trend. Formally,

LLPO-abs
θ (x, {yi, ri}1:K) = LLPO

θ (x, {yi, ri}Ki=1) +
1

K

K∑
i=1

(log σ(−rθ(x, yi))), (8)

The loss function for LPO-abs involves two forces that jointly determine the trend of increasing or
decreasing rθ(x, y). Responses with higher rewards would, in principle, attain higher likelihood
after training. Responses with lower rewards will attain proper likelihood under the influence of the
two terms.

Table 1 contrasts the optimization objectives of LPO and LPO-abs. Both LPO and LPO-abs adjust
the relative values of reward models across various responses {yi}K1 for a given instruction x. In
other words, the absolute value of rθ(x, y) is not directly constrained, which can lead to counter-
intuitive behaviors. For example, the reward for even the highest-ranked response might decrease
over time, as long as the reward margin continues to increase, potentially resulting in poor per-
formance or training instability. In contrast, LPO-abs specifically targets the optimization of the
absolute values of the reward model. In practice, this approach effectively prevents the likelihood
of preferred responses from diminishing. We find this particularly beneficial for challenging tasks
such as coding.

4
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Table 1: Comparison of LPO and LPO-abs algorithm for aligning language models. Both reward
loss and pairwise preference loss are given.

Alignment Method LPO LPO-abs
Modeling Target π∗(y|x) ∝ µt(y|x)ert(x,y)/α

Reward dataset x → {yi, ri}1:K
Loss (K > 1) −

∑
1≤i<j≤K m(i, j) ∗ log σ (rθ (yi, x)− rθ (yj , x)) LPO +

1

K

∑K
i=1 σ(−rθ(x, yi))

Preference Dataset x → {yw > yl}

Loss (K = 2) − log σ(rθ(x, ya)− rθ(x, yb)) (DPO) DPO +
1

2

∑
i∈{w,l} σ(−rθ(x, yi))

Optimizing Target relative value relative and absolute value
rθ∗(x, ybest) ≥ 0 not guaranteed guaranteed

5 EXPERIMENTS

We mainly seek to answer two research questions through our experiments:

• If we have access to reward-annotated datasets with more than 2 responses per prompt, does
LPO or LPO-abs offer empirical improvement compared with preference-based approaches
that simply prune reward datasets into preference datasets?

• If only pairwise preference data is available, when should one choose LPO-abs over DPO?
What benefits does LPO-abs offer? Note that LPO is exactly DPO in this setting.

5.1 EXPRIMENTS ON THE REWARD DATASET

Reward datasets We employ the UltraFeedback (Cui et al.) dataset, an instruction-following
dataset annotated by GPT-4. UltraFeedback aims at advancing the alignment of large language
models (LLMs) with human preferences through the use of large-scale, high-quality, and diversi-
fied feedback datasets. Utilizing a vast dataset of approximately 64,000 prompts and 256,000 re-
sponses from various high-quality sources, UltraFeedback evaluates LLM responses on criteria such
as instruction-following, truthfulness, honesty, and helpfulness. GPT-4 rates each response with a
scalar reward on a scale of 0-10. Prior research indicates that these GPT-4 rewards closely align with
human annotations (Zheng et al., 2023), establishing them as an efficient, cost-effective alternative
to human feedback. This dataset is used to train models to better serve user needs while maintaining
ethical standards.

Evaluation datasets We choose the well-acknowledged and widely used GPT4-based bench-
marks as follows for evaluating LLMs:

• MT-bench (Zheng et al., 2023). MT-Bench is a benchmark designed to evaluate the per-
formance of chat assistants across multiple turns of conversation and various categories of
tasks. It consists of 80 multi-turn questions covering common use cases that are challenging
enough to differentiate among models. These questions are categorized into eight types of
user prompts, including Writing, Roleplay, Extraction, Reasoning, Math, Coding, STEM,
and Humanities/Social Science. Each category includes 10 multi-turn questions crafted
carefully by experts. To assess the models’ performance on MT-Bench, strong language
models (LLMs) are used as judges, and the results indicate that these LLM judges, partic-
ularly GPT-4, can align well with both controlled and crowdsourced human preferences,
achieving over 80% agreement, which is comparable to the level of agreement between
humans. Thus, MT-Bench serves as a comprehensive tool to measure the effectiveness of
chat assistants, complementing traditional benchmarks.

• AlpacaEval (Dubois et al., 2024) is an LLM-based automated evaluation metric consisting
of a set of 805 instructions that reflect typical user interactions on the Alpaca web demo.
Both a baseline model, typically GPT-4 turbo, and the model under evaluation generate
responses for each instruction, which are then compared side-by-side by another GPT-4
turbo-based evaluator that outputs the likelihood of preferring the evaluated model’s re-
sponse. The metric calculates a win rate, representing the expected probability that the

5
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evaluated model’s output is preferred over the baseline across these instructions. Initially
designed for the Alpaca chatbot and AlpacaFarm simulator, AlpacaEval was intended to
mitigate certain biases, such as presentation order, by randomizing sequences. However,
other factors like length bias were not controlled for, leading to potential manipulation by
AI systems. To address this, Length-Controlled AlpacaEval was introduced, which em-
ploys a regression-based method to adjust for biases by controlling for length differences,
thereby improving the robustness and correlation with human evaluations.

Evaluation metrics MT-Bench utilizes the GPT-4 as the judge. As is shown in Zheng et al.
(2023), GPT-4 can assign a fair score between 1 to 10 to a LLM’s response which is consistent with
human annotators. We report the average GPT-4 score (gpt-4-score).

On the AlpacaEval dataset, we compare the LLM against the reference responses from the Davinci-
003 (Brown et al., 2020) model. We utilize the GPT-4 as the judge and determine how often the
LLM wins the reference responses (denoted as the win rate).

In addition, we will put the LLM aligned with the LPO method or the DPO method in the Chatbot
Arena (Chiang et al., 2024), and count the ratio of winning rate against the other models.

Baselines We exam the following baseline methods:

• DPO (Rafailov et al., 2024b). To apply the DPO method with reward datasets in which
more than two responses are annotated per instruction, we conduct the data transformation
according to Zephyr (Tunstall et al., 2023). DPO selects the highest reward response and
a random remaining one from UltraFeedback for each instruction. This procedure discards
two additional suboptimal responses in the dataset as well as their reward information.

• DPO-1vsO. Comparing the above procedure of constructing DPO dataset, one might pre-
dict that applying the DPO to a more grained preference dataset would yield better results.
To investigate this, we examined a variants of DPO that utilize all available responses in
UltraFeedback by pair the highest-performing response with each of the other ones sepa-
rately.

• DPO-pw. This variant utilizes all available responses in UltraFeedback by summing up all
DPO loss possibilities for two out of all the responses.

• KTO (Ethayarajh et al., 2024). Using a Kahneman-Tversky model of human utility, KTO
propose a novel method that directly maximizes the utility of generations instead of maxi-
mizing the log-likelihood of preferences, as current methods do.

• IPO (Azar et al., 2024). IPO proposes a new general objective for learning from human
preferences that is expressed in terms of pairwise preferences and therefore bypasses both
approximations.

Results In Table 2, we present the results of fine-tuning a Mistral-7B model on the UltraFeedback
dataset and compare our LPO and LPO-abs methods against the baselines. The results demonstrate
that our methods outperform recent baseline approaches for preference optimization. This improve-
ment can be attributed to LPO/LPO-abs’s ability to fully leverage the information contained within
the reward dataset. Among the two versions of our method, LPO-abs outperforms LPO, highlighting
the significance of maintaining the absolute values of the best responses’ rewards.

5.2 EXPRIMENTS ON THE PREFERENCE DATASET

The previous experiments have focused on reward datasets with more than two responses per in-
put prompt (K > 2, x → {yi, ri}1:K). However, most current alignment datasets are pairwise
(x → {yw, yl}), necessitating an evaluation of our proposed methods in pairwise preference set-
tings as well. Since LPO is equivalent to DPO when only pairwise preference data is available,
we will concentrate on comparing and elucidating the differences between the DPO and LPO-abs
algorithms.

Preferecne dataset We conduct experiments on the UltraInteract dataset Yuan et al. (2024b).
ULTRAINTERACT is a high-quality dataset aimed at enhancing the reasoning abilities of large
language models through complex tasks. It supports both supervised fine-tuning and preference
learning by providing a preference tree for each instruction, including reasoning chains with diverse
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Table 2: Comparison between reward-based methods (SPO, LPO-abs) and preference-based meth-
ods (for example, DPO, IPO) in LLM alignment. We focus on the general instruction-following
abilities of each method measured by GPT-4 evaluations and human preference. The highest num-
ber (excluding the Referenced models ) in each benchmark is bolded and the second highest is
underlined.

Method Annotation Type MT-bench AlpacaEval Win agaist DPO
Referenced models

GPT-4 Reward Model 9.18 93.8 -
LLaMA2-chat-70b Reward Model 6.86 92.7 -
Mistral-7B-instruct SFT Data 6.84 92.6 -

Baseline models
Mixtral-7B-sft SFT Data 6.45 85.2 -

+ KTO Preference 7.12 91.9 -
+ IPO Preference 7.45 90.6 -
+ DPO (Zephyr-β) Preference 7.34 90.6 -
+ DPO-1vsO Preference 7.22 91.6 52.1
+ DPO-pw Preference 7.38 90.3 53.3

Ours
+ LPO Reward 7.57 91.3 54.7
+ LPO-abs Reward 7.63 92.0 57.1

strategies, multi-turn interactions, and paired correct and incorrect data. The dataset was curated
with an emphasis on complexity, quality, and diversity, focusing on math problem-solving, code
generation, and logical reasoning. It includes ground-truth solutions to ensure high-quality oversight
signals. We consider fine-tuning Mistral-7B and Mistral-8×7B models on UltraInteract. Before
alignment, we perform SFT on UltraInteract’s preferred responses.

Evaluation datasets We evaluate the model’s performance in various challenging tasks. This
includes:

• BBH (Suzgun et al., 2022). It is a subset of the BIG-Bench, a diverse evaluation suite for
language models. BBH focuses on a suite of 23 challenging tasks from BIG-Bench that
were found to be beyond the capabilities of current language models. These tasks are ones
where prior language model evaluations did not outperform the average human-rater. The
BBH tasks require multi-step reasoning, and it was found that few-shot prompting without
Chain-of-Thought (CoT), as done in the BIG-Bench evaluations, substantially underesti-
mates the best performance and capabilities of language models. When CoT prompting
was applied to BBH tasks, it enabled PaLM to surpass the average human-rater perfor-
mance on 10 of the 23 tasks, and Codex to surpass the average human-rater performance
on 17 of the 23 tasks.

• HumanEval Chen et al. (2021). It used to measure functional correctness for synthesizing
programs from docstrings. It consists of 164 original programming problems, assessing
language comprehension, algorithms, and simple mathematics, with some comparable to
simple software interview questions.

• LeetCode Guo et al. (2024). LeetCode presents competition-level problems, offering sig-
nificant challenges that test the model’s problem understanding and code generation skills.

• Math tasks. In this work, we include 5 challenging tasks for math problem solving: (a)
GSM-Plus Li et al. (2024). (b) MATH (Hendrycks et al., 2021). (c) TheoremQA (Chen
et al., 2023). (d) SVAMP (Naeem et al., 2014). (e) ASDiv (Miao et al., 2021).

Evaluation metrics

Results Results are presented in Table 3. Overall, LPO-abs consistently outperforms DPO across
various benchmarks. Notably, we observe that DPO sometimes hampers overall performance in
certain reasoning tasks compared to the SFT models. This suggests that DPO may not be well-
suited for enhancing reasoning abilities, a finding that aligns with concurrent research (Yuan et al.,
2024b). In contrast, LPO-abs demonstrates clear improvements on the 7B models.
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Table 3: Comparison between LPO-abs and DPO in LLM alignment. We focus on the reasoning
capabilities on the complex tasks. The highest number in each benchmark is bolded. We mark
numbers that have decreased (↓) after training.

Model
Mixtral-7B

SFT + DPO + LPO-abs
Reasoning BBH 60.8 61.1 61.4

Coding
HumanEval 27.8 30.8 30.3
LeetCode 3.3 2.4 (↓) 3.3

Math

GSM-Plus 28.3 19.4 (↓) 30.2
MATH 5.8 6.4 9.7

TheoremQA 7.1 8.9 8.7
SVAMP 26.9 34.1 41.5
ASDiv 40.8 46.1 50.3

Figure 1: Comparision of data likelihood between DPO and LPO-abs, on the preference dataset
UltraInteract.

5.3 FURTHER ANALYSIS

Visualization of likelihood for the chosen and rejected To illustrate the distinct optimization
characteristics that lead to performance differences between LPO-abs and DPO, we examine how
the data likelihood evolves during training. The results are presented in Figure 1. As shown in
Figure 1, the likelihood of preferred responses intriguingly decreases after DPO training, whereas it
increases with LPO-abs training. The trend of decreasing chosen likelihood is concerning because it
directly contradicts the maximum-likelihood objective utilized during the SFT stage. This drawback
is particularly pronounced in reasoning tasks, where the preferred response is often the ground truth
answer. Consequently, we hypothesize that LPO-abs exhibits superior performance in reasoning
tasks due to its ability to avoid reducing the likelihood of chosen responses. Since DPO can be
considered a specialization of LPO, the contrasting likelihood trends can be theoretically explained.
Specifically, LPO-abs adjusts the absolute likelihood of data, whereas DPO and LPO focus only on
the relative likelihood across different responses. Therefore, a declining chosen likelihood directly
conflicts with LPO-abs’s training objective but not with DPO’s.

Effects of the number of responses K Figure 2 plots how different values of K affects the
LLM alignment performance. From Figure 2, we observe consistent performance improvements
when increasing the number of data responses from K = 2 to K = 4 for both LPO and LPO-
abs algorithms. In addition, we observe the LPO-abs outperforms LPO under different settings,
demonstrating the importance of maintaining the absolute values for the best response’s reward.

Figure 2 also conveys an important take-away. Previous practices always ensure selecting the highest
performing response when constructing preference data. The assumption behind this strategy is
that the dataset’s best-performing response determines the upper limit of alignment performance.
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Figure 2: Evaluation results under different numbers of responses.

However, our experiments contradict this assumption. Results in Figure 2 indicate that extra sub-
optimal responses can also be advantageous for policy training.

6 CONCLUSION

In this work, we conduct a thorough investigation into the language model alignment problem within
the context of explicit reward settings. Drawing inspiration from listwise rank learning, we introduce
two novel and practical algorithms: LPO and LPO-abs. Our proposed methods are uniquely suited
for both reward data and preference data, encompassing DPO as a special case. Our experiments
demonstrate that our reward-based alignment methods, LPO and LPO-abs, outperform preference-
based baselines such as DPO and KTO by fully leveraging sub-optimal responses in reward datasets.
In preference settings, the pairwise version of LPO-abs surpasses DPO in complex reasoning tasks
by effectively preventing the likelihood of preferred responses from decreasing.
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